EP2390270A1 - Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation - Google Patents
Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation Download PDFInfo
- Publication number
- EP2390270A1 EP2390270A1 EP11162977A EP11162977A EP2390270A1 EP 2390270 A1 EP2390270 A1 EP 2390270A1 EP 11162977 A EP11162977 A EP 11162977A EP 11162977 A EP11162977 A EP 11162977A EP 2390270 A1 EP2390270 A1 EP 2390270A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vwf
- polypeptide
- platelet
- polypeptide construct
- binding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/164—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- A61K38/166—Streptokinase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/49—Urokinase; Tissue plasminogen activator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2896—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/36—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/42—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/86—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
- A61L2300/256—Antibodies, e.g. immunoglobulins, vaccines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/02—Methods for coating medical devices
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/22—Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/569—Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/745—Assays involving non-enzymic blood coagulation factors
- G01N2333/755—Factors VIII, e.g. factor VIII C [AHF], factor VIII Ag [VWF]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/02—Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/04—Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/22—Haematology
- G01N2800/222—Platelet disorders
Definitions
- vWF von Willebrand factor
- vWF forms a bridge between collagen within the damaged vessel wall and the platelet receptor glycoprotein Ib (gpIb), an interaction especially important under high shear conditions, leading to the formation of a haemostatic plug and thus preventing excessive bleeding
- gpIb platelet receptor glycoprotein Ib
- these processes lead to wound healing of the damaged blood vessel wall. In pathological conditions however, excessive platelet function may lead to thrombus formation.
- the vWF subunit is composed of several homologues domains each covering different functions.
- vWF interacts through its A3 domain with fibrillar collagen fibers and through its A1 domain with the platelet receptor gplb. Under normal conditions platelets and vWF do not interact. However, when vWF is bound to collagen at high shear rate, it is believed to undergo a conformational change allowing its binding with the platelet receptor gplb. This reversible adhesion allows platelets to roll over the damaged area, which is then followed by a firm adhesion through the collagen receptors on the platelets (gpia/IIa, gpVI, gpIV, p65, TIIICBP) resulting in platelet activation. This leads to activation of the gpIIb/IIIa receptor, fibrinogen binding, and finally to platelet aggregation.
- Platelet aggregation inhibitors have been isolated from blood sucking organisms such as leech. Saratin, derived from leech Hirudo medicinalis is described in WO 02/15919 A2 and in Cruz CP et al ref. Saratin, an inhibitor of von Willebrand factor-dependent platelet adhesion, decreases platelet aggregation and intimal hyperplasia in a rat carotid endarterectomy model. Journal of Vascular Surgery, 2001, 34: 724-729 and in Smith TP et al, Saratin, an inhibitor of collagen-platelet interaction, decreases venous anastomotic intimal hyperplasia in a canine dialysis access model, Vasc Endovascular Surg. 2003 Jul-Aug;37(4):259-69 .
- Antibody-based therapeutics have been developed, some of which are currently used in therapy.
- Abciximab (Chimeric 7E3 Fab; ReoPro; US 6,071,514 , EP 0 882 453 ), the Fab fragment of the mouse human chimeric antibody 7E3 which inhibits ligand binding to the platelet gpIIb/IIIa receptor, was approved for human use as adjunctive therapy to prevent ischemic complications of percutaneous coronary interventions in December 1994.
- the principle safety issue with gp IIb/IIIa inhibitors is the risk of bleeding, as the potent anti-platelet effect of these drugs may adversely affect haemostasis.
- a murine monoclonal antibody was developed against vWF A1 domain ( US 2002/0028204 A1 ; US 6,280,731 and in WO 00/10601 ) and against its active conformation ( US 6,251,393 ).
- the in vivo efficacy is described in Kageyama S, et al :"Effect of a humanized monoclonal antibody to von Willebrand factor in a canine model of coronary arterial thrombosis", Eur J Pharmacol. 2002 May 17;443(1-3):143-9 , and in " Anti-human vWF monoclonal antibody, AJvW-2 Fab, inhibits repetitive coronary artery thrombosis without bleeding time prolongation in dogs".
- AJvW-2 Anti-human von willebrand factor monoclonal antibody AJvW-2 prevents thrombus deposition and neointima formation after balloon injury in guinea pigs.
- AJvW-2 inhibited high shear stress induced aggregation of human platelets and had no effect on low shear stress induced platelet aggregation.
- Antibody 6B4 is a monoclonal antibody (MoAb) raised against purified human gplb. MoAb 6B4 inhibits both ristocetin- and botrocetin-induced, vWF-dependent human platelet agglutination. MoAb 6B4 furthermore blocks shear-induced adhesion of human platelets to collagen I. When injected into baboons, intact IgG and its F(ab')(2) fragments caused almost immediate thrombocytopenia, due to the bivalency of F(ab')(2) which mediates platelet crosslinking, or Fc:Fc receptor interactions which mediate activation of platelet aggregation ( WO 0110911 ; Cauwenberghs N.
- An aim of the present invention is to provide polypeptides comprising one or more single domain antibodies directed towards vWF, vWF A1 domain, A1 domain of activated vWF, vWF A3 domain, gplb and/or collagen, homologues of said polypeptides, and/or functional portions of said polypeptides, for the treatment for conditions which require a modulation of platelet-mediated aggregation and which overcomes the problems of the prior art. It is a further aim to provide methods of production of said polypeptides, methods to coat devices with such polypeptides used in medical procedures (e.g. PCTA, stenting), methods and kits for screening for agents that modulate platelet-mediated aggregation and kits for the diagnosis of diseases related to platelet-mediated aggregation
- Single domain antibodies have been made which specifically recognize target molecules involved in the first and subsequent steps of platelet aggregation. This results in anti-thrombotic agents which are more efficacious and safer.
- Another embodiment of the present invention is a polypeptide construct as described above, wherein the single domain antibody directed against the A1 domain of activated vWF specifically recognizes the activated vWF conformation at the site of thrombus formation but does not bind to circulating unactivated forms of vWF.
- Another embodiment of the present invention is a polypeptide construct as described above, further comprising at least one single domain antibody directed against one or more serum proteins.
- Another embodiment of the present invention is a polypeptide construct as described above wherein said at least one serum protein is any of serum albumin, serum immunoglobulins, thyroxine-binding protein, transferring, or fibrinogen or a fragment thereof.
- Another embodiment of the present invention is a polypeptide construct as described above, wherein at least one single domain antibody directed against one or more serum proteins corresponds to a sequence represented by any of SEQ ID NO: 16 to 19 and 49 to 61.
- Another embodiment of the present invention is a polypeptide construct as described above corresponding to a sequence represented by any of SEQ ID NOs: 13 to 15 and 42 to 45.
- Another embodiment of the present invention is a polypeptide construct as described above wherein at least one single domain antibody is a humanised sequence.
- Another embodiment of the present invention is a polypeptide construct as described above wherein at least one single domain antibody corresponds to a sequence represented by any of SEQ ID NOs: 38 to 41 and 42 to 45
- Another embodiment of the present invention is a polypeptide construct as described above corresponding to a sequence represented by any of SEQ ID NOs: 8 to 12, 20 to 22, 32 to 34, and 42 to 47.
- Another embodiment of the present invention is a polypeptide construct as described above wherein at least one single domain antibody is a Camelidae VHH antibody.
- Another embodiment of the present invention is a polypeptide construct as described above wherein at least one single domain antibody corresponds to a sequence represented by any of SEQ ID NOs: 1 to 7, 23 to 31, 35 to 37 and 62 to 65.
- Another embodiment of the present invention is a polypeptide construct as described above, wherein said single domain antibody is an homologous sequence, a functional portion, or a functional portion of an homologous sequence of the full length single domain antibody.
- polypeptide construct as described above, wherein said polypeptide construct is a homologous sequence of said polypeptide construct, a functional portion thereof, of an homologous sequence of a functional portion thereof.
- Another embodiment of the present invention is a nucleic acid encoding a polypeptide construct as described above.
- compositions comprising a polypeptide construct as described above and at least one thrombolytic agent, for simultaneous, separate or sequential administration to a subject.
- Another embodiment of the present invention is a composition as described above wherein said thrombolytic agent is any of staphylokinase, tissue plasminogen activator, streptokinase, single chain streptokinase, urokinase and acyl plasminogen streptokinase complex.
- Another embodiment of the present invention is a polypeptide construct as described above, or a nucleic acid as described above, or a composition as described above for use in the treatment, prevention and/or alleviation of disorders relating to platelet-mediate aggregation or dysfunction thereof.
- Another embodiment of the present invention is a use of a polypeptide construct as described above, or a nucleic acid as described above, or a composition as described above for the preparation of a medicament for the treatment, prevention and/or alleviation of disorders relating to platelet-mediate aggregation or dysfunction thereof.
- Another embodiment of the present invention is a polypeptide construct, nucleic acid or composition as described above or a use of a polypeptide construct, nucleic acid or composition as described above wherein said disorders are any arising from transient cerebral ischemic attack, unstable or stable angina, angina pectoris, cerebral infarction, myocardial infarction, peripheral arterial occlusive disease, restenosis, coronary by-pass graft, or coronary artery valve replacement and coronary interventions such angioplasty, stenting, carotid endarterectomy or atherectomy.
- Another embodiment of the present invention is a polypeptide construct, nucleic acid or composition as described above or a use of a polypeptide construct, nucleic acid or composition as described above wherein said disorders are any of the formation of a non-occlusive thrombus, the formation of an occlusive thrombus, arterial thrombus formation, acute coronary occlusion, restenosis, restenosis after PCTA or stenting, thrombus formation in stenosed arteries, hyperplasia after angioplasty, atherectomy or arterial stenting, occlusive syndrome in a vascular system or lack of patency of diseased arteries.
- Another embodiment of the present invention is a polypeptide construct, nucleic acid or composition as described above or a use of a polypeptide construct, nucleic acid or composition as described above wherein said disorder is plaque or thrombus formation in high sheer environments.
- Another embodiment of the present invention is a polypeptide construct, nucleic acid or composition as described above or a use of a polypeptide construct as described above wherein said polypeptide construct is administered intravenously, subcutaneously, orally, sublingually, topically, nasally, vaginally, rectally or by inhalation.
- Another embodiment of the present invention is a composition comprising a polypeptide construct as described above or a nucleic acid encoding said polypeptide construct, or a composition as described above and a pharmaceutically acceptable vehicle.
- Another embodiment of the present invention is a method of producing a polypeptide as described above, comprising
- Another embodiment of the present invention is a method as described above, wherein said host cells are bacterial or yeast.
- Another embodiment of the present invention is a method for treating invasive medical devices to prevent platelet-mediate aggregation around the site of invasion comprising the step of coating said device with a polypeptide construct as described above.
- Another embodiment of the present invention is an invasive medical device for circumventing platelet-mediate aggregation around the site of invasion, wherein said device is coated with a polypeptide construct as described above.
- Another embodiment of the present invention is a kit for screening for agents that modulate platelet-mediated aggregation according to the method as described above.
- Another embodiment of the present invention is an unknown agent that modulates platelet-mediated aggregation identified according to the method as described above.
- Another embodiment of the present invention is a kit for screening for diagnosing a disease or disorder characterised by dysfunction of platelet-mediated aggregation according to the method as described above.
- Another embodiment of the present invention is a kit as described above comprising a polypeptide construct as described above.
- the present invention relates to a polypeptide construct comprising one or more single domain antibodies each directed against a target and the finding that the construct has a modulating effect on platelet-mediated aggregation.
- a target is any of vWF, vWF A1 domain, A1 domain of activated vWF, vWF A3 domain, gplb or collagen.
- Said targets are mammalian, and are derived from species such as rabbits, goats, mice, rats, cows, calves, camels, llamas, monkeys, donkeys, guinea pigs, chickens, sheep, dogs, cats, horses, and preferably humans.
- the sequence of human vWF is provided in Table 30, SEQ ID NO: 48.
- a target is also a fragment of vWF, vWF A1 domain, A1 domain of activated vWF, vWF A3 domain, gplb or collagen, capable of eliciting an immune response.
- a target is also a fragment of vWF, vWF A1 domain, A1 domain of activated vWF, vWF A3 domain, gplb or collagen, capable of binding to a single domain antibody raised against the 'parent' full length target.
- a fragment as used herein refers to less than 100% of the sequence (e.g., 99%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% etc.), but comprising 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more amino acids.
- a fragment is of sufficient length such that the interaction of interest is maintained with affinity of 1 x 10 -6 M or better.
- a fragment as used herein also refers to optional insertions, deletions and substitutions of one or more amino acids which do not substantially alter the ability of the target to bind to a single domain antibody raised against the wild-type target.
- the number of amino acid insertions deletions or substitutions is preferably up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 or 70 amino acids.
- a single domain antibody directed against a target means single domain antibody that it is capable of binding to its target with an affinity of better than 10 -6 M.
- Single domain antibodies are antibodies whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain antibodies, antibodies naturally devoid of light chains, single domain antibodies derived from conventional 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies. Single domain antibodies may be any of the art, or any future single domain antibodies. Single domain antibodies may be derived from any species including, but not limited to mouse, human, camel, llama, goat, rabbit, bovine. According to one aspect of the invention, a single domain antibody as used herein is a naturally occurring single domain antibody known as heavy chain antibody devoid of light chains. Such single domain antibodies are disclosed in WO 9404678 for example.
- variable domain derived from a heavy chain antibody naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins.
- VHH molecule can be derived from antibodies raised in Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain antibodies naturally devoid of light chain; such VHHs are within the scope of the invention.
- VHHs are heavy chain variable domains derived from immunoglobulins naturally devoid of light chains such as those derived from Camelidae as described in WO9404678 (and referred to hereinafter as VHH domains or nanobodies).
- VHH molecules are about 10x smaller than IgG molecules. They are single polypeptides and very stable, resisting extreme pH and temperature conditions. Moreover, they are resistant to the action of proteases which is not the case for conventional antibodies. Furthermore, in vitro expression of VHHs produces high yield, properly folded functional VHHs.
- antibodies generated in Camelids will recognize epitopes other than those recognised by antibodies generated in vitro through the use of antibody libraries or via immunisation of mammals other than Camelids ( WO 9749805 ).
- anti-albumin VHH's may interact in a more efficient way with serum albumin which is known to be a carrier protein.
- serum albumin which is known to be a carrier protein.
- some of the epitopes of serum albumin may be inaccessible by bound proteins, peptides and small chemical compounds. Since VHH's are known to bind into 'unusual' or non-conventional epitopes such as cavities ( WO9749805 ), the affinity of such VHH's to circulating albumin may be increased.
- the present invention further relates to a polypeptide construct, wherein a single domain antibody is a VHH directed to a target mentioned herein, wherein the VHH belongs to a class having human-like sequences.
- the class is characterised in that the VHHs carry an amino acid from the group consisting of glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, tyrosine, tryptophan, methionine, serine, threonine, asparagine, or glutamine at position 45, such as, for example, L45 according to the Kabat numbering.
- peptides belonging to this class show a high amino acid sequence homology to human VH framework regions and said peptides might be administered to a human directly without expectation of an unwanted immune response therefrom, and without the burden of further humanisation.
- one aspect of the present invention allows for the direct administration of a polypeptide construct comprising one or more single domain antibodies corresponding to a sequence represented by any of SEQ ID NOs: 1 and 3 to a patient in need of the same.
- Another human-like class of Camelidae single domain antibodies represented by SEQ ID No. 16 and 18 have been described in WO 03/035694 and contain the hydrophobic FR2 residues typically found in conventional antibodies of human origin or from other species, but compensating this loss in hydrophilicity by a number of residues such as the charged arginine residue, serine or uncharged residues such as glycine at position 103 that substitutes the conserved tryptophan residue present in VH from double-chain antibodies.
- residues such as the charged arginine residue, serine or uncharged residues such as glycine at position 103 that substitutes the conserved tryptophan residue present in VH from double-chain antibodies.
- peptides belonging to these two classes show a high amino acid sequence homology to human VH framework regions and said peptides might be administered to a human directly without expectation of an unwanted immune response therefrom, and without the burden of further humanisation.
- VHHs as used by the invention may be of the traditional class or of the classes of human-like Camelidae antibodies. Said antibodies may be directed against whole targets or a fragment thereof.
- These polypeptides include the full length Camelidae antibodies, namely Fc and VHH domains, chimeric versions of heavy chain Camelidae antibodies with a human Fc domain.
- the one or more single domain antibodies of the polypeptide construct which are directed against a target may be of the same sequence. Alternatively they may not all have the same sequence. It is within the scope of the invention that a polypeptide construct comprises anti-target single domain antibodies which do not all share the same sequence, but which are directed against the same target, or fragment thereof, one or more antigens thereof.
- the polypeptide construct comprises two or more single domain antibodies, wherein any two single domain antibodies are directed against different targets i.e. against any of vWF, vWF A1 domain, A1 domain of activated vWF, vWF A3 domain, gplb and collagen.
- Another aspect of the invention is a bispecific polypeptide construct comprising a single domain antibody directed against vWF A1 domain, A1 domain of activated vWF, and another single domain antibody directed against vWF A3 domain.
- Said bispecific polypeptide construct inhibits the interaction between vWF and collagen, and the interaction between vWF and platelets.
- a polypeptide construct may comprise two or more single domain antibodies which have been joined.
- the single domain antibodies may be identical in sequence and directed against the same target or antigen.
- a multivalent VHH may be bivalent (2 VHHs), trivalent (3 VHHs), tetravalent (4 VHHs) or have a higher valency molecules.
- the present invention also relates to the finding that a polypeptide construct as disclosed herein further comprising one or more single domain antibodies each directed against a serum protein of a subject, surprisingly has significantly prolonged half-life in the circulation of said subject compared with the half-fife of the anti-target single domain antibody(ies) when not part of said construct. Furthermore, the said constructs were found to exhibit the same favourable properties of VHHs such as high stability remaining intact in mice, extreme pH resistance, high temperature stability and high target affinity.
- SEQ ID No. 13 to 15 examples of such constructs are represented by SEQ ID No. 13 to 15, which comprise anti-vWF VHH and anti-mouse serum albumin VHH.
- another embodiment of the present invention is a polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 13 to 15.
- SEQ ID No. 42 to 45 which comprise humanized anti-vWF VHH and anti-mouse serum albumin VHH.
- another embodiment of the present invention is a polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 42 to 45.
- the serum protein may be any suitable protein found in the serum of subject, or fragment thereof.
- the serum protein is serum albumin, serum immunoglobulins, thyroxine-binding protein, transferrin, or fibrinogen.
- the VHH-partner can be directed to one of the above serum proteins.
- single domain antibodies directed against serum albumin are the sequences represented by the sequences corresponding to any of SEQ ID NOs: 16 to 19 and 49 to 61. Therefore another aspect of the invention is a polypeptide construct further comprising one or more anti-serum single domain antibodes, wherein the sequence of a anti-serum single domain antibody corresponds to any represented by SEQ ID NOs: 16 to 19 and 49 to 61.
- Such constructs are able to circulate in the subject's serum for several days, reducing the frequency of treatment, the inconvenience to the subject and resulting in a decreased cost of treatment. Furthermore, it is an aspect of the invention that the half-life of the polypeptide constructs disclosed herein may be controller by the number of anti-serum protein single domain antibodies present in the construct. A controllable half-life is desirable in several circumstances, for example, in the application of a timed dose of a therapeutic polypeptide construct.
- Another embodiment of the present invention is a polypeptide construct as mentioned herein, further comprising a thrombolytic agent.
- Said thrombolytic agent may be non-covalently or covalently attached to a single domain antibody via covalent or non-covalent means.
- covalent means are described below.
- Non-covalent means include via a protein interaction such as biotin/strepavidin, or via an immunoconjugate.
- the thrombolytic agent may be administered simultaneous, separate or sequential in respect of a polypeptide construct of the invention.
- compositions comprising at least one polypeptide construct as disclosed herein and at least one thrombolytic agent, for simultaneous, separate or sequential administration to a subject.
- One aspect of the invention is a method for treating autoimmune disease comprising administering to an individual an effective amount of at least one polypeptide construct of the invention and at least one thrombolytic agent, simultaneously, separately or sequentially.
- kits containing at least one polypeptide construct of the invention and at least one thrombolytic agent for simultaneous, separate or sequential administration to a subject. It is an aspect of the invention that the kit may be used according to the invention. It is an aspect of the invention that the kit may be used to treat the diseases as cited herein.
- simultaneous administration means the polypeptide and thrombolytic agent are administered to a subject at the same time.
- a mixture or a composition comprising said components.
- examples include, but are not limited to a solution administered intraveneously, a tablet, liquid, topical cream, etc., wherein each preparation comprises the components of interest.
- polypeptide and thrombolytic agent are administered to a subject at the same time or substantially the same time.
- the components are present in the kit as separate, unmixed preparations.
- the polypeptide and thrombolytic agent may be present in the kit as individual tablets.
- the tablets may be administered to the subject by swallowing both tablets at the same time, or one tablet directly following the other.
- sequential administration means the polypeptide and thrombolytic agent are administered to a subject sequentially.
- the polypeptide and thrombolytic agent are present in the kit as separate, unmixed preparations. There is a time interval between doses. For example, one component might be administered up to 336, 312, 288, 264, 240, 216, 192, 168, 144, 120, 96, 72, 48, 24, 20, 16, 12, 8, 4, 2, 1, or 0.5 hours after the other component.
- one component may be administered once, or any number of times and in various doses before and/or after administration of another component.
- Sequential administration may be combined with simultaneous or sequential administration.
- polypeptide construct described below, also apply to the composition comprising a polypeptide construct as disclosed herein and at least one polypeptide thrombolytic agent, for simultaneous, separate or sequential administration to a subject as disclosed here above.
- Thrombolytic agents according to the invention may include, for example, staphylokinase, tissue plasminogen activator, streptokinase, single chain streptokinase, urokinase and acyl plasminogen streptokinase complex.
- the single domain antibodies may be joined to form any of the polypeptide constructs disclosed herein comprising more than one single domain antibody using methods known in the art or any future method. For example, they may be fused by chemical cross-linking by reacting amino acid residues with an organic derivatisation agent such as described by Blattler et al, Biochemistry 24,1517-1524 ; EP294703 .
- the single domain antibody may be fused genetically at the DNA level i.e . a polynucleotide construct formed which encodes the complete polypeptide construct comprising one or more anti-target single domain antibodies and one or more anti-serum protein single domain antibodies.
- a method for producing bivalent or multivalent VHH polypeptide constructs is disclosed in PCT patent application WO 96/34103 .
- One way of joining multiple single domain antibodies is via the genetic route by linking single domain antibody coding sequences either directly or via a peptide linker.
- the C-terminal end of the first single domain antibody may be linked to the N-terminal end of the next single domain antibody.
- This linking mode can be extended in order to link additional single domain antibodies for the construction and production of tri-, tetra-, etc. functional constructs.
- VHHs may be obtained using methods known in the art such as by immunising a camel and obtaining hybridoma's therefrom, or by cloning a library of single domain antibodies using molecular biology techniques known in the art and subsequent selection by using phage display.
- One aspect of the present invention relates to the finding that polypeptides represented by SEQ ID NOs: 1 to 7 as in Table 30 derived from Camelidae VHHs, bind to vWF and inhibit its interaction with collagen.
- one embodiment of the present invention is a polypeptide construct wherein at least one single domain antibody corresponds to a sequence represented by any of SEQ ID NOs:1 to 7.
- polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 8 to 12.
- Said sequences correspond to monospecific polypeptide constructs (such as in SEQ ID No. 8 and 11) or heterospecific polypeptide constructs comprising VHHs of different sequences (such as in SEQ ID No. 9, 10 and 12), both directed against vWF.
- polypeptide construct comprising one or more single domain antibodies directed against vWF.
- Example 16 represents shear data obtained with the specific vWF-A3 binders SEQ ID No. 1 to 12. This experiment is representative for the interactions that take place upon damage of the vessel wall in a small artery (for example during angioplasty).
- Nanobodies have a unique structure that consists of a single variable domain.
- VHH molecules derived from Camelidae antibodies are among the smallest intact antigen-binding domains known (approximately 15 kDa, or 10 times smaller than a conventional IgG) and hence are well suited towards delivery to dense tissues and for accessing the limited space between macromolecules participating in or starting the process of platelet mediated aggregation.
- the present invention also relates to the finding that the polypeptides corresponding to a sequence represented by any of SEQ ID NOs 23 to 31 from single domain llama antibodies, bind to the A1 domain of vWF.
- another embodiment of the present invention is a polypeptide construct comprising one or more single domain antibodies, wherein at least one single domain antibody corresponds to a sequence represented by any of SEQ ID NOs: 23 to 31.
- polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 32 to 34.
- Said sequences correspond to bivalent polypeptide constructs comprising VHHs of the same sequences, both directed against vWF A1 domain.
- Example 25 provides shear data obtained with the specific vWF-A1 binders SEQ ID No. 23 to 31
- the present invention also relates to the finding that the polypeptides corresponding to a sequence represented by any of SEQ ID NOs 62 to 65 from single domain llama antibodies, bind selectively to the A1 domain of the active conformation of vWF (such as after being bound to collagen) rather than to freely circulating unactivated vWF. This results in antithrombotic agents that are both safer and more efficacious.
- selective binding in reference to vWF A1 domains means that the llama antibodies have at least a tenfold and preferably a hundredfold greater affinity for the active conformation of vWF compared to the unactivated form.
- another embodiment of the present invention is a polypeptide construct comprising one or more single domain antibodies, wherein at least one single domain antibody corresponds to a sequence represented by any of SEQ ID NOs: 62 to 65.
- a polypeptide construct comprises one or more single domain antibodies directed to the same target, and further comprises one or more single domain antibodies directed to the same target but to a different epitope in the same domain.
- sequences represented by SEQ ID NOs: 9, 10 and 12 are heterospecific polypeptide constructs comprising VHHs directed to different epitopes in the A3 domain of vWF. Therefore, another embodiment of the present invention a polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 9, 10 and 12.
- Another embodiment of the present invention is a polypeptide construct wherein the number of single domain antibodies directed to the same target is two or more.
- sequences represented by SEQ ID NOs: 8 and 11 are polypeptide constructs comprising VHHs directed to the same epitopes in the A3 domain of vWF, wherein the both VHHs have identical sequences. Therefore, another embodiment of the present invention is a polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 8 and 11.
- a polypeptide construct comprises one or more single domain antibodies directed to one domain of the same target, and one or more single domain antibodies directed to the same target but to another domain of the same target.
- Examples of different domains might be the A1 and A3 domains of vWF
- sequences represented by SEQ ID NOs: 20, 21 and 22 are heterospecific polypeptide constructs comprising VHHs directed to epitopes on different domains of vWF i.e . A1 and A3 of vWF. Therefore, another embodiment of the present invention is a polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 20, 21 and 22.
- At least one VHH directed to the A1 domain in a heterospecific polypeptide construct recognizes the active conformation of vWF.
- Such a VHH corresponds to a sequence represented by any of SEQ ID NOs: 62 to 65.
- Such polypeptide constructs may have superior anti-thrombotic effects compared to the monomeric VHH's.
- Perfusion experiment were performed in a flow chamber, to study platelet aggregation under high shear to study the effects of these polypeptide constructs.
- Example 30 represents shear data obtained with the heterospecific polypeptide construct comprising anti vWF-A1 VHH and anti-vWF-A3 VHH.
- the present invention also relates to the finding that the polypeptides represented by SEQ ID NOs 35 to 37 from single domain Ilama antibodies, bind to collagen type I and/or type III.
- another embodiment of the present invention is a polypeptide construct, wherein at least one single domain antibody corresponds to a sequence represented by any of SEQ ID NOs: 35 to 37.
- a polypeptide construct comprises one or more single domain antibodies directed to the collagen I and/or type III, and one or more single domain antibodies directed to the same target but to a different epitope in the same domain.
- the sequences represented by 3P1-31_3P2-31 and 3L-41_3P2-31 are heterospecific polypeptide constructs comprising VHHs directed to different epitopes in collagen type I. Therefore, another embodiment of the present invention a polypeptide construct corresponding to a sequence represented by any of SEQ ID NOs: 46 and 47.
- Another aspect of the invention is a polypeptide construct comprising one or more single domain antibodies directed to the platelet glycoprotein Ib.
- AJvW-2 A murine anti-human vWF monoclonal antibody, AJvW-2 (IgG), was developed that inhibited the interaction between platelet glycoprotein Ib (gpIb) and von Willebrand factor (vWF) during the ristocetin- and botrocetin- induced aggregation of human platelets ( PCT application number WO 00/10601 ).
- AJvW-2 Fab inhibits repetitive coronary artery thrombosis without bleeding time prolongation in dogs ( Kageyama S et al, Thromb Res., 2001 Mar 1;101(5):395-404 ) and prevents thrombus deposition and neointima formation after balloon injury in guinea pigs ( Kageyama S, et al, Arterioscier Thromb Vasc Biol. 2000 Oct;20(10):2303-8 ).
- Antibody 6B4 is a monoclonal antibody (MoAb) raised against purified human gplb (PCT application number WO 01/10911 A2 ).
- MoAb monoclonal antibody
- purified human gplb PCT application number WO 01/10911 A2
- F(ab')2 When injected into baboons, intact IgG and its F(ab')2 fragments caused almost immediate thrombocytopenia, due to the bivalency of F(ab')2 which mediates platelet crosslinking, or Fc:Fc receptor interactions which mediate activation of platelet aggregation ( Cauwenberghs N.
- Humanised is meant mutated so that immunogenicity upon administration in human patients is minor or nonexistent.
- Humanising a polypeptide comprises a step of replacing one or more of the Camelidae amino acids by their human counterpart as found in the human consensus sequence, without that polypeptide losing its typical character, i.e . the humanisation does not significantly affect the antigen binding capacity of the resulting polypeptide.
- the inventors have determined the amino acid residues of the antibody variable domain (VHH) which may be modified without diminishing the native affinity of the domain for antigen and while reducing its immunogenicity with respect to a heterologous species; the use of VHHs having modifications at the identified residues which are useful for administration to heterologous species; and to the VHH so modified. More specifically, the invention relates to the preparation of modified VHHs, which are modified for administration to humans, the resulting VHH themselves, and the use of such "humanized" VHHs in the treatment of diseases in humans.
- VHH antibody variable domain
- VHH polypeptides requires the introduction and mutagenesis of only a limited number of amino acids in a single polypeptide chain without dramatic loss of binding and/or inhibition activity. This is in contrast to Humanization of scFv, Fab, (Fab)2 and IgG, which requires the introduction of amino acid changes in two chains, the light and the heavy chain and the preservation of the assembly of both chains.
- a humanisation technique may be performed by a method comprising the replacement of any of the following residues either alone or in combination: FR1 positions 1, 5, 28 and 30, the hallmark amino acid at position 37, 44, 45 and 47 in FR2, FR3 residues 74, 75, 76, 83, 84, 93 and 94 and positions 103, 104, 108 and 111 in FR34 ; numbering according to the Kabat numbering. Examples of such humanized sequences are given in Table 30, SEQ ID No. 2, 38 to 41.
- Polypeptides represented in example 63 and 64 have a high degree of homology to human germline VH DP-47. Further humanization required the introduction and mutagenesis of a limited amount of amino acids in a single polypeptide chain. This is in contrast to humanization of scFv, Fab, (Fab)2 and IgG, which requires the introduction of amino acid changes in two chains, the light and the heavy chain and the preservation of the assembly of both chains.
- the polypeptides contain human-like residues in FR2. Humanization required mutagenesis of residues in FR1 at position 1 and 5 which were introduced by the primer used for repertoire cloning and do not occur naturally in the llama sequence. Mutagenesis of those residues did not result in loss of binding and/or inhibition activity. Humanization of FR1 also required mutagenesis of position 28 and 30. Mutagenesis of those residues also did not result in loss of binding and/or inhibition activity.
- traditional antibodies have a binding activity which depends upon pH, and hence are unsuitable for use in environments outside the usual physiological pH range such as, for example, in treating gastric bleeding, gastric surgery. Furthermore, traditional antibodies are unstable at low or high pH and hence are not suitable for oral administration. However, it has been demonstrated that camelid antibodies resist harsh conditions, such as extreme pH, denaturing reagents and high temperatures ( Ewert S et al, Biochemistry 2002 Mar 19;41 (11):3628-36 ), so making them suitable for delivery by oral administration. Furthermore, traditional antibodies have a binding activity which depends upon temperature, and hence are unsuitable for use in assays or kits performed at temperatures outside biologically active-temperature ranges ( e.g , 37 ⁇ 20°C).
- polypeptide constructs represented by SEQ ID NOs: 1 to 47 and 49 to 65 and their derivatives not only possess the advantageous characteristics of conventional antibodies, such as low toxicity and high selectivity, but they also exhibit additional properties. They are more soluble, meaning they may be stored and/or administered in higher concentrations compared with conventional antibodies. They are stable at room temperature meaning they may be prepared, stored and/or transported without the use of refrigeration equipment, conveying a cost, time and environmental savings (described in example 61).
- ⁇ -life in the circulation which may be modulated according to the invention by, for example, albumin-coupling, a bispecific nanobody with one specificity against albumin and the other against the target, Fc coupling, VHH coupling (bivalent VHHs) or by pegylation (described in example 41 until 54).
- a short and controllable half-life is desirable for surgical procedures, for example, which require an inhibition of platelet-mediated aggregation for a limited time period. Also, when bleeding problems occur or other complications, dosage can be lowered immediately.
- the polypeptides of the present invention also retain binding activity at a pH and temperature outside those of usual physiological ranges, which means they may be useful in situations of extreme pH and temperature which require a modulation of platelet-mediated aggregation, such as in gastric surgery, control of gastric bleeding, assays performed at room temperature etc.
- the polypeptides of the present invention also exhibit a prolonged stability at extremes of pH, meaning they would be suitable for delivery by oral administration.
- the polypeptides of the present invention may be cost-effectively produced through fermentation in convenient recombinant host organisms such as Escherichia coli and yeast; unlike conventional antibodies which also require expensive mammalian cell culture facilities, achievable levels of expression are high.
- Examples of yields of the polypeptides of the present invention are 1 to 10 mg/ml ( E. coli ) and up to 1g/l (yeast).
- the polypeptides of the present invention also exhibit high binding affinity for a broad range of different antigen types, and ability to bind to epitopes not recognised by conventional antibodies; for example they display long CDR-based loop structures with the potential to penetrate into cavities and exhibit enzyme function inhibition. Furthermore, since binding often occurs through the CDR3 loop only, it is envisaged that peptides derived from CDR3 could be used therapeutically ( Desmyter et al., J Biol Chem, 2001, 276: 26285-90 ). The preparation of such peptide is described in Example 65.
- the polypeptides of the invention are also able to retain full binding capacity as fusion protein with an enzyme or toxin. Furthermore, it might be expected that the undesirable thrombocytopenia caused by Fc:Fc receptor mediated activation of platelet aggregation and/or F(ab')(2)-mediated crosslinking of platelets which has been observed when using intact IgG or F(ab')(2) therapeutically in vivo (see Cauwenberghs N. et al, Arteriosclerosis, Thrombosis and Vascular biology, 2000, 20: 1347 ), will be avoided in the use of VHH, since VHH contains no Fc and it is not bivalent.
- polypeptides represented by SEQ ID NOs: 1 to 15, 20 to 47, 62 to 65, homologues or functional portions thereof provide a considerable cost and time saving in the treatment and diagnosis of conditions related to platelet-mediated aggregation, and the patient in need of said polypeptides would encounter fewer of the problems associated with conventional agents.
- Platelet-mediated aggregation is the process wherein vWF-bound collagen adheres to platelets and/or platelet receptors (examples of both are gpIa/IIa, gpIb, or collagen), ultimately resulting in platelet activation. Platelet activation leads to fibrinogen binding, and finally to platelet aggregation. It is within the scope of the present invention to provide polypeptides which modulate the processes which comprise platelet-mediated aggregation such as vWF-collagen binding, vWF-platelet receptor adhesion, collagen-platelet receptor adhesion, platelet activation, fibrinogen binding and/or platelet aggregation.
- Said polypeptides are derived from Camelidae antibodies directed towards vWF, vWF A1, A1 domain of activated vWF or A3 domains, gplb or collagen, and share the same advantages as the polypeptides represented by SEQ ID NOs: 1 to 15, 20 to 47 and 62 to 65, as described above.
- a polypeptide construct may be a homologous sequence of a full-length polypeptide construct.
- a polypeptide construct may be a functional portion of a full-length polypeptide construct.
- a polypeptide construct may be a homologous sequence of a full length polypeptide construct.
- a polypeptide construct may be a functional portion of a homologous sequence of a full length polypeptide construct.
- a polypeptide construct may comprise a sequence of a polypeptide construct.
- a single domain antibody used to form a polypeptide construct may be a complete single domain antibody (e.g . a VHH) or a homologous sequence thereof.
- a single domain antibody used to form the polypeptide construct may be a functional portion of a complete single domain antibody.
- a single domain antibody used to form the polypeptide construct may be a homologous sequence of a complete single domain antibody.
- a single domain antibody used to form the polypeptide construct may be a functional portion of a homologous sequence of a complete single domain antibody.
- Another aspect of the present invention are the single domain antibodies corresponding to any of SEQ ID NOs: 1 to 7, 16 to 19, 23 to 31, 35 to 41, and 49 to 65, a homologous sequence thereof, and/or a functional portion thereof.
- a polypeptide construct may be an homologous sequence of the parent sequence. According to another aspect of the invention, a polypeptide construct may be a functional portion parent sequence. According to another aspect of the invention, a polypeptide construct may be a functional portion of a homologous sequence of the parent sequence.
- an homologous sequence may comprise additions, deletions or substitutions of one or more amino acids, which do not substantially alter the functional characteristics of the polypeptide.
- the number of amino acid deletions or substitutions is preferably up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,36, 37, 8, 39, 0, 1, 42, 43, 44, 5, 6, 47, 48, 49, 50, 1, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 or 70 amino acids.
- a homologous sequence according to the present invention includes polypeptides extended by the addition of amino acids to form human heavy chain antibody or human single domain heavy chain antibody, which do not substantially alter the functional characteristics of the unmodified polypeptide.
- a homologous sequence of the present invention may include a polypeptide represented by any of SEQ ID NOs: 1 to 47 and 49 to 65, which has been humanised (as described in examples 63 and 64 .
- a homologous sequence of the present invention may include a sequence corresponding to the sequence of any of SEQ ID NOs: 1 to 47 and 49 to 65 which exists in other Camelidae species such as, for example, camel, llama, dromedary, alpaca, guanaco etc.
- homologous sequence indicates sequence identity, it means a sequence which presents a high sequence identity (more than 70%, 75%, 80%, 85%, 90%, 95% or 98% sequence identity) with the parent sequence, and is preferably characterised by similar properties of the parent sequence, namely affinity, said identity calculated using known methods.
- an homologous sequence may also be any amino acid sequence resulting from allowed substitutions at any number of positions of the parent sequence according to the formula below:
- a homologous according to the present invention may refer to nucleotide sequences of more than 50, 100, 200, 300, 400, 500, 600, 800 or 1000 nucleotides able to hybridize to the reverse-complement of the nucleotide sequence capable of encoding a polypeptide under stringent hybridisation conditions (such as the ones described by SAMBROOK et al., Molecular Cloning, Laboratory Manuel, Cold Spring, Harbor Laboratory press, New York ).
- a functional portion refers to a single domain antibody of sufficient length such that the interaction of interest is maintained with affinity of 1 x 10 -6 M or better.
- a functional portion of a single domain antibody of the invention comprises a partial deletion of the complete amino acid sequence and still maintains the binding site(s) and protein domain(s) necessary for the binding of and interaction with the target.
- a functional portion of any of SEQ ID NO: 1 to 7 is a polypeptide which comprises a partial deletion of the complete amino acid sequence and which still maintains the binding site(s) and protein domain(s) necessary for the inhibition of binding of vWF to collagen.
- a functional portion of any of SEQ ID NOs: 23 to 31 and 62 to 65 is a polypeptide which comprises a partial deletion of the complete amino acid sequence and which still maintains the binding site(s) and protein domain(s) necessary for the binding of and interaction with the A1 domain of vWF.
- a functional portion of any of SEQ ID NOs: 35 to 37 is a polypeptide which comprises a partial deletion of the complete amino acid sequence and which still maintains the binding site(s) and protein domain(s) necessary for the binding of and interaction with Collagen.
- a functional portion comprises a partial deletion of the complete amino acid sequence of a polypeptide and which still maintains the binding site(s) and protein domain(s) necessary for the binding of and interaction with the antigen against which it was raised. It includes, but is not limited to VHH domains.
- a functional portion as it refers to a polypeptide sequence refers to less than 100% of the sequence (e.g ., 99%, 90%, 80%, 70%, 60% 50% etc.), but comprising 5 or more amino acids.
- a portion as it refers to a nucleotide sequence encoding a polypeptide sequence refers to less than 100% of the sequence ( e.g ., 99%, 90%, 80%, 70%, 60% 50% etc.), but comprising 15 or more nucleotides.
- An aspect of the present invention is the administration of a polypeptide construct according to the invention can avoid the need for injection.
- Conventional antibody-based therapeutics have significant potential as drugs because they have extraordinarily specificity to their target and a low inherent toxicity, however, they have one important drawback: they are relatively unstable, and are sensitive to breakdown by proteases. This means that conventional antibody drugs cannot be administered orally, sublingually, topically, nasally, vaginally, rectally or by inhalation because they are not resistant to the low pH at these sites, the action of proteases at these sites and in the blood and/or because of their large size. They have to be administered by injection (intravenously, subcutaneously, etc.) to overcome some of these problems.
- Administration by injection requires specialist training in order to use a hypodermic syringe or needle correctly and safely. It further requires sterile equipment, a liquid formulation of the therapeutic polypeptide, vial packing of said polypeptide in a sterile and stable form and, of the subject, a suitable site for entry of the needle. Furthermore, subjects commonly experience physical and psychological stress prior to and upon receiving an injection.
- An aspect of the present invention overcomes these problems of the prior art, by providing the polypeptides constructs of the present invention.
- Said constructs are sufficiently small, resistant and stable to be delivered orally, sublingually, topically, nasally, vaginally, rectally or by inhalation substantial without loss of activity.
- the polypeptides constructs of the present invention avoid the need for injections, are not only cost/time savings, but are also more convenient and more comfortable for the subject.
- One embodiment of the present invention is a polypeptide construct as disclosed herein for use in treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the gastric environment without the substance being inactivated.
- formulation technology may be applied to release a maximum amount of polypeptide in the right location (in the stomach, in the colon, etc.). This method of delivery is important for treating, prevent and/or alleviate the symptoms of disorders whose targets are located in the gut system.
- An aspect of the invention is a method for treating, preventing and/or alleviating the symptoms of a disorder susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the gastric environment without being inactivated, by orally administering to a subject a polypeptide construct as disclosed herein.
- Another embodiment of the present invention is a use of a polypeptide construct as disclosed herein for the preparation of a medicament for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the gastric environment without being inactivated.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the gut system without said substance being inactivated, by orally administering to a subject a polypeptide construct as disclosed herein.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the bloodstream of a subject without the substance being inactivated, by orally administering to a subject a polypeptide construct as disclosed herein.
- Another embodiment of the present invention is a polypeptide construct as disclosed herein for use in treating, preventing and/or alleviating the symptoms or disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the vaginal and/or rectal tract.
- a formulation according to the invention comprises a polypeptide construct as disclosed herein, in the form of a gel, cream, suppository, film, or in the form of a sponge or as a vaginal ring that slowly releases the active ingredient over time (such formulations are described in EP 707473 , EP 684814 , US 5629001 ).
- An aspect of the invention is a method for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the vaginal and/or rectal tract, by vaginally and/or rectally administering to a subject a polypeptide construct as disclosed herein.
- Another embodiment of the present invention is a use of a polypeptide construct as disclosed herein for the preparation of a medicament for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the vaginal and/or rectal tract.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the vaginal and/or rectal tract without being said substance being inactivated, by administering to the vaginal and/or rectal tract of a subject a polypeptide construct as disclosed herein.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the bloodstream of a subject without said substance being inactivated, by administering to the vaginal and/or rectal tract of a subject a polypeptide construct as disclosed herein.
- Another embodiment of the present invention is a polypeptide construct as disclosed herein, for use in treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the nose, upper respiratory tract and/or lung.
- a formulation according to the invention comprises a polypeptide construct as disclosed herein in the form of a nasal spray (e.g. an aerosol) or inhaler. Since the polypeptide construct is small, it can reach its target much more effectively than therapeutic IgG molecules.
- An aspect of the invention is a method for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the upper respiratory tract and lung, by administering to a subject a polypeptide construct as disclosed herein, by inhalation through the mouth or nose.
- Another embodiment of the present invention is a use of a polypeptide construct as disclosed herein for the preparation of a medicament for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the nose, upper respiratory tract and/or lung, without said polypeptide being inactivated.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the nose, upper respiratory tract and lung without inactivation, by administering to the nose, upper respiratory tract and/or lung of a subject a polypeptide construct as disclosed herein.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the bloodstream of a subject without inactivation by administering to the nose, upper respiratory tract and/or lung of a subject a polypeptide construct as disclosed herein.
- One embodiment of the present invention is a polypeptide construct as disclosed herein for use in treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the intestinal mucosa, wherein said disorder increases the permeability of the intestinal mucosa. Because of their small size, a polypeptide construct as disclosed herein can pass through the intestinal mucosa and reach the bloodstream more efficiently in subjects suffering from disorders which cause an increase in the permeability of the intestinal mucosa.
- An aspect of the invention is a method for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the intestinal mucosa, wherein said disorder increases the permeability of the intestinal mucosa, by orally administering to a subject a polypeptide construct as disclosed herein.
- VHH is fused to a carrier that enhances the transfer through the intestinal wall into the bloodstream.
- this "carrier” is a second VHH which is fused to the therapeutic VHH.
- Such fusion constructs are made using methods known in the art.
- the "carrier” VHH binds specifically to a receptor on the intestinal wall which induces an active transfer through the wall.
- Another embodiment of the present invention is a use of a polypeptide construct as disclosed herein for the preparation of a medicament for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation delivered to the intestinal mucosa, wherein said disorder increases the permeability of the intestinal mucosa.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the intestinal mucosa without being inactivated, by administering orally to a subject a polypeptide construct of the invention.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the bloodstream of a subject without being inactivated, by administering orally to a subject a polypeptide construct of the invention.
- a polypeptide construct as described herein is fused to a carrier that enhances the transfer through the intestinal wall into the bloodstream.
- this "carrier” is a VHH which is fused to said polypeptide.
- VHH binds specifically to a receptor on the intestinal wall which induces an active transfer through the wall.
- One embodiment of the present invention is a polypeptide construct as disclosed herein for use in treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the tissues beneath the tongue effectively.
- a formulation of said polypeptide construct as disclosed herein, for example, a tablet, spray, drop is placed under the tongue and adsorbed through the mucus membranes into the capillary network under the tongue.
- An aspect of the invention is a method for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the tissues beneath the tongue effectively, by sublingually administering to a subject a polypeptide construct as disclosed herein.
- Another embodiment of the present invention is a use of a polypeptide construct as disclosed herein for the preparation of a medicament for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able to pass through the tissues beneath the tongue,
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the tissues beneath the tongue without being inactivated, by administering sublingually to a subject a polypeptide construct as disclosed herein.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the bloodstream of a subject without being inactivated, by administering orally to a subject a polypeptide construct as disclosed herein.
- One embodiment of the present invention is a polypeptide construct as disclosed herein for use in treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the skin effectively.
- a formulation of said polypeptide construct for example, a cream, film, spray, drop, patch, is placed on the skin and passes through.
- An aspect of the invention is a method for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the skin effectively, by topically administering to a subject a polypeptide construct as disclosed herein.
- Another embodiment of the present invention is a use of a polypeptide construct as disclosed herein for the preparation of a medicament for treating, preventing and/or alleviating the symptoms of disorders susceptible to modulation by a substance that controls platelet mediated aggregation which is able pass through the skin effectively.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the skin without being inactivated, by administering topically to a subject a polypeptide construct as disclosed herein.
- An aspect of the invention is a method for delivering a substance that controls platelet mediated aggregation to the bloodstream of a subject, by administering topically to a subject a polypeptide construct as disclosed herein.
- a polypeptide construct as disclosed herein further comprises a carrier single domain antibody (e.g. VHH) which acts as an active transport carrier for transport of said polypeptide construct via the lung lumen to the blood.
- a carrier single domain antibody e.g. VHH
- a polypeptide construct further comprising a carrier that binds specifically to a receptor present on the mucosal surface (bronchial epithelial cells) resulting in the active transport of the polypeptide from the lung lumen to the blood.
- the carrier single domain antibody may be fused to the polypeptide construct. Such fusion constructs made using methods known in the art and are describe herein.
- the "carrier" single domain antibody binds specifically to a receptor on the mucosal surface which induces an active transfer through the surface.
- Another aspect of the present invention is a method to determine which single domain antibodies (e.g. VHHs) are actively transported into the bloodstream upon nasal administration.
- a na ⁇ ve or immune VHH phage library can be administered nasally, and after different time points after administration, blood or organs can be isolated to rescue phages that have been actively transported to the bloodstream.
- a non-limiting example of a receptor for active transport from the lung lumen to the bloodstream is the Fc receptor N (FcRn).
- FcRn Fc receptor N
- One aspect of the invention includes the VHH molecules identified by the method. Such VHH can then be used as a carrier VHH for the delivery of a therapeutic VHH to the corresponding target in the bloodstream upon nasal administration.
- One embodiment of the present invention is a polypeptide construct as disclosed herein for use in treating, preventing and/or alleviating the symptoms of disorders relating to platelet-mediated aggregation or dysfunction thereof.
- Said disorders include ,thrombotic thrombocytopenic purpura (TTP), transient cerebral ischemic attack, unstable or stable angina pectoris, cerebral infarction, myocardial infarction, peripheral arterial occlusive disease, restenosis.
- Said disorders further include those arising from coronary by-pass graft, coronary artery valve replacement and coronary interventions such angioplasty, stetting, or atherectomy.
- disorders are any of the formation of a non-occlusive thrombus, the formation of an occlusive thrombus, arterial thrombus formation, acute coronary occlusion, restenosis, restenosis after PCTA or stenting, thrombus formation in stenosed arteries, hyperplasia after angioplasty, atherectomy or arterial stenting, occlusive syndrome in a vascular system or lack of patency of diseased arteries.
- One aspect of the invention is a polypeptide construct as disclosed herein for use in the treatment, prevention and/or alleviation of disorders or conditions relating to platelet-mediated aggregation or dysfunction thereof, wherein said polypeptide construct is administered intravenously, subcutaneously, orally, sublingually, topically, nasally, vaginally, rectally or by inhalation.
- Another aspect of the invention is the use of a polypeptide construct as disclosed herein for the preparation of a medicament for the treatment, prevention and/or alleviation of disorders or conditions relating to platelet-mediated aggregation or dysfunction thereof, wherein said polypeptide construct is administered intravenously, subcutaneously, orally, sublingually, topically, nasally, vaginally, rectally or by inhalation.
- Another aspect of the invention is a method of treating, preventing and/or alleviating disorders or conditions relating to relating to platelet-mediated aggregation or dysfunction thereof, comprising administering to a subject a polypeptide construct as disclosed herein, wherein said heterospecific polypeptide construct is administered intravenously, subcutaneously, orally, sublingually, topically, nasally, vaginally, rectally or by inhalation.
- Another aspect of the invention is a polypeptide construct as disclosed herein for use in the treatment, prevention and/or alleviation of disorders or conditions relating to platelet-mediated aggregation or dysfunction thereof.
- Another aspect of the invention is a use of a polypeptide as disclosed herein for the preparation of a medicament for the treatment, prevention and/or alleviation of disorders or conditions relating to platelet-mediated aggregation or dysfunction thereof.
- agents When identified in an assay that measures binding or said polypeptide displacement alone, agents will have to be subjected to functional testing to determine whether they act as modulators of platelet-mediated aggregation.
- phage or cells expressing vWF or a fragment thereof are incubated in binding buffer with, for example, a polypeptide represented by-SEQ ID NO: 1 which has been labeled, in the presence or absence of increasing concentrations of a candidate modulator.
- control competition reactions using increasing concentrations of said polypeptide and which is unlabeled, can be performed. After incubation, cells are washed extensively, and bound, labelled polypeptide is measured as appropriate for the given label (e.g ., scintillation counting, fluorescence, etc.).
- Candidate modulators are considered to bind specifically in this or other assays described herein if they displace 50% of labelled polypeptide (sub-saturating polypeptide dose) at a concentration of 1 ⁇ M or less.
- the above method might easily be applied to screening for candidate modulators which alter the binding between the polypeptides represented by SEQ ID NOs: 2 to 15, 20 to 47 and 62 to 65 or the polypeptide constructs disclosed herein, and macromolecules involved in platelet-mediated aggregation such as, for example, vWF, gplb or collagen, or a fragment thereof.
- binding or displacement of binding can be monitored by surface plasmon resonance (SPR).
- SPR surface plasmon resonance
- Surface plasmon resonance assays can be used as a quantitative method to measure binding between two molecules by the change in mass near an immobilized sensor caused by the binding or loss of binding of , for example, the polypeptide represented by SEQ ID NO:1 from the aqueous phase to a vWF, or fragment thereof immobilized in a membrane on the sensor.
- This change in mass is measured as resonance units versus time after injection or removal of the said polypeptide or candidate modulator and is measured using a Biacore Biosensor (Biacore AB).
- vWF, or fragment thereof can be for example immobilized on a sensor chip (for example, research grade CM5 chip; Biacore AB) in a thin film lipid membrane according to methods described by Salamon et al. ( Salamon et al., 1996, Biophys J. 71: 283-294 ; Salamon et al., 2001, Biophys. J. 80: 1557-1567 ; Salamon et al., 1999, Trends Biochem. Sci. 24: 213-219 , each of which is incorporated herein by reference.). Sarrio et al.
- SPR can be used to detect ligand binding to the GPCR A(1) adenosine receptor immobilized in a lipid layer on the chip ( Sarrio et al., 2000, Mol. Cell. Biol. 20: 5164-5174 , incorporated herein by reference).
- Conditions for the binding of a polypeptide construct of the invention in an SPR assay can be fine-tuned by one of skill in the art using the conditions reported by Sarrio et al, as a starting point.
- SPR can assay for modulators of binding in at least two ways.
- a polypeptide represented by SEQ ID NO: 1 for example, can be pre-bound to immobilized vWF, or fragment thereof, followed by injection of candidate modulator at a concentration ranging from 0.1 nM to 1 ⁇ M. Displacement of the bound polypeptide can be quantitated, permitting detection of modulator binding.
- the membrane-bound vWF, or fragment thereof can be pre-incubated with a candidate modulator and challenged with, for example, a polypeptide represented by SEQ ID NO: 1.
- a difference in binding affinity between said polypeptide and vWF, or fragment thereof pre-incubated with the modulator, compared with that between said polypeptide and vWF, or fragment thereof in absence of the modulator will demonstrate binding or displacement of said polypeptide in the presence of modulator.
- a decrease of 10% or more in the amount of said polypeptide bound in the presence of candidate modulator, relative to the amount of said polypeptide bound in the absence of candidate modulator indicates that the candidate modulator inhibits the interaction of vWF, or fragment thereof and said polypeptide.
- the above method might easily be applied to screening for candidate modulators which alter the binding between the polypeptides represented by SEQ ID NOs: 2 to 15, 20 to 47 and 62 to 65 or the polypeptide constructs disclosed herein, and macromolecules involved in platelet-mediated aggregation such as, for example, vWF, gplb, or collagen, or a fragment thereof.
- FRET fluorescence resonance energy transfer
- the fluorescence emitted upon excitation of the donor fluorophore will have a different wavelength from that emitted in response to that excitation wavelength when the said polypeptide and vWF, or fragment thereof are not bound, providing for quantitation of bound versus unbound molecules by measurement of emission intensity at each wavelength.
- Donor fluorophores with which to label the vWF, or fragment thereof are well known in the art. Of particular interest are variants of the A. Victoria GFP known as Cyan FP (CFP, Donor (D)) and Yellow FP (YFP, Acceptor (A)).
- the YFP variant can be made as a fusion protein with vWF, or fragment thereof.
- the above method might easily be applied to screening for candidate modulators which alter the binding between the polypeptides represented by any of SEQ ID NOs: 2 to 15, 20 to 47, 62 to 65 or the polypeptide constructs disclosed herein, and macromolecules involved in platelet-mediated aggregation such as, for example, vWF, gplb or collagen, or a fragment thereof.
- a variation on FRET uses fluorescence quenching to monitor molecular interactions.
- One molecule in the interacting pair can be labeled with a fluorophore, and the other with a molecule that quenches the fluorescence of the fluorophore when brought into close apposition with it.
- a change in fluorescence upon excitation is indicative of a change in the association of the molecules tagged with the fluorophore:quencher pair.
- an increase in fluorescence of the labeled vWF, or fragment thereof is indicative that the polypeptide molecule (e.g . a polypeptide construct of the invention) bearing the quencher has been displaced.
- the above method might easily be applied to screening for candidate modulators which alter the binding between the polypeptide constructs disclosed herein, and macromolecules involved in platelet-mediated aggregation such as, for example, vWF, gplb or collagen, or a fragment thereof.
- fluorescence polarization measurement is useful to quantitate binding.
- the fluorescence polarization value for a fluorescently-tagged molecule depends on the rotational correlation time or tumbling rate.
- Complexes, such as those formed by vWF, or fragment thereof associating with a fluorescently labelled polypeptide e.g . a fluorescently-labeled polypeptide represented by any of SEQ ID NOs: 1 to 15, 20 to 34, 38 to 45 and 62 to 65
- a candidate inhibitor of the vWF:polypeptide interaction results in a decrease in fluorescence polarization, relative to a mixture without the candidate inhibitor, if the candidate inhibitor disrupts or inhibits the interaction of vWF, or fragment thereof with said polypeptide.
- Fluorescence polarization is well suited for the identification of small molecules that disrupt the formation of vWF: polypeptide complexes.
- ICS biosensors have been described in the art (Australian Membrane Biotechnology Research Institute; Cornell B, Braach-Maksvytis V, King L, Osman P, Raguse B, Wieczorek L, and Pace R. "A biosensor that uses ion-channel switches" Nature 1997, 387, 580 ).
- a polypeptide e.g.
- a polypeptide represented by any of SEQ ID NOs: 1 to 15, 20 to 34, 38 to 45 and 62 to 65) is coupled to the closing of gramacidin-facilitated ion channels in suspended membrane bilayers and thus to a measurable change in the admittance (similar to impedence) of the biosensor.
- This approach is linear over six orders of magnitude of admittance change and is ideally suited for large scale, high throughput screening of small molecule combinatorial libraries.
- a 10% or greater change (increase or decrease) in admittance in a sample containing a candidate modulator, relative to the admittance of a sample lacking the candidate modulator, indicates that the candidate modulator inhibits the interaction of vWF, or fragment thereof and said polypeptide.
- vWF vWF
- a modulator of the interaction need not necessarily interact directly with the domain(s) of the proteins that physically interact with said polypeptide. It is also possible that a modulator will interact at a location removed from the site of interaction and cause, for example, a conformational change in the vWF. Modulators (inhibitors or agonists) that act in this manner are nonetheless of interest as agents to modulate platelet-mediated aggregation.
- any of the binding assays described can be used to determine the presence of an agent in a sample, e.g., a tissue sample, that binds to vWF, or fragment thereof, or that affects the binding of, for example, a polypeptide represented by any of SEQ ID NO:1 to 15, 20 to 34, 38 to 45 or 62 to 65 to the vWF.
- a vWF, or fragment thereof is reacted with said polypeptide in the presence or absence of the sample, and polypeptide binding is measured as appropriate for the binding assay being used.
- a decrease of 10% or more in the binding of said polypeptide indicates that the sample contains an agent that modulates the binding of said polypeptide to the vWF, or fragment thereof.
- a cell that is useful according to the invention is preferably selected from the group consisting of bacterial cells such as, for example, E . coli, yeast cells such as, for example, S. cerevisiae, P. pastoris, insect cells or mammalian cells.
- a cell that is useful according to the invention can be any cell into which a nucleic acid sequence encoding a polypeptide comprising any of SEQ ID NOs: 1 to 47 and 49 to 65 or a polypeptide construct of the invention according to the invention can be introduced such that the polypeptide is expressed at natural levels or above natural levels, as defined herein.
- a polypeptide of the invention that is expressed in a cell exhibits normal or near normal pharmacology, as defined herein.
- a polypeptide of the invention that is expressed in a cell comprises the nucleotide sequence capable of encoding the amino acid sequences presented in Table 30 or capable of encoding a amino acid sequence that is at least 70% identical to the amino acid sequence presented in Table 30.
- a cell is selected from the group consisting of COS7-cells, a CHO cell, a LM (TK-) cell, a NIH-3T3 cell, HEK-293 cell, K-562 cell or a 1321 N1 astrocytoma cell but also other transfectable cell lines.
- terapéuticaally effective amount means the amount needed to achieve the desired result or results (treating or preventing platelet aggregation).
- an "effective amount” can vary for the various compounds that inhibit platelet-mediated aggregation used in the invention.
- One skilled in the art can readily assess the potency of the compound.
- the term "compound” refers the polypeptide constructs disclosed herein, or to a nucleic acid capable of encoding said polypeptide, or an agent identified according to the screening method described herein or said polypeptide comprising one or more derivatised amino acids.
- pharmaceutically acceptable is meant a materials that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with the compound without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.
- the invention disclosed herein is useful for treating or preventing a condition of platelet-mediated aggregation, in a subject and comprising administering a pharmaceutically effective amount of a compound or composition that inhibits BTK and that inhibits platelet-mediated aggregation.
- the invention disclosed herein is useful for treating or preventing the first steps of thrombus formation, in a subject and comprising administering a pharmaceutically effective amount of a compound or composition according to the invention.
- the invention disclosed herein is useful for treating or preventing restenosis, in a subject and comprising administering a pharmaceutically effective amount of a compound or composition according to the invention.
- One aspect of the present invention is the use of compounds of the invention for treating or preventing a condition of platelet-mediated aggregation, in a subject and comprising administering a pharmaceutically effective amount of a compound in combination with another, such as, for example, aspirin.
- One aspect of the present invention is the use of compounds of the invention for treating or preventing a condition of platelet-mediated aggregation, in a subject and comprising administering a pharmaceutically effective amount of a compound in combination with another, such as, for example, a thrombolytic agent.
- Another aspect of the present invention is a use of a compound of the invention for treating or preventing plaque or thrombus in an individual.
- Said plaque or thrombus formation may be under conditions of high sheer.
- the reversible adhesion or tethering of the platelets at high shear rate is followed by a firm adhesion through the collagen receptor on platelets resulting in platelet activation; the tethering of platelets by vWF to collagen exposed in the damaged vessel wall is especially important under high shear conditions.
- the inventors have found that polypeptide constructs of the present invention unexpected performed well under high sheer conditions ( e.g . Example 16.)
- the present invention is not limited to the administration of formulations comprising a single compound of the invention. It is within the scope of the invention to provide combination treatments wherein a formulation is administered to a patient in need thereof that comprises more than one compound of the invention.
- Conditions of platelet-mediated aggregation include, but are not limited to, unstable angina, stable angina, angina pectoris, embolus formation, deep vain thrombosis, hemolytic uremic syndrome, hemolytic anemia, acute renal failure, thrombolytic complications, thrombotic thrombocytopenic purpura, disseminated intravascular comgelopathy, thrombosis, coronary heart disease, thromboembolic complications, myocardial infarction, restenosis, and atrial thrombosis formation in atrial fibrillation, chronic unstable angina, transient ischemic attacks and strokes, peripheral vascular disease, arterial thrombosis, pre-eclampsia, embolism, restenosis and/or thrombosis following angioplasty, carotid endarterectomy, anastomosis of vascular grafts, and chronic exposure to cardiovascular devices. Such conditions may also result from thromboembolism and reocculsion during and after thrombolytic therapy
- the method would result in at least a 10% reduction in platelet-mediated aggregation, including, for example, 15%, 20%, 25%, 30%, 40%, 50%,60%, 70%, 80%, 90%, 100%, or any amount in between, more preferably by 90%.
- the method would result in at least a 10% reduction in intracellular calcium mobilization including, for example, 15%, 20%, 25%, 30%, 40%, 50%. 60%, 70%, 80%, 90%, 100%.
- the method would result in at least a 10% reduction in the level of phosphorylated PLCg 2 including, for example, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.
- the reduction can be measured, for example, by comparing the optical impedence in a chronology platelet aggregometer. Any other known measurement method may also be used. For example, (1) upon collagen stimulation, the level of collagen-induced intracellular calcium mobilization increases over time and so the measurement may include measuring the level of collagen-induced intracellular calcium or (2) upon collagen stimulation, the level of phosphorylated PLCg 2 increases over time and so the measurement may include measuring the level of phosphorylated PLCg 2.
- the cells can be contacted in vitro, for example, by adding a compound of the invention to the culture medium (by continuous infusion, by bolus delivery, or by changing the medium to a medium that contains the compound) or by adding the compound to the extracellular fluid in vivo (by local delivery, systemic delivery, inhalation, intravenous injection, bolus delivery, or continuous infusion).
- the duration of "contact" with a cell or population of cells is determined by the time the compound is present at physiologically effective levels or at presumed physiologically effective levels in the medium or extracellular fluid bathing the cell or cells.
- the duration of contact is 1-96 hours, and more preferably, for 24 hours, but such time would vary based on the half life of the compound and could be optimized by one skilled in the art using routine experimentation.
- the compound useful in the present invention can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient or a domestic animal in a variety of forms adapted to the chosen route of administration, i.e ., orally or parenterally, by intra-nasally by inhalation, intravenous, intramuscular, topical or subcutaneous routes.
- the compound of the present invention can also be administered using gene therapy methods of delivery. See, e.g ., U.S. Patent No. 5,399,346 , which is incorporated by reference in its entirety.
- gene therapy methods of delivery See, e.g ., U.S. Patent No. 5,399,346 , which is incorporated by reference in its entirety.
- primary cells transfected with the gene for the compound of the present invention can additionally be transfected with tissue specific promoters to target specific organs, tissue, grafts, tumors, or cells.
- the present compound may be systemically administered, e.g ., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet.
- a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier.
- the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least 0.1% of active compound.
- the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form.
- the amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained
- the tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added.
- a liquid carrier such as a vegetable oil or a polyethylene glycol.
- any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
- the active compound may be incorporated into sustained-release preparations and devices.
- the active compound may also be administered intravenously or intraperitoneally by infusion or injection.
- Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes.
- the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
- the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
- the present compound may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
- a dermatologically acceptable carrier which may be a solid or a liquid.
- Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like.
- Useful liquid carriers include water, hydroxyalkyis or glycols or water-alcohol/glycol blends, in which the present compound can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants.
- Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use.
- the resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
- Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
- Examples of useful dermatological compositions which can be used to deliver the compound to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat. No. 4,608,392 ), Geria (U.S. Pat. No. 4,992,478 ), Smith et al. (U.S. Pat. No. 4,559,157 ) and Wortzman (U.S. Pat. No. 4,820,508 ).
- Useful dosages of the compound can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949 .
- the concentration of the compound(s) in a liquid composition will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%.
- concentration in a semisolid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%.
- the amount of the compound, or an active salt or derivative thereof, required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician. Also the dosage of the compound varies depending on the target cell, tumor, tissue, graft, or organ.
- the desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day.
- the sub-dose itself may be further divided, e.g ., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye.
- An administration regimen could include long-term, daily treatment.
- long-term is meant at least two weeks and preferably, several weeks, months, or years of duration. Necessary modifications in this dosage range may be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. See Remington's Pharmaceutical Sciences (Martin, E.W., ed. 4), Mack Publishing Co., Easton, PA . The dosage can also be adjusted by the individual physician in the event of any complication.
- the invention provides for an agent that is a modulator of platelet-mediated aggregation.
- the candidate agent may be a synthetic agent, or a mixture of agents, or may be a natural product (e.g . a plant extract or culture supernatant).
- a candidate agent according to the invention includes a small molecule that can be synthesized, a natural extract, peptides, proteins, carbohydrates, lipids etc.
- Candidate modulator agents from large libraries of synthetic or natural agents can be screened. Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based agents. Synthetic agent libraries are commercially available from a number of companies including Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, NJ), Brandon Associates (Merrimack, NH), and Microsource (New Milford, CT). A rare chemical library is available from Aldrich (Milwaukee, WI). Combinatorial libraries are available and can be prepared.
- libraries of natural agents in the form of bacterial, fungal, plant and animal extracts are available from e.g., Pan Laboratories (Bothell, WA) or MycoSearch (NC), or are readily producible by methods well known in the art. Additionally, natural and synthetically produced libraries and agents are readily modified through conventional chemical, physical, and biochemical means.
- Useful agents may be found within numerous chemical classes. Useful agents may be organic agents, or small organic agents. Small organic agents have a molecular weight of more than 50 yet less than about 2,500 daltons, preferably less than about 750, more preferably less than about 350 daltons. Exemplary classes include heterocycles, peptides, saccharides, steroids, and the like. The agents may be modified to enhance efficacy, stability, pharmaceutical compatibility, and the like. Structural identification of an agent may be used to identify, generate, or screen additional agents.
- peptide agents may be modified in a variety of ways to enhance their stability, such as using an unnatural amino acid, such as a D-amino acid, particularly D-alanine, by functionalizing the amino or carboxylic terminus, e.g. for the amino group, acylation or alkylation, and for the carboxyl group, esterification or amidification, or the like.
- an unnatural amino acid such as a D-amino acid, particularly D-alanine
- a useful concentration of a candidate agent according to the invention is from about 10 mM to about 100 ⁇ M or more (i.e. 1 mM, 10 ⁇ M, 100 mM, 1 M etc.).
- the primary screening concentration will be used as an upper limit, along with nine additional concentrations, wherein the additional concentrations are determined by reducing the primary screening concentration at half-log intervals (e.g. for 9 more concentrations) for secondary screens or for generating concentration curves.
- a high throughput screening kit comprises all the necessary means and media for performing the detection of an agent that modulates platelet-mediated aggregation by interacting with a target of the invention, such as for example vWF, or fragment thereof in the presence of a polypeptide (for example, a polypeptide represented by SEQ ID NOs; 1 to 15, 20 to 34, 38 to 45, 62 to 65 or a polypeptide construct), preferably at a concentration in the range of 1 ⁇ M to 1 mM.
- a polypeptide for example, a polypeptide represented by SEQ ID NOs; 1 to 15, 20 to 34, 38 to 45, 62 to 65 or a polypeptide construct
- the kit comprises the following.
- Recombinant cells of the invention comprising and expressing the nucleotide sequence encoding vWF, or fragment thereof, which are grown according to the kit on a solid support, such as a microtiter plate, more preferably a 96 well microtiter plate, according to methods well known to the person skilled in the art especially as described in WO 00/02045 .
- a solid support such as a microtiter plate, more preferably a 96 well microtiter plate, according to methods well known to the person skilled in the art especially as described in WO 00/02045 .
- vWF, or fragment thereof is supplied in a purified form to be immobilized on, for example, a 96 well microtiter plate by the person skilled in the art.
- vWF, or fragment thereof is supplied in the kit pre-immobilized on, for example, a 96 well microtiter plate.
- Kit may contain more than one macromolecule (e.g. vWF, gpfb or collagen macromolecule and/or polynucleic acid).
- Modulator agents according to the invention at concentrations from about 1 ⁇ M to 1 mM or more, are added to defined wells in the presence of an appropriate concentration of polypeptide construct said concentration of said polypeptide preferably in the range of 1 ⁇ M to 1 mM. Kits may contain more than one polypeptide
- Binding assays are performed as according to the methods already disclosed herein and the results are compared to the baseline level of, for example vWF, or fragment thereof binding to a polypeptide, such as, for example, a polypeptide represented by any of SEQ ID NOs: 2 to 15, 20 to 34, 38 to 45 or 62 to 65, but in the absence of added modulator agent.
- a polypeptide such as, for example, a polypeptide represented by any of SEQ ID NOs: 2 to 15, 20 to 34, 38 to 45 or 62 to 65, but in the absence of added modulator agent.
- Wells showing at least 2 fold, preferably 5 fold, more preferably 10 fold and most preferably a 100 fold or more increase or decrease in vWF-polypeptide binding (for example) as compared to the level of activity in the absence of modulator are selected for further analysis.
- kits useful for screening for modulators of platelet-mediated aggregation can includes an isolated vWF, or fragment thereof.
- a kit can comprise cells transformed to express vWF, or fragment thereof.
- a kit according to the invention can comprise a polynucleotide encoding vWF, or fragment thereof.
- a kit according to the invention may comprise the specific primers useful for amplification of vWF, or fragment thereof.
- Kit may contain more than one macromolcule (e.g . vWF, gpIb, or collagen macromolecule or polynucleic acid, or fragment thereof).
- Kits useful according to the invention can comprise an isolated polypeptide represented by any of SEQ ID NOs: 1 to 15, 20 to 47 or 62 to 65, a homologue thereof, or a functional portion thereof, or a polypeptide construct according to the invention.
- a kit according to the invention can comprise cells transformed to express said polypeptide.
- Kits may contain more than one polypeptide.
- a kit according to the invention can comprise a polynucleotide encoding a macromolecule, for example, vWF, gpib, or collagen, or fragment thereof.
- a kit according to the invention may comprise the specific primers useful for amplification of a macromolecule such as, for example, vWF gpIb, or collagen, or fragment thereof. All kits according to the invention will comprise the stated items or combinations of items and packaging materials therefore. Kits will also include instructions for use.
- the invention also provides for invasive medical devices coated with a polypeptide construct of the invention or an agent resulting from a screening method of the invention for use in devices requiring the same.
- Non-limiting examples of devices include surgical tubing, occlusion devices, prosthetic devices.
- Application for said devices include surgical procedures which require a modulation of platelet-mediated aggregation around the site of invasion.
- One embodiment of the present is a method for treating invasive medical devices to prevent platelet-mediate aggregation around the site of invasion comprising the step of coating said device with a polypeptide construct or agent according to the invention.
- Another embodiment of the present is a invasive medical devices that circumvents platelet-mediate aggregation around the site of invasion, wherein said device is coated with a polypeptide construct or agent according to the invention.
- PBLs Peripheral blood lymphocytes
- MMLV Reverse Transcriptase Gibco BRL
- oligo d(T) oligonucleotides The cDNA was purified with a phenol/chloroform extraction, followed by an ethanol precipitation and subsequently used as template to amplify the VHH repertoire.
- a first PCR the repertoire of both conventional (1.6 kb) and heavy-chain (1.3 kb) antibody gene segments were amplified using a leader specific primer (5' - GGCTGAGCTCGGTGGTCCTGGCT- 3') and the oligo d(T) primer (5'-AACTGGAAGAATTCGCGGCCGCAGGAATTTTTTTTTTTTTTTTTTTTTT-3').
- the resulting DNA fragments were separated by agarose gel electrophoresis and the 1.3 kb fragment, encoding heavy-chain antibody segments was purified from the agarose gel.
- a second PCR was performed using a mixture of FR1 reverse primers and the same oligo d(T) forward primer.
- the PCR products were digested with Sfil (introduced in the FR1 primer) and BstE ll (naturally occurring in FR4). Following gel electrophoresis, the DNA fragment of approximately 400 basepairs were purified from gel and ligated into the corresponding restriction sites of phagemid pAX004 to obtain a library of cloned VHHs after electroporation of Escherichia coli TG1. The size of the library was 1.4 x 10 7 cfu, and all clones contained insert of the correct size.
- the library was grown at 37°C in 10 ml 2xTY medium containing 2% glucose, and 100 ⁇ g/ml ampicillin, until the OD600nm reached 0.5.
- M13KO7 phages (10 12 ) were added and the mixture was incubated at 37°C for 2 x 30 minutes, first without shaking, then with shaking at 100 rpm. Cells were centrifuged for 10 minutes at 4500 rpm at room temperature. The bacterial pellet was resuspended in 50 ml of 2xTY medium containing 100 ⁇ g/ml ampicillin and 25 ⁇ g/ml kanamycin, and incubated overnight at 37°C with vigorously shaking at 250 rpm.
- a well in a microtiterplate was coated with 2 ⁇ g/ml vWF or with PBS containing 1% casein. After overnight incubation at 4°C, the wells were blocked with PBS containing 1% casein, for 3 hours at RT. 200 ⁇ l phages was added to the wells. After 2 hours incubation at RT, the wells were washed 10x with PBS-Tween and 10x with PBS, Phages were specifically eluted with 100 ⁇ l of 100 ⁇ g/ml collagen type III. Elutions were performed for overnight at room temperature.
- a microtiter plate was coated overnight at 4°C with collagen type III at 25 ⁇ g/ml in PBS. The plate was washed five times with PBS-Tween and blocked for 2 hours at room temperature with PBS containing 1% casein. The plate was washed five times with PBS-tween. 100 ⁇ l of 2 ⁇ g/ml vWF (vWF is pre-incubated at 37°C for 15 minutes) was mixed with 20 ⁇ l periplasmic extract containing a VHH antibody (described in Example 6) and incubated for 90 minutes at room temperature in the wells of the microtiterplate. The plate was washed five times with PBS-tween.
- DAKO anti-vWF-HRP monoclonal antibody
- Plasmid was prepared for binders for vWF inhibiting the interaction with collagen typelll and was transformed into WK6 electrocompetent cells.
- a microtiter plate was coated with 2 ⁇ g/ml vWF, overnight at 4°C. Plates were blocked for two hours at room temperature with 300 ⁇ l 1% casein in PBS. The plates were washed three times with PBS-Tween. Dilution series of all purified samples were incubated for 2 hours at RT. Plates were washed six times with PBS-Tween, after which binding of VHH was detected by incubation with mouse anti-myc mAB 1/2000 in PBS for 1 hour at RT followed by anti-mouse-HRP conjugate 1/1000 in PBS, also for 1 hour at RT. Staining was performed with the substrate ABTS/H 2 O 2 and the signals were measured after 30 minutes at 405 nm. The binding as a function of concentration of purified VHH is indicated in Figure 3 .
- Microtiterplates were coated with 2 ⁇ g/ml vWF and 3 other antigens not involved in platelet aggregation, but that were also immunized in llama 002.
- ELISA was performed as described in Example 7 with 670, 67 and 6.7 nM VHH. Results are summarized in Table 5. The results show that the inhibitory VHH are specific for vWF.
- Inhibition ELISA was performed as described in Example 5 but with decreasing concentrations of VHH and with human plasma at a dilution of 1/60 instead of with purified vWF or with human undiluted plasma. Results are represented in figure 4 .
- the concentration of VHH resulting in 50% inhibition (IC50) is given in Table 6.
- the pBAD-Oprl-strep-spec vector was used to display the VWF A3 domain as a fusion with Oprl on the surface of UT5600 E.coli cells (F- ara-14 leuB6 azi-6 lacY1 proC14 tsx-67 entA403 trpE38 rfbD1 rpsL109 xyl-5 mtl-1 thi1 DompT fepC266) ( Cote-Sierra et al, 1998, Gene, 221: 25-34 ).
- the gene coding for the A3 domain of vWF (201aa) was amplified by PCR using the A3for and A3back PCR primers.
- the pBAD-vWFA3 plasmid was transformed in UT5600 F- cells and plated on LB agar plates with 20 ⁇ g/ml streptomycin, 50 ⁇ g/ml spectinomycin. A single colony was used to inoculate LB medium with 20 ⁇ g/ml streptomycin, 50 ⁇ g/ml spectinomycin. Cells were grown overnight at 37°C at 200 rpm. The next day, cells were induced with 0.2% arabinose and incubated for 1 more hour at 37°C at 150 rpm. Total cell lysates were boiled in reducing sample buffer, loaded on a 12% SDS-PAGE and transferred to nitrocellulose for Western blotting.
- Transferred proteins were detected using a monoclonal anti-Opri antibody (SH2.2) ( Cote-Sierra et al, 1998, Gene, 221: 25-34 ).
- An anti-mouse IgG conjugated with alkaline phosphatase was applied (Sigma), and the blots were developed with BCIP/NBT ( Figure 5 ).
- the pBAD-vWF-A3 plasmids were transformed in UT5600 F- cells and plated on LB agar plates with 20 ⁇ g/ml streptomycin, 50 ⁇ g/ml spectinomycin.
- a single colony was used to inoculate LB medium with 20 ⁇ g/ml streptomycin, 50 ⁇ g/ml spectinomycin. Cells were grown overnight at 37°C at 200 rpm. The next day, cells were induced with 0.2% arabinose and incubated for 1 more hour at 37°C at 150 rpm. A microtiter plate was coated overnight at 4°C with the monoclonal anti-Oprl antibody (SH2.2) diluted 1/1000 in PBS and blocked for 2 hours at RT with PBS containing 1% casein. After induction, total cells were allowed to bind to the plate for 1 hour at room temperature. The plates were washed five times with PBS-Tween.
- SH2.2 monoclonal anti-Oprl antibody
- Phage preparations of single colonies were allowed to bind for two hours at room temperature. The plates were washed five times with PBS-Tween. An anti-M13 HRP conjugate was used for detection of phage binding to E . coli cells expressing the A3 domain or to an irrelevant antigen on their surface. The plates were washed five times with PBS-Tween. Staining was performed with ABTS/H 2 O 2 and signals were measured after 30 minutes at 405 nm. Results are summarized in Table 7.
- the E. coli production vector pAX11 was designed ( Figure 6 ), which allows the two-step cloning of bivalent or bispecific VHH.
- the carboxy terminal VHH is cloned first with PstI and BstElI, while in the second step the other VHH is inserted by SfiI and NotI, which do not cut within the first gene fragment.
- the procedure avoids the enforcement of new sites by amplification and thus the risk of introducing PCR errors.
- the sequence is shown in Table 30 (SEQ ID numbers 8, 9, 10, 11 and 12).
- Example 15 Stability of bivalent or bispecific constructs in human plasma
- Perfusion studies over collagen type III were carried out in a specially devised small parallel-plate perfusion chamber with well-defined rheological characteristics accommodating a glass coverslip.
- Whole blood was obtained by venipuncture from volunteers. Blood was drawn through the perfusion chamber by a Harvard infusion pump (pump 22, model 2400-004; Harvard, Natick, MA). The perfusion time was 5 minutes. Triplicate coverslips were inserted in the chamber. Five milliliters of whole blood was pre-warmed at 37°C for 5 minutes with or without addition of VHH, and then recirculated through the chamber for 5 minutes at a wall shear rate of 300 s -1 or 1600 s -1 .
- the coverslips were removed, rinsed , fixed with 0.05% glutaraldehyde, dehydrated with methanol, and stained with May-Grünwald/Giemsa. Platelet adhesion was quantitated with a light microscope (1,000x magnification) connected to a computerized image analyzer (AMS 40-10, Saffron Walden, UK). Platelet adhesion was expressed as the percentage of the surface covered with platelets. Results are summarized in Table 10 and 11.
- the pBAD-Oprl-strep-spec vector was used to display the VWF A1 domain as a fusion with Oprl on the surface of UT5600 E.coli cells (F- ara-14 leuB6 azi-6 lacY1 proC14 tsx-67 entA403 trpE38 rfbD1 rpsL109 xyl-5 mtl-1 thi1 DompT fepC266) ( Cote-Sierra et al, 1998, Gene, 221: 25-34 ).
- the gene coding for the A1 domain of vWF (219aa) was amplified by PCR using the A1for and A1back PCR primers.
- the pBAD-vWFA1 plasmid was transformed in UT5600 F- cells and plated on LB agar plates with 20 ⁇ g/ml streptomycin, 50 ⁇ g/mf spectinomycin. A single colony was used to inoculate LB medium with 20 ⁇ g/ml streptomycin, 50 ⁇ g/ml spectinomycin. Cells were grown overnight at 37°C at 200 rpm. The next day, cells were induced with 0.2% arabinose and incubated for 1 more hour at 37°C at 150 rpm. Total cell lysates were boiled in reducing sample buffer, loaded on a 12% SDS-PAGE and transferred to nitrocellulose for Western blotting.
- Transferred proteins were detected using a monoclonal anti-Oprl antibody (SH2.2) ( Cote-Sierra et al, 1998, Gene, 221: 25-34 ).
- An anti-mouse IgG conjugated with alkaline phosphatase was applied (Sigma), and the blots were developed with BCIP/NBTas shown in Figure 10 .
- Example 19 Selection of binders for vWF inhibiting the interaction with platelets: MATCHM
- E.coli cells expressing the A1 domain of vWF were used for a MATCHM experiment: UT5600 cells transformed with pBAD-Oprl-A1 were grown and induced with 0.2% arabinose. Cells were washed and incubated with the phages for 1 hour at RT. This mixture was washed 7 times with PBS-Tween and phages were eluted with exponentially growing TG1 cells. We performed a first and a second round of selection. Results are summarized in Table 14.
- VHH specific for the A1 domain of vWF were expressed and purified as described in Example 6. Binding in ELISA to vWF was measured as described in Example 7. Results are shown in Figure 11 .
- a microtiter plate was coated overnight at 4°C with an antibody specific for platelet receptor gplb at 5 ⁇ g/ml in PBS. The plate was washed five times with PBS-Tween, and blocked with 300 ⁇ l PBS-1% casein for 2 hours at room temperature. The plate was washed 3 times with PBS-Tween. Platelet receptor gplb (gplb) was applied to the wells of the microtiter plate at a concentration of 1 ⁇ g/ml and allowed to bind for 2 hours at room temperature. The plate was washed five times with PBS-Tween. VHH (A38 (negative control) and A50 (vWF A1 binder)) was added at decreasing concentration.
- Plasma containing vWF was pre-incubated at a dilution of 1/128 at 37°C for 5 minutes. Risto was added at a final concentration of 760 ⁇ g/ml and added to the VHH. This mixture was incubated for 30 minutes at room temperature. 100 ⁇ l of this mixture was then applied to a microtiter plate well and incubated for 90 minutes at room temperature. The plate was washed five times with PBS-Tween. A anti-vWF-HREP monoclonal antibody was diluted 3.000-fold in PBS- and incubated for 1 hour. The plate was washed five times with PBS-tween and vWF-binding was detected with ABTS/H 2 O 2 . Signals were measured after 30 minutes at 405 nm. Results are summarized in Figure 12 .
- Example 23 Evaluate inhibition by VHH at high shear.
- Bivalent molecules were constructed as described in Examples 12. The sequence is shown in Table 30 (SEQ ID numbers 32, 33 and 34).
- Protein was expressed and purified as described in Examples 6. An extra purification step was needed on superdex 75 for removal of some monovalent degradation product (5-10%).
- Example 25 Evaluate Inhibition by VHH at high shear.
- Protein was expressed and purified as described in Example 6. A extra purification step was needed on superdex 75 for removal of some monovalent degradation product (5-10%). Yields obtained for 1 fiter expression and purification of bispecific protein in E . coli are summarized in Table 19.
- Examples 32 Test VHH in ELISA for binding to collagen type I and type III.
- Clones were tested for binding in ELISA as described in example 7 but then on collagen type I or type III coated wells at 25 ⁇ g/ml in PBS. The results are summarized in Table 24.
- VHH were expressed and purified as described in Example 6.
- a microtiterplate was coated with 25 ⁇ g/ml collagen typel or type III and blocked. Binders were applied in duplo dilutions and binding was detected as described in Examples 7. Results are summarized in Figure 16 .
- Example 35 Selection of binders for collagen type I inhibiting the interaction with vWF
- a microtiterplate was coated with 25 ⁇ g/ml collagen type 1. Phages were prepared as described in Example 3 and allowed to bind to the well of a microtiterplate that was blocked for 2 hours. After washing, phages were eluted with 300 ⁇ g/ml vWF. A second and third round of selection were performed in the same way.
- Example 36 Test VHH in ELISA for binding to collagen type I and type III.
- Clones were tested for binding to collage type I and type III in ELISA as described in Example 34.
- VHH were expressed and purified as described in example 6.
- a microtiterplate was coated with 25 ⁇ g/ml collagen typel or type III and blocked, Binders were applied in duplo dilutions and binding was detected as described in Example 34.
- Example 39 Test inhibition of binding of vWF to collagen by collagen-specific VHH) in ELISA
- HSA human serum albumin
- the library was prepared as described in Example 2.
- the size of the library was 2 x 10 7 cfu, and all clones contained insert of the correct size.
- a microtiter plate (Maxisorp) was coated overnight at 4°C with PBS-1% casein or with 5 ⁇ g/ml HSA (human serum albumin). The plate was washed 3 times with PBS-Tween (0.05% Tween20) and blocked for 2 hours at room temperature with 200 ⁇ l PBS-1% casein. The plate was washed five times with PBS-Tween. Phages were prepared as described above and applied to the wells in consecutive twofold dilutions. Plates were washed five times with PBS-Tween. Bound phage were detected with a mouse monoclonal antibody anti-M13 conjugated with horse radish peroxidase (HRP) diluted 1/2000 in PBS.
- HRP horse radish peroxidase
- Example 45 Selection: first and second round of biopanning
- Example 46 Screening of individual clones after biopanning
- HSA human serum albumin
- MSA mouse serum albumin
- Periplasmic extract was prepared as described in Example 6.
- a microtiter plate was coated with 5 ⁇ g/ml HSA, with 5 ⁇ lg/ml mouse serum albumin (MSA) or with PBS-1% casein, overnight at 4°C. Plates were blocked for two hours at room temperature with 300 ⁇ l 1% casein in PBS. The plates were washed three times with PBS-Tween. Periplasmic fraction was prepared for 23 individual clones after the first and second round of selection, and allowed to bind to the wells of the microtiterplate.
- MSA mouse serum albumin
- a PCR was performed on positive clones after the second round of panning, with a set of primers binding to a sequence in the vector.
- the PCR product was digested with the restriction enzyme Hinfl and loaded on a agarose gel. 4 clones were selected with a different Hinfl-pattern for further evaluation. Those clones were sequenced, and results are summarized in Table 30 (SEQ ID numbers 16,17, 18 and 19 ).
- Example 48 Test cross-reactivity with albumin of different species
- a SDS-PAGE was run for plasma (1/10 dilution) from different species (baboon, pig, hamster, human, rat. mouse and rabbit) and blotted on a nitrocellulose membrane. Phages were prepared for clones MSA 21. MSA 24, MSA 210, MSA212 and a irrelevant nanobody as described in Example 3. Phages were allowed to bind to the nitrocellulose blotted serum albumins and unbound phages were washed away. Binding was detected with a anti-M13 polyclonal antibody coupled to HRP. DAP was used as a substrate for detection. Results are shown in Figure 18 .
- Example 50 ELISA on MSA of the purified nanobodies
- a microtiterplate was coated with 5 ⁇ g/ml MSA overnight at 4C. After washing, the plate was blocked for 2 hours at RT with PBS-1 % casein. Samples were applied in duplicate starting at a concentration of 2500 nM at 1 ⁇ 3 dilutions and allowed to bind for 2 hours at RT. A polyclonal rabbit anti-nanobody serum was added at 1/1000 (K208) for one hour at RT. Detection was with anti-rabbit alkaline phosphatase conjugate at 1/1000 and staining with PNPP. Results are shown in Figure 20 .
- Protein was expressed and purified as described in Example 6. A extra purification step was needed on superdex 75 for removal of some monovalent degradation product (5-10%).
- a microtiterplate was coated with 5 ⁇ g/ml mouse serum albumin overnight at 4°C. After washing the plate, wells were blocked for 2 hours with PBS-1% casein. The bispecific proteins were allowed to bind to the wells for 2 hours at RT. After washing, human, dog and pig plasma was added at different dilutions and allowed to bind for 2 hours at RT. Binding of vWF was detected with anti-vWF-HRP from DAKO at 1/3000 dilution. Staining was performed with ABTS/H 2 O 2 . Results are shown in Figure 22 and indicate that functionality of both VHHs is retained in the bispecific construct.
- Examples 54 inhibition of binding of vWF to collagen by the bispecific constructs as compared to the monovalent VHHs
- IC50 values are summarized in Table 28. Results indicate that the inhibitory properties of the VHH are retained in the bispecific construct.
- Example 56 Screening for binders in ELISA.
- Periplasmic extract was prepared as described in Example 6.
- the supernatant was applied to wells coated with mAb and subsequently gplb, as described in Example 55. Dilution series of all purified samples were incubated for 2 hours at RT. Plates were washed six times with PBS-Tween, after which binding of VHH was detected by incubation with mouse anti-His-HRP mAB 1/2000 in PBS for 1 hour at RT followed by staining with the substrate ABTS/H 2 O 2 . The signals were measured after 30 minutes at 405 nm.
- Periplasmic fraction was prepared as described in Example 6.
- the supernatant containing the VHH was loaded on Ni-NTA and purified to homogeneity.
- the yield of VHH was calculated according to the extinction coefficient.
- ELISA was performed as described in Example 55.
- Example 59 Test inhibitory properties of VHHs specific for gplb
- VHHs were tested for inhibition in ELISA as described in Example 21.
- Example 60 Evaluate inhibition by VHH at high shear.
- VHH C37 was incubated at 37°C and inhibition of binding of vWF to collagen was measured at different time points by ELISA as described in Example 7. Results were compared to VHH stored at -20°C and are presented in Figure 24 . Shown for comparison are the activities of a scFv against B3 antigen ( Reiter et al, Protein Engineering, 1994, 7: 697-704 ), and said scFv modified by the introduction of a disulphide bond between framework residues 44 and 105 to enhance its stability (dsFv). The dsFv lost 40% of its activity after 60 hours incubation at 37°C. After one year of incubation at 37°C, C37 was analyzed for its inhibitory properties as compared to C37 stored in the freezer.
- the ELISA was performed as described in Example 5 with human plasma at a final dilution of 1/200. The results are shown in Figure 25 and indicate that functionality is fully retained (IC50 value of 0.085 versus 0.1 ⁇ g/ml for C37 stored at 37°C versus -20°C). Therefore, it is expected that VHH will have a long shelf-life.
- Example 62 VHH immobilized in a polymer
- VHH C37 was added at a final concentration of 10 ⁇ g/ml.
- Human plasma was added at different dilutions starting with undiluted plasma.
- DAKO anti-vWF-HRP
- substrate ABTS/H 2 O 2
- OD405nm was measured. The result is shown in Figure 26 .
- the results indicate that VHH remain functional upon immobilization in a polymer.
- C37 was mutated by using a non-PCR based site-directed mutagenesis method as described by Chen and Ruffner ( Chen and Ruffner, Amplification of closed circular DNA in vitro, Nucleic Acids Research, 1998, 1126-1127 ) and commercialized by Stratagene (Quickchange site-directed mutagenesis).
- Plasmid DNA was used as template in combination with 2 mutagenic primers (table 29) introducing the desired mutation(s).
- the 2 primers are each complementary to opposite strands of the template plasmid DNA.
- each strand is extended from the primer sequence during a cycling program using a limited amount of cycles. This results in a mixture of wild type and mutated strands.
- Digestion with Dpnl results in selection of mutated in vitro synthesized DNA.
- the DNA was precipitated and transformed to E . coli and analyzed for the required mutation by sequence analysis.
- the clone with the correct sequence was named C37-hum, the amino acid sequence is in Table 30 SEQ ID number 2.
- positions that still need to be humanized are: Q1, Q5, D104, Q198 and I111.
- Position 108 is solvent exposed in camelid VHH, while in human antibodies this position is buried at the VH-VL interface (Spinelli, 1996; Nieba, 1997). In isolated VHs position 108 is solvent exposed.
- the introduction of a non-polar hydrophobic Leu instead of polar uncharged Gin can have a drastic effect on the intrinsic foldability/stability of the molecule.
- Example 65 Expression of a VHH-CDR3 fragment of vWF-C37
- the CDR3 region of C37 was amplified by using a sense primer located in the framework 4 region (Forward: CCCCTGGTCCCAGTTCCCTC) and an anti-sense primer located in the framework 3 region (Reverse: TGTGCTCGCGGGGCCGGTAC),
- the PCR reactions were performed in 50 ml reaction volume using 50pmol of each primer.
- the reaction conditions for the primary PCR were 11 min at 94°C, followed by 30/60/120 sec at 94/55/72 °C for 30 cycles, and 5 min at 72°C. All reaction were performed wit 2.5 mM MgCl2 , 200 mM dNTP and 1.25U AmpliTaq God DNA Polymerase (Roche Diagnostics, Brussels, Belgium).
- Example 66 Selection via first and second round biopanning on recombinant A1 (rA1)
- a well in a microtiter plate was coated with 5 ⁇ g/ml recombinant A1 domain of vWF (rA1), or with PBS containing 1% casein. After overnight incubation at 4°C, the wells were blocked with PBS containing 1% casein, for 3 hours at RT. 200 ⁇ l phages was added to the wells. After 2 hours incubation at RT, the wells were washed 10x with PBS-Tween and 10x with PBS. Bound phages were eluted with 100 ⁇ l 0.2 M glycin buffer, pH 2.4. Elutions were performed for 20 minutes at room temperature. Eluted phages were allowed to infect exponentially growing E .
- a microtiter plate was coated with 2 ⁇ g/ml rA1 or with 1 ⁇ g/ml vWF, overnight at 4°C. Plates were blocked for two hours at room temperature with 300 ⁇ l 1 % casein in PBS. The plates were washed three times with PBS-Tween. Periplasmic fraction was prepared for 192 individual clones after the second round of selection, and allowed to bind to the wells of the microtiter plate.
- a PCR was performed on positive clones for rA1 and negative for vWF, after the second round of panning, with a set of primers binding to a sequence in the vector.
- the PCR product was digested with the restriction enzyme Hinfl and loaded on a agarose gel.
- 30 clones were selected with a different Hinfl-pattern for further evaluation. Those clones were tested in more detail by ELISA as described in example 67. Out of the 30 clones, 4 were shown to clearly have a much higher affinity for rA1 than for vWF.
- the data are shown in Figures 29 (binding to rA1) and 30 (binding to vWF). These clones were sequenced, and results are summarized in Table 30 (SEQ ID numbers 62 to 65).
- a microtiter plate was coated overnight at 4°C with an antibody specific for platelet receptor gplb at 5 ⁇ g/ml in PBS. The plate was washed five times with PBS-Tween, and blocked with 300 ⁇ l PBS-1% casein for 2 hours at room temperature. The plate was washed 3 times with PBS-Tween. Plasma was applied to the wells of the microliter plate at a 1 ⁇ 2 dilution and allowed to bind for 1.5 hours at 37C. The plate was washed five times with PBS-Tween. VHH was added at decreasing concentration.
- Plasma containing vWF was pre-incubated at a dilution of 1/50 at 37°C for 5 minutes. Ristocetin was added at a final concentration of 1 mg/ml and added to the VHH. This mixture was incubated for 1 hour 37C. 50 ⁇ l of this mixture was then applied to a microtiter plate well and incubated for 90 minutes at 37C. The plate was washed five times with PBS-Tween. An anti-vWF-HRP monoclonal antibody was diluted 3,000-fold in PBS and incubated for hour. The plate was washed five times with PBS-tween and vWF-binding was detected with ABTS/H2O2. Signals were measured after 30 minutes at 405 nm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Virology (AREA)
- Mycology (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11162977A EP2390270A1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03447005 | 2003-01-10 | ||
EPPCT/EP03/06581 | 2003-06-23 | ||
EPPCT/EP2003/007313 | 2003-07-08 | ||
PCT/BE2003/000189 WO2005044858A1 (en) | 2003-11-07 | 2003-11-07 | Camelidae single domain antibodies vhh directed against epidermal growth factor receptor and uses therefor |
PCT/BE2003/000192 WO2004041862A2 (en) | 2002-11-08 | 2003-11-07 | Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor |
PCT/BE2003/000193 WO2004041865A2 (en) | 2002-11-08 | 2003-11-07 | Stabilized single domain antibodies |
PCT/BE2003/000194 WO2004041863A2 (en) | 2002-11-08 | 2003-11-07 | Single domain antibodies directed against interferon- gamma and uses therefor |
PCT/BE2003/000190 WO2004041867A2 (en) | 2002-11-08 | 2003-11-07 | Camelidae antibodies against imminoglobulin e and use thereof for the treatment of allergic disorders |
BEPCT/BE03/00206 | 2003-12-01 | ||
BEPCT/BE03/00191 | 2003-12-02 | ||
EP04700953.5A EP1587838B1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische polypeptide, deren homologe, deren fragmente und deren verwendung bei der modulierung der thrombozytenvermittelten aggregation |
EP11162977A EP2390270A1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04700953.5 Division | 2004-01-09 | ||
EP04700953.5A Division-Into EP1587838B1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische polypeptide, deren homologe, deren fragmente und deren verwendung bei der modulierung der thrombozytenvermittelten aggregation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2390270A1 true EP2390270A1 (de) | 2011-11-30 |
Family
ID=32893039
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11162977A Withdrawn EP2390270A1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation |
EP04700953.5A Expired - Lifetime EP1587838B1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische polypeptide, deren homologe, deren fragmente und deren verwendung bei der modulierung der thrombozytenvermittelten aggregation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04700953.5A Expired - Lifetime EP1587838B1 (de) | 2003-01-10 | 2004-01-09 | Therapeutische polypeptide, deren homologe, deren fragmente und deren verwendung bei der modulierung der thrombozytenvermittelten aggregation |
Country Status (15)
Country | Link |
---|---|
US (3) | US9028816B2 (de) |
EP (2) | EP2390270A1 (de) |
JP (1) | JP2006517789A (de) |
KR (2) | KR20080113286A (de) |
CN (2) | CN100439400C (de) |
AU (1) | AU2004204262B2 (de) |
BR (1) | BRPI0406694B8 (de) |
CA (1) | CA2512545C (de) |
ES (1) | ES2542330T3 (de) |
MX (1) | MXPA05006043A (de) |
NO (1) | NO337265B1 (de) |
NZ (1) | NZ540771A (de) |
RU (1) | RU2357974C2 (de) |
WO (1) | WO2004062551A2 (de) |
ZA (1) | ZA200504996B (de) |
Families Citing this family (225)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090311267A1 (en) * | 1999-08-10 | 2009-12-17 | University Of Wurzburg | Inhibition of VWF - GPIb/V/IX interaction and platelet-collagen interaction for prevention and treatment of cerebral attacks |
US9321832B2 (en) | 2002-06-28 | 2016-04-26 | Domantis Limited | Ligand |
WO2004015425A1 (en) * | 2002-08-07 | 2004-02-19 | Umc Utrecht Holding B.V. | Modulation of platelet adhesion based on the surface exposed beta-switch loop of platelet glycoprotein ib-alpha |
US9453251B2 (en) | 2002-10-08 | 2016-09-27 | Pfenex Inc. | Expression of mammalian proteins in Pseudomonas fluorescens |
US9320792B2 (en) * | 2002-11-08 | 2016-04-26 | Ablynx N.V. | Pulmonary administration of immunoglobulin single variable domains and constructs thereof |
EP2390270A1 (de) | 2003-01-10 | 2011-11-30 | Ablynx N.V. | Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation |
WO2005077980A2 (en) * | 2004-02-13 | 2005-08-25 | Bioceros Bv | Soluble tcr-like molecules and their uses |
EP1774017B1 (de) | 2004-07-26 | 2013-05-15 | Pfenex Inc. | Verfahren zur verbesserten proteinexpression durch strain-engineering |
CN101724071A (zh) | 2004-10-08 | 2010-06-09 | 杜门蒂斯有限公司 | 抗肿瘤坏死因子受体1的单域抗体及其使用方法 |
PT1836500E (pt) * | 2005-01-14 | 2010-09-28 | Ablynx Nv | Métodos e ensaios para distinguir diferentes formas de doenças e perturbações caracterizadas por trombocitopenia e/ou por interacção espontânea entre o factor de von willebrand (vwf) e plaquetas |
JP4913034B2 (ja) * | 2005-02-14 | 2012-04-11 | アルフレッサファーマ株式会社 | Adamts13活性検定用抗体及び活性検定方法 |
US8092800B2 (en) * | 2005-03-18 | 2012-01-10 | Istituto Superiore Di Sanita | Antibodies against Candida antigens |
EP2949668B1 (de) | 2005-05-18 | 2019-08-14 | Ablynx N.V. | Verbesserte nanokörper-tm gegen tumornekrosefaktor alpha |
TR201815552T4 (tr) * | 2005-05-20 | 2018-11-21 | Ablynx Nv | Agregasyon ile ilgili hastalıkların tedavisine yönelik iyileştirilmiş nanoantikorlar (TM). |
US20100323905A1 (en) * | 2005-09-23 | 2010-12-23 | Academisch Ziekenhuis Leiden | Vhh for the Diagnosis, Prevention and Treatment of Diseases Associated with Protein Aggregates |
GB0521958D0 (en) * | 2005-10-27 | 2005-12-07 | Ares Trading Sa | vWFA, collagen and kunitz domain containing protein |
TW200736277A (en) | 2005-11-14 | 2007-10-01 | Amgen Inc | RANKL antibody-PTH/PTHrP chimeric molecules |
WO2007059332A2 (en) | 2005-11-17 | 2007-05-24 | Biogen Idec Ma Inc. | Platelet aggregation assays |
JP2009529339A (ja) * | 2006-03-13 | 2009-08-20 | アブリンクス エン.ヴェー. | Il−6を標的とするアミノ酸配列およびそれを含みil−6介在シグナル伝達に関連する疾患および疾病を治療するポリペプチド |
US20100226920A1 (en) * | 2006-03-27 | 2010-09-09 | Ablynx N.V. | Medical delivery device for therapeutic proteins based on single domain antibodies |
AU2007237501A1 (en) * | 2006-04-14 | 2007-10-25 | Ablynx N.V. | DP-78-like nanobodies |
US20080015145A1 (en) * | 2006-07-11 | 2008-01-17 | Maria Gyongyossy-Issa | Mimotope receptors and inhibitors for platelet-platelet and platelet-endothelium interactions |
EP2698166B1 (de) | 2006-10-10 | 2015-09-30 | Regenesance B.V. | Komplementhemmung für verbesserte Nervenregeneration |
JP2010505435A (ja) * | 2006-10-11 | 2010-02-25 | アブリンクス エン.ヴェー. | 本質的にpHに非依存的に血清タンパク質に結合するアミノ酸配列、それを含む化合物、およびその使用 |
WO2008049881A2 (en) * | 2006-10-25 | 2008-05-02 | Umc Utrecht Holding Bv | Polypeptides and pharmaceutical compositions comprising the same for the prevention and treatment of complications associated with infectious diseases |
JP2010507624A (ja) * | 2006-10-27 | 2010-03-11 | アブリンクス エン.ヴェー. | ポリペプチド及びタンパク質の鼻内送達 |
GB0621513D0 (en) | 2006-10-30 | 2006-12-06 | Domantis Ltd | Novel polypeptides and uses thereof |
AU2007336242B2 (en) | 2006-12-19 | 2012-08-30 | Ablynx N.V. | Amino acid sequences directed against GPCRs and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders |
EP2102244A2 (de) | 2006-12-19 | 2009-09-23 | Ablynx N.V. | Gegen metalloproteinase aus der adam-familie gerichtete aminosäuresequenzen und diese enthaltende polypeptide zur behandlung von mit adam in zusammenhang stehenden krankheiten und störungen |
US9023352B2 (en) | 2007-02-20 | 2015-05-05 | Tufts University | Methods, compositions and kits for treating a subject using a recombinant heteromultimeric neutralizing binding protein |
PL2308514T3 (pl) | 2007-03-23 | 2013-11-29 | To Bbb Holding B V | Koniugaty do ukierunkowanego dostarczania leku poprzez barierę krew-mózg |
EP2129473B1 (de) | 2007-03-28 | 2019-07-03 | Medtronic ATS Medical, Inc. | Verfahren zur hemmung der interaktion von plättchen mit biomaterial-oberflächen |
CA2964910C (en) * | 2007-04-27 | 2018-01-09 | Pfenex Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
US9580719B2 (en) * | 2007-04-27 | 2017-02-28 | Pfenex, Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
CA2691940C (en) | 2007-07-03 | 2018-03-06 | Joost Alexander Kolkman | Methods for providing improved immunoglobulin sequences |
JP5592792B2 (ja) * | 2007-09-26 | 2014-09-17 | ユセベ ファルマ ソシエテ アノニム | 二重特異性抗体の融合体 |
EP2215123A1 (de) | 2007-11-27 | 2010-08-11 | Ablynx N.V. | Immunglobulinkonstrukte |
BRPI0819063A2 (pt) | 2007-11-27 | 2020-08-18 | The University Of British Columbia | método para tratamento de artrite, anticorpo, hibridoma, antagonista de 14-3-3, usos de um antagonista de 14-3-3, composições farmacêuticas, método para redução da expressão de mmp no sinóvio de um paciente e usos de uma composição farmacêutica |
AR069989A1 (es) * | 2007-12-28 | 2010-03-03 | Baxter Int | Formulaciones de vwf recombinantes |
US20110091462A1 (en) | 2008-03-05 | 2011-04-21 | Ablynx N.V. | Novel antigen binding dimer-complexes, methods of making and uses thereof |
WO2009115614A2 (en) * | 2008-03-21 | 2009-09-24 | Ablynx Nv | Von willebrand factor specific binders and methods of use therefor |
GB0809069D0 (en) | 2008-05-19 | 2008-06-25 | Univ Leuven Kath | Gene signatures |
EP2260058A2 (de) | 2008-04-07 | 2010-12-15 | Ablynx N.V. | Variable einzeldomänen gegen notch-signalwege |
EP2268668A1 (de) | 2008-04-17 | 2011-01-05 | Ablynx N.V. | An serumproteine bindende peptide und verbindungen, konstrukte und polypeptide damit |
US8444976B2 (en) | 2008-07-02 | 2013-05-21 | Argen-X B.V. | Antigen binding polypeptides |
CN102257009A (zh) * | 2008-10-21 | 2011-11-23 | 杜门蒂斯有限公司 | 具有针对dc-sign的结合特异性的配体 |
US9265834B2 (en) | 2009-03-05 | 2016-02-23 | Ablynx N.V. | Stable formulations of polypeptides and uses thereof |
US10005830B2 (en) | 2009-03-05 | 2018-06-26 | Ablynx N.V. | Antigen binding dimer-complexes, methods of making/avoiding and uses thereof |
BRPI1013877A2 (pt) | 2009-04-10 | 2017-08-15 | Ablynx Nv | Sequências de aminoácidos melhoradas contra il-6r e polipeptídeos que compreendem os mesmos para o tratamento de doenças e distúrbios relacionados com il-6r |
CA2758964A1 (en) * | 2009-04-16 | 2010-10-21 | Abbott Biotherapeutics Corp. | Anti-tnf-.alpha. antibodies and their uses |
EP2424889B1 (de) | 2009-04-30 | 2015-08-12 | Ablynx N.V. | Verfahren zur herstellung von domänenantikörpern |
SI2438087T1 (sl) | 2009-06-05 | 2017-10-30 | Ablynx N.V. | Trivalnentni konstrukti nanoteles proti humanemu respiratornemu sincicijskemu virusu (HRSV) za preventivo in/ali zdravljenje okužb dihalnih poti |
HUE051430T2 (hu) | 2009-07-10 | 2021-03-01 | Ablynx Nv | Eljárás variábilis domének elõállítására |
CA2768330A1 (en) | 2009-07-28 | 2011-02-03 | F. Hoffmann-La Roche Ag | Non-invasive in vivo optical imaging method |
US9884117B2 (en) | 2009-09-03 | 2018-02-06 | Ablynx N.V. | Stable formulations of polypeptides and uses thereof |
US20110172398A1 (en) * | 2009-10-02 | 2011-07-14 | Boehringer Ingelheim International Gmbh | Bispecific binding molecules for anti-angiogenesis therapy |
WO2011051327A2 (en) * | 2009-10-30 | 2011-05-05 | Novartis Ag | Small antibody-like single chain proteins |
WO2011064382A1 (en) | 2009-11-30 | 2011-06-03 | Ablynx N.V. | Improved amino acid sequences directed against human respiratory syncytial virus (hrsv) and polypeptides comprising the same for the prevention and/or treatment of respiratory tract infections |
EP2506874A1 (de) | 2009-12-01 | 2012-10-10 | Ablynx N.V. | Von-willebrand-faktor-spezifische bindemittel und ihre verwendung |
WO2011083140A1 (en) | 2010-01-08 | 2011-07-14 | Ablynx Nv | Immunoglobulin single variable domain directed against human cxcr4 |
WO2011095545A1 (en) | 2010-02-05 | 2011-08-11 | Ablynx Nv | Peptides capable of binding to serum albumin and compounds, constructs and polypeptides comprising the same |
DK2533761T3 (da) | 2010-02-11 | 2019-06-24 | Ablynx Nv | Fremgangsmåder og sammensætninger til fremstilling af aerosoler |
WO2011098518A2 (en) | 2010-02-11 | 2011-08-18 | Ablynx Nv | Delivery of immunoglobulin variable domains and constructs thereof |
AR080446A1 (es) * | 2010-03-03 | 2012-04-11 | Boehringer Ingelheim Int | Polipeptidos de union a a-beta (beta amiloide) |
US20130041349A1 (en) | 2010-03-26 | 2013-02-14 | Westfaelische Wilhelms-Universitaet Muenster | Substitute therapy for glucocorticoids |
US9556273B2 (en) | 2010-03-29 | 2017-01-31 | Vib Vzw | Anti-macrophage mannose receptor single variable domains for targeting and in vivo imaging of tumor-associated macrophages |
WO2013174537A1 (en) | 2012-05-24 | 2013-11-28 | Vib Vzw | Anti-macrophage mannose receptor single variable domains for targeting and in vivo imaging of tumor-associated macrophages |
US9101674B2 (en) | 2010-03-29 | 2015-08-11 | Vib Vzw | Targeting and in vivo imaging of tumor-associated macrophages |
MX2012012736A (es) | 2010-05-07 | 2013-02-26 | Hoffmann La Roche | Metodo de diagnostico para la deteccion de celulas ex vivo. |
RU2012149227A (ru) * | 2010-05-20 | 2014-06-27 | Аблинкс Нв | Биологические материалы, относящиеся к her3 |
WO2011161263A1 (en) | 2010-06-25 | 2011-12-29 | Ablynx Nv | Pharmaceutical compositions for cutaneous administration |
US20120244141A1 (en) | 2010-09-28 | 2012-09-27 | Boehringer Ingelheim International Gmbh | Stratification of cancer patients for susceptibility to therapy with PTK2 inhibitors |
US11644471B2 (en) | 2010-09-30 | 2023-05-09 | Ablynx N.V. | Techniques for predicting, detecting and reducing aspecific protein interference in assays involving immunoglobulin single variable domains |
EP2621953B1 (de) | 2010-09-30 | 2017-04-05 | Ablynx N.V. | Biologische stoffe im zusammenhang mit c-met |
US20130261288A1 (en) | 2010-10-29 | 2013-10-03 | Ablynx N.V. | Method for the production of immunoglobulin single variable domains |
EP2658869B1 (de) * | 2010-12-30 | 2019-06-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antigenbindende formate zur verwendung in therapeutischen behandlungen oder diagnosetests |
JP6385060B2 (ja) | 2011-03-07 | 2018-09-05 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 治療的に活性な抗体のインビボにおける選択 |
US20140099264A1 (en) | 2011-03-07 | 2014-04-10 | F. Hoffman-La Roche Ag | Means and methods for in vivo testing of therapeutic antibodies |
WO2012130872A1 (en) | 2011-03-28 | 2012-10-04 | Ablynx Nv | Method for producing solid formulations comprising immunoglobulin single variable domains |
US9527925B2 (en) | 2011-04-01 | 2016-12-27 | Boehringer Ingelheim International Gmbh | Bispecific binding molecules binding to VEGF and ANG2 |
UA117218C2 (uk) | 2011-05-05 | 2018-07-10 | Мерк Патент Гмбх | Поліпептид, спрямований проти il-17a, il-17f та/або il17-a/f |
WO2012152823A1 (en) | 2011-05-09 | 2012-11-15 | Ablynx Nv | Method for the production of immunoglobulin single variable domains |
AU2012264809B2 (en) | 2011-05-27 | 2017-05-04 | Ablynx Nv | Inhibition of bone resorption with RANKL binding peptides |
US9580480B2 (en) | 2011-05-31 | 2017-02-28 | Massachusetts Institute Of Technology | Cell-directed synthesis of multifunctional nanopatterns and nanomaterials |
EP2944654A1 (de) | 2011-06-23 | 2015-11-18 | Ablynx N.V. | Verfahren für vorhersage, nachweis und verringerung von aspezifischer proteininterferenz bei tests mit variablen immunglobulin-einzeldomänen |
EP2723772A1 (de) | 2011-06-23 | 2014-04-30 | Ablynx N.V. | Gegen ige gerichtete variable immunglobulin-einzeldomänen |
EP4350345A3 (de) | 2011-06-23 | 2024-07-24 | Ablynx N.V. | Verfahren zur vorhersage, erkennung und reduzierung von aspezifischer proteininterferenz in tests mit variablen immunglobulin-einzeldomänen |
PT2723769T (pt) | 2011-06-23 | 2017-04-04 | Ablynx Nv | Técnicas para prever, detetar e reduzir a interferência de proteínas não específicas em ensaios que envolvem domínios variáveis únicos de immunoglobulina |
AU2012271974B2 (en) | 2011-06-23 | 2017-01-12 | Ablynx Nv | Serum albumin binding proteins |
AU2012311443B2 (en) | 2011-09-23 | 2016-12-01 | Ablynx Nv | Prolonged inhibition of interleukin-6 mediated signaling |
CN113234142B (zh) * | 2012-08-22 | 2024-03-05 | 财团法人牧岩生命工学研究所 | 超稳定免疫球蛋白可变结构域的筛选和改造方法及其应用 |
WO2014087010A1 (en) | 2012-12-07 | 2014-06-12 | Ablynx N.V. | IMPROVED POLYPEPTIDES DIRECTED AGAINST IgE |
CN105102478A (zh) | 2013-01-30 | 2015-11-25 | 弗拉芒区生物技术研究所 | 用于筛选和药物发现目的的新型嵌合多肽 |
EP3590578A1 (de) | 2013-02-05 | 2020-01-08 | VIB vzw | Muskarinische acetylcholinrezeptorbinder und verwendungen davon |
JP6499090B2 (ja) | 2013-03-15 | 2019-04-10 | ブイアイビー ブイゼットダブリュVib Vzw | 心血管疾患において使用するための抗マクロファージマンノース受容体単一可変ドメイン |
AU2014261434B2 (en) | 2013-04-29 | 2020-04-16 | Biotalys NV | Agrochemical compositions comprising antibodies binding to sphingolipids |
NL1040254C2 (en) | 2013-05-17 | 2014-11-24 | Ablynx Nv | Stable formulations of immunoglobulin single variable domains and uses thereof. |
EP2883883A1 (de) | 2013-12-16 | 2015-06-17 | Cardio3 Biosciences S.A. | Therapeutische Ziele und Mittel zur Behandlung von ischämiebedingten Reperfusionsschäden |
MX2016013332A (es) * | 2014-04-10 | 2017-05-01 | Stichting Vumc | Receptores de células t vy9vd2 humanas que se unen a inmunoglobulinas. |
WO2015173325A2 (en) | 2014-05-16 | 2015-11-19 | Ablynx Nv | Improved immunoglobulin variable domains |
DK3143403T3 (da) | 2014-05-16 | 2022-01-17 | Ablynx Nv | Fremgangsmåder til påvisning og/eller måling af anti-lægemiddelantistoffer, især behandlingsinducerede anti-lægemiddelantistoffer |
NL2013007B1 (en) | 2014-06-16 | 2016-07-05 | Ablynx Nv | Methods of treating TTP with immunoglobulin single variable domains and uses thereof. |
NL2013661B1 (en) | 2014-10-21 | 2016-10-05 | Ablynx Nv | KV1.3 Binding immunoglobulins. |
WO2016012363A1 (en) | 2014-07-22 | 2016-01-28 | Vib Vzw | Methods to select for agents that stabilize protein complexes |
US20180036442A1 (en) | 2014-07-29 | 2018-02-08 | Vrije Universiteit Brussel | Radio-labelled antibody fragments for use in the prognosis, diagnosis of cancer as well as for the prediction of cancer therapy response |
CA2954359C (en) | 2014-07-29 | 2018-09-25 | Vrije Universiteit Brussel | Radio-labelled antibody fragments for use in the prevention and/or treatment of cancer |
US10858666B2 (en) | 2014-11-05 | 2020-12-08 | Biotalys | Transgenic plants expressing a variable domain of a heavy chain antibody (VHH) that binds to a sphingolipid of a fungus |
WO2016094602A1 (en) * | 2014-12-10 | 2016-06-16 | Tufts University | Vhh based binding antibodies for anthrax and botulinum toxins and methods of making and using therefor |
CN107406497A (zh) | 2014-12-19 | 2017-11-28 | 埃博灵克斯股份有限公司 | 半胱氨酸连接的纳米抗体二聚体 |
AU2016212777B2 (en) | 2015-01-27 | 2021-11-18 | LAVA Therapeutics N.V. | Single domain antibodies targeting CD1d |
CN107847559B (zh) | 2015-05-13 | 2022-07-01 | 埃博灵克斯股份有限公司 | 基于cd3反应性的t细胞募集多肽 |
ES2754427T3 (es) | 2015-05-13 | 2020-04-17 | Ablynx Nv | Polipéptidos de reclutamiento de células T basados en la reactividad de TCR alfa/beta |
JP6917357B2 (ja) | 2015-07-17 | 2021-08-11 | フレイエ ユニヴェルシテイト ブリュッセルVrije Universiteit Brussel | 癌治療に使用する放射標識抗体断片 |
NO2768984T3 (de) | 2015-11-12 | 2018-06-09 | ||
EP3974449A1 (de) | 2015-11-13 | 2022-03-30 | Ablynx NV | Verbesserte serumalbuminbindende variable immunglobulindomänen |
CN114605530A (zh) | 2015-11-18 | 2022-06-10 | 埃博灵克斯股份有限公司 | 改进的血清白蛋白结合剂 |
MY189590A (en) | 2015-11-18 | 2022-02-18 | Merck Sharp & Dohme | Ctla4 binders |
PE20181956A1 (es) | 2015-11-27 | 2018-12-17 | Ablynx Nv | Polipeptidos que inhiben cd40l |
WO2017129630A1 (en) * | 2016-01-26 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-vwf d'd3 single-domain antibodies and polypeptides comprising thereof |
WO2017182603A1 (en) | 2016-04-22 | 2017-10-26 | Université Libre de Bruxelles | A new biomarker expressed in pancreatic beta cells useful in imaging or targeting beta cells |
WO2017182605A1 (en) | 2016-04-22 | 2017-10-26 | Université Libre de Bruxelles | A new biomarker expressed in pancreatic beta cells useful in imaging or targeting beta cells |
CA3022697A1 (en) | 2016-05-02 | 2017-11-09 | Ablynx Nv | Treatment of rsv infection |
MX2018016413A (es) | 2016-06-23 | 2019-05-09 | Ablynx Nv | Ensayos farmacocineticos mejorados para dominios variables unicos de inmunoglobulina. |
WO2018007442A1 (en) | 2016-07-06 | 2018-01-11 | Ablynx N.V. | Treatment of il-6r related diseases |
WO2018029182A1 (en) | 2016-08-08 | 2018-02-15 | Ablynx N.V. | Il-6r single variable domain antibodies for treatment of il-6r related diseases |
RU2762835C2 (ru) | 2016-08-24 | 2021-12-23 | Тенеобио, Инк. | Трансгенные животные, отличные от человека, продуцирующие модифицированные антитела, содержащие только тяжелые цепи |
US11098113B2 (en) | 2016-09-15 | 2021-08-24 | Vib Vzw | Immunoglobulin single variable domains directed against macrophage migration inhibitory factor |
CA3043515A1 (en) | 2016-11-16 | 2018-05-24 | Ablynx Nv | T cell recruiting polypeptides capable of binding cd123 and tcr alpha/beta |
WO2018099968A1 (en) | 2016-11-29 | 2018-06-07 | Ablynx N.V. | Treatment of infection by respiratory syncytial virus (rsv) |
KR20230061582A (ko) | 2016-12-07 | 2023-05-08 | 아블린쓰 엔.브이. | 개선된 혈청 알부민 결합성 면역글로불린 단일 가변 도메인 |
FI3571225T3 (fi) | 2017-01-17 | 2024-10-31 | Ablynx Nv | Parannettuja seerumialbumiinin sitojia |
BR112019014600A2 (pt) | 2017-01-17 | 2020-02-18 | Ablynx N.V. | Ligantes de albumina sérica melhorados |
JP7186401B2 (ja) | 2017-02-28 | 2022-12-09 | フエー・イー・ベー・フエー・ゼツト・ウエー | タンパク質の経口送達のための手段及び方法 |
WO2018178307A1 (en) | 2017-03-31 | 2018-10-04 | Ablynx N.V. | Improved immunogenicity assays |
US20200033347A1 (en) | 2017-04-18 | 2020-01-30 | Universite Libre De Bruxelles | Biomarkers And Targets For Proliferative Diseases |
WO2018206734A1 (en) | 2017-05-11 | 2018-11-15 | Vib Vzw | Glycosylation of variable immunoglobulin domains |
TWI802576B (zh) | 2017-06-02 | 2023-05-21 | 德商馬克專利公司 | 與adamts結合之免疫球蛋白 |
EP3630818A1 (de) | 2017-06-02 | 2020-04-08 | Ablynx NV | Aggrecanbindende immunglobuline |
EP3630817A1 (de) | 2017-06-02 | 2020-04-08 | Merck Patent GmbH | Polypeptide zur bindung von adamts5, mmp13 und aggrecan |
KR20200015601A (ko) | 2017-06-02 | 2020-02-12 | 메르크 파텐트 게엠베하 | Mmp13 결합성 면역글로불린 |
CN107356572A (zh) * | 2017-06-28 | 2017-11-17 | 成都理工大学 | 利用核酸作为载体的荧光共振能量转移方法 |
CN108570095B (zh) * | 2017-07-10 | 2019-12-31 | 昆明医科大学第一附属医院 | 一种促血小板聚集的多肽site2 |
BR112019028269A2 (pt) | 2017-07-11 | 2020-07-14 | Alexion Pharmaceuticals, Inc. | polipeptídeos que se ligam ao componente c5 do complemento ou à albumina sérica e suas proteínas de fusão |
CA3070253A1 (en) | 2017-07-19 | 2019-01-24 | Vib Vzw | Serum albumin binding agents |
EP3704160A1 (de) | 2017-10-31 | 2020-09-09 | VIB vzw | Neuartige antigenbindende chimäre proteine und verfahren und verwendungen davon |
CN111670202A (zh) | 2018-02-06 | 2020-09-15 | 埃博灵克斯股份有限公司 | 以免疫球蛋白单可变结构域治疗ttp初次发作的方法 |
WO2019155041A1 (en) | 2018-02-12 | 2019-08-15 | Vib Vzw | Gβγ COMPLEX ANTIBODIES AND USES THEREOF |
JP7266611B2 (ja) | 2018-02-26 | 2023-04-28 | アブリンクス・エヌ・フェー | ペプチドリンカーをコードする改良されたヌクレオチド配列 |
US11858960B2 (en) | 2018-03-01 | 2024-01-02 | Vrije Universiteit Brussel | Human PD-L1-binding immunoglobulins |
EP3768701B1 (de) | 2018-03-23 | 2023-08-02 | Université Libre de Bruxelles | Agonistenmoleküle des wnt-signalwegs |
JP2021519093A (ja) * | 2018-03-27 | 2021-08-10 | ユーエムシー ユトレヒト ホールディング ビー.ブイ. | 微小血管血栓症の処置のための標的化血栓溶解 |
CA3113409A1 (en) | 2018-09-19 | 2020-03-26 | Lava Therapeutics B.V. | Dual acting cd1d immunoglobulin |
EP3636657A1 (de) | 2018-10-08 | 2020-04-15 | Ablynx N.V. | Chromatographiefreies antikörperreinigungsverfahren |
WO2020099922A1 (en) * | 2018-11-13 | 2020-05-22 | Novobind Livestock Therapeutics, Inc. | Antibodies against disease causing agents of canines and felines and uses thereof |
CN114041057A (zh) | 2019-04-29 | 2022-02-11 | 康福治疗有限公司 | 嵌合蛋白和筛选与gpcr结合的化合物和配体的方法 |
US20220289837A1 (en) | 2019-04-30 | 2022-09-15 | Vib Vzw | Cystic Fibrosis Transmembrane Conductance Regulator Stabilizing Agents |
US20220220197A1 (en) | 2019-05-28 | 2022-07-14 | Vib Vzw | Cancer Treatment by Targeting Plexins in the Immune Compartment |
WO2020239934A1 (en) | 2019-05-28 | 2020-12-03 | Vib Vzw | Cd8+ t-cells lacking plexins and their application in cancer treatment |
CN110624105B (zh) * | 2019-09-24 | 2021-06-11 | 苏州大学 | 血管性血友病因子的结构敏感多肽抗原的序列 |
WO2021062361A2 (en) * | 2019-09-27 | 2021-04-01 | Beijing Starmab Biomed Technology Ltd | Monospecific and multi-specific antibodies |
WO2021078786A1 (en) | 2019-10-21 | 2021-04-29 | Vib Vzw | Nanodisc-specific antigen-binding chimeric proteins |
CA3160506A1 (en) | 2019-11-11 | 2021-05-20 | Ibi-Ag Innovative Bio Insecticides Ltd. | Insect control nanobodies and uses thereof |
CA3158991A1 (en) | 2019-11-27 | 2021-06-03 | Vib Vzw | Positive allosteric modulators of the calcium-sensing receptor |
GB201918279D0 (en) | 2019-12-12 | 2020-01-29 | Vib Vzw | Glycosylated single chain immunoglobulin domains |
CA3165429A1 (en) | 2019-12-20 | 2021-06-24 | Vib Vzw | Nanobody exchange chromatography |
GB201919294D0 (en) * | 2019-12-24 | 2020-02-05 | Eco Animal Health Ltd | Antibodies or binding proteins |
WO2021140205A1 (en) | 2020-01-10 | 2021-07-15 | Confo Therapeutics N.V. | Methods for generating antibodies and antibody fragments and libraries comprising same |
WO2021156490A2 (en) | 2020-02-06 | 2021-08-12 | Vib Vzw | Corona virus binders |
IL295892A (en) | 2020-02-25 | 2022-10-01 | Vib Vzw | Leucine-rich repeat kinase 2 allosteric modulators |
EP4438733A2 (de) | 2020-03-31 | 2024-10-02 | Biotalys NV | Antifungale polypeptide |
CN113527488A (zh) | 2020-04-22 | 2021-10-22 | 迈威(上海)生物科技股份有限公司 | 一种靶向人程序性死亡配体1(pd-l1)的单可变域抗体及其衍生物 |
WO2021229104A1 (en) | 2020-05-15 | 2021-11-18 | Université de Liège | Anti-cd38 single-domain antibodies in disease monitoring and treatment |
WO2021258160A1 (en) * | 2020-06-26 | 2021-12-30 | Monash University | Anti-vwf antibodies and uses thereof |
US12077576B2 (en) | 2020-07-02 | 2024-09-03 | Trustees Of Tufts College | VHH polypeptides that bind to Clostridium difficile toxin b and methods of use thereof |
WO2022003156A1 (en) | 2020-07-02 | 2022-01-06 | Oncurious Nv | Ccr8 non-blocking binders |
WO2022023583A1 (en) | 2020-07-31 | 2022-02-03 | Biotalys NV | Expression host |
WO2022063947A1 (en) | 2020-09-24 | 2022-03-31 | Vib Vzw | Combination of p2y6 inhibitors and immune checkpoint inhibitors |
WO2022063957A1 (en) | 2020-09-24 | 2022-03-31 | Vib Vzw | Biomarker for anti-tumor therapy |
AU2021350156A1 (en) | 2020-09-25 | 2023-06-08 | Ablynx Nv | Polypeptides comprising immunoglobulin single variable domains targeting il-13 and ox40l |
JP2024508207A (ja) | 2020-12-02 | 2024-02-26 | ブイアイビー ブイゼットダブリュ | がんに対する組み合わせ治療におけるltbrアゴニスト |
WO2022117569A1 (en) | 2020-12-02 | 2022-06-09 | Oncurious Nv | A ccr8 antagonist antibody in combination with a lymphotoxin beta receptor agonist antibody in therapy against cancer |
JP2023553694A (ja) | 2020-12-18 | 2023-12-25 | アブリンクス エン.ヴェー. | IL-6およびTNF-αを標的化する免疫グロブリン単一可変ドメインを含むポリペプチド |
GB202020502D0 (en) | 2020-12-23 | 2021-02-03 | Vib Vzw | Antibody composistion for treatment of corona virus infection |
CA3206304A1 (en) | 2020-12-24 | 2022-06-30 | Vib Vzw | Human ccr8 binders |
WO2022136649A1 (en) | 2020-12-24 | 2022-06-30 | Oncurious Nv | Non-blocking human ccr8 binders |
WO2022136650A1 (en) | 2020-12-24 | 2022-06-30 | Oncurious Nv | Murine cross-reactive human ccr8 binders |
AU2022216460A1 (en) | 2021-02-05 | 2023-09-21 | Universiteit Gent | Sarbecovirus binders |
CN117794566A (zh) | 2021-02-05 | 2024-03-29 | Vib研究所 | 沙贝病毒结合剂 |
CA3211257A1 (en) | 2021-02-17 | 2022-08-25 | Vib Vzw | Inhibition of slc4a4 in the treatment of cancer |
EP4294516A1 (de) | 2021-02-19 | 2023-12-27 | Vib Vzw | Kationunabhängige mannose-6-phosphatrezeptorbindemittel |
WO2022199804A1 (en) | 2021-03-24 | 2022-09-29 | Vib Vzw | Nek6 inhibition to treat als and ftd |
US20240261446A1 (en) | 2021-05-17 | 2024-08-08 | Université de Liège | Anti-cd38 single domain antibodies in disease monitoring and treatment |
WO2022268993A1 (en) | 2021-06-23 | 2022-12-29 | Vib Vzw | Means and methods for selection of specific binders |
JP2024524378A (ja) | 2021-06-29 | 2024-07-05 | 山▲東▼先声生物制▲薬▼有限公司 | Cd16抗体及びその応用 |
US20240343803A1 (en) | 2021-07-30 | 2024-10-17 | Shandong Simcere Biopharmaceutical Co., Ltd. | Anti-Pvrig/Anti-Tigit Bispecific Antibodies And Applications Thereof |
WO2023016828A2 (en) | 2021-07-30 | 2023-02-16 | Vib Vzw | Cation-independent mannose-6-phosphate receptor binders for targeted protein degradation |
WO2023057601A1 (en) | 2021-10-06 | 2023-04-13 | Biotalys NV | Anti-fungal polypeptides |
WO2023098846A1 (zh) | 2021-12-03 | 2023-06-08 | 江苏先声药业有限公司 | 抗bcma纳米抗体及其应用 |
WO2023108095A1 (en) * | 2021-12-10 | 2023-06-15 | Emory University | Polypeptides that bind to von willebrand factor (vwf) al domain or an autoinhibitory module, variants, and uses thereof |
AU2022409733A1 (en) | 2021-12-17 | 2024-08-01 | Ablynx Nv | POLYPEPTIDES COMPRISING IMMUNOGLOBULIN SINGLE VARIABLE DOMAINS TARGETING TCRαβ, CD33 AND CD123 |
WO2023125888A1 (zh) | 2021-12-31 | 2023-07-06 | 山东先声生物制药有限公司 | 一种gprc5d抗体及其应用 |
WO2023135198A1 (en) | 2022-01-12 | 2023-07-20 | Vib Vzw | Human ntcp binders for therapeutic use and liver-specific targeted delivery |
WO2023148291A1 (en) | 2022-02-02 | 2023-08-10 | Biotalys NV | Methods for genome editing |
WO2023148397A1 (en) | 2022-02-07 | 2023-08-10 | Vib Vzw | Engineered stabilizing aglycosylated fc-regions |
WO2023198848A1 (en) | 2022-04-13 | 2023-10-19 | Vib Vzw | An ltbr agonist in combination therapy against cancer |
WO2023213751A1 (en) | 2022-05-02 | 2023-11-09 | Umc Utrecht Holding B.V | Single domain antibodies for the detection of plasmin-cleaved vwf |
WO2023222825A1 (en) | 2022-05-18 | 2023-11-23 | Vib Vzw | Sarbecovirus spike s2 subunit binders |
WO2024008755A1 (en) | 2022-07-04 | 2024-01-11 | Vib Vzw | Blood-cerebrospinal fluid barrier crossing antibodies |
US20240132624A1 (en) | 2022-07-27 | 2024-04-25 | Ablynx N.V. | Polypeptides binding to a specific epitope of the neonatal fc receptor |
WO2024068744A1 (en) | 2022-09-27 | 2024-04-04 | Vib Vzw | Antivirals against human parainfluenza virus |
WO2024105091A1 (en) | 2022-11-15 | 2024-05-23 | Imec Vzw | Method and system for droplet manipulation |
WO2024126685A1 (en) * | 2022-12-15 | 2024-06-20 | Institut National de la Santé et de la Recherche Médicale | Single-domain antibody targeting von wilebrand factor a3-domain |
WO2024126805A1 (en) | 2022-12-15 | 2024-06-20 | Aarhus Universitet | Synthetic activation of multimeric transmembrane receptors |
WO2024133937A1 (en) | 2022-12-22 | 2024-06-27 | Biotalys NV | Methods for genome editing |
WO2024145551A1 (en) | 2022-12-29 | 2024-07-04 | Biotalys NV | Agrochemical compositions |
WO2024141641A2 (en) | 2022-12-30 | 2024-07-04 | Biotalys NV | Secretion signals |
WO2024141645A1 (en) | 2022-12-30 | 2024-07-04 | Biotalys N.V. | Agglomerate |
WO2024141638A1 (en) | 2022-12-30 | 2024-07-04 | Biotalys NV | Self-emulsifiable concentrate |
WO2024156881A1 (en) | 2023-01-27 | 2024-08-02 | Vib Vzw | CD8b-BINDING POLYPEPTIDES |
WO2024156888A1 (en) | 2023-01-27 | 2024-08-02 | Vib Vzw | Cd163-binding conjugates |
WO2024165710A1 (en) | 2023-02-09 | 2024-08-15 | Seni-Preps B.V. | Immunoglobulin single variable domains that inhibit urease and use thereof |
WO2024175787A1 (en) | 2023-02-24 | 2024-08-29 | Vrije Universiteit Brussel | Anti-inflammatory pannexin 1 channel inhibitors |
WO2024189171A1 (en) | 2023-03-14 | 2024-09-19 | Aarhus Universitet | Genetically altered nfr5 receptor kinases |
WO2024208816A1 (en) | 2023-04-03 | 2024-10-10 | Vib Vzw | Blood-brain barrier crossing antibodies |
CN117229423B (zh) * | 2023-11-10 | 2024-02-06 | 北京科技大学 | 一种用于结合胶原的多肽纳米材料及其制备方法和应用 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4559157A (en) | 1983-04-21 | 1985-12-17 | Creative Products Resource Associates, Ltd. | Cosmetic applicator useful for skin moisturizing |
US4608392A (en) | 1983-08-30 | 1986-08-26 | Societe Anonyme Dite: L'oreal | Method for producing a non greasy protective and emollient film on the skin |
EP0294703A2 (de) | 1987-06-10 | 1988-12-14 | Dana-Farber Cancer Institute, Inc. | Bifunktionelle Antikörperkonstruktionen und Verfahren zur selektiven Tötung von Zellbeständen |
US4820508A (en) | 1987-06-23 | 1989-04-11 | Neutrogena Corporation | Skin protective composition |
US4938949A (en) | 1988-09-12 | 1990-07-03 | University Of New York | Treatment of damaged bone marrow and dosage units therefor |
US4992478A (en) | 1988-04-04 | 1991-02-12 | Warner-Lambert Company | Antiinflammatory skin moisturizing composition and method of preparing same |
WO1994004678A1 (en) | 1992-08-21 | 1994-03-03 | Casterman Cecile | Immunoglobulins devoid of light chains |
US5399346A (en) | 1989-06-14 | 1995-03-21 | The United States Of America As Represented By The Department Of Health And Human Services | Gene therapy |
EP0684814A1 (de) | 1993-02-22 | 1995-12-06 | Alza Corporation | Mittel zur oralen gabe von wirkstoffen |
EP0707473A1 (de) | 1993-06-03 | 1996-04-24 | Biotechnology and Biological Sciences Research Council | Orale, pharmazeutische zusammensetzungen das ein protein oder peptide, eine antikoerper und polymerkugeln enthalten |
WO1996034103A1 (en) | 1995-04-25 | 1996-10-31 | Vrije Universiteit Brussel | Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes |
US5629001A (en) | 1991-06-21 | 1997-05-13 | University Of Cincinnati | Oral administration of therapeutic proteins for treatment of infectious disease |
WO1997049805A2 (en) | 1996-06-27 | 1997-12-31 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Recognition molecules interacting specifically with the active site or cleft of a target molecule |
EP0882453A2 (de) | 1997-06-05 | 1998-12-09 | Eli Lilly And Company | Methoden zur Behandlung thrombothischer Störungen |
WO2000002045A2 (en) | 1998-07-06 | 2000-01-13 | Euroscreen S.A. | Bioluminescent assay for agonists or antagonists of a calcium-coupled receptor |
WO2000010601A1 (en) | 1998-08-19 | 2000-03-02 | Ajinomoto Co., Inc. | Antithrombotic agent and humanized anti-von willebrand factor monoclonal antibody |
WO2001010911A2 (en) | 1999-08-10 | 2001-02-15 | K.U.Leuven Research & Development | Cell lines, ligands and antibody fragments for use in pharmaceutical compositions for preventing and treating haemostasis disorders |
US6251393B1 (en) | 1998-10-23 | 2001-06-26 | The Brigham And Women's Hospital, Inc. | Conformation-specific anti-von Willebrand Factor antibodies |
US6280731B1 (en) | 1994-11-30 | 2001-08-28 | Ajinomoto Co., Inc. | Antithrombotic agent and anti-von willebrand factor monoclonal antibody |
WO2002015919A2 (en) | 2000-08-25 | 2002-02-28 | Merck Patent Gmbh | Saratin for inhibiting platelet adhesion to collagen |
WO2002051351A2 (en) | 2000-12-22 | 2002-07-04 | K.U.Leuven Research And Development | Antithrombotic von willebrand factor (vwf) collagen bridging blockers |
WO2002057445A1 (en) * | 2000-05-26 | 2002-07-25 | National Research Council Of Canada | Single-domain brain-targeting antibody fragments derived from llama antibodies |
WO2003035694A2 (en) | 2001-10-24 | 2003-05-01 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5238919A (en) * | 1986-05-30 | 1993-08-24 | Scipps Clinic And Research Foundation | Peptides that inhibit von Willebrand Factor binding to the platelet SPIB receptor |
US5200510A (en) | 1987-06-16 | 1993-04-06 | Zymogenetics, Inc. | Method for purifying factor viii:c, von willebrand factor and complexes thereof |
EP0300191A1 (de) | 1987-07-17 | 1989-01-25 | Siemens Aktiengesellschaft | Einrichtung zum Speichern, Vereinzeln und Zuführen von als Schüttgut aufnehmbaren Teilen |
US5770198A (en) * | 1988-05-18 | 1998-06-23 | The Research Foundation Of The State Of New York | Platelet-specific chimeric 7E3 immunoglobulin |
US5051264A (en) * | 1988-11-02 | 1991-09-24 | Collaborative Research, Inc. | Potentiation of the thrombolytic effect of prourokinase type plasminogen activators by streptokinase |
AU634186B2 (en) | 1988-11-11 | 1993-02-18 | Medical Research Council | Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors |
GB8905400D0 (en) | 1989-03-09 | 1989-04-19 | Jonker Margreet | Medicaments |
US5032666A (en) * | 1989-06-19 | 1991-07-16 | Becton, Dickinson And Company | Amine rich fluorinated polyurethaneureas and their use in a method to immobilize an antithrombogenic agent on a device surface |
WO1991002078A1 (en) * | 1989-08-07 | 1991-02-21 | Peptide Technology Ltd | Tumour necrosis factor binding ligands |
CA2097428A1 (en) * | 1991-10-01 | 1993-04-02 | Fujio Inoue | Antithrombotic resin, antithrombotic tube, antithrombotic film and antithrombotic coat |
EP1136556B1 (de) | 1991-11-25 | 2005-06-08 | Enzon, Inc. | Verfahren zur Herstellung von multivalenten antigenbindenden Proteinen |
EP0628078B1 (de) | 1992-12-11 | 1999-12-08 | The Dow Chemical Company | Multivalente einkettige Antikörper |
DK0698097T3 (da) | 1993-04-29 | 2001-10-08 | Unilever Nv | Produktion af antistoffer eller (funktionaliserede) fragmenter deraf afledt af Camelidae-immunoglobuliner med tung kæde |
DK104093D0 (da) * | 1993-09-17 | 1993-09-17 | Osteometer A S | Fremgangsmaade til bestemmelse af collagen-fragmenter i legemsvaesker, test-kit og midler til udoevelse af fremgangsmaaden og anvendelse af fremgangsmaaden til diagnosticering af lidelser associeret til collagen-metabolismen |
US5670132A (en) * | 1994-09-20 | 1997-09-23 | Immunomedics, Inc. | Modified radioantibody fragments for reduced renal uptake |
US6544513B2 (en) * | 1994-09-26 | 2003-04-08 | The State Of New South Wales C/- Nsw Department Of Agriculture | Method of controlling moth and other insect pests |
US5877155A (en) * | 1995-03-17 | 1999-03-02 | The Research Foundation Of State University Of New York | Mimotopes and anti-mimotopes of human platelet glycoprotein Ib/IX |
SK284040B6 (sk) * | 1996-02-09 | 2004-08-03 | Abbott Laboratories (Bermuda) Ltd. | Ľudské protilátky k ľudskému TNFalfa, ich použitie, spôsob ich syntézy a farmaceutické prípravky s ich obsahom |
EP0894135B1 (de) | 1996-04-04 | 2004-08-11 | Unilever Plc | Multivalentes und multispezifisches antigenbindungs protein |
AU9262598A (en) | 1997-08-18 | 1999-03-08 | Innogenetics N.V. | Interferon-gamma-binding molecules for treating septic shock, cachexia, immune diseases and skin disorders |
DK1027439T3 (da) | 1997-10-27 | 2010-05-10 | Bac Ip Bv | Multivalente antigenbindende proteiner |
ATE535154T1 (de) * | 1998-03-12 | 2011-12-15 | Vhsquared Ltd | Produkten die inaktivierte hefen oder schimmel enthalten, die auf ihrer aussenoberfläche aktive antikörper haben |
HUP9900956A2 (hu) | 1998-04-09 | 2002-04-29 | Aventis Pharma Deutschland Gmbh. | Egyláncú, több antigéntkötőhely kialakítására képes molekulák, előállításuk és alkalmazásuk |
JP4843138B2 (ja) | 1998-04-15 | 2011-12-21 | ザ・ブリガーム・アンド・ウーメンズ・ホスピタル・インコーポレーテッド | T細胞阻害性受容体組成物およびその使用 |
EP1002861A1 (de) | 1998-10-26 | 2000-05-24 | Unilever Plc | Antigenbindungsproteine mit einer Kopplung, die die strukturelle Beweglichkeit einschränkt |
US6419934B1 (en) * | 1999-02-24 | 2002-07-16 | Edward L. Tobinick | TNF modulators for treating neurological disorders associated with viral infection |
DE60045577D1 (de) | 1999-07-05 | 2011-03-10 | Leuven K U Res & Dev | Von willebrand-faktor-aktivitätsnachweis |
JP2001318093A (ja) * | 2000-05-09 | 2001-11-16 | Keio Gijuku | 血小板GPIbαの機能抑制物質を有効成分とする抗炎症剤 |
EP1343820A4 (de) * | 2000-10-13 | 2005-09-14 | Uab Research Foundation | Humane einzelkettige anti epidermaler wachstumsfaktorrezeptor antikörper |
US6545097B2 (en) * | 2000-12-12 | 2003-04-08 | Scimed Life Systems, Inc. | Drug delivery compositions and medical devices containing block copolymer |
US6632470B2 (en) * | 2001-01-31 | 2003-10-14 | Percardia | Methods for surface modification |
EP2135879A3 (de) | 2002-06-28 | 2010-06-23 | Domantis Limited | Ligand |
US20050136056A1 (en) * | 2002-07-29 | 2005-06-23 | Shunsuke Kageyama | Pharmaceutical composition for the treatment of thrombocytopenia |
WO2004015425A1 (en) | 2002-08-07 | 2004-02-19 | Umc Utrecht Holding B.V. | Modulation of platelet adhesion based on the surface exposed beta-switch loop of platelet glycoprotein ib-alpha |
WO2004041862A2 (en) | 2002-11-08 | 2004-05-21 | Ablynx N.V. | Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor |
AU2003283137B8 (en) | 2002-11-08 | 2010-07-29 | Ablynx N.V. | Camelidae antibodies against immunoglobulin E and use thereof for the treatment of allergic disorders |
EP2390270A1 (de) | 2003-01-10 | 2011-11-30 | Ablynx N.V. | Therapeutische Polypeptide, Homologe davon, Fragmente davon und Verwendung bei modulierender plättchenvermittelter Aggregation |
DE602004017726D1 (de) * | 2003-06-30 | 2008-12-24 | Domantis Ltd | Pegylierte Single-domain-antikörper (dAb) |
PT1687338E (pt) | 2003-11-07 | 2011-01-20 | Ablynx Nv | Anticorpos de domínio único vhh de camelídeos direccionados para o receptor do factor de crescimento epidérmico e suas utilizações |
US7566701B2 (en) * | 2004-09-07 | 2009-07-28 | Archemix Corp. | Aptamers to von Willebrand Factor and their use as thrombotic disease therapeutics |
PT1836500E (pt) * | 2005-01-14 | 2010-09-28 | Ablynx Nv | Métodos e ensaios para distinguir diferentes formas de doenças e perturbações caracterizadas por trombocitopenia e/ou por interacção espontânea entre o factor de von willebrand (vwf) e plaquetas |
TR201815552T4 (tr) | 2005-05-20 | 2018-11-21 | Ablynx Nv | Agregasyon ile ilgili hastalıkların tedavisine yönelik iyileştirilmiş nanoantikorlar (TM). |
WO2008049881A2 (en) | 2006-10-25 | 2008-05-02 | Umc Utrecht Holding Bv | Polypeptides and pharmaceutical compositions comprising the same for the prevention and treatment of complications associated with infectious diseases |
WO2009115614A2 (en) | 2008-03-21 | 2009-09-24 | Ablynx Nv | Von willebrand factor specific binders and methods of use therefor |
EP2506874A1 (de) | 2009-12-01 | 2012-10-10 | Ablynx N.V. | Von-willebrand-faktor-spezifische bindemittel und ihre verwendung |
-
2004
- 2004-01-09 EP EP11162977A patent/EP2390270A1/de not_active Withdrawn
- 2004-01-09 CN CNB2004800020902A patent/CN100439400C/zh not_active Expired - Lifetime
- 2004-01-09 KR KR1020087028177A patent/KR20080113286A/ko not_active Application Discontinuation
- 2004-01-09 RU RU2005125430/13A patent/RU2357974C2/ru active
- 2004-01-09 KR KR1020057012413A patent/KR20050092029A/ko not_active Application Discontinuation
- 2004-01-09 BR BRPI0406694A patent/BRPI0406694B8/pt not_active IP Right Cessation
- 2004-01-09 US US10/541,708 patent/US9028816B2/en active Active
- 2004-01-09 WO PCT/BE2004/000002 patent/WO2004062551A2/en active Application Filing
- 2004-01-09 ES ES04700953.5T patent/ES2542330T3/es not_active Expired - Lifetime
- 2004-01-09 JP JP2006500419A patent/JP2006517789A/ja active Pending
- 2004-01-09 CN CNA2008101708074A patent/CN101412759A/zh active Pending
- 2004-01-09 CA CA2512545A patent/CA2512545C/en not_active Expired - Fee Related
- 2004-01-09 AU AU2004204262A patent/AU2004204262B2/en not_active Expired
- 2004-01-09 MX MXPA05006043A patent/MXPA05006043A/es active IP Right Grant
- 2004-01-09 EP EP04700953.5A patent/EP1587838B1/de not_active Expired - Lifetime
- 2004-01-09 NZ NZ540771A patent/NZ540771A/en not_active IP Right Cessation
-
2005
- 2005-06-20 ZA ZA200504996A patent/ZA200504996B/en unknown
- 2005-08-08 NO NO20053774A patent/NO337265B1/no not_active IP Right Cessation
-
2015
- 2015-03-26 US US14/669,025 patent/US10112989B2/en not_active Expired - Lifetime
-
2018
- 2018-09-26 US US16/142,063 patent/US11034755B2/en not_active Expired - Lifetime
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4559157A (en) | 1983-04-21 | 1985-12-17 | Creative Products Resource Associates, Ltd. | Cosmetic applicator useful for skin moisturizing |
US4608392A (en) | 1983-08-30 | 1986-08-26 | Societe Anonyme Dite: L'oreal | Method for producing a non greasy protective and emollient film on the skin |
EP0294703A2 (de) | 1987-06-10 | 1988-12-14 | Dana-Farber Cancer Institute, Inc. | Bifunktionelle Antikörperkonstruktionen und Verfahren zur selektiven Tötung von Zellbeständen |
US4820508A (en) | 1987-06-23 | 1989-04-11 | Neutrogena Corporation | Skin protective composition |
US4992478A (en) | 1988-04-04 | 1991-02-12 | Warner-Lambert Company | Antiinflammatory skin moisturizing composition and method of preparing same |
US4938949A (en) | 1988-09-12 | 1990-07-03 | University Of New York | Treatment of damaged bone marrow and dosage units therefor |
US5399346A (en) | 1989-06-14 | 1995-03-21 | The United States Of America As Represented By The Department Of Health And Human Services | Gene therapy |
US5629001A (en) | 1991-06-21 | 1997-05-13 | University Of Cincinnati | Oral administration of therapeutic proteins for treatment of infectious disease |
WO1994004678A1 (en) | 1992-08-21 | 1994-03-03 | Casterman Cecile | Immunoglobulins devoid of light chains |
EP0684814A1 (de) | 1993-02-22 | 1995-12-06 | Alza Corporation | Mittel zur oralen gabe von wirkstoffen |
EP0707473A1 (de) | 1993-06-03 | 1996-04-24 | Biotechnology and Biological Sciences Research Council | Orale, pharmazeutische zusammensetzungen das ein protein oder peptide, eine antikoerper und polymerkugeln enthalten |
US6280731B1 (en) | 1994-11-30 | 2001-08-28 | Ajinomoto Co., Inc. | Antithrombotic agent and anti-von willebrand factor monoclonal antibody |
US20020028204A1 (en) | 1994-11-30 | 2002-03-07 | Ajinomoto Co., Inc. | Antithrombotic agent and anti-von willebrand factor monoclonal antibody |
WO1996034103A1 (en) | 1995-04-25 | 1996-10-31 | Vrije Universiteit Brussel | Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes |
WO1997049805A2 (en) | 1996-06-27 | 1997-12-31 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Recognition molecules interacting specifically with the active site or cleft of a target molecule |
US6071514A (en) | 1997-06-05 | 2000-06-06 | Eli Lilly And Company | Methods for treating thrombotic disorders |
EP0882453A2 (de) | 1997-06-05 | 1998-12-09 | Eli Lilly And Company | Methoden zur Behandlung thrombothischer Störungen |
WO2000002045A2 (en) | 1998-07-06 | 2000-01-13 | Euroscreen S.A. | Bioluminescent assay for agonists or antagonists of a calcium-coupled receptor |
WO2000010601A1 (en) | 1998-08-19 | 2000-03-02 | Ajinomoto Co., Inc. | Antithrombotic agent and humanized anti-von willebrand factor monoclonal antibody |
US6251393B1 (en) | 1998-10-23 | 2001-06-26 | The Brigham And Women's Hospital, Inc. | Conformation-specific anti-von Willebrand Factor antibodies |
US20010024647A1 (en) * | 1998-10-23 | 2001-09-27 | Handin Robert I. | Conformation-specific anti-von Willebrand factor antibodies |
WO2001010911A2 (en) | 1999-08-10 | 2001-02-15 | K.U.Leuven Research & Development | Cell lines, ligands and antibody fragments for use in pharmaceutical compositions for preventing and treating haemostasis disorders |
WO2002057445A1 (en) * | 2000-05-26 | 2002-07-25 | National Research Council Of Canada | Single-domain brain-targeting antibody fragments derived from llama antibodies |
WO2002015919A2 (en) | 2000-08-25 | 2002-02-28 | Merck Patent Gmbh | Saratin for inhibiting platelet adhesion to collagen |
WO2002051351A2 (en) | 2000-12-22 | 2002-07-04 | K.U.Leuven Research And Development | Antithrombotic von willebrand factor (vwf) collagen bridging blockers |
WO2003035694A2 (en) | 2001-10-24 | 2003-05-01 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof |
Non-Patent Citations (34)
Title |
---|
"Anti-human von willebrand factor monoclonal antibody AJvW-2 prevents thrombus deposition and neointima formation after balloon injury in guinea pigs", ARTERIOSCLER THROMB VASC BIOL., vol. 20, no. 10, October 2000 (2000-10-01), pages 2303 - 8 |
"Anti-human vWF monocfonal antibody, AJvW-2 Fab, inhibits repetitive coronary artery thrombosis without bleeding time prolongation in dogs", THROMB RES., vol. 101, no. 5, 1 March 2001 (2001-03-01), pages 395 - 404 |
"Remington's Pharmaceutical Sciences", MACK PUBLISHING CO. |
ARBABI GHAHROUDI M ET AL: "SELECTION AND IDENTIFICATION OF SINGLE DOMAIN ANTIBODY FRAGMENTS FROM CAMEL HEAVY-CHAIN ANTIBODIES", FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 414, no. 3, 15 September 1997 (1997-09-15), pages 521 - 526, XP002069903, ISSN: 0014-5793 * |
BECKER BH ET AL., BLOOD, vol. 74, 1989, pages 690 - 694 |
BENNETT S, THROMB HAEMOST, vol. 85, no. 3, March 2001 (2001-03-01), pages 395 - 400 |
BLATTLER, BIOCHEMISTRY, vol. 24, pages 1517 - 1524 |
CADROY Y ET AL., BLOOD, vol. 83, 1994, pages 3218 - 3224 |
CAUWENBERGHS N. ET AL., ARTERIOSCLEROSIS, THROMBOSIS AND VASCULAR BIOLOGY, vol. 20, 2000, pages 1347 |
CAUWENBERGHS N. ET AL., RTERIOSCLEROSIS, THROMBOSIS AND VASCULAR BIOLOGY, vol. 20, 2000, pages 1347 |
CAUWENBERGHS N., ARTERIOSCLEROSIS, THROMBOSIS AND VASCULAR BIOLOGY, vol. 20, 2000, pages 1347 |
CHEN, RUFFNER: "Amplification of closed circular DNA in vitro", NUCLEIC ACIDS RESEARCH, 1998, pages 1126 - 1127 |
CORNELL B, BRAACH-MAKSVYTIS V, KING L, OSMAN P, RAGUSE B, WIECZOREK L, PACE R.: "A biosensor that uses ion-channel switches", NATURE, vol. 387, 1997, pages 580 |
CORTEZ-RETAMOZO V ET AL: "Efficient tumor targeting by single-domain antibody fragments of camels", INTERNATIONAL JOURNAL OF CANCER, NEW YORK, NY, US, vol. 98, no. 3, 20 March 2002 (2002-03-20), pages 456 - 462, XP002248403, ISSN: 0020-7136 * |
COTE-SIERRA ET AL., GENE, vol. 221, 1998, pages 25 - 34 |
CRUZ CP ET AL.: "Saratin, an inhibitor of von Wiflebrand factor-dependent platelet adhesion, decreases platelet aggregation and intimal hyperplasia in a rat carotid endarterectomy model", JOURNAL OF VASCULAR SURGERY, vol. 34, 2001, pages 724 - 729 |
DESMYTER ET AL., J BIOL CHEM, vol. 276, 2001, pages 26285 - 90 |
DONGMEI WU ET AL.: "inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons", HEMOSTASIS, THROMBOSIS AND VASCULAR BIOLOGY, vol. 99, 2002, pages 3623 - 3628 |
DONGMEI WU, BLOOD, vol. 99, 2002, pages 3623 - 3628 |
EWERT S, BIOCHEMISTRY, vol. 41, no. 11, 19 March 2002 (2002-03-19), pages 3628 - 36 |
FURLAN, M, ANN. HEMATOL., vol. 72, 1996, pages 341 - 348 |
KAGEYAMA S ET AL., ARTERIOSCIER THROMB VASC BIOL., vol. 20, no. 10, October 2000 (2000-10-01), pages 2303 - 8 |
KAGEYAMA S ET AL., THROMB RES., vol. 101, no. 5, 1 March 2001 (2001-03-01), pages 395 - 404 |
KAGEYAMA S ET AL.: "Effect of a humanized monoclonal antibody to von Willebrand factor in a canine model of coronary arterial thrombosis", EUR J PHARMACOL., vol. 443, no. 1-3, 17 May 2002 (2002-05-17), pages 143 - 9 |
MUYLDERMANS S: "SINGLE DOMAIN CAMEL ANTIBODIES: CURRENT STATUS", REVIEWS IN MOLECULAR BIOTECHNOLOGY, ELSEVIER, AMSTERDAM,, NL, vol. 74, no. 4, June 2001 (2001-06-01), pages 277 - 302, XP001057480, ISSN: 1389-0352 * |
RAVANAT C. ET AL., THROMB. HAEMOST., vol. 82, 1999, pages 528 |
REITER ET AL., PROTEIN ENGINEERING, vol. 7, 1994, pages 697 - 704 |
SALAMON ET AL., BIOPHYS J., vol. 71, 1996, pages 283 - 294 |
SALAMON ET AL., TRENDS BIOCHEM. SCI., vol. 24, 1999, pages 213 - 219 |
SALMON ET AL., BIOPHYS. J., vol. 80, 2001, pages 1557 - 1567 |
SAMBROOK ET AL.: "Molecular Cloning, Laboratory Manuel", COLD SPRING, HARBOR LABORATORY PRESS |
SARRIO ET AL., MOL. CELL. BIOI., vol. 20, 2000, pages 5164 - 5174 |
SMITH TP ET AL.: "Saratin, an inhibitor of collagen-platelet interaction, decreases venous anastomotic intimal hyperplasia in a canine dialysis access model", VASC ENDOVASCULAR SURG., vol. 37, no. 4, July 2003 (2003-07-01), pages 259 - 69 |
VANHOORELBEKE K., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, 2003, pages 37815 - 37821 |
Also Published As
Publication number | Publication date |
---|---|
ZA200504996B (en) | 2008-02-27 |
KR20050092029A (ko) | 2005-09-16 |
KR20080113286A (ko) | 2008-12-29 |
JP2006517789A (ja) | 2006-08-03 |
EP1587838A2 (de) | 2005-10-26 |
WO2004062551A2 (en) | 2004-07-29 |
US9028816B2 (en) | 2015-05-12 |
WO2004062551A3 (en) | 2004-09-02 |
US20060149041A1 (en) | 2006-07-06 |
CA2512545C (en) | 2015-06-30 |
US11034755B2 (en) | 2021-06-15 |
NO20053774L (no) | 2005-08-31 |
BRPI0406694B1 (pt) | 2017-03-07 |
AU2004204262B2 (en) | 2010-11-04 |
RU2005125430A (ru) | 2006-02-10 |
EP1587838B1 (de) | 2015-04-15 |
US20150299301A1 (en) | 2015-10-22 |
CA2512545A1 (en) | 2004-07-29 |
RU2357974C2 (ru) | 2009-06-10 |
ES2542330T3 (es) | 2015-08-04 |
US20190112363A1 (en) | 2019-04-18 |
US10112989B2 (en) | 2018-10-30 |
CN1735630A (zh) | 2006-02-15 |
MXPA05006043A (es) | 2006-01-30 |
NO337265B1 (no) | 2016-02-29 |
NZ540771A (en) | 2009-05-31 |
CN101412759A (zh) | 2009-04-22 |
CN100439400C (zh) | 2008-12-03 |
BRPI0406694A (pt) | 2005-12-20 |
AU2004204262A1 (en) | 2004-07-29 |
BRPI0406694B8 (pt) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11034755B2 (en) | Polypeptides and polypeptide constructs comprising single domain antibodies directed against von willebrand factor | |
CA2505316C (en) | Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor | |
US9371381B2 (en) | Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor | |
EP1558646A2 (de) | Antikörper aus camelidae gegen interferon-gamma und ihre verwendungen | |
US20110184151A1 (en) | Single domain antibodies directed against epidermal growth factor receptor and uses therefor | |
WO2005044858A1 (en) | Camelidae single domain antibodies vhh directed against epidermal growth factor receptor and uses therefor | |
US20060034833A1 (en) | Single domain antibodies directed against interferron-gamma and uses therefor | |
RU2524129C2 (ru) | Терапевтические полипептиды, их гомологи, их фрагменты и их применение для модуляции агрегации, опосредованной тромбоцитами | |
JP5491308B2 (ja) | 治療用ポリペプチド、その相同物、その断片、および血小板媒介凝集の調節での使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AC | Divisional application: reference to earlier application |
Ref document number: 1587838 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120530 |
|
17Q | First examination report despatched |
Effective date: 20140428 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160128 |