EP2385094B1 - Catalytic cracking method with recycling of an olefin cut taken upstream from the gas-separation section in order to maximise the production of propylene - Google Patents
Catalytic cracking method with recycling of an olefin cut taken upstream from the gas-separation section in order to maximise the production of propylene Download PDFInfo
- Publication number
- EP2385094B1 EP2385094B1 EP11290184.8A EP11290184A EP2385094B1 EP 2385094 B1 EP2385094 B1 EP 2385094B1 EP 11290184 A EP11290184 A EP 11290184A EP 2385094 B1 EP2385094 B1 EP 2385094B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- production
- riser
- gasoline
- catalytic cracking
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 title claims description 37
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 title claims description 37
- 238000004523 catalytic cracking Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 28
- 238000011144 upstream manufacturing Methods 0.000 title claims description 13
- 150000001336 alkenes Chemical class 0.000 title claims description 10
- 238000004064 recycling Methods 0.000 title description 15
- 238000000926 separation method Methods 0.000 title description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title description 5
- 239000000203 mixture Substances 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000002028 Biomass Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 238000006384 oligomerization reaction Methods 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 25
- 239000003054 catalyst Substances 0.000 description 13
- 239000000571 coke Substances 0.000 description 12
- 230000004907 flux Effects 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 9
- 239000003915 liquefied petroleum gas Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000036574 Behavioural and psychiatric symptoms of dementia Diseases 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/02—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
- C07C4/06—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/104—Light gasoline having a boiling range of about 20 - 100 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1088—Olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4081—Recycling aspects
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Definitions
- the present invention is in the field of catalytic cracking of petroleum fractions, more particularly so-called "heavy" cuts, and in the context of the evolution of catalytic cracking towards the co-production of light olefins, in particular propylene.
- the main feedstock of a FCC unit (abbreviation for fluidized catalytic cracking) of heavy cuts is generally a hydrocarbon or a mixture of hydrocarbons containing essentially (ie at least 80%) molecules with a boiling point greater than 340 ° C.
- This main charge also contains limited quantities of metals (Ni + V), in concentration generally less than 50 ppm, preferably less than 20 ppm, and a hydrogen content in general of greater than 11% by weight, typically between 11.5. % and 14.5%, and preferably between 11.8% and 14% by weight.
- the conradson carbon content (abbreviated as CCR) of the feed (defined by ASTM D 482) provides an evaluation of coke production during catalytic cracking.
- the coke yield requires a specific sizing of the unit to satisfy the heat balance.
- These heavy cuts may in particular come from atmospheric distillation, vacuum distillation, hydroconversion unit, coking unit, hydrotreatment unit or desalphating unit, but also have a biomass origin as per for example, vegetable oils or cellulose.
- the heavy cuts constituting the main load of a catalytic cracking unit are hereafter called conventional heavy cuts and can be treated alone or as a mixture.
- the main objective of the catalytic cracking unit of a refinery is the production of gasoline bases, ie cuts having a distillation range of between 35 ° C and 250 ° C.
- this primary objective is accompanied by a new objective which is the production of light olefins, essentially ethylene and propylene.
- Gasoline is produced by cracking the heavy load in the main reactor, called the main riser in the rest of the text, because of the elongated shape of this reactor and its upward flow mode. When the flow is down in the main reactor, it is called "downer".
- the co-production of propylene is generally ensured by adding to the base catalytic system a shape-selective zeolite making it possible to improve the selectivity of LPG (abbreviation for liquefied petroleum gases) and gasoline, as well as by severing the operating conditions of the main riser. , mainly by increasing the temperature at the outlet of said reactor.
- LPG abbreviation for liquefied petroleum gases
- the present invention describes a novel recycle stream for maximizing propylene yield.
- the advantage of the present invention is to take the new recycle, not after the separation section, but upstream of the latter, which makes it possible to overcome the costs of separation and benefit from a recycling to the properties ( chemical composition, especially olefin content) as good, or better (low aromatic content) than that of the petrol recycle according to the prior art.
- the sampling point of the new recycle stream is located at the interstage of the wet gas compressor.
- This stream has a composition rich in C.sub.4 -C.sub.5 C.sub.6 to C.sub.8 compounds having a good olefinicity (ie olefin content), and it is practically free of aromatic compounds which, after recycle, tend to form mainly coke and penalize the thermal balance of the unit.
- the figure 1 is a diagram of the process according to the invention in which it is shown the removal of the C4 C5 C6 olefinic cut at the intertician of the wet gas compressor and its recycling in the main riser of an FCC unit.
- the present invention is applicable to FCC units operating with a single reactor (in upflow or downflow), and to FCC units operating with two reactors.
- main reactor rated (1) designate the reactor oriented towards the conversion of the main charge
- secondary reactor noted (2) designate the reactor dedicated to the production of propylene by cracking a cut recycle.
- main reactor rated (1) designate the reactor oriented towards the conversion of the main charge
- secondary reactor noted (2) designate the reactor dedicated to the production of propylene by cracking a cut recycle.
- these reactors are upflow, but one unit that would use two downflow reactors remains within the scope of the present invention. It is also possible to consider the case of a unit with an upstream reactor and another downstream reactor.
- the main riser operates with a catalyst to charge ratio of between 4 and 15, and preferably between 5 and 10, and with riser outlet temperatures.
- TS riser outlet temperatures
- the contact time is defined as the ratio of the volume of catalyst present in the reactor to the volumetric flow rate of fluid passing through the reactor to the conditions for carrying out the cracking reaction.
- a main downer In the case of a main downer, it operates with a catalyst to charge ratio of between 5 and 40, and preferably between 10 and 30, and with downer outlet temperatures (denoted TS) of between 500 ° C. and 650 ° C. C, and preferably between 550 ° C and 630 ° C.
- TS downer outlet temperatures
- the present invention consists in recycling in the reaction section of an FCC unit a stream of C4, C5 and C6 olefinic compounds mainly. This recycle stream is taken at the inter-stage of the wet gas compressor (denoted CGH).
- the advantage of the present invention is to take this recycle, not after the separation section, but upstream of the latter, which eliminates the costs of separation and benefit from a recycling properties (composition ) as good, or better (low amount of aromatics) than those of petrol recycle.
- the flow from the inter stage of the wet gas compressor is largely composed of C4 and C5 olefins, typically in a proportion of 30% to 80%.
- C4 and C5 compounds have a high olefinicity, that is to say a high proportion of unsaturated compounds which can rise from 50% to 80% by weight for the C4 cut, and from 40% to 65% weight for the C5 cut.
- unsaturated compounds of the interstage stream are subjected under particular operating conditions in an FCC riser to oligomerization reactions leading to the formation of compounds with larger carbon chain length.
- oligomerized compounds in turn undergo catalytic cracking reactions leading to the formation of significant amounts of propylene.
- the olefinic C4, C5 and C6 molecules contained in the interstage stream in question can be recycled either in the main reactor or in the secondary reactor when the FCC unit already comprises such a secondary reactor.
- this recycle can be done either directly in mixture with the heavy load, or upstream of the injectors of said heavy load via dedicated injectors or a tube internal to riser.
- the secondary riser may be either a dedicated riser, that is to say only treating the recycling in question, or a secondary riser already converting a light load such for example, some of the gasoline produced at the main riser, for the production of propylene.
- This booster can also be made up of any petroleum liquid or biomass compound with preferably an olefin content of greater than 20% and a carbon number of less than 12, in order to increase the production potential. of propylene.
- This booster can be taken from the head of the FCC gasoline splitter at the bottom of the depropanizer. It can also come from an oligomerization unit or Pygas ex Steam Cracker.
- the figure 1 is a two-riser catalytic cracking unit (FCC), a main riser (1) and a secondary riser (2).
- the main riser (1) is supplied with regenerated catalyst from line (10), and the secondary riser is supplied with regenerated catalyst from line (9).
- the regeneration zone has two stages, a first stage (4) and a second stage (3) connected to the first stage by a catalyst transfer line (6).
- the catalyst is transferred to the regeneration zone at the outlet of the stripping zone (8) via the transfer line (5).
- the main riser (1) is fed by a conventional load (CH1) and the secondary riser (2) is fed by a lighter load (CH2).
- CH1 a conventional load
- CH2 a lighter load
- the effluent stream (11) leaving the FCC unit is introduced into the separation column MC from which a noted head stream (12), one or more intermediate streams (14) and a bottom flow (13) are extracted. ).
- the intermediate streams (14) and the bottom stream (13) will not be described further to the extent that they do not interfere with the present invention.
- the invention can therefore be generally defined as a process for the production of propylene gasoline and co-production using a catalytic cracking unit.
- a catalytic cracking unit having at least one main reactor operating in a riser (so-called “riser”) or downflow (called “downer”) processing a conventional heavy load, and wherein the main reactor further processes a feed consisting of olefinic molecules predominantly in C4, C5 and C6 introduced in mixture with the heavy load or upstream of said heavy load, said olefinic charge being taken at the level of the interstage of the wet gas compressor (CGH) forming part of the gas treatment section ( SRG) associated with the FCC unit and constituting the interstage flow.
- CGH wet gas compressor
- SRG gas treatment section
- the olefinic C4, C5 and C6 cut is introduced upstream of the main charge via an inner tube to said main riser opening from 1m to 0.5m before the level of the injectors of the main charge.
- the main reactor operates in "downer" mode, it operates under the following operating conditions: reactor outlet temperature of between 580 ° C. and 630 ° C. and a C / O ratio of between 15 and 40, and preferably between 20 and 30, residence time between 0.1 and 1 s and preferably between 0.2 and 0.7 s.
- said process uses a catalytic cracking unit having a main riser (1) treating a conventional filler (CH1) and a secondary riser (2). ) operating in parallel with the main riser (1) treating a filler (CH2) lighter than the heavy load (CH1) and operating at more severe operating conditions than those of the main riser, said secondary riser (2) treating the olefinic cut C4 C5 C6, represented by the flow (22) from the interstage of the wet gas compressor (CGH).
- a catalytic cracking unit having a main riser (1) treating a conventional filler (CH1) and a secondary riser (2). ) operating in parallel with the main riser (1) treating a filler (CH2) lighter than the heavy load (CH1) and operating at more severe operating conditions than those of the main riser, said secondary riser (2) treating the olefinic cut C4 C5 C6, represented by the flow (22) from the interstage of the wet gas compressor (CGH).
- the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2)
- the said secondary riser can mix the olefinic cut C4 C5 C6 (stream 22) from the interstage of the wet gas compressor (CGH), a gasoline cut and / or a C5, C6, C7 or C8 recycled oligomer, not shown in FIG. figure 1 .
- the make-up stream (23) may consist of a hydrocarbon fraction oil or of biomass origin, having an olefin content greater than 20% by weight and containing compounds containing less than 12 carbon atoms.
- the make-up stream (23) can be taken either at the head of the FCC gasoline splitter, either at the bottom of the depropanizer forming part of the gas treatment section ("gas plant").
- the makeup flow (23) can come from a unit of oligomerization or Pygas ex Steam Cracker.
- the secondary riser (2) operates with a contact time of between 20 and 500 ms, preferably between 50 ms and 200 ms, and solid flows between 150 and 600 kg / s. m2.
- the C / O ratio of the main riser is between 6 and 14, preferably including between 7 and 12, and the C / O ratio of the secondary riser is between 8 and 35, preferably between 10 and 25.
- the outlet temperature of the main riser is between 510 ° C. and 580 ° C. preferably between 520 ° C. and 570 ° C.
- the outlet temperature of the secondary riser is between 550 ° C. and 650 ° C., preferably between 580 ° C. and 610 ° C.
- This first example is the basic case and corresponds to a mono-riser FCC unit with a capacity of 70000 BPSD, ie 500 m3 / hour, (BPSD abbreviation of barrels per day), treating a residual charge operating under maximum propylene conditions. that is to say with a catalytic system containing a shape-selective zeolite in order to improve the LPG selectivity on gasoline and operating under operating conditions that are more severe than the standard conditions of maximum gasoline operation.
- Example 2 corresponds to Example 1 with recycling of the interstage flow upstream of the main charge.
- the recycle of the interstage flow (22) upstream of the main charge (CH1) therefore fully fulfills the objective of maximizing the production of propylene while avoiding the costs of separation compared with a conventional recycle. catalytic essence.
- Example 3 is similar to Example 2 except that this time the interstage flow is recycled to a secondary riser (2) dedicated and cracked under optimized operating conditions, namely a riser temperature of 590 ° C. and a contact time of 250ms.
- the flow rates of products obtained are presented and compared with those of Example 1 in Table 6.
- the propylene gain relative to the base case is more than 6%. It is therefore improved compared to the gain of 4% observed when this same recycle is cracked in the main riser upstream of the heavy load.
- the following example constitutes a second basic case and corresponds to an FCC unit comprising two risers, a main riser (1) fed with a residual charge (CH1), the same as for example 1, and a secondary riser ( 2) in which a part of the catalytic gasoline produced (CH2) is recycled and cracked under severe conditions.
- the catalytic system comprises a shape-selective zeolite in order to optimize the operation of the unit in maximum propylene.
- Example 4 The operating conditions of Example 4 are described in Table 7. ⁇ b> Table 7: Operating conditions of Example 4 ⁇ / b> Case Example 4 Unit capacity Bbl / d 70,000 Main Riser Residual charge flow t / h 431.6 Pressure output riser bar g 1.4 Output temperature riser ° C 550 Preheating temperature of the load ° C 260 Steam flow (MP) t / h 29.6 Mass ratio catalyst flow over load flow 8 Secondary riser Catalytic gas recycle flow rate t / h 108 Output temperature riser ° C 590 Recycle temperature ° C 53 Steam flow (MP) t / h 3.3 Mass ratio catalyst flow over load flow 12
- Example 5 resumes the case of Example 4 but this time with a recycling of the interstage flow in the secondary riser mixed with gasoline from the FCC unit. Compared to Example 2, this recycle has changed in composition but the same recycling rate has been considered.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
La présente invention se situe dans le domaine du craquage catalytique de coupes pétrolières, plus particulièrement de coupes dites "lourdes", et dans le contexte de l'évolution du craquage catalytique vers la coproduction d'oléfines légères, notamment de propylène.The present invention is in the field of catalytic cracking of petroleum fractions, more particularly so-called "heavy" cuts, and in the context of the evolution of catalytic cracking towards the co-production of light olefins, in particular propylene.
La charge principale d'une unité de FCC (abréviation de craquage catalytique en lit fluidisé) de coupes lourdes est généralement constituée d'un hydrocarbure ou d'un mélange d'hydrocarbures contenant essentiellement (c'est à dire au moins 80%) de molécules dont le point d'ébullition est supérieur à 340°C. Cette charge principale contient en outre des quantités de métaux (Ni+V) limitées, en concentration généralement inférieures à 50 ppm, préférentiellement inférieures à 20 ppm, et une teneur en hydrogène en général supérieure à 11 % poids, typiquement comprise entre 11,5% et 14,5%, et préférentiellement comprise entre 11,8% et 14% poids.The main feedstock of a FCC unit (abbreviation for fluidized catalytic cracking) of heavy cuts is generally a hydrocarbon or a mixture of hydrocarbons containing essentially (ie at least 80%) molecules with a boiling point greater than 340 ° C. This main charge also contains limited quantities of metals (Ni + V), in concentration generally less than 50 ppm, preferably less than 20 ppm, and a hydrogen content in general of greater than 11% by weight, typically between 11.5. % and 14.5%, and preferably between 11.8% and 14% by weight.
La teneur en carbone conradson (noté CCR en abrégé) de la charge (défini par la norme ASTM D 482) fournit une évaluation de la production de coke au cours du craquage catalytique. En fonction de la teneur en carbone conradson de la charge, le rendement en coke nécessite un dimensionnement spécifique de l'unité pour satisfaire le bilan thermique.The conradson carbon content (abbreviated as CCR) of the feed (defined by ASTM D 482) provides an evaluation of coke production during catalytic cracking. Depending on the conradson carbon content of the feed, the coke yield requires a specific sizing of the unit to satisfy the heat balance.
Ces coupes lourdes peuvent notamment provenir de la distillation atmosphérique, de la distillation sous vide, d'unité d'hydroconversion, d'unité de coking, d'unité d'hydrotraitement ou de désalphatage, mais avoir aussi une origine de type biomasse comme par exemple les huiles végétales ou la cellulose.These heavy cuts may in particular come from atmospheric distillation, vacuum distillation, hydroconversion unit, coking unit, hydrotreatment unit or desalphating unit, but also have a biomass origin as per for example, vegetable oils or cellulose.
Les coupes lourdes constituant la charge principale d'une unité de craquage catalytique sont appelées dans la suite coupes lourdes conventionnelles et peuvent être traitées seules ou en mélange.The heavy cuts constituting the main load of a catalytic cracking unit are hereafter called conventional heavy cuts and can be treated alone or as a mixture.
L'unité de craquage catalytique d'une raffinerie a pour objectif principal la production de bases pour essence, c'est à dire de coupes ayant un intervalle de distillation compris entre 35°C et 250°C.The main objective of the catalytic cracking unit of a refinery is the production of gasoline bases, ie cuts having a distillation range of between 35 ° C and 250 ° C.
De plus en plus, cet objectif premier s'accompagne d'un nouvel objectif qui est la co production d'oléfines légères, essentiellement de l'éthylène et du propylène.Increasingly, this primary objective is accompanied by a new objective which is the production of light olefins, essentially ethylene and propylene.
La production d'essence est assurée par le craquage de la charge lourde dans le réacteur principal, appelé riser principal dans la suite du texte, en raison de la forme longiligne de ce réacteur et de son mode d'écoulement ascendant. Lorsque l'écoulement est descendant dans le réacteur principal on parle de "downer".Gasoline is produced by cracking the heavy load in the main reactor, called the main riser in the rest of the text, because of the elongated shape of this reactor and its upward flow mode. When the flow is down in the main reactor, it is called "downer".
La coproduction de propylène est généralement assurée en rajoutant au système catalytique de base une zéolite à sélectivité de forme permettant d'améliorer la sélectivité en LPG ( abréviation de gaz de pétrole liquéfiés) et essence, ainsi qu'en sévérisant les conditions opératoires du riser principal, principalement par l'augmentation de la température en sortie dudit réacteur.The co-production of propylene is generally ensured by adding to the base catalytic system a shape-selective zeolite making it possible to improve the selectivity of LPG (abbreviation for liquefied petroleum gases) and gasoline, as well as by severing the operating conditions of the main riser. , mainly by increasing the temperature at the outlet of said reactor.
Afin d'atteindre des rendements en propylène plus importants, il est possible de recycler dans un réacteur additionnel, généralement un riser secondaire, une partie de la coupe essence produite par l'unité de craquage catalytique, ou une charge équivalente telle que des oligomères de C6, C7 et C8 provenant de la raffinerie.In order to achieve higher propylene yields, it is possible to recycle in an additional reactor, generally a secondary riser, a portion of the gasoline cut produced by the catalytic cracking unit, or an equivalent load such as oligomers of C6, C7 and C8 from the refinery.
La présente invention décrit un nouveau flux de recycle permettant de maximiser le rendement en propylène.The present invention describes a novel recycle stream for maximizing propylene yield.
Il est connu de l'homme du métier que le recycle de l'essence catalytique du FCC dans la zone réactionnelle permet d'augmenter significativement le rendement en propylène en faisant appel à des conditions opératoires adaptées, c'est à dire une température plus élevée en sortie de riser et des rapports catalyseur/ charge (noté C/O) plus élevés.It is known to a person skilled in the art that the recycle of the catalytic gasoline from the FCC into the reaction zone makes it possible to significantly increase the propylene yield by using appropriate operating conditions, ie a higher temperature. riser output and catalyst / load ratios (noted C / O) higher.
L'intérêt de la présente invention est de prélever le nouveau recycle, non pas après la section de séparation, mais en amont de cette dernière, ce qui permet de s'affranchir des coûts de séparation et de bénéficier d'un recycle aux propriétés (composition chimique, notamment teneur en oléfines) aussi bonnes, voir meilleures (faible teneur en aromatiques) que celle du recycle d'essence selon l'art antérieur.The advantage of the present invention is to take the new recycle, not after the separation section, but upstream of the latter, which makes it possible to overcome the costs of separation and benefit from a recycling to the properties ( chemical composition, especially olefin content) as good, or better (low aromatic content) than that of the petrol recycle according to the prior art.
Le point de prélèvement du nouveau flux de recycle se situe au niveau de l'interétage du compresseur de gaz humide. Ce flux présente une composition riche en composés en C4 C5 C6 à C8 ayant une bonne oléfinicité (c'est à dire teneur en oléfines), et il est pratiquement exempt de composés aromatiques qui, après recycle, ont tendance à former principalement du coke et pénalisent ainsi le bilan thermique de l'unité.The sampling point of the new recycle stream is located at the interstage of the wet gas compressor. This stream has a composition rich in C.sub.4 -C.sub.5 C.sub.6 to C.sub.8 compounds having a good olefinicity (ie olefin content), and it is practically free of aromatic compounds which, after recycle, tend to form mainly coke and penalize the thermal balance of the unit.
Il est connu de l'homme du métier que le recycle de l'essence catalytique du FCC dans la zone réactionnelle permet d'augmenter significativement le rendement en propylène en faisant appel à des conditions opératoires adaptées, c'est à dire une température plus élevée en sortie de riser et des rapports catalyseur/ charge (C/O) plus élevés. Ce craquage d'essence de recycle peut être effectué dans le riser principal de l'unité ou dans un riser dédié.It is known to a person skilled in the art that the recycle of the catalytic gasoline from the FCC into the reaction zone makes it possible to significantly increase the propylene yield by using appropriate operating conditions, ie a higher temperature. riser outlet and higher catalyst / load ratios (C / O). This recycle gasoline cracking can be carried out in the main riser of the unit or in a dedicated riser.
L'art antérieur concernant les unités de craquage catalytique à deux risers, l'un conventionnel pour l'obtention d'essence, l'autre travaillant en conditions plus sévères pour l'obtention d'oléfines légères, est notamment décrit dans le brevet
On trouve dans ce texte les notions de riser principal travaillant sur une charge lourde, et de riser secondaire travaillant à haute sévérité sur une charge en partie constituée par le recycle de l'essence produite au riser principal.In this text we find the notions of main riser working on a heavy load, and secondary riser working at a high severity on a load partly formed by the recycling of gasoline produced at the main riser.
Par ailleurs, l'optimisation de manière indépendante des conditions opératoires de deux risers fonctionnant en parallèle est décrite dans la demande de brevet
La configuration downer est décrite dans les brevets
La
La présente invention s'applique à des unités FCC fonctionnant avec un seul réacteur (en écoulement ascendant ou en écoulement descendant), et à des unités FCC fonctionnant avec deux réacteurs.The present invention is applicable to FCC units operating with a single reactor (in upflow or downflow), and to FCC units operating with two reactors.
Dans la suite du texte, on parlera de réacteur principal noté (1) pour désigner le réacteur orienté vers la conversion de la charge principale, et de réacteur secondaire noté (2) pour désigner le réacteur dédié à la production de propylène en craquant une coupe de recycle. Généralement, lorsque les unités FCC fonctionnent avec deux réacteurs, un principal et un secondaire, ces réacteurs sont à écoulement ascendants, mais une unité qui ferait appel à deux réacteurs à écoulement descendant reste dans le cadre de la présente invention. Il est aussi possible de considérer le cas d'une unité avec un réacteur ascendant et un autre réacteur descendant.In the remainder of the text, reference will be made to the main reactor rated (1) to designate the reactor oriented towards the conversion of the main charge, and secondary reactor noted (2) to designate the reactor dedicated to the production of propylene by cracking a cut recycle. Generally, when the FCC units operate with two reactors, one primary and one secondary, these reactors are upflow, but one unit that would use two downflow reactors remains within the scope of the present invention. It is also possible to consider the case of a unit with an upstream reactor and another downstream reactor.
Typiquement, le riser principal fonctionne avec un rapport catalyseur sur charge compris entre 4 et 15, et préférentiellement compris entre 5 et 10, et avec des températures de sortie riser (notée TS) comprises entre 510°C et 580°C, et préférentiellement comprises entre 520°C et 570°C.Typically, the main riser operates with a catalyst to charge ratio of between 4 and 15, and preferably between 5 and 10, and with riser outlet temperatures. (TS) between 510 ° C and 580 ° C, and preferably between 520 ° C and 570 ° C.
Les conditions optimales de production de propylène dans le riser secondaire sont obtenues pour des températures de sortie dudit riser secondaire comprises entre 550°C et 650°C, et préférentiellement comprises entre 580°C et 610°C, des temps de contact compris entre 20 ms et 500 ms, préférentiellement compris entre 50 ms et 200 ms (ms = milliseconde), et des flux de solide compris entre 150 et 600 kg/s/m2.The optimum conditions for the production of propylene in the secondary riser are obtained for outlet temperatures of said secondary riser of between 550 ° C. and 650 ° C., and preferably of between 580 ° C. and 610 ° C., contact times of 20 ° C. ms and 500 ms, preferably between 50 ms and 200 ms (ms = millisecond), and solid fluxes between 150 and 600 kg / s / m2.
Le temps de contact est défini comme le rapport du volume de catalyseur présent dans le réacteur sur le débit volumétrique de fluide traversant le réacteur aux conditions de mise en oeuvre de la réaction de craquage.The contact time is defined as the ratio of the volume of catalyst present in the reactor to the volumetric flow rate of fluid passing through the reactor to the conditions for carrying out the cracking reaction.
L'ensemble de ces conditions conduit à opérer le riser secondaire à des ratios catalyseur sur charge (noté C/O) compris entre 8 et 35, et préférentiellement compris entre 10 et 25.All of these conditions lead to operating the secondary riser catalyst to load ratios (noted C / O) between 8 and 35, and preferably between 10 and 25.
Dans le cas d'un downer principal, il fonctionne avec un rapport catalyseur sur charge compris entre 5 et 40, et préférentiellement compris entre 10 et 30, et avec des températures de sortie downer (notée TS) comprises entre 500°C et 650°C, et préférentiellement comprises entre 550°C et 630°C.In the case of a main downer, it operates with a catalyst to charge ratio of between 5 and 40, and preferably between 10 and 30, and with downer outlet temperatures (denoted TS) of between 500 ° C. and 650 ° C. C, and preferably between 550 ° C and 630 ° C.
Les conditions optimales de production de propylène dans un downer secondaire sont obtenues pour des températures de sortie dudit downer secondaire comprises entre 550°C et 650°C, et préférentiellement comprises entre 580°C et 630°C, des temps de contact compris entre 20 ms et 800 ms, préférentiellement compris entre 50 ms et 500 ms (ms = milliseconde). La présente invention consiste à recycler dans la section réactionnelle d'une unité FCC un flux de composés oléfiniques en C4, C5 et C6 principalement. Ce flux de recycle est prélevé au niveau de l'inter étage du compresseur de gaz humide (noté CGH).The optimum conditions for the production of propylene in a secondary downer are obtained for outlet temperatures of said secondary downer of between 550 ° C. and 650 ° C., and preferably between 580 ° C. and 630 ° C., contact times of between 20 ° C. and 650 ° C. ms and 800 ms, preferably between 50 ms and 500 ms (ms = millisecond). The present invention consists in recycling in the reaction section of an FCC unit a stream of C4, C5 and C6 olefinic compounds mainly. This recycle stream is taken at the inter-stage of the wet gas compressor (denoted CGH).
L'intérêt de la présente invention est de prélever ce recycle, non pas après la section de séparation, mais en amont de cette dernière, ce qui permet de s'affranchir des coûts de séparation et de bénéficier d'un recycle aux propriétés (composition) aussi bonnes, voir meilleures (faible quantité d'aromatiques) que celles du recycle d'essence.The advantage of the present invention is to take this recycle, not after the separation section, but upstream of the latter, which eliminates the costs of separation and benefit from a recycling properties (composition ) as good, or better (low amount of aromatics) than those of petrol recycle.
Par simplification on appelle dans la suite du texte ce flux, flux d'interétage.For simplification we call in the following text this flow, flow of interétage.
Le flux provenant de l'inter étage du compresseur de gaz humide est largement composé d'oléfines en C4 et C5, typiquement dans une proportion allant de 30% à 80%.The flow from the inter stage of the wet gas compressor is largely composed of C4 and C5 olefins, typically in a proportion of 30% to 80%.
Ces composés en C4 et C5 présentent une forte oléfinicité, c'est à dire une forte proportion de composés insaturés qui peut s'élever de 50% à 80 % poids pour la coupe en C4, et de 40% à 65 % poids pour la coupe en C5. Ces composés insaturés du flux d'interétage sont soumis dans des conditions opératoires particulières dans un riser de FCC à des réactions d'oligomérisation conduisant à la formation de composés à longueur de chaîne carbonée plus grande. Ces composés oligomérisés subissent à leur tour des réactions de craquage catalytique conduisant à la formation de quantités significatives de propylène.These C4 and C5 compounds have a high olefinicity, that is to say a high proportion of unsaturated compounds which can rise from 50% to 80% by weight for the C4 cut, and from 40% to 65% weight for the C5 cut. These unsaturated compounds of the interstage stream are subjected under particular operating conditions in an FCC riser to oligomerization reactions leading to the formation of compounds with larger carbon chain length. These oligomerized compounds in turn undergo catalytic cracking reactions leading to the formation of significant amounts of propylene.
Les molécules oléfiniques en C4, C5 et C6 contenues dans le flux d'interétage en question peuvent être recyclées soit dans le réacteur principal, soit dans le réacteur secondaire lorsque l'unité de FCC comprend déjà un tel réacteur secondaire.The olefinic C4, C5 and C6 molecules contained in the interstage stream in question can be recycled either in the main reactor or in the secondary reactor when the FCC unit already comprises such a secondary reactor.
Dans le cas d'un recyclage dans le réacteur principal, ce recycle pourra se faire soit directement en mélange avec la charge lourde, soit en amont des injecteurs de ladite charge lourde par l'intermédiaire d'injecteurs dédiés ou d'un tube interne au riser.In the case of recycling in the main reactor, this recycle can be done either directly in mixture with the heavy load, or upstream of the injectors of said heavy load via dedicated injectors or a tube internal to riser.
Dans le cas d'un recyclage dans le riser secondaire, il pourra s'agir soit d'un riser dédié, c'est-à-dire traitant uniquement le recycle en question, soit d'un riser secondaire convertissant déjà une charge légère telle que, par exemple, une partie de l'essence produite au riser principal, en vue de la production de propylène.In the case of recycling in the secondary riser, it may be either a dedicated riser, that is to say only treating the recycling in question, or a secondary riser already converting a light load such for example, some of the gasoline produced at the main riser, for the production of propylene.
Afin de garantir un débit stable du flux d'interétage au riser principal ou secondaire (qui pourrait éventuellement varier en raison de fluctuations de fonctionnement de l'unité et du compresseur), il est possible d'associer au flux d'interétage un appoint qui peut venir de la partie avale du gaz plant, préférentiellement une essence catalytique. Cet appoint peut aussi être constitué de n'importe quel composé liquide pétrolier ou provenant de la biomasse avec de préférence une teneur en oléfines supérieure à 20% et un nombre d'atomes de carbone inférieur à 12, afin d'augmenter la potentiel de production de propylène.In order to guarantee a stable flow of the interstage flow at the main or secondary riser (which could possibly vary due to fluctuations in the operation of the unit and the compressor), it is possible to associate the interstage flow with a supplement which can come from the downstream portion of the plant gas, preferably a catalytic gasoline. This booster can also be made up of any petroleum liquid or biomass compound with preferably an olefin content of greater than 20% and a carbon number of less than 12, in order to increase the production potential. of propylene.
Cet appoint peut être prélevé à la tête du splitter d'essence de FCC, au fond du dépropaniseur. Il peut également provenir d'une unité d'oligomérisation ou de Pygas ex Steam Cracker.This booster can be taken from the head of the FCC gasoline splitter at the bottom of the depropanizer. It can also come from an oligomerization unit or Pygas ex Steam Cracker.
La description qui suit est faite au moyen de la
La
Le catalyseur est transféré dans la zone de régénération en sortie de la zone de stripage (8) par la ligne de transfert (5).The catalyst is transferred to the regeneration zone at the outlet of the stripping zone (8) via the transfer line (5).
Le riser principal (1) est alimenté par une charge conventionnelle (CH1) et le riser secondaire (2) est alimentée par une charge plus légère notée (CH2).The main riser (1) is fed by a conventional load (CH1) and the secondary riser (2) is fed by a lighter load (CH2).
Le flux d'effluents (11) quittant l'unité de FCC est introduit dans la colonne de séparation MC de laquelle on extrait un flux de tête noté (12), un ou plusieurs flux intermédiaires (14) et un flux de fond (13). Les flux intermédiaires (14) et le flux de fond (13) ne seront pas décrits davantage dans la mesure où ils n'interviennent pas dans la présente invention.The effluent stream (11) leaving the FCC unit is introduced into the separation column MC from which a noted head stream (12), one or more intermediate streams (14) and a bottom flow (13) are extracted. ). The intermediate streams (14) and the bottom stream (13) will not be described further to the extent that they do not interfere with the present invention.
On reprend donc la description au niveau du flux de tête (12) qui est condensé dans le ballon (BS) et séparé en deux phases.
- La phase liquide alimente pour une partie le reflux de la colonne (MC), et pour une autre partie (25) la séparation située en aval du compresseur de gaz humide (CGH) qui comporte deux étages (ET1, ET2).
- La phase gazeuse (15) issue du ballon (BS) est dirigée vers le premier étage du compresseur de gaz (ET1) après avoir été débarrassée des particules liquides qu'elle peut contenir dans le ballon séparateur (BS1).
- The liquid phase feeds for some of the reflux of the column (MC), and for another part (25) the separation located downstream of the wet gas compressor (CGH) which has two stages (ET1, ET2).
- The gaseous phase (15) from the flask (BS) is directed to the first stage of the gas compressor (ET1) after being rid of the liquid particles that it can contain in the separator flask (BS1).
Le flux compressé (16) issu du premier étage (ET1) est dirigé vers un second ballon séparateur (BS2) duquel on extrait 3 flux:
- un flux (19) qui est dirigé vers le second étage de compression (ET2) après être passé dans le ballon séparateur (BS3), devenant alors le
flux 19a débarrassé des particules liquide. Le flux (19a) est compressé dans le deuxième étage de compression (ET2) pour délivrer le flux compressé (21) qui rejoint la section de récupération des gaz craqués (SRG), - un flux (20) qui est dirigé vers la section de traitement des eaux usées (non représentée sur la
figure 1 ), - un flux (22) qui est recyclé vers le riser principal (1) ou le riser secondaire (2), ou partie vers le riser principal par le flux (25), et partie vers le riser secondaire par le flux (24) et qui constitue le flux d'interétage.
- a flow (19) which is directed to the second compression stage (ET2) after passing through the separator flask (BS3), thereby becoming the
stream 19a freed of the liquid particles. The stream (19a) is compressed in the second compression stage (ET2) to deliver the compressed stream (21) which joins the cracked gas recovery section (SRG), - a flow (20) which is directed to the wastewater treatment section (not shown on the
figure 1 ) - a stream (22) which is recycled to the main riser (1) or the secondary riser (2), or part to the main riser by the stream (25), and part to the secondary riser by the stream (24) and which constitutes the interstage flow.
Dans la mesure où, comme on le voit clairement sur la
L'invention peut donc se définir de manière générale comme un procédé de production d'essence et de coproduction de propylène faisant appel à une unité de craquage catalytique possédant au moins un réacteur principal fonctionnant à courant ascendant (appelé "riser") ou à courant descendant (appelé "downer") traitant une charge lourde conventionnelle, et dans laquelle le réacteur principal traite en outre, une charge constituée de molécules oléfiniques majoritairement en C4, C5 et C6 introduite en mélange avec la charge lourde ou en amont de ladite charge lourde, la dite charge oléfinique étant prélevée au niveau de l'interétage du compresseur de gaz humide (CGH) faisant partie de la section de traitement de gaz (SRG) associée à l'unité de FCC et constituant le flux d'interétage.The invention can therefore be generally defined as a process for the production of propylene gasoline and co-production using a catalytic cracking unit. having at least one main reactor operating in a riser (so-called "riser") or downflow (called "downer") processing a conventional heavy load, and wherein the main reactor further processes a feed consisting of olefinic molecules predominantly in C4, C5 and C6 introduced in mixture with the heavy load or upstream of said heavy load, said olefinic charge being taken at the level of the interstage of the wet gas compressor (CGH) forming part of the gas treatment section ( SRG) associated with the FCC unit and constituting the interstage flow.
Dans une variante du procédé de production d'essence et de coproduction de propylène selon l'invention, la coupe oléfinique en C4, C5 et C6 est introduite en amont de la charge principale par l'intermédiaire d'un tube interne audit riser principal débouchant de 1m à 0,5 m avant le niveau des injecteurs de la charge principale.In a variant of the process for producing gasoline and coproduction of propylene according to the invention, the olefinic C4, C5 and C6 cut is introduced upstream of the main charge via an inner tube to said main riser opening from 1m to 0.5m before the level of the injectors of the main charge.
De manière générale, si le réacteur principal fonctionne en courant descendant ("downer"), il fonctionne aux conditions opératoires suivantes: température de sortie du réacteur comprise entre 580°C et 630°C et rapport C/O compris entre 15 et 40, et préférentiellement compris entre 20 et 30, temps de résidence compris entre 0,1 et 1 s et préférentiellement compris entre 0,2 et 0,7 s.In general, if the main reactor operates in "downer" mode, it operates under the following operating conditions: reactor outlet temperature of between 580 ° C. and 630 ° C. and a C / O ratio of between 15 and 40, and preferably between 20 and 30, residence time between 0.1 and 1 s and preferably between 0.2 and 0.7 s.
Dans une variante du procédé de production d'essence et de coproduction de propylène selon l'invention, ledit procédé fait appel à une unité de craquage catalytique possédant un riser principal (1) traitant une charge conventionnelle (CH1) et un riser secondaire(2) fonctionnant en parallèle du riser principal (1) traitant une charge (CH2) plus légère que la charge lourde ( CH1) et travaillant à des conditions opératoires plus sévères que celles du riser principal, ledit riser secondaire (2) traitant la coupe oléfinique C4 C5 C6, représenté par le flux (22) en provenance de l'interétage du compresseur de gaz humide (CGH).In a variant of the propylene gasoline production and coproduction process according to the invention, said process uses a catalytic cracking unit having a main riser (1) treating a conventional filler (CH1) and a secondary riser (2). ) operating in parallel with the main riser (1) treating a filler (CH2) lighter than the heavy load (CH1) and operating at more severe operating conditions than those of the main riser, said secondary riser (2) treating the olefinic cut C4 C5 C6, represented by the flow (22) from the interstage of the wet gas compressor (CGH).
Toujours dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), le dit riser secondaire peut traiter en mélange la coupe oléfinique C4 C5 C6 (flux 22) en provenance de l'interétage du compresseur de gaz humide (CGH), une coupe essence et ou un oligomerat C5, C6 , C7 ou C8 recyclés non représenté sur la
Toujours dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), il est possible d'ajouter au flux d'interétage un flux d'appoint (23) constitué d'essence de recycle de manière à garantir que la somme des deux flux, c'est à dire le flux d'interétage (22) plus le flux d'appoint (23), est constante à plus ou moins 10% près.Still in the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), it is possible to add an additional flow to the interstage flow. (23) consisting of recycle gasoline so as to guarantee that the sum of the two flows, ie the interstage flow (22) plus the makeup flow (23), is constant within plus or minus 10%.
Toujours dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), le flux d'appoint (23) peut être constitué d'une coupe hydrocarbonée pétrolière ou d'origine biomasse, ayant une teneur en oléfines supérieure à 20% poids et contenant des composés à moins de 12 atomes de carbone.Still in the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), the make-up stream (23) may consist of a hydrocarbon fraction oil or of biomass origin, having an olefin content greater than 20% by weight and containing compounds containing less than 12 carbon atoms.
Toujours dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), le flux d'appoint (23) peut être prélevé soit à la tête du splitter d'essence de FCC, soit au fond du dépropaniseur faisant partie de la section de traitement des gaz ("gaz plant").Still in the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), the make-up stream (23) can be taken either at the head of the FCC gasoline splitter, either at the bottom of the depropanizer forming part of the gas treatment section ("gas plant").
Toujours dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), le flux d'appoint (23) peut provenir d'une unité d'oligomérisation ou de Pygas ex Steam Cracker.Still in the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), the makeup flow (23) can come from a unit of oligomerization or Pygas ex Steam Cracker.
Dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), le riser secondaire (2) fonctionne avec un temps de contact compris entre 20 et 500 ms, préférentiellement entre 50 ms et 200 ms, et des flux de solide comprises entre 150 et 600 kg/s. m2.In the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), the secondary riser (2) operates with a contact time of between 20 and 500 ms, preferably between 50 ms and 200 ms, and solid flows between 150 and 600 kg / s. m2.
Dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), le rapport C/O du riser principal est compris entre 6 et 14, préférentiellement compris entre 7 et 12, et le rapport C/O du riser secondaire est compris entre 8 et 35, préférentiellement compris entre 10 et 25.In the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), the C / O ratio of the main riser is between 6 and 14, preferably including between 7 and 12, and the C / O ratio of the secondary riser is between 8 and 35, preferably between 10 and 25.
Dans la variante où le procédé selon l'invention fait appel à une unité de craquage catalytique utilisant un riser principal (1) et un riser secondaire (2), la température de sortie du riser principal est comprise entre 510°C et 580°C, préférentiellement comprise entre 520°C et 570°C, et la température de sortie du riser secondaire est comprise entre 550°C et 650°C, préférentiellement comprise entre 580 °C et 610°C.In the variant in which the process according to the invention uses a catalytic cracking unit using a main riser (1) and a secondary riser (2), the outlet temperature of the main riser is between 510 ° C. and 580 ° C. preferably between 520 ° C. and 570 ° C., and the outlet temperature of the secondary riser is between 550 ° C. and 650 ° C., preferably between 580 ° C. and 610 ° C.
Pour illustrer la présente invention on a fait appel à 5 exemples, notés 1, 2, 3, 4 et 5.To illustrate the present invention, 5, 1, 2, 3, 4 and 5 examples were used.
Ce premier exemple constitue le cas de base et correspond à une unité de FCC mono riser d'une capacité de 70000 BPSD, soit 500 m3/heure, (BPSD abréviation de barils par jour), traitant une charge résidu fonctionnant en conditions maxi propylène, c'est à dire avec un système catalytique contenant une zéolite à sélectivité de forme afin d'améliorer la sélectivité LPG sur essence et opérant dans des conditions opératoires plus sévères que les conditions standards de fonctionnement maxi essence.This first example is the basic case and corresponds to a mono-riser FCC unit with a capacity of 70000 BPSD, ie 500 m3 / hour, (BPSD abbreviation of barrels per day), treating a residual charge operating under maximum propylene conditions. that is to say with a catalytic system containing a shape-selective zeolite in order to improve the LPG selectivity on gasoline and operating under operating conditions that are more severe than the standard conditions of maximum gasoline operation.
Les caractéristiques principales de la charge ainsi que les conditions opératoires considérées sont présentées respectivement dans le Tableau 1 et le Tableau 2 ci dessous.
Dans ces conditions, les débits des produits sortie unité sont donnés dans le Tableau 3 ci dessous.
L'exemple 2 correspond à l'exemple 1 avec un recyclage du flux d'interétage en amont de la charge principale.Example 2 corresponds to Example 1 with recycling of the interstage flow upstream of the main charge.
Les conditions opératoires du riser restent identiques à celles de l'exemple 1.The operating conditions of the riser remain identical to those of Example 1.
Dans ces conditions, le débit du flux d'interétage correspond à 45 tonnes par heure et sa composition est fournie dans le Tableau 4 ci dessous.
Les débits des produits sortie unité avec recycle sont donnés et comparés à ceux du cas de base dans le Tableau 5 ci dessous.
Dans ces conditions, la comparaison des tableaux 3 et 5 montre que le gain en propylène est de plus de 4 pourcents, ce qui est évidemment très significatif sur des débits industriels.Under these conditions, the comparison of Tables 3 and 5 shows that the gain in propylene is more than 4 percent, which is obviously very significant on industrial flow.
Une perte en C4 et C5 (au travers de la coupe PI-160°C) est bien évidemment observée puisque ces composés ont été recyclés et craqués.A loss of C4 and C5 (through the PI-160 ° C cut) is obviously observed since these compounds were recycled and cracked.
Une augmentation des gaz secs et du coke est également observée, mais reste dans les limites acceptables de l'unité, notamment du point de vue du bilan thermique.An increase in dry gases and coke is also observed, but remains within the acceptable limits of the unit, especially from the point of view of the thermal balance.
Le gain en éthylène qui est également un produit valorisable augmente très significativement avec une hausse de plus de 5%.The gain in ethylene which is also a recoverable product increases very significantly with an increase of more than 5%.
Le recycle du flux d'interétage (22) en amont de la charge principale (CH1) permet donc de remplir pleinement l'objectif recherché de maximiser la production de propylène tout en s'affranchissant des coûts de séparation par rapport à un recycle classique d'essence catalytique.The recycle of the interstage flow (22) upstream of the main charge (CH1) therefore fully fulfills the objective of maximizing the production of propylene while avoiding the costs of separation compared with a conventional recycle. catalytic essence.
L'exemple 3 est semblable à l'exemple 2 à la différence que cette fois le flux d'interétage est recyclé dans un riser secondaire (2) dédié et craqué dans des conditions opératoires optimisées, à savoir une température sortie riser de 590°C et un temps de contact de 250ms. Les débits de produits obtenus sont présentés et comparés à ceux de l'exemple 1 dans le Tableau 6.
Lorsque le flux d'interétage est recyclé dans un riser dédié (2) et soumis à des conditions opératoires optimisées, le gain en propylène par rapport au cas de base (Exemple1) est de plus de 6% . Il est donc amélioré par rapport au gain de 4% observé lorsque ce même recycle est craqué dans le riser principal en amont de la charge lourde.When the interstage flow is recycled to a dedicated riser (2) and subjected to optimized operating conditions, the propylene gain relative to the base case (Example 1) is more than 6%. It is therefore improved compared to the gain of 4% observed when this same recycle is cracked in the main riser upstream of the heavy load.
Dans ces conditions, l'éthylène augmente également plus largement avec un gain de près de 8 % comparé aux 5% de l'exemple 2.Under these conditions, ethylene also increases more widely with a gain of nearly 8% compared to the 5% of Example 2.
L'augmentation des gaz secs et du coke est plus importante que dans l'exemple 2 mais cette hausse reste limitée.The increase in dry gases and coke is greater than in example 2, but this increase remains limited.
Le recycle de la coupe riche en C4 et C5 dans un riser dédié permet donc des gains en propylène plus important que lorsque cette charge est craqué dans un riser unique en amont de la charge principale.The recycle of the C4 and C5 rich cut in a dedicated riser thus allows greater propylene gains than when this load is cracked in a single riser upstream of the main load.
L'exemple suivant constitue un deuxième cas de base et correspond à une unité de FCC comportant deux risers, un riser principal (1) alimenté par une charge résidu (CH1), la même que pour l'exemple 1, et un riser secondaire (2) dans lequel une partie de l'essence catalytique produite (CH2) est recyclée et craquée dans des conditions sévères. Comme pour l'exemple 1, le système catalytique comprend une zéolite à sélectivité de forme afin d'optimiser le fonctionnement en maxi propylène de l'unité.The following example constitutes a second basic case and corresponds to an FCC unit comprising two risers, a main riser (1) fed with a residual charge (CH1), the same as for example 1, and a secondary riser ( 2) in which a part of the catalytic gasoline produced (CH2) is recycled and cracked under severe conditions. As in Example 1, the catalytic system comprises a shape-selective zeolite in order to optimize the operation of the unit in maximum propylene.
Les conditions opératoires de l'exemple 4 sont décrites dans le Tableau 7.
Sur cette base, le débit des produits de sortie unité sont donnés dans le Tableau 8
L'exemple 5 reprend le cas de l'exemple 4 mais cette fois avec un recycle du flux d'interétage dans le riser secondaire en mélange avec de l'essence issue de l'unité de FCC. Par rapport à l'exemple 2, ce recycle a changé en composition mais le même débit de recycle a été considéré.Example 5 resumes the case of Example 4 but this time with a recycling of the interstage flow in the secondary riser mixed with gasoline from the FCC unit. Compared to Example 2, this recycle has changed in composition but the same recycling rate has been considered.
La composition de ce recycle est fournie dans le Tableau 9.
Les débits des produits sortie unité avec recycle sont donnés et comparés à ceux de l'exemple 4 dans le Tableau 10
Le recycle du flux d'interétage en mélange avec l'essence issue de l'unité de FCC permet une augmentation très nette du rendement en propylène avec une hausse de près de 6%. L'éthylène progresse de manière significative avec un gain de 7%. Les rendements en coke et gaz secs augmentent mais restent dans des limites acceptables. L'éthylène progresse de 7%, les gaz secs de près de 8% et le coke de moins de 4%. L'ensemble de ces exemples met en évidence que dans tous les cas de figures, le recyclage du flux d'interétage (22) soit au riser principal (1), soit au riser secondaire (2), soit pour partie au riser principal (1), et pour partie au riser secondaire (2), permet d'augmenter très significativement le rendement en propylène.The recycle of the interstage stream mixed with the gasoline from the FCC unit allows a sharp increase in propylene yield with an increase of nearly 6%. Ethylene progresses significantly with a gain of 7%. The yields of coke and dry gases increase but remain within acceptable limits. Ethylene rose by 7%, dry gases by almost 8% and coke by less than 4%. All of these examples show that in all cases, the recycling of the interstage flow (22) is at the main riser (1) or at the secondary riser (2), or partly at the main riser ( 1), and partly to the secondary riser (2), makes it possible to increase the yield of propylene very significantly.
Claims (12)
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit having at least one principal reactor (1) functioning in upflow ("riser") mode or downflow ("downer") mode and treating a conventional heavy feed (CH1), and optionally a secondary riser (2) functioning under more severe conditions than the principal riser (1) and treating a lighter feed (CH2), in which process, in addition to the principal feed (CH1) and the optional lighter feed (CH2), a feed constituted mainly by C4, C5 and C6 olefinic molecules is treated, said olefinic feed being removed from the inter-stage of the wet gas compressor forming part of the gas treatment section (SPG) associated with the FCC unit and constituting the inter-stage stream (22).
- A process for the production of gasoline and the co-production of propylene according to claim 1 in which, when the catalytic cracking unit has only one principal reactor (1), the olefinic C4, C5 and C6 feed corresponding to the inter-stage stream (22) is introduced as a mixture with the heavy feed (CH1).
- A process for the production of gasoline and the co-production of propylene according to claim 1 in which, when the catalytic cracking unit has only one principal reactor (1), the olefinic C4, C5 and C6 feed corresponding to the inter-stage stream (22) is introduced upstream of the principal feed (CH1) via a pipe inside said principal riser (1) opening 1 m to 0.5 m before the level of the injectors for the principal feed (CH1).
- A process for the production of gasoline and the co-production of propylene according to claim 1 in which, when the catalytic cracking unit further has a secondary riser (2) treating a lighter feed (CH2), and working under more severe operating conditions than those of the principal riser, the olefinic C4, C5 and C6 cut corresponding to the inter-stage stream (22) is introduced into the secondary riser (2).
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit having a principal riser (1) and a secondary riser (2) according to claim 4, said secondary riser (2) treating the olefinic C4 C5 C6 cut corresponding to the inter-stage stream (22) and a recycled gasoline cut and/or a C5, C6, C7 or C8 oligomerizate cut as a mixture.
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 1, in which a makeup stream (23) constituted by recycled gasoline is added to the inter-stage stream (22) in order to ensure that the sum of the two streams, i.e. the inter-stage stream (22) plus the makeup stream (23), is constant to plus or minus 10%.
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 6, in which the makeup stream (23) is constituted by a hydrocarbon cut of oil or biomass origin having an olefins content of more than 20% by weight and containing compounds having less than 12 carbon atoms.
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 6, in which the makeup stream (23) is removed either from the head of the FCC gasoline splitter or from the bottom of the depropanizer forming part of the gas treatment section (SPG).
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 6, in which the makeup stream (23) derives from an oligomerization unit or from pygas, from a steam cracker.
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 4, in which the secondary riser (2) functions with a contact time in the range 20 to 500 ms, preferably in the range 50 ms to 200 ms, and with solid flow rates in the range 150 to 600 kg/s.m2.
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 4, in which the C/O ratio of the principal riser (1) is in the range 6 to 14, preferably in the range 7 to 12, and the C/O ratio of the secondary riser (2) is in the range 8 to 35, preferably in the range 10 to 25.
- A process for the production of gasoline and the co-production of propylene employing a catalytic cracking unit according to claim 4, in which the outlet temperature from the principal riser (1) is in the range 510°C to 580°C, preferably in the range 520°C to 570°C, and the outlet temperature from the secondary riser (2) is in the range 550°C to 650°C, preferably in the range 580°C to 610°C.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1001955A FR2959748B1 (en) | 2010-05-06 | 2010-05-06 | CATALYTIC CRACKING PROCESS WITH RECYCLED OF OLEFIN CUT FROM THE GAS SEPARATION SECTION TO MAXIMIZE PRODUCTION OF PROPYLENE. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2385094A1 EP2385094A1 (en) | 2011-11-09 |
EP2385094B1 true EP2385094B1 (en) | 2016-03-23 |
Family
ID=43383516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11290184.8A Active EP2385094B1 (en) | 2010-05-06 | 2011-04-12 | Catalytic cracking method with recycling of an olefin cut taken upstream from the gas-separation section in order to maximise the production of propylene |
Country Status (7)
Country | Link |
---|---|
US (1) | US8920632B2 (en) |
EP (1) | EP2385094B1 (en) |
CN (1) | CN102234523B (en) |
EG (1) | EG26842A (en) |
ES (1) | ES2578200T3 (en) |
FR (1) | FR2959748B1 (en) |
RU (1) | RU2570418C2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2959748B1 (en) * | 2010-05-06 | 2012-05-18 | Inst Francais Du Petrole | CATALYTIC CRACKING PROCESS WITH RECYCLED OF OLEFIN CUT FROM THE GAS SEPARATION SECTION TO MAXIMIZE PRODUCTION OF PROPYLENE. |
JP6068437B2 (en) * | 2011-04-15 | 2017-01-25 | ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス | FCC method to maximize diesel using two separate converters |
FR2984177B1 (en) * | 2011-12-20 | 2014-07-04 | IFP Energies Nouvelles | CATALYTIC CRACKING METHOD ASSOCIATED WITH AMINE TREATMENT UNIT WITH ENHANCED CO2 BALANCE |
FR2986799B1 (en) * | 2012-02-15 | 2015-02-06 | IFP Energies Nouvelles | HEAVY LOAD CONVERTING METHOD USING CATALYTIC CRACKING UNIT AND SELECTIVE HYDROGENATION STEP FROM CATALYTIC CRACKING GASOLINE |
CN105143407B (en) * | 2013-03-15 | 2018-04-20 | 艾伯塔大学校董事会 | Pyrolytic reaction in the presence of alkene |
WO2018020321A1 (en) | 2016-07-25 | 2018-02-01 | The Governors Of The University Of Alberta | Methods for producing hydrocarbon compositions with reduced acid number and for isolating short chain fatty acids |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR704672A (en) | 1930-10-11 | 1931-05-23 | Schott Et Cie Soc | Ventilation device for talking machine movements |
FR803384A (en) | 1935-06-20 | 1936-09-29 | Device ensuring the automatic stop of a train passing an absolute stop signal and the protection of level crossings | |
US5009769A (en) * | 1989-02-06 | 1991-04-23 | Stone & Webster Engineering Corporation | Process for catalytic cracking of hydrocarbons |
CA2156582C (en) * | 1994-09-30 | 1999-01-26 | Raghu K. Menon | Hydrocarbon catalytic cracking process |
US6489219B1 (en) | 1995-11-09 | 2002-12-03 | Micron Technology, Inc. | Method of alloying a semiconductor device |
FR2753454B1 (en) | 1996-09-18 | 1999-06-04 | Inst Francais Du Petrole | PROCESS AND DEVICE FOR DESCENDING CATALYTIC CRACKING IMPLEMENTING THE INJECTION OF A LOAD AT AN ADEQUATE ANGLