[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2300587A1 - Wasch- und reinigungsmittel - Google Patents

Wasch- und reinigungsmittel

Info

Publication number
EP2300587A1
EP2300587A1 EP09749563A EP09749563A EP2300587A1 EP 2300587 A1 EP2300587 A1 EP 2300587A1 EP 09749563 A EP09749563 A EP 09749563A EP 09749563 A EP09749563 A EP 09749563A EP 2300587 A1 EP2300587 A1 EP 2300587A1
Authority
EP
European Patent Office
Prior art keywords
acid
weight
washing
chlorophyllase
acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09749563A
Other languages
English (en)
French (fr)
Other versions
EP2300587B1 (de
Inventor
Gerd Reinhardt
Hans Jürgen SCHOLZ
Rico Czaja
Thomas Greiner-Stoeffele
Marc Struhalla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Lecta GmbH
Clariant Finance BVI Ltd
Original Assignee
Clariant Finance BVI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40904794&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2300587(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Clariant Finance BVI Ltd filed Critical Clariant Finance BVI Ltd
Priority to PL09749563T priority Critical patent/PL2300587T3/pl
Publication of EP2300587A1 publication Critical patent/EP2300587A1/de
Application granted granted Critical
Publication of EP2300587B1 publication Critical patent/EP2300587B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38636Preparations containing enzymes, e.g. protease or amylase containing enzymes other than protease, amylase, lipase, cellulase, oxidase or reductase

Definitions

  • the present invention relates to enzyme-containing detergents or cleaners which, in addition to customary constituents, contain combinations of chlorophyllases and at least one further hydrolase, preferably a lipase, particularly preferably a galactolipase.
  • detergents In addition to the ingredients indispensable for the washing process, such as surfactants and builders, detergents generally contain further constituents, which can be summarized by the term washing aids and which comprise such different active ingredient groups as foam regulators, grayness inhibitors, bleaching agents and color transfer inhibitors. Such adjuvants also include substances which aid surfactant performance by the enzymatic degradation of soil soils. The same applies mutatis mutandis to cleaners for hard surfaces.
  • the amylases which have the task of facilitating the removal of starch-containing stains by the catalytic hydrolysis of the starch polysaccharide, and the cellulases are of particular importance.
  • inorganic peroxygen compounds especially hydrogen peroxide and solid peroxygen compounds which dissolve in water to release hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have long been used as oxidizing agents for disinfecting and bleaching purposes.
  • the oxidation effect of these substances in dilute solutions depends strongly on the temperature. At lower temperatures, the oxidation effect of the inorganic peroxygen compounds can be improved by the addition of so-called bleach activators.
  • bleach activators Compounds from the classes of N- or O-acyl compounds, for example, polyacylated alkylenediamines or carboxylic acid esters in question.
  • Chlorophyllases (EC 3.1.1.14), which catalyze the cleavage of chlorophyll or pheophytin into chlorophyllide or pheophorbide and phythol as hydrolytic enzymes, have been known for about 100 years. Through the reaction of
  • Chlorophyllase with chlorophyll significantly improves the water solubility of the chromophore system.
  • Lipases are now routinely used in detergent formulations to remove lipid or grease stains. These enzymes remove the fatty contaminants by hydrolysis of one or more ester bonds of triacylglycerides, as well as phospholipids.
  • a specific group of lipases are the galacto-lipases, which exclusively or in addition to triacylglycerides and phospholipids cleave one or more ester bonds of galactolipids.
  • galactolipases in commercial detergent formulations has not been described previously.
  • galactolipids one or more galactose residues are linked to the sn-3 position of diacylglycerides.
  • Galactolipids are the main components of photosynthetically active membranes and are therefore found mainly in plants and photosynthetically active bacteria. In these galactolipid membranes, the chlorophyll molecules are embedded. Galactolipases are found, for example, in plants, where they occur mainly in the chloroplasts. Further sources of galactolipolytic enzymes are lipases from the mammalian digestive tract and these activities have also been demonstrated in microorganisms.
  • chlorophyllases and other hydrolases especially lipases and in particular galactolipases leads to unexpected synergistic performance improvements on chlorophyll-containing stains, so that this enzyme combination is particularly suitable for use in detergents and cleaners.
  • the invention relates to detergents or cleaners containing a combination of a chlorophyllase and a hydrolase, preferably a lipase and in particular a galactolipase.
  • the cleaning performance of detergents and cleaners is increased, in particular over colored, chlorophyll-based soiling, especially in aqueous washing and cleaning solutions containing a peroxygen compound.
  • cleaning performance against colored stains is to be understood in its broadest meaning and includes both the bleaching of dirt located on the textile, the bleaching of befindlichem in the wash liquor, detached from the textile dirt as well as the oxidative destruction of themselves in the wash liquor Textile paints that detach under the washing conditions of textiles before they can be applied to differently colored textiles.
  • both the Bleaching understood on the hard surface servesdem dirt, especially tea, as well as the bleaching of befindlichem in the dishwashing liquor, detached from the hard surface dirt.
  • chlorophyllases mainly vegetable enzymes are used, preferably enzymes from orange (Citrus sinensis) or from wheat (Triticum aestivum).
  • the enzymes can be produced recombinantly for example in Escherichia coli or Pichia pastoris and subsequently purified from the cytoplasmic crude extract or the culture supernatant by standard methods.
  • the washing or cleaning agent according to the invention contains a hydrolase, preferably a lipase, in particular a
  • Galactolipase The galactolipases used may on the one hand be of prokaryotic origin, for example from Pseudomomas sp. or Chromobacter sp. On the other hand, eukaryotic galactolipases from yeasts, fungi, as well as from plant or animal sources can be used, for example from Candida sp., Beans (Phaseolus vulgaris), potatoes (Solanum tuberosum)
  • the enzymes can also be produced recombinantly for example in Escherichia coli or Pichia pastoris and purified from the cytoplasmic crude extract or the culture supernatant by standard methods become.
  • a washing or cleaning agent according to the invention generally contains in each case 0.0001 to 10 mg, preferably in each case 0.001 mg to 1.0 mg, in particular in each case 0.02 to 0.3 mg of chlorophyllase and further hydrolase per gram of the washing and cleaning agent.
  • the detergents and cleaners according to the invention which are in the form of pulverulent solids, in densified particle form, as homogeneous solutions or Suspensions may contain, in addition to the enzymes mentioned in principle all known and customary in such agents ingredients.
  • the compositions of the invention may include surfactants, builders, bleaches based on organic and / or inorganic peroxygen compounds, additional bleach activators, bleach catalysts, water-miscible organic solvents, additional enzymes, sequestering agents, electrolytes, pH regulators, and other adjuvants such as optical brighteners, grayness inhibitors, dye transfer inhibitors , Foam regulators, silver corrosion inhibitors, as well as dyes and fragrances.
  • the compositions according to the invention may comprise one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable nonionic surfactants are in particular alkyl glycosides and
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • Ethoxylated alcohols include, for example, C 2 -Cu-alcohols with 3 EO or 4 EO, C 9 -Cn-AlkOhOIe with 7 EO 1 Ci 3 -C 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, Ci 2 - C 18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -Cu-alcohol with 3 EO and C- 2 -Ci 8 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • detergents for use in automatic dishwashing processes usually extremely low-foam compounds are used. These preferably include Ci 2 -C 8 -Alkylpolyethylenglykol- polypropylene glycol ethers containing up to 8 moles of ethylene oxide and propylene oxide units in the molecule.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) X, in which R is a primary straight-chain or methyl-branched, in particular methyl-branched, 2-position aliphatic radical having 8 to 22, preferably 12 to
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a quantity to be determined analytically, can also assume broken values - between 1 and 10; preferably x is 1, 2 to 1, 4. Also suitable are polyhydroxy fatty acid amides.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • gemini surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called “spacer”. This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other. In exceptional cases, the term gemini surfactants not only such "dimer”, but also corresponding to "trimeric” surfactants understood. Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers or dimer alcohol bis and trimer alcohol tris sulfates and ether sulfates. End-capped dimeric and trimeric mixed ethers are characterized in particular by their bi- and multi-functionality. However, gemini polyhydroxy fatty acid amides or polyhydroxy fatty acid amides can also be used.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • surfactants of the sulfonate type are preferably Cg-Ci 3 - alkylbenzenesulfonates, Olefinsulfonate, that is mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as they are For example, from Ci 2 -Ci ⁇ monoolefins with terminal or irmen recoveringr double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation obtained, into consideration.
  • alkanesulfonates from C 12 -C 8 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent
  • esters of alpha-sulfo fatty acids for example the alpha-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by alpha-sulfonation of the methyl esters of fatty acids of vegetable and / or animal origin with 8 to 20 C
  • esters of alpha-sulfo fatty acids for example the alpha-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by alpha-sulfonation of the methyl esters of fatty acids of vegetable and / or animal origin with 8 to 20 C
  • Fatty acid molecule and subsequent neutralization to water-soluble MonoSalzen be prepared, into consideration.
  • These are preferably the alpha-sulfonated esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids, although sulfonated products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt. %, can be present.
  • alpha-sulfofatty acid alkyl esters are preferred which have an alkyl chain with not more than 4 C atoms in the ester group, for example methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of the alpha-sulfo fatty acids (MES), but also their saponified disalts are used.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof, as in the preparation by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol to be obtained.
  • Alk (en) yl sulfates are the alkali and especially the sodium salts of the Schwefelhoffreraumester C 2 -C 18 fatty alcohols, for example, from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or Ci -C2o 0 oxoalcohols and Half-ester secondary alcohols of this chain length are preferred.
  • alk (en) ylsulfates of said chain length are a synthetic, petrochemical-based straight-chain Alkyl radical containing an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • alk (en) ylsulfates of said chain length are a synthetic, petrochemical-based straight-chain Alkyl radical containing an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 2 -C 6 -alkyl sulfates and C 12 -C 5 -alkyl sulfates and C 4 -C 5 -alkyl sulfates are particularly preferred.
  • 2,3-alkyl sulfates are suitable anionic surfactants.
  • the Schwefelkladmonoester the ethoxylated with 1 to 6 moles of ethylene oxide, linear or branched C 7 -C 2 I- alcohols such as 2-methyl-branched Cg-Cn alcohols containing on average 3.5 mol ethylene oxide (EO) or C 2 -C - ⁇ 8 -fatty alcohols with 1 to 4 EO.
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic, and the
  • Monoesters and / or diesters of sulfosuccinic acid with alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 - to cis-fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates, whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides). Particularly preferred are the sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate. As further anionic surfactants are particularly soaps into consideration.
  • saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • the anionic surfactants, including soaps may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Surfactants are present in washing according to the invention in proportions of preferably 5 wt .-% to 50 wt .-%, in particular from 8 wt .-% to 30 wt .-%, whereas means for cleaning hard surfaces, in particular for machine cleaning of Tableware, lower surfactant contents of up to 10 wt .-%, in particular up to 5 wt .-% and preferably in the range of 0.5 wt .-% to 3 wt .-% have.
  • An agent according to the invention preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builders include polycarboxylic acids, especially citric acid and sugar acids; monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid),
  • the molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 3000 and 200,000, and of the copolymers between 2000 and 200,000, preferably 30,000 to 120,000, in each case based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of from 30,000 to 100,000 on.
  • Commercially available products are, for example, Sokalan TM CP 5, CP 10 and PA 30 from BASF.
  • Suitable, though less preferred compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers such as vinyl methyl ethers, vinyl esters, ethylene, propylene and styrene in which the proportion of acid is at least 50% by weight. It is also possible to use terpolymers which contain two unsaturated acids and / or salts thereof as monomers and also vinyl alcohol and / or an esterified vinyl alcohol or a carbohydrate as the third monomer as water-soluble organic builder substances.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C -C ⁇ ß-carboxylic acid and preferably from a Ca ⁇ C-monocarboxylic acid, in particular (meth) - acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1000 and 200,000.
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builders can, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30- to
  • aqueous solutions 50 weight percent aqueous solutions can be used. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in paste-form or liquid, in particular water-containing, agents according to the invention.
  • Suitable water-soluble inorganic builder materials are, in particular, alkali metal silicates, alkali metal carbonates and alkali metal phosphates, which may be in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • alkali metal silicates alkali metal carbonates and alkali metal phosphates, which may be in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • examples of these are trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate, oligomeric trisodium phosphate with degrees of oligomerization of from 5 to 1000, in particular from 5 to 50, and the corresponding potassium salts or mixtures of sodium and potassium salts.
  • Crystalline or amorphous alkali metal aluminosilicates in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are particularly suitable as water-insoluble, water-dispersible inorganic builder materials. used. Among these are the crystalline sodium aluminosilicates in
  • Detergent quality in particular zeolite A 1 P and optionally X, alone or in mixtures, for example in the form of a cocrystal of the zeolites A and X (Vegobond ® TM AX, a commercial product of Condea Augusta SpA), preferably. Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size of more than 30 ⁇ m and preferably consist of at least 80% by weight of particles having a size of less than 10 ⁇ m.
  • Their calcium binding capacity is usually in the range of 100 to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders in the compositions according to the invention preferably have a molar ratio of alkali metal oxide to SiO 2 of less than 0.95, in particular of 1: 1, 1 to 1: 12, and may be amorphous or crystalline.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio Na 2 O: SiO 2 of 1: 2 to 1: 2.8.
  • the crystalline silicates which may be present alone or in admixture with amorphous silicates, are crystalline layer silicates with the general formula Na 2 SIXO 2 x + 1.y H 2 O used in which x, known as the modulus, an integer of 1, 9 to 22, in particular 1, 9 to 4 and y is a number from 0 to 33 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline layered silicates are those in which x in the aforementioned general Formula takes 2 or 3.
  • beta- and delta-sodium disilicates Na 2 Si 2 0 5 .y H 2 O
  • amorphous alkali silicates practically anhydrous crystalline alkali metal silicates of the abovementioned general formula in which x is a number from 1, 9 to 2.1, can be used in inventive compositions.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used.
  • Crystalline sodium silicates with a modulus in the range of 1.9 to 3.5 are used in a further preferred embodiment of compositions according to the invention.
  • Crystalline layered silicates of the above formula (I) are sold by Clariant under the tradename Na-SKS, e.g.
  • Na-SKS-1 Na 2 Si 22 O 45 -XH 2 O, kenyaite
  • Na-SKS-2 Na 2 SiuO 29 .xH 2 O, magadiite
  • Na-SKS-3 Na 2 Si 8 Oi 7 -XH 2 O
  • Na-SKS-4 Na 2 Si 4 O 9 -XH 2 O, Makatite
  • Na-SKS-5 alpha-Na 2 Si 2 0 5
  • Na-SKS-7 beta-Na 2 Si 2 0 5 , natrosilite
  • Na-SKS-9 Na 2 Si 2 O 5 .3H 2 O
  • Na-SKS-10 NaHSi 2 O 5 .3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 Na-SKS-13 (NaHSi 2 O 5 )
  • Na-SKS-6 delta-Na 2 Si 2 O 5
  • a granular compound of crystalline layered silicate and citrate, of crystalline layered silicate and the above-mentioned (co) polymeric polycarboxylic acid or alkali metal silicate and alkali metal carbonate, as available for example under the name Nabion ® TM 15 commercially is.
  • Builder substances may optionally be present in the compositions according to the invention in amounts of up to 90% by weight. They are preferably contained in amounts of up to 75% by weight. Detergents according to the invention have builder contents of, in particular, from 5% by weight to 50% by weight. In agents according to the invention for the cleaning of hard surfaces, in particular for the automated cleaning of dishes, the content of builder substances is in particular from 5% by weight to 88% by weight, wherein preferably no water-insoluble builder materials are used in such agents.
  • inventive means for the particular machine cleaning of dishes are 20 wt .-% to 40 wt .-% of water-soluble organic builder, in particular Alkali citrate, 5 wt .-% to 15 wt .-% alkali carbonate and 20 wt .-% to 40 wt .-% Alkalidisilikat included.
  • water-soluble organic builder in particular Alkali citrate, 5 wt .-% to 15 wt .-% alkali carbonate and 20 wt .-% to 40 wt .-% Alkalidisilikat included.
  • Suitable peroxygen compounds are, in particular, hydrogen peroxide and inorganic salts which release hydrogen peroxide under the washing conditions, which include the alkali perborates, percarbonates, persilicates and / or persulphates such as caroate, but also organic peracids or persalts of organic acids such as phthalimidopercaproic acid, perbenzoic acid or salts the diperdodecanedioic acid, into consideration.
  • solid peroxygen compounds are to be used, they can be used in the form of powders or granules, which can also be enveloped in a manner known in principle.
  • Peroxygen compounds are present in amounts of preferably up to 50% by weight, more preferably from 5% to 30% and most preferably from 8% to 25% by weight.
  • bleach stabilizers such as phosphonates, borates or metaborates and metasilicates and magnesium salts such as magnesium sulfate may be useful.
  • Perhydrolysis aliphatic peroxycarboxylic acids having preferably 1 to 10 carbon atoms, in particular 2 to 4 carbon atoms, and / or optionally substituted perbenzoic acid, are used. Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy- 2,5-dihydrofuran and enol ester
  • Such bleach activators may be present in the customary amount range, preferably in amounts of from 0.5% by weight to 10% by weight, in particular from 1% by weight to 8% by weight, based on the total agent.
  • sulfone imines and / or bleach-enhancing transition metal salts or transition metal complexes can also be present as so-called bleach catalysts.
  • candidate transition metal compounds include in particular manganese, iron, cobalt, ruthenium or molybdenum-salene complexes and their known N-analogues, manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, manganese, iron , Cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogenous tripod ligands, cobalt, iron, copper and ruthenium ammine complexes.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25 wt .-% and particularly preferably from 0.01 wt .-% to 0.1 wt .-%, each based on the total agent used.
  • Proteases other lipases, amylases and / or cellulases. Suitable proteases include those of microorganisms, especially bacteria or fungi, recoverable enzymes with a pH optimum in the alkaline range. Protease is preferably used in the agent according to the invention in amounts such that the finished composition is 100 PE / g to 7500 PE / g (protease units per gram, determined by the method described in Tenside 7, 125 (1970)), in particular 125 PE / g to 5000 PE / g and more preferably 150 PE / g to 4500 PE / g.
  • Useful proteases are in the Commercially available, for example, under the names BLAP TM, Savinase TM, Esperase TM 1 Maxatase TM, Optimase TM, Alcalase TM, Durazym TM 1 Everlase TM, Maxapem TM and Purafect TM OxP.
  • amylases which can be used in the compositions according to the invention, which are preferably used in combination with at least one further enzyme, include the enzymes which can be obtained from bacteria or fungi and which have a pH optimum preferably in the alkaline range up to about pH 10.
  • Useful commercial products include Termamyl TM, Maxamyl TM, Duramyl TM, or Purafect TM OxAm.
  • Amylase is preferably used in the composition according to the invention in amounts such that the finished product is 0.01 KNU / g to 2 KNU / g ("kilo-novo units" per gram according to the Novo standard method, with 1 KNU the amount of enzyme is that degrades 5.26 g of starch at pH 5.6 and 37 0 C, described based on the of P.Bernfeld in Colowick SP and Kaplan ND, Methods in Enzymology, Volume 1, 1955, page 149
  • the agent according to the invention contains an amylase, it is preferably selected from the genetically modified amylases.
  • the additional lipase optionally additionally present in the agent according to the invention is an enzyme which can be obtained from microorganisms, in particular bacteria or fungi.
  • Lipase is preferably employed in the composition of the invention in amounts such that the finished composition has a lipolytic activity in the range of 10 LU / g to 10,000 LU / g ("lipase activity
  • Commercially available lipases are, for example, Lipolase TM, Lipomax TM, Lumafast TM and Lipozym TM.
  • the cellulase useful in the invention belongs to the enzymes obtainable from bacteria or fungi, which preferably have a pH optimum in the near neutral to slightly alkaline pH range from 6 to 9.5. They are preferably used in the composition according to the invention in amounts such that the finished composition has a cellulolytic activity of 0.05 IU / g to 1.5 IU / g ("International Units" per gram, based on the enzymatic hydrolysis of Na-carboxymethylcellulose) pH 9.0 and 40 ° C as described in Agric Biol Chem 53, 1275 (1989) by S.
  • Suitable commercial products are, for example, Celluzyme TM from the manufacturer Novo Nordisk or KAC TM from Kao.
  • a plurality of enzymes are to be used in the composition according to the invention, this can be carried out by incorporating the two or more separate or in a known manner separately prepared enzymes or by two or more together in a granule ready-made enzymes.
  • Suitable enzymes which can additionally be used in the compositions are those from the class of cutinases, pullulanases, hemicellulases, oxidases, laccases and peroxidases and mixtures thereof. Particularly suitable are fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus,
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are preferably present in the detergents or cleaners according to the invention in amounts of up to 5% by weight, in particular from 0.2% by weight to 4% by weight.
  • Solvents include alcohols having 1 to 4 carbon atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 carbon atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof and those from the mentioned compound classes derivable ether.
  • Such water-miscible solvents are preferably present in the compositions according to the invention in amounts of not more than 30% by weight, in particular from 6% by weight to 20% by weight.
  • the agents may contain other ingredients customary in detergents and cleaners. These optional ingredients include, in particular, enzyme stabilizers, grayness inhibitors, dye transfer inhibitors, foam inhibitors, and optical brighteners, as well as dyes and fragrances.
  • silver corrosion inhibitors can be used in dishwashing detergents according to the invention.
  • a hard surface cleaning agent according to the invention may contain abrasive constituents, in particular from the group comprising quartz flours, wood flours, plastic flours, chalks and glass microspheres and mixtures thereof. Abrasive substances are preferably not more than 20% by weight, in particular from 5% by weight to 15% by weight, in the cleaning agents according to the invention.
  • the compositions according to the invention may contain system and environmentally acceptable acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • Such pH regulators are present in the compositions according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • the color transfer inhibitors which are suitable for use in textile detergents according to the invention include in particular polyvinylpyrrolidones, polyvinylimidazoles, polymeric N-oxides such as poly (vinylpyridine N-oxide) and copolymers of vinylpyrrolidone with vinylimidazole.
  • Graying inhibitors have the task of keeping suspended from the textile fiber dirt suspended in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions.
  • the detergents according to the invention may comprise soil release polymers, which are generally composed of carboxylic acid units and optionally polymeric diol units and contain, for example, ethylene terephthalate and polyoxyethylene terephthalate groups.
  • Other monomer units for example, propylene glycol, polypropylene glycol, alkylene or
  • Alkenylenedicarboxylic acids, isophthalic acid, carboxy- or sulfo-substituted phthalic acid isomers may be included in the soil release polymer.
  • End-capped derivatives, ie polymers which have neither free hydroxyl groups nor free carboxyl groups but, for example, bear C r 4 -alkyl groups or are terminally esterified with monobasic carboxylic acids, for example benzoic acid or sulfobenzoic acid, can be used.
  • polyesters which, in addition to oxyethylene groups and terephthalic acid units, contain 1, 2-propylene, 1, 2-butylene and / or 3-methoxy-1, 2-propylene groups and also glycerol units and with C 1 - to C 4 -alkyl groups end-capped, the soil release polymers of ethylene terephthalate and polyethylene oxide terephthalate having a molecular weight of 900 to 9000, wherein the polyethylene glycol units have molecular weights of 300 to 3000 and the molar ratio of ethylene terephthalate to Polyethylene oxide terephthalate is 0.6 to 0.95, the at least partially by d- 4 alkyl or acyl groups end-capped polyester with polypropylene propylene terephthalate and polyoxyethylene terephthalate units, the sulfoethyl end phenomenonver ownershipen terephthalate-containing soil release polyester, by sulfonation unsaturated end groups prepared soil-release polyesters containing ter
  • polymers of ethylene terephthalate and polyethylene terephthalate in which the polyethylene glycol units have molecular weights of from 750 to 5,000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate is from 50:50 to 90:10, and polymers of molecular weight from 15,000 to 50,000 of ethylene terephthalate and polyethylene oxide terephthalate, wherein the polyethylene glycol units have molecular weights of 1,000 to 10,000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate is 2: 1 to 6: 1.
  • Detergents according to the invention may contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts.
  • derivatives of diaminostilbenedisulfonic acid or their alkali metal salts for example, salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or similarly constructed compounds which are used in place of the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example the alkali metal salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4-bis (4-chloro-3-sulfostyryl) -diphenyl, or (4-chlorostyryl) -4'- (2-sulfostyrene) -diphenyls.
  • Mixtures of the aforementioned optical brightener can be used.
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant Foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally signed silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with signed silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors in particular silicone and / or paraffin-containing foam inhibitors, are bound to a granular, water-soluble or dispersible carrier substance.
  • a granular, water-soluble or dispersible carrier substance In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • compositions according to the invention can be carried out in a known manner, for example by spray-drying or granulation, the enzymes and any further thermally sensitive ingredients such as, for example, bleaching agents optionally being added separately later.
  • a known process comprising an extrusion step is preferred.
  • Another preferred preparation by means of a granulation process is described in the European patent EP 0 642 576.
  • compositions according to the invention in tablet form, which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all constituents - if appropriate one per layer - in one Mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric or rotary presses pressed.
  • a tablet produced in this way has a weight of 10 g
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Point round tablets preferably a diameter of 30 mm to 40 mm. In particular, the size of rectangular or cuboid-shaped tablets, which are introduced predominantly via the metering device, for example the dishwasher, is dependent on the geometry and the volume of this metering device. Exemplary preferred embodiments have a
  • Liquid or pasty detergents or cleaners according to the invention in the form of conventional solvent-containing solutions are generally prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • the chlorophyllase gene was amplified by the polymerase chain reaction from a cDNA sample with the oligonucleotides Citrus_CHL_fwd_Ndel and Citrus_CHL_rev_Xhol as primers.
  • a corresponding expression vector for example pET28a (Novagen)
  • Restriction endonucleases (Ndel and Xhol) are incorporated.
  • the vector pET28a contained the bacteriophage 11 promoter system and encoded a C-terminal and / or N-terminal His-tag.
  • the amplified DNA was mixed with the digested with both restriction endonucleases and fractionated and purified on an agarose gel, with the appropriate band being excised from the gel and extracted.
  • the digested and gel-purified PCR product was ligated with the cut with the same restriction endonucleases and dephosphorylated expression vector.
  • the ligated DNA could subsequently be used for the transformation of electrocompetent E. coli DH10B (Invitrogen). Positive transformants could be identified by colony PCR, restriction analysis and sequencing.
  • E. coli tuner (DE3) pLacI (Novagen) could be transformed with a plasmid clone containing a verified insert.
  • Cultures were grown in 2xYT medium supplemented with kanamycin (50 ⁇ g / ml) and chloramphenicol (34 ⁇ g / ml) at 37 ° C. At an optical density of about 0.8, expression was induced by the addition of 1 mM isopropylthio galactoside (IPTG). Subsequently, the cultivation was continued at 30 0 C for four to six hours.
  • the cells were harvested by centrifugation and resuspended in 20 mM sodium phosphate buffer (pH 7.4) with 500 mM NaCl, 20 mM imidazole and 0.5 mg / ml lysozyme and incubated at room temperature.
  • the cell disruption was carried out by three freezing in liquid nitrogen with subsequent thawing at about 42 0 C or by ultrasound.
  • the batch was centrifuged with the chlorophyllase as a soluble protein in the supernatant.
  • the chlorophyllase was then further purified by metal affinity chromatography.
  • the metal affinity matrix was equilibrated with 20 mM sodium phosphate buffer (pH 8) with 500 mM NaCl, 20 mM imidazole and 10% glycerol, after sample application the matrix was washed with said buffer and then the chlorophyllase with 20 mM sodium phosphate buffer ( pH 8) with 500 mM NaCl, 250 mM imidazole and 10% glycerol. 3. Measuring chlorophyllase activity
  • the activity of the expressed chlorophyllase was determined by the increased water solubility of the resulting reaction product chlorophyllide.
  • the reaction was carried out in a 100 ⁇ l batch containing 100 ⁇ M chlorophyll of spinach (Fluka), 20% acetone (v / v), and 100 mM Na-MOPS pH 7.0.
  • the reaction mixture was incubated with shaking for 60 min at 37 ° C. and then stopped by addition of 50 ⁇ l acetone, 50 ⁇ l n-hexane and 5 ⁇ l tris-Cl (2 M, pH 9.0).
  • the mixture was well homogenized by vigorous shaking and then the phase separation was accelerated by centrifugation for two minutes.
  • the water-soluble chlorophyllide was in the lower aqueous and the unreacted chlorophyll in the upper organic phase.
  • 80 ⁇ l of the aqueous phase were admixed with 120 ⁇ l of methanol and the fluorescence of the excited chlorophyllide was measured (Ex 355 nm, Em 660 nm).
  • the amount of chlorophyllide formed was determined using a standard calibration curve.
  • Pichia pastoris For expression of the lipase Pichia pastoris was transformed with a verified plasmid clone. The expression was on YPD plates, spiked with Tributyrin, detected due to halo formation with active lipase secretion. From lipase-active clones, liquid cultures were subsequently added in YPD medium mixed with zeocin (100 ⁇ g / l). The cultures were incubated for 48 to 72 hours at 30 0 C with shaking. Thereafter, the cells were separated from the culture supernatant in which the lipase was located by centrifugation. The culture supernatant was desalted by diafiltration and concentrated by lyophilization.
  • the activity of the lipase was monitored by increasing the absorbance at 405 nm during the hydrolysis of p-nitrophenyl butyrate pNP-C4 or p-nitrophenyl caprylate pNP-C8.
  • the reaction was carried out in a 1 ml batch containing 2 mM p-nitrophenyl ester, 50 mM potassium phosphate buffer (pH 8) and 0.1% Triton X-100.
  • the increase in absorbance at 405 nm was monitored continuously over a period of at least one minute.
  • One unit corresponds to the amount of enzyme which catalyzes the release of 1 ⁇ mol p-nitrophenol in one minute in the test batch described above at 22 ° C.
  • Chloroplasts for this assay were isolated from spinach leaves. For this, fresh spinach leaves were ground with sea sand in a mortar and homogenized with 50 mM potassium phosphate buffer pH 8 and 0.33 M sucrose in a mortar. The suspension was filtered through eight layers of cheesecloth and the debris and remaining sand were removed by centrifugation at 200xg for one minute. The chloroplasts in the supernatant were then pelleted by centrifugation at 1000xg for 10 minutes. The chloroplast pellet was resuspended in 50 mM HEPES pH 7.6 with 2 mM EDTA, 1 mM MgCl 2 and 0.33 M sorbitol.
  • chlorophyllase eg 250 ng
  • lipase eg 5 U pNP-
  • chloroplasts were pelleted and the liberated chlorophyllide determined in the supernatant.
  • the determination of chlorophyllide was carried out by measuring the absorbance at 652 nm or by measuring the fluorescence in 60% MeOH (Em 355 nm, Ex 655 nm).
  • the lobules (about 1 cm 2 ) were first treated for 2 h at 37 ° C with 500 ul of enzyme solution containing ⁇ 3 ug chlorophyllase (Example 2) and -7.5 U (pNP-C4) galactolipase (Example 4).
  • the lobules were then washed with a detergent solution (Spee Color detergent, Henkel Dusseldorf) at 40 0 C by hand.
  • the degree of removal of the chlorophyll-containing stain was then determined with a whiteness meter.
  • the delta R value is shown as the difference between the treated and the untreated test tissue. Washing results (% remission)
  • the inventive combination of a chlorophyllase with a hydrolase has a significantly improved cleaning performance, as the use of a chlorophyllase without the addition of a hydrolase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Es werden Wasch- und Reinigungsmittel beschrieben, die eine Kombination aus Chlorophyllase und einer weiteren Hydrolase, vorzugsweise eine Lipase, insbesondere eine Galactolipase enthalten. Die Kombination aus Chlorophyllase und Galactolipase verbessert die Reinigungsleistung, insbesondere bei Chlorophyll-haltigen Anschmutzungen, im Vergleich zu den beiden Enzymen jeweils allein.

Description

Beschreibung
Wasch- und Reinigungsmittel
Die vorliegende Erfindung betrifft enzymhaltige Wasch- oder Reinigungsmittel, die neben üblichen Bestandteilen Kombinationen aus Chlorophyllasen und mindestens einer weiteren Hydrolase, bevorzugt einer Lipase, besonders bevorzugt einer Galactolipase enthalten.
Waschmittel enthalten neben den für den Waschprozess unverzichtbaren Inhaltsstoffen wie Tensiden und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel und Farbübertragungsinhibitoren umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche die Tensidleistung durch den enzymatischen Abbau von auf dem Textil befindlichen Anschmutzungen unterstützen. Gleiches gilt sinngemäß auch für Reinigungsmittel für harte Oberflächen. Dabei kommt neben den die Proteinentfernung unterstützenden Proteasen und den fettspaltenden Lipasen den Amylasen, welche die Aufgabe haben, die Entfernung stärkehaltiger Anschmutzungen durch die katalytische Hydrolyse des Stärke-Polysaccharids zu erleichtern, und den Cellulasen besondere Bedeutung zu.
Weitere übliche Inhaltsstoffe von Wasch- und Reinigungsmitteln sind Wirkstoffe, welche die Entfernung gefärbter Anschmutzungen wie Tee- oder Rotweinflecken bewirken sollen. Hierfür werden anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindungen, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat- Perhydrat, seit langem als Oxidationsmittel zu Desinfektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur ab. Bei niedrigeren Temperaturen kann die Oxidationswirkung der anorganischen Persauerstoffverbindungen durch Zusatz so genannter Bleichaktivatoren verbessert werden. Hier kommen vor allem Verbindungen aus den Stoffklassen der N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine oder Carbonsäureester in Frage. Durch Zusatz dieser Substanzen kann die Bleichwirkung wässriger Peroxidflotten so weit gesteigert werden, dass bereits bei Temperaturen unterhalb 60 0C im Wesentlichen die gleichen Wirkungen wie mit der Peroxidflotte allein bei 95 0C eintreten.
Häufig ergänzen sich Enzyme und Bleichsystem in ihrer Wirkung, häufig werden sogar synergistische Effekte beobachtet. Eine besonders hartnäckige Gruppe von Anschmutzung stellen Chlorophyll-haltige Anschmutzungen dar, insbesondere Gras- oder Laubflecken, die weder durch die bisher verwendeten Enzyme, noch durch das Bleichsystem in hinreichendem Maße entfernt werden können. Als problematisch erweist sich hierbei, dass das Chlorophyll nicht in freier Form sondern in Kombination mit hydrophoben oder proteinhaltigen Pflanzenbestandteilen kombiniert ist, wodurch der Angriff der Bleichsysteme auf den Chromophor erschwert wird.
Chlorophyllasen (EC 3.1.1.14), welche als hydrolytische Enzyme die Spaltung von Chlorophyll oder Pheophytin in Chlorophyllid oder Pheophorbid und Phythol katalysieren, sind seit ca. 100 Jahren bekannt. Durch die Reaktion der
Chlorophyllase mit Chlorophyll wird die Wasserlöslichkeit des chromophoren Systems wesentlich verbessert.
Lipasen werden mittlerweile schon routinemäßig in Wasch- und Reinigungsmittelformulierungen zur Entfernung von Lipid- oder Fettflecken eingesetzt. Diese Enzyme entfernen hierbei die fetthaltigen Verschmutzungen durch Hydrolyse einer oder mehrerer Esterbindungen von Triacylglyceriden, sowie von Phospholipiden. Eine spezielle Gruppe von Lipasen sind die Galacto-Lipasen, welche ausschließlich oder neben Triacylglyceriden und Phospholipiden eine oder mehrere Esterbindungen von Galactolipiden spalten.
Der Einsatz speziell von Galactolipasen in kommerziellen Wasch- und Reinigungsmittelformulierungen ist bisher noch nicht beschrieben worden. In Galactolipiden sind ein oder mehrere Galactose-Reste mit der sn-3-Position von Diacylglyceriden verknüpft. Galactolipide sind die Hauptbestandteile von photosynthetisch aktiven Membranen und sind daher vor allem in Pflanzen und photosynthetisch aktiven Bakterien zu finden. In diese Galactolipidmembranen sind die Chlorophyll-Moleküle eingebettet. Galactolipasen findet man zum Beispiel in Pflanzen, wobei sie hier hauptsächlich in den Chloroplasten vorkommen. Weitere Quellen für galactolipolytische Enzyme sind Lipasen aus dem Verdauungstrakt von Säugetieren und auch in Mikroorganismen sind diese Aktivitäten schon nachgewiesen worden.
Überraschenderweise wurde nun gefunden, dass die Kombination aus Chlorophyllasen und weiteren Hydrolasen, speziell Lipasen und insbesondere Galactolipasen zu unerwarteten synergistischen Leistungsverbesserungen an Chlorophyll-haltigen Anschmutzungen führt, so dass sich diese Enzymkombination besonders für den Einsatz in Wasch- und Reinigungsmitteln eignet.
Gegenstand der Erfindung sind Wasch- oder Reinigungsmittel, enthaltend eine Kombination aus einer Chlorophyllase und einer Hydrolase, vorzugsweise einer Lipase und insbesondere einer Galactolipase.
Durch die Verwendung dieser Kombination aus einer Chlorophyllase und mindestens einer weiteren Hydrolase, vorzugsweise einer Lipase und insbesondere einer Galactolipase wird die Reinigungsleistung von Wasch- und Reinigungsmitteln insbesondere gegenüber gefärbten, chlorophyllbasierten Anschmutzungen insbesondere in wässrigen Wasch- und Reinigungslösungen, die eine Persauerstoffverbindung enthalten, erhöht. Der Begriff Reinigungsleistung gegenüber gefärbten Anschmutzungen ist dabei in seiner weitesten Bedeutung zu verstehen und umfasst sowohl das Bleichen von sich auf dem Textil befindendem Schmutz, das Bleichen von in der Waschflotte befindlichem, vom Textil abgelösten Schmutz als auch das oxidative Zerstören von sich in der Waschflotte befindenden Textilfarben, die sich unter den Waschbedingungen von Textilien ablösen, bevor sie auf andersfarbige Textilien aufziehen können. Auch beim Einsatz in Reinigungslösungen für harte Oberflächen wird unter diesem Begriff sowohl das Bleichen von sich auf der harten Oberfläche befindendem Schmutz, insbesondere Tee, als auch das Bleichen von in der Geschirrspülflotte befindlichem, von der harten Oberfläche abgelösten Schmutz verstanden.
Als einen Bestandteil enthält das erfindungsgemäße Wasch- oder
Reinigungsmittel eine Chlorophyllase. Als Chlorophyllasen werden hauptsächlich pflanzliche Enzyme verwendet, bevorzugt Enzyme aus Orange (Citrus sinensis) oder aus Weizen (Triticum aestivum). Für den Einsatz in den erfindungsgemäßen Produkten können die Enzyme rekombinant zum Beispiel in Escherichia coli oder Pichia pastoris produziert und anschließend aus dem cytoplasmatischen Rohextrakt oder dem Kulturüberstand mit Standardmethoden aufgereinigt werden.
Als weiteren Bestandteil enthält das erfindungsgemäße Wasch- oder Reinigungsmittel eine Hydrolase, bevorzugt eine Lipase, insbesondere eine
Galactolipase. Die verwendeten Galactolipasen können einerseits prokaryotischen Ursprungs sein, zum Beispiel aus Pseudomomas sp. oder Chromobacter sp. Andererseits können auch eukaryotische Galactolipasen aus Hefen, Pilzen, sowie aus pflanzlichen oder tierischen Quellen eingesetzt werden, zum Beispiel aus Candida sp., Bohnen (Phaseolus vulgaris), Kartoffeln (Solanum tuberosum)
Meerschweinchen (Cavia porcellus), Pferd (Equus caballus) oder Mensch (Homo sapiensj. Für den Einsatz in den erfindungsgemäßen Produkten können die Enzyme auch rekombinant zum Beispiel in Escherichia coli oder Pichia pastoris produziert und aus dem cytoplasmatischen Rohextrakt bzw. dem Kulturüberstand mit Standardmethoden aufgereinigt werden.
Ein erfindungsgemäßes Wasch- oder Reinigungsmittel enthält im Allgemeinen jeweils 0,0001 bis 10 mg, vorzugsweise jeweils 0,001 mg bis 1 ,0 mg, insbesondere jeweils 0,02 bis 0,3 mg Chlorophyllase und weitere Hydrolase pro Gramm des Wasch- und Reinigungsmittels.
Die erfindungsgemäßen Wasch- und Reinigungsmittel, die als pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, enthalten außer den genannten Enzymen im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe. Die erfindungsgemäßen Mittel können oberflächenaktive Tenside, Buildersubstanzen, zusätzliche Bleichmittel auf Basis organischer und/oder anorganischer Persauerstoffverbindungen, zusätzliche Bleichaktivatoren, Bleichkatalysatoren, wassermischbare organische Lösungsmittel, zusätzliche Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Schaumregulatoren, Silberkorrosionsinhibitoren sowie Färb- und Duftstoffe enthalten. Die erfindungsgemäßen Mittel können ein Tensid oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische, aber auch kationische, zwitterionische und amphotere Tenside in Frage kommen.
Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und
Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkylaminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-Cu-Alkohole mit 3 EO oder 4 EO, C9-Cn-AIkOhOIe mit 7 EO1 Ci3-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-Cu-Alkohol mit 3 EO und C-ι2-Ci8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-)Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Insbesondere in Reinigungsmitteln für den Einsatz in maschinellen Geschirrspülverfahren werden üblicherweise extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise Ci2-Ci8-Alkylpolyethylenglykol- polypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel C-i2-C-i8-Alkylpolyethylenglykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylenoxideinheiten im Molekül sowie endgruppenverschlossene Alkylpolyalkylenglykolmischether.
Besonders bevorzugt sind auch die hydroxylgruppen haltigen alkoxylierten Alkohole, sogenannte Hydroxymischether. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)X eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis
18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Grosse auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4. Ebenfalls geeignet sind Polyhydroxyfettsäureamide. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl- N.N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig "dimere", sondern auch entsprechend "trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. Eingesetzt werden können aber auch Gemini- Polyhydroxyfettsäureamide oder PoIy- Polyhydroxyfettsäureamide.
Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfatoder Sulfonat-Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg-Ci3- Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci2-Ciβ-Monoolefinen mit end- oder irmenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-Ci8-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender
Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von alpha-Sulfofettsäuren (Estersulfonate), zum Beispiel die alpha-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren, die durch alpha-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im
Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen MonoSalzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die alpha-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Taigfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind alpha-Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der alpha-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Ci2-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Ci0-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt.
Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Ci2-Ci6-Alkylsulfate und C12-Ci5-Alkylsulfate sowie C-i4-Ci5-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, sind geeignete Aniontenside. Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C2I- Alkohole, wie 2-Methylverzweigte Cg-Cn- Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-C-ι8-Fettalkohole mit 1 bis 4 EO. Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die
Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis Cis-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol- Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat. Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden. Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Tenside sind in erfindungsgemäßen Wasch mittein in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten, wohingegen Mittel zur Reinigung harter Oberflächen, insbesondere zur maschinellen Reinigung von Geschirr, niedrigere Tensidgehalte von bis zu 10 Gew.-%, insbesondere bis zu 5 Gew.-% und vorzugsweise im Bereich von 0,5 Gew.-% bis 3 Gew.-% aufweisen.
Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren; monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure),
Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1 ,1- diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im Allgemeinen zwischen 3000 und 200 000, die der Copolymeren zwischen 2000 und 200 000, vorzugsweise 30 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure- Maleinsäure-Copolymer weist eine relative Molekülmasse von 30 000 bis 100 000 auf. Handelsübliche Produkte sind zum Beispiel Sokalan TM CP 5, CP 10 und PA 30 der Firma BASF. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethem, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten Cß-Cβ-Carbonsäure und vorzugsweise von einer Ca-C^-Monocarbonsäure, insbesondere von (Meth)- acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis
50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, erfindungsgemäßen Mitteln eingesetzt.
Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Alkalisilikate, Alkalicarbonate und Alkaliphosphate, die in Form ihrer alkalischen, neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Trinatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat, oligomeres Trinatriumphosphat mit Oligomerisierungsgraden von 5 bis 1000, insbesondere 5 bis 50, sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in
Waschmittelqualität, insbesondere Zeolith A1 P und gegebenenfalls X, allein oder in Mischungen, beispielsweise in Form eines Co-Kristallisats aus den Zeolithen A und X (Vegobond® TM AX, ein Handelsprodukt der Condea Augusta S.p.A.), bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Komgrösse über 30 mu m auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Grosse unter 10 mu m. Ihr Calciumbindevermögen, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1 : 1 ,1 bis 1 : 12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1 : 2 bis 1 : 2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1.y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1 ,9 bis 22, insbesondere 1 ,9 bis 4 und y eine Zahl von 0 bis 33 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl beta- als auch delta-Natriumdisilikate (Na2Si205.y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der oben genannten allgemeinen Formel, in der x eine Zahl von 1 ,9 bis 2,1 bedeutet, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt. Kristalline Natriumsilikate mit einem Modul im Bereich von 1 ,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. Kristalline schichtförmige Silikate der oben angegebenen Formel (I) werden von Clariant unter dem Handelsnamen Na- SKS vertrieben, z. B. Na-SKS-1 (Na2Si22O45-XH2O, Kenyait), Na-SKS-2 (Na2SiuO29.xH2O, Magadiit), Na-SKS-3 (Na2Si8Oi7-XH2O) oder Na-SKS-4 (Na2Si4O9-XH2O, Makatit). Von diesen eignen sich vor allem Na-SKS-5 (alpha-Na2Si205), Na-SKS-7 (beta-Na2Si205, Natrosilit), Na-SKS-9 (Na2Si2O5.3H2O), Na-SKS-10 (NaHSi2O5.3H2O, Kanemit), Na-SKS-11 (t- Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (delta -Na2Si2O5). In einer bevorzugten Ausgestaltung erfindungsgemäßer Mittel setzt man ein granuläres Compound aus kristallinem Schichtsilikat und Citrat, aus kristallinem Schichtsilikat und oben genannter (co-)polymerer Polycarbonsäure, oder aus Alkalisilikat und Alkalicarbonat ein, wie es beispielsweise unter dem Namen Nabion® TM 15 im Handel erhältlich ist.
Buildersubstanzen können in den erfindungsgemäßen Mitteln gegebenenfalls in Mengen bis zu 90 Gew.-% enthalten sein. Sie sind vorzugsweise in Mengen bis zu 75 Gew.-% enthalten. Erfindungsgemäße Waschmittel weisen Buildergehalte von insbesondere 5 Gew.-% bis 50 Gew.-% auf. In erfindungsgemäßen Mitteln für die Reinigung harter Oberflächen, insbesondere zur maschinellen Reinigung von Geschirr, beträgt der Gehalt an Buildersubstanzen insbesondere 5 Gew.-% bis 88 Gew.-%, wobei in derartigen Mitteln vorzugsweise keine wasserunlöslichen Buildermaterialien eingesetzt werden. In einer bevorzugten Ausführungsform erfindungsgemäßer Mittel zur insbesondere maschinellen Reinigung von Geschirr sind 20 Gew.-% bis 40 Gew.-% wasserlöslicher organischer Builder, insbesondere Alkalicitrat, 5 Gew.-% bis 15 Gew.-% Alkalicarbonat und 20 Gew.-% bis 40 Gew.-% Alkalidisilikat enthalten.
Als geeignete Persauerstoffverbindungen kommen insbesondere Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, zu denen die Alkalperborate, -percarbonate, -persilikate und/oder -persulfate wie Caroat gehören, aber auch organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, in Betracht. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Persauerstoffverbindungen sind in Mengen von vorzugsweise bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-% und besonders bevorzugt von 8 Gew.-% bis 25 Gew.-% vorhanden. Der Zusatz geringer Mengen bekannter Bleichmittelstabilisatoren wie beispielsweise von Phosphonaten, Boraten beziehungsweise Metaboraten und Metasilikaten sowie Magnesiumsalzen wie Magnesiumsulfat kann zweckdienlich sein.
Als Bleichaktivatoren können insbesondere Verbindungen, die unter
Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4- dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5- dihydrofuran und Enolester sowie acetyliertes Sorbitol und Mannitol.acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierten Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt.
Derartige Bleichaktivatoren können im üblichen Mengenbereich, vorzugsweise in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten sein. Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren bekannte N-Analogverbindungen, Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Weiterhin können die erfindungsgemäßen Wasch- und Reinigungsmittel
Proteasen, weitere Lipasen, Amylasen und/oder Cellulasen enthalten. Zu den einsetzbaren Proteasen gehören die aus Mikroorganismen, insbesondere Bakterien oder Pilzen, gewinnbaren Enzyme mit einem pH-Optimum im alkalischen Bereich. Protease wird im erfindungsgemäßen Mittel vorzugsweise in solchen Mengen eingesetzt, dass das fertige Mittel 100 PE/g bis 7500 PE/g (Protease-Einheiten pro Gramm, bestimmt nach der in Tenside 7, 125 (1970) beschriebenen Methode), insbesondere 125 PE/g bis 5000 PE/g und besonders bevorzugt 150 PE/g bis 4500 PE/g aufweist. Brauchbare Proteasen sind im Handel erhältlich, beispielsweise unter den Namen BLAP TM, Savinase TM, Esperase TM1 Maxatase TM, Optimase TM, Alcalase TM, Durazym TM1 Everlase TM, Maxapem ©& oder Purafect TM OxP.
Zu den in erfindungsgemäßen Mitteln einsetzbaren Amylasen, die vorzugsweise in Kombination mit mindestens einem weiteren Enzym zum Einsatz kommen, gehören die aus Bakterien oder Pilzen gewinnbaren Enzyme, welche ein pH-Optimum vorzugsweise im alkalischen Bereich bis etwa pH 10 aufweisen. Brauchbare Handelsprodukte sind beispielsweise Termamyl TM, Maxamyl TM, Duramyl TM oder Purafect TM OxAm. Amylase wird im erfindungsgemäßen Mittel vorzugsweise in solchen Mengen eingesetzt, dass das fertige Mittel 0,01 KNU/g bis 2 KNU/g ("Kilo-Novo-Units" pro Gramm gemäß der Standard-Methode der Firma Novo, wobei 1 KNU die Enzymmenge ist, die 5,26 g Stärke bei pH 5,6 und 37 0C abbaut, basierend auf der von P. Bernfeld in S. P. Colowick und N. D. Kaplan, Methods in Enzymology, Band 1 , 1955, Seite 149 beschriebenen
Methode), insbesondere 0,015 KNU/g bis 1 ,8 KNU/g und besonders bevorzugt 0,03 KNU/g bis 1 ,6 KNU/g aufweist. Falls das erfindungsgemäße Mittel eine Amylase enthält, wird diese vorzugsweise unter den gentechnisch modifizierten Amylasen ausgewählt.
Bei der im erfindungsgemäßen Mittel gegebenenfalls zusätzlich enthaltenen weiteren Lipase handelt es sich um ein aus Mikroorganismen, insbesondere Bakterien oder Pilzen, gewinnbares Enzym. Lipase wird im erfindungsgemäßen Mittel vorzugsweise in solchen Mengen eingesetzt, dass das fertige Mittel eine lipolytische Aktivität im Bereich von 10 LU/g bis 10 000 LU/g ("Lipase-activity
Units" pro Gramm, bestimmt über die enzymatische Hydrolyse von Tributyrin bei 30 0C und pH 7 nach der in EP 258 068 genannten Methode), insbesondere 80 LU/g bis 5000 LU/g und besonders bevorzugt 100 LU/g bis 1000 LU/g aufweist. Handelsübliche Lipasen sind beispielsweise Lipolase TM, Lipomax TM, Lumafast TM und Lipozym TM.
Ebenso gehört die erfindungsgemäß brauchbare Cellulase zu den aus Bakterien oder Pilzen gewinnbaren Enzymen, welche ein pH-Optimum vorzugsweise im fast neutralen bis schwach alkalischen pH-Bereich von 6 bis 9,5 aufweisen. Sie werden im erfindungsgemäßen Mittel vorzugsweise in solchen Mengen eingesetzt, dass das fertige Mittel eine cellulolytische Aktivität von 0,05 IU/g bis 1 ,5 IU/g ("International Units" pro Gramm, basierend auf der enzymatischen Hydrolyse von Na-Carboxymethylcellulose bei pH 9,0 und 40 °C, wie in Agric. Biol. Chem. 53, 1275 (1989) von S. Ito et al. beschrieben), insbesondere 0,07 IU/g bis 1 ,4 IU/g und besonders bevorzugt 0,1 IU/g bis 1 ,3 IU/g aufweist. Geeignete Handelsprodukte sind beispielsweise Celluzyme TM des Herstellers Novo Nordisk oder KAC TM von Kao.
Da mehrere Enzyme in dem erfindungsgemäßen Mittel eingesetzt werden sollen, kann dies durch Einarbeitung der zwei oder mehreren separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch zwei oder mehrere gemeinsam in einem Granulat konfektionierte Enzyme durchgeführt werden.
Als in den Mitteln zusätzlich verwendbare Enzyme kommen solche aus der Klasse der Cutinasen, Pullulanasen, Hemicellulasen, Oxidasen, Laccasen und Peroxidasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Bacillus lentus,
Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Coprinus cinereus gewonnene enzymatische Wirkstoffe. Die Enzyme können, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 4 Gew.-%, enthalten.
Zu den in den erfindungsgemäßen Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, neben Wasser verwendbaren organischen
Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.- Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.
Zusätzlich können die Mittel weitere in Wasch- und Reinigungsmitteln übliche Bestandteile enthalten. Zu diesen fakultativen Bestandteilen gehören insbesondere Enzymstabilisatoren, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Schauminhibitoren, und optische Aufheller sowie Färb- und Duftstoffe. Um einen Silberkorrosionsschutz zu bewirken, können in erfindungsgemäßen Reinigungsmitteln für Geschirr Silberkorrosionsinhibitoren eingesetzt werden. Ein erfindungsgemäßes Reinigungsmittel für harte Oberflächen kann darüber hinaus abrasiv wirkende Bestandteile, insbesondere aus der Gruppe umfassend Quarzmehle, Holzmehle, Kunststoffmehle, Kreiden und Mikroglaskugeln sowie deren Gemische, enthalten. Abrasivstoffe sind in den erfindungsgemäßen Reinigungsmitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-%, enthalten.
Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel System- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1 ,2 Gew.-% bis 17 Gew.-%, enthalten.
Zu den für den Einsatz in erfindungsgemäßen Textilwaschmitteln in Frage kommenden Farbübertragungsinhibitoren gehören insbesondere Polyvinylpyrrolidone, Polyvinylimidazole, polymere N-Oxide wie Poly-(vinylpyridin- N-oxid) und Copolymere von Vinylpyrrolidon mit Vinylimidazol. Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Zur Verstärkung der Reinigungsleistung können insbesondere die erfindungsgemäßen Waschmittel schmutzablösevermögende Polymere, sogenannte soil-release-Polymere, enthalten, die in der Regel aus Carbonsäureeinheiten und gegebenenfalls polymeren Dioleinheiten zusammengesetzt sind und zum Beispiel Ethylenterephthalat- und Polyoxyethylenterephthalat-Gruppen enthalten. Andere Monomereinheiten, beispielsweise Propylenglykol, Polypropylenglykol, Alkylen- oder
Alkenylendicarbonsäuren, Isophthalsäure, carboxy- oder sulfosubstituierte Phthalsäureisomere können im schmutzablösevermögenden Polymer enthalten sein. Auch endgruppenverschlossene Derivate, das heißt Polymere, die weder freie Hydroxylgruppen noch freie Carboxylgruppen aufweisen, sondern beispielsweise Cr4-Alkylgruppen tragen oder mit einbasigen Carbonsäuren, beispielsweise Benzoesäure oder Sulfobenzoesäure, endständig verestert sind, können eingesetzt werden. Geeignet sind auch Polyester, die neben Oxyethylen- Gruppen und Terephthalsäureeinheiten 1 ,2-Propylen-, 1 ,2-Butylen- und/oder 3-Methoxy-1 ,2-propylengruppen sowie Glycerineinheiten enthalten und mit C1- bis C4-Alkylgruppen endgruppenverschlossen sind, die Soil-release-Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat mit einer Molmasse von 900 bis 9000, wobei die Polyethylenglykol-Einheiten Molgewichte von 300 bis 3000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 0,6 bis 0,95 beträgt, die zumindest anteilig durch d-4-Alkyl- oder Acylreste endgruppenverschlossenen Polyester mit PoIy- propylenterephthalat- und Polyoxyethylenterephthalat-Einheiten, die sulfoethyl- endgruppenverschlossenen terephthalathaltigen Soil-release-Polyester, die durch Sulfonierung ungesättigter Endgruppen hergestellten Soil-Release-Polyester mit Terephthalat-, Alkylenglykol- und Poly-C2-4- Glylkol-Einheiten kationischen Soil- release-Polyester mit Amin-, Ammonium- und/oder Aminoxid-Gruppen und die kationischen Soil-release- Polyester mit ethoxylierten, quaternierten Morpholin- Einheiten. Gleichfalls geeignet sind Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50 : 50 bis 90 : 10 beträgt, sowie Polymere mit Molgewicht 15 000 bis 50 000 aus Ethylenterephthalat und Polyethylenoxid-terephthalat, wobei die Polyethylenglykol-Einheiten Molgewichte von 1000 bis 10 000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 2 : 1 bis 6 : 1 beträgt.
Erfindungsgemäße Textilwaschmittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1 ,3,5- triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2- sulfostyryl)-diphenyls, 4,4-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'- (2-sulfostyryI)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls signierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit signierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
Die Herstellung erfindungsgemäßer fester Mittel kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei die Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein bekanntes, einen Extrusionschritt aufweisendes Verfahren bevorzugt. Eine weitere bevorzugte Herstellung mit Hilfe eines Granulationsverfahrens ist in der europäischen Patentschrift EP 0 642 576 beschrieben.
Zur Herstellung von erfindungsgemäßen Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, verpresst. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpresst wird. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis
50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung beispielsweise der Geschirrspülmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung. Beispielhaft bevorzugte Ausführungsformen weisen eine
Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26 x 36 mm oder von 24 x 38 mm auf.
Flüssige beziehungsweise pastöse erfindungsgemäße Wasch- oder Reinigungsmittel in Form von übliche Lösungsmittel enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
Die Herstellung von erfindungsgemäß eingesetzter Chlorophyllase durch
Klonierung ist literaturbekannt (IntEnz Enzyme Nomenclature EC 3.1.1.1.14), z. B. gemäß Tsuchiya et al., Proc. Natl. Acad. Sei. USA 96, 15362 - 15367 (1999). Beispiele für Chlorophyllasen sind unter Arabidopsis thaliana AT1G19670 oder AT5G43860 bekannt. Galactolipasen sind bekannt unter EC 3.1.1.26, CAS registry number: 37278-40-3.
Beispiele
1. Expression einer rekombinanten Chlorophyllase in E. coli
Das Gen der Chlorophyllase wurde mit der Polymerase-Kettenreaktion aus einer cDNA-Probe mit den Oligonucleotiden Citrus_CHL_fwd_Ndel und Citrus_CHL_rev_Xhol als Primer amplifiziert. Zur gerichteten Klonierung in einen entsprechenden Expressionsvektor, zum Beispiel pET28a (Novagen) konnten in die Oligonucleotide gleichzeitig Erkennungssequenzen für
Restriktionsendonukleasen (Ndel und Xhol) eingebaut werden. Der Vektor pET28a enthielt das Bakteriophagen 11 Promotersystem, sowie codiert für einen C-terminalen und / oder N-terminalen His-tag. Die amplifizierte DNA wurde mit den beiden Restriktionsendonukleasen verdaut und über ein Agarose-Gel fraktioniert und gereinigt, wobei die entsprechende Bande aus dem Gel ausgeschnitten und extrahiert wurde. Das verdaute und gelgereinigte PCR-Produkt wurde mit dem mit den gleichen Restriktionsendonukleasen geschnittenen und dephosphorylierten Expressionsvektor ligiert. Die ligierte DNA konnte anschließend eingesetzt werden für die Transformation von elektrokompetenten E. coli DH10B (Invitrogen). Positive Transformanden konnten durch Kolonie-PCR, Restriktionsanalyse und Sequenzierung identifiziert werden.
Für die Expression der Chlorophyllase konnte E. coli Tuner(DE3) pLacl (Novagen) mit einem Plasmidklon, der ein verifiziertes Insert enthält, transformiert werden. Kulturen wurden in 2xYT-Medium, versetzt mit Kanamycin (50 μg/ml) und Chloramphenicol (34 μg/ml) bei 37 0C herangezogen. Bei einer optischen Dichte von etwa 0,8 wurde die Expression durch Zugabe von 1 mM Isopropylthio- galactosid (IPTG) induziert. Anschließend wurde die Kultivierung bei 30 0C für vier bis sechs Stunden weitergeführt werden.
2. Reinigung einer rekombinanten Chlorophyllase aus E. coli
Die Zellen wurden durch Zentrifugation geerntet und in 20 mM Natriumphosphat- Puffer (pH 7,4) mit 500 mM NaCI, 20 mM Imidazol und 0,5 mg/ml Lysozym resupendiert und bei Raumtemperatur inkubiert. Der Zellaufschluss erfolgte durch dreimaliges Einfrieren in flüssigen Stickstoff mit anschließendem Wiederauftauen bei etwa 42 0C oder durch Ultraschall. Der Ansatz wurde zentrifugiert, wobei sich die Chlorophyllase als lösliches Protein im Überstand befanden. Die Chlorophyllase wurde anschließend über eine Metall-Affinitäts- Chromatographie weiter aufgereinigt. Dazu wurde die Metall-Affinitätsmatrix mit 20 mM Natriumphosphat-Puffer (pH 8) mit 500 mM NaCI, 20 mM Imidazol und 10 % Glycerol äquilibriert, nach Probenauftrag die Matrix mit dem genannten Puffer gewaschen und anschließend die Chlorphyllase mit 20 mM Natriumphosphat-Puffer (pH 8) mit 500 mM NaCI, 250 mM Imidazol und 10 % Glycerol eluiert. 3. Messen der Chlorophyllase-Aktivität
Die Aktivität der exprimierten Chlorophyllase wurde anhand der erhöhten Wasserlöslichkeit des entstehenden Reaktionsproduktes Chlorophyllid bestimmt. Die Reaktion wurde in einem 100 μl Ansatz durchgeführt, welcher 100 μM Chlorophyll aus Spinat (Fluka), 20 % Aceton (v/v), und 100 mM Na-MOPS pH 7,0 enthält. Der Reaktionsansatz wurde 60 min bei 37 0C unter Schütteln inkubiert und anschließend durch Zugabe von 50 μl Aceton, 50 μl n-Hexan und 5 μl Tris-Cl (2 M; pH 9,0) abgestoppt. Die Mischung wurde durch starkes Schütteln gut homogenisiert und anschließend die Phasentrennung durch zweiminütige Zentrifugation beschleunigt. Durch die Reaktion der Chlorophyllase befand sich das wasserlösliche Chlorophyllid in der unteren wässrigen und das nicht umgesetzte Chlorophyll in der oberen organischen Phase. Zur Quantifizierung wurden 80 μl der wässrigen Phase mit 120 μl Methanol versetzt und die Fluoreszenz des angeregten Chlorophyllids gemessen (Ex 355 nm; Em 660 nm). Die Menge an gebildeten Chlorophyllid wurde anhand einer Standardeichkurve bestimmt.
4. Expression einer rekombinanten Galactolipase in Pichia pastoris
Die synthetische Gen-Kassette des humanen pancreas lipase related protein 2, einer Galactolipase, flankiert von Erkennungsstellen für die
Restriktionsendonukleasen Kpnl und Pagl wurde in einen Pichia- Expressionsvektor, wie zum Beispiel pGK1 oder pGAPZα kloniert. Dazu wurden, sowohl das synthetische Gen, als auch der entsprechende Expressionsvektor, der im Anschluss noch dephosphoryliert wurde, mit den Restriktionsendonukleasen nach Herstellervorschrift verdaut. Die verdauten Nukleinsäuren wurden über Agarose-Gelelektrophorese nach Größe fraktioniert und gereinigt und wurden danach mit T4-DNA-Ligase nach Herstellervorschrift ligiert. Die ligierte DNA wurde anschließend eingesetzt für die Transformation von elektrokompetenten E. coli DH10B. Positive Transformanden wurden durch Kolonie-PCR, Restriktionsanalyse und Sequenzierung identifiziert.
Für die Expression der Lipase wurde Pichia pastoris mit einem verifizierten Plasmidklon transformiert. Die Expression wurde auf YPD-Platten, versetzt mit Tributyrin, aufgrund einer Hofbildung bei aktiver Lipase-Sekretion detektiert. Von lipase-aktiven Klonen wurden anschließend Flüssigkulturen in YPD-Medium versetzt mit Zeocin (100 μg/l) angesetzt. Die Kulturen wurden für 48 bis 72 Stunden bei 30 0C unter Schütteln inkubiert. Danach wurden die Zellen vom Kulturüberstand, in dem sich die Lipase befand, durch Zentrifugation getrennt. Der Kulturüberstand wurde durch Diafiltration entsalzt und durch Lyophilisierung konzentriert.
5. Messen der Lipase-Aktivität Die Aktivität der Lipase wurde durch die Erhöhung der Extinktion bei 405 nm während der Hydrolyse von p-Nitrophenylbutyrat pNP-C4 oder p-Nitrophenylcaprylat pNP-C8 verfolgt. Die Reaktion wurde in einem 1 ml Ansatz durchgeführt, welcher 2 mM des p-Nitrophenylesters, 50 mM Kaliumphosphat- Puffer (pH 8) und 0,1 % Triton X-100 enthielt. Die Erhöhung der Extinktion bei 405 nm wurde kontinuierlich über einen Zeitraum von mindestens einer Minute verfolgt. Mit Hilfe des Extinktionskoeffizienten von p-Nitrophenol £(PNP, 4OS nm, pH 8) = 16,05 mM"1cm"1 wurde aus dem Anstieg die Volumenaktivität ermittelt. Eine Unit entspricht der Enzymmenge, welche die Freisetzung von 1 μmol p-Nitrophenol in einer Minute in dem oben beschriebenen Testansatz bei 22 0C katalysiert.
6. Bestimmung der Chlorophyllid-Freisetzung aus Chloroplasten Chloroplasten für diesen Assay wurden aus Spinatblättern isoliert. Dafür wurden frische Spinatblätter mit Seesand in einem Mörser zerrieben und mit 50 mM Kaliumphosphatpuffer pH 8 und 0,33 M Saccharose im Mörser homogenisiert. Die Suspension wurde durch acht Lagen Mull filtriert und die Zelltrümmer, sowie der restliche Sand durch einminütige Zentrifugation bei 200xg entfernt. Die Chloroplasten im Überstand wurden anschließend durch zehnminütige Zentrifugation bei 1000xg pelletiert. Das Chloroplastenpellet wurde in 50 mM HEPES pH 7,6 mit 2 mM EDTA, 1 mM MgCI2 und 0,33 M Sorbitol resupendiert. Der Chlorophyll-Gehalt wird durch Messung der Extinktion bei 652 nm in 80 % Aceton mit ε = 34,5 I g'1cm'1 bestimmt. Die Chlorophyllid-Freisetzung aus Chloroplasten wurde anhand der erhöhten Wasserlöslichkeit des Reaktionsproduktes bestimmt. Chloroplasten entsprechend einem Chlorophyll-Gehalt von 10 μg wurden in einem 150 μl Reaktionsansatz, enthaltend 50 mM Kaliumphosphat-Puffer pH 8, mit unterschiedlichen Mengen Chlorophyllase (z. B. 250 ng) und / oder Lipase (z. B. 5 U pNP-C4) für 60 min bei 40 0C inkubiert. Anschließend wurden die Chloroplasten pelletiert und das freigesetzte Chlorophyllid im Überstand bestimmt. Die Chlorophyllidbestimmung erfolgte durch Messung der Extinktion bei 652 nm oder durch Messung der Fluoreszenz in 60 % MeOH (Em 355 nm; Ex 655 nm).
Ergebnisse:
7. Entfernung von Grasflecken von textilen Oberflächen. Zur Bestimmung des Waschvermögens wurde Baumwollgewebe in Läppchenform (WFK 10A, Wäschereiforschung Krefeld) mit frisch geschnittenem Gras gleichmäßig eingefärbt. Zur Alterung wurden die Flecken mindestens 3 Tage unter Lichtausschluss trocken gelagert.
Anschließend wurden die Läppchen (ca. 1 cm2) zunächst 2 h bei 37 °C mit 500 μl Enzymlösung behandelt, enthaltend ~3 μg Chlorophyllase (Beispiel 2) und -7,5 U (pNP-C4) Galactolipase (Beispiel 4). Die Läppchen wurden anschließend mit einer Waschmittel-Lösung (Spee Color Waschmittel, Henkel Düsseldorf) bei 40 0C mit der Hand gewaschen. Der Entfernungsgrad der Chlorophyll-haltigen Anschmutzung wurde anschließend mit einem Weißgrad-Messgerät bestimmt. Wiedergegeben ist der delta R-Wert als Differenz des behandelten zum unbehandelten Testgewebe. Waschergebnisse (% Remission)
Gewebe gewaschen mit
Spee Color-Lösung 36,9 % Remission
Spee Color-Lösung plus Chlorophyllase 44,6 % Remission
Spee Color-Lösung plus Chlorophyllase plus Galactolipase 54,5 % Remission
Man erkennt, dass die erfindungsgemäße Kombination einer Chlorophyllase mit einer Hydrolase eine deutlich verbesserte Reinigungsleistung aufweist, als die Verwendung einer Chlorophyllase ohne Zusatz einer Hydrolase.

Claims

Patentansprüche
1. Wasch- und Reinigungsmittel enthaltend eine Chlorophyllase und eine weitere Hydrolase.
2. Wasch- und Reinigungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydrolase eine Lipase ist.
3. Wasch- und Reinigungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydrolase eine Galactolipase ist.
4. Wasch- und Reinigungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass sie pro Gramm 0,0001 mg bis 10 mg Chlorophyllase und 0,0001 mg bis 10 mg Hydrolase enthalten.
5. Wasch- und Reinigungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass sie zusätzlich eine Protease enthalten.
6. Wasch- und Reinigungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass sie zusätzlich eine Amylase enthalten.
7. Verwendung eines Wasch- und Reinigungsmittels nach einem oder mehreren der Ansprüche 1 bis 6 zum Entfernen von Chlorophyll-haltigen Anschmutzungen.
EP09749563.4A 2008-05-17 2009-05-12 Wasch- und reinigungsmittel Revoked EP2300587B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09749563T PL2300587T3 (pl) 2008-05-17 2009-05-12 Środek piorący i czyszczący

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008024084A DE102008024084A1 (de) 2008-05-17 2008-05-17 Wasch- und Reinigungsmittel
PCT/EP2009/003348 WO2009141073A1 (de) 2008-05-17 2009-05-12 Wasch- und reinigungsmittel

Publications (2)

Publication Number Publication Date
EP2300587A1 true EP2300587A1 (de) 2011-03-30
EP2300587B1 EP2300587B1 (de) 2013-04-17

Family

ID=40904794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09749563.4A Revoked EP2300587B1 (de) 2008-05-17 2009-05-12 Wasch- und reinigungsmittel

Country Status (10)

Country Link
US (1) US20110071067A1 (de)
EP (1) EP2300587B1 (de)
JP (1) JP2011521027A (de)
KR (1) KR20110040763A (de)
CN (1) CN102159697B (de)
BR (1) BRPI0912764A2 (de)
DE (1) DE102008024084A1 (de)
ES (1) ES2417754T3 (de)
PL (1) PL2300587T3 (de)
WO (1) WO2009141073A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5480262B2 (ja) * 2008-07-31 2014-04-23 サムスン エレクトロニクス カンパニー リミテッド 直交周波数多重接続方式の移動通信システムにおいて複数の周波数帯域に資源を割り当てる方法及び装置
EP2929020A1 (de) * 2012-12-05 2015-10-14 Novozymes A/S Polypeptide mit chlorophyllaseaktivität und polynukleotide zur codierung davon
CN104479909B (zh) * 2014-12-01 2017-07-21 湖南新鸿鹰生物工程有限公司 一种含真菌α‑淀粉酶的洗涤复合酶及其制备方法
DE102019106038A1 (de) * 2019-03-08 2020-09-10 Henkel Ag & Co. Kgaa Wasch- oder Reinigungsmittel umfassend Chlorophyll-bindendes Protein
CN114364778B (zh) * 2019-07-12 2024-08-13 诺维信公司 用于洗涤剂的酶性乳剂

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812697A (ja) * 1981-07-16 1983-01-24 花王株式会社 衣料の清浄方法
EP0258068B1 (de) 1986-08-29 1994-08-31 Novo Nordisk A/S Enzymhaltiger Reinigungsmittelzusatz
DE69208852T3 (de) * 1991-12-29 1999-12-02 Kao Corp., Tokio/Tokyo Inorganisches Ionenaustauschmaterial und Detergenszusammensetzung
CA2134442A1 (en) * 1992-05-01 1993-11-11 Nancy S. Bjork Degradation resistant detergent compositions based on cellulase enzymes
DE4216774A1 (de) 1992-05-21 1993-11-25 Henkel Kgaa Verfahren zur kontinuierlichen Herstellung eines granularen Wasch und/oder Reinigungsmittels
US5989899A (en) * 1996-12-23 1999-11-23 Genencor International, Inc. Oversized cellulase compositions for use in detergent compositions and in the treatment of textiles
ATE290599T1 (de) * 1997-11-19 2005-03-15 Genencor Int Cellulase aus actinomycetes und herstellungsverfahren dafür
US6268328B1 (en) * 1998-12-18 2001-07-31 Genencor International, Inc. Variant EGIII-like cellulase compositions
FR2789577B1 (fr) * 1999-02-17 2002-04-05 Oreal Utilisation de derives substitues en 3 du stilbene comme actifs deodorants dans les compositions cosmetiques
GB0030673D0 (en) * 2000-12-15 2001-01-31 Unilever Plc Ligand and complex for catalytically bleaching a substrate
US7192731B2 (en) * 2001-05-24 2007-03-20 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center Methods for efficient extraction of carotenoids using an esterase
EP1601332A4 (de) * 2003-03-07 2012-05-02 Verenium Corp Hydrolasen, diese kodierende nucleinsäuren und herstellungs- und anwendungsverfahren dafür
CN103667215A (zh) * 2004-02-06 2014-03-26 诺维信股份有限公司 具有增强分解纤维素活性的多肽和编码所述多肽的多核苷酸
EP1791853B1 (de) * 2004-06-16 2014-02-26 DSM IP Assets B.V. Zusammensetzungen und verfahren zur enzymatischen entfärbung von chlorophyll
US20080070291A1 (en) * 2004-06-16 2008-03-20 David Lam Compositions and Methods for Enzymatic Decolorization of Chlorophyll
US8137477B2 (en) * 2005-03-22 2012-03-20 Gumlink A/S Method of cleaning a surface attached with at least one chewing gum lump
BRPI0616721A2 (pt) * 2005-09-30 2011-06-28 Novozymes Inc métodos para degradar ou converter um material celulósico e para produzir uma substáncia, e, composição detergente
JP5486810B2 (ja) * 2006-03-02 2014-05-07 ザ プロクター アンド ギャンブル カンパニー 表面活性漂白剤及び動的pH
SG183703A1 (en) * 2007-05-10 2012-09-27 Danisco Us Inc Genencor Div Stable enzymatic peracid generating systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009141073A1 *

Also Published As

Publication number Publication date
PL2300587T3 (pl) 2013-09-30
WO2009141073A1 (de) 2009-11-26
US20110071067A1 (en) 2011-03-24
EP2300587B1 (de) 2013-04-17
BRPI0912764A2 (pt) 2017-05-23
JP2011521027A (ja) 2011-07-21
CN102159697A (zh) 2011-08-17
DE102008024084A1 (de) 2009-11-19
CN102159697B (zh) 2013-04-10
KR20110040763A (ko) 2011-04-20
ES2417754T3 (es) 2013-08-09

Similar Documents

Publication Publication Date Title
WO2021219296A1 (de) Hochalkalisches textilwaschmittel mit protease
EP1084222A1 (de) Amylase und protease enthaltende wasch- und reinigungsmittel
EP1165737B1 (de) Enzym- und bleichaktivatorhaltige wasch- und reinigungsmittel
EP2300587B1 (de) Wasch- und reinigungsmittel
EP1084217B1 (de) Amylase und acetonitril-derivate enthaltende wasch- und reinigungsmittel
WO2001060963A1 (de) Protease und percarbonat enthaltende wasch- und reinigungsmittel
EP1084219B1 (de) Amylase und percarbonat enthaltende wasch- und reinigungsmittel
EP1084223B1 (de) Amylase und bleichaktivierende übergangsmetallverbindung enthaltende wasch- und reinigungsmittel
WO2021219297A1 (de) Hochalkalisches textilwaschmittel mit protease
EP1084220A1 (de) Amylase und percarbonsäure enthaltende wasch- und reinigungsmittel
DE102019210806A1 (de) Textilwaschmittel mit einer Bacillus gibsonii Protease
WO2024149552A1 (de) Enzymhaltiges wasch- und reinigungsmittel
WO2024175294A1 (de) Wasch- und reinigungsmittel mit dispersin
WO2024175293A1 (de) Wasch- und reinigungsmittel mit dispersin
WO2023232192A1 (de) Wasch- und reinigungsmittel mit verbesserter enzymstabilität
WO2023232193A1 (de) Wasch- und reinigungsmittel mit verbesserter enzymstabilität
WO2023232194A1 (de) Wasch- und reinigungsmittel mit verbesserter enzymstabilität
EP1084221A1 (de) Amylase enthaltende wasch- und reinigungsmittel
DE10038844A1 (de) Kationischen Bleichaktivator enthaltende Wasch- und Reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STRUHALLA, MARC

Inventor name: GREINER-STOEFFELE, THOMAS

Inventor name: CZAJA, RICO

Inventor name: SCHOLZ, HANS, JUERGEN

Inventor name: REINHARDT, GERD

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STRUHALLA, MARC

Inventor name: GREINER-STOEFFELE, THOMAS

Inventor name: CZAJA, RICO

Inventor name: SCHOLZ, HANS, JUERGEN

Inventor name: REINHARDT, GERD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: C-LECTA GMBH

Owner name: CLARIANT FINANCE (BVI) LIMITED

DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE ES FR GB IT LI PL TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI PL TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009006883

Country of ref document: DE

Effective date: 20130613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130524

Year of fee payment: 5

Ref country code: GB

Payment date: 20130425

Year of fee payment: 5

Ref country code: CH

Payment date: 20130429

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2417754

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130522

Year of fee payment: 5

Ref country code: FR

Payment date: 20130605

Year of fee payment: 5

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20130708

Year of fee payment: 5

Ref country code: PL

Payment date: 20130502

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130429

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: NOVOZYMES A/S

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009006883

Country of ref document: DE

Effective date: 20140108

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009006883

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009006883

Country of ref document: DE

Effective date: 20141202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512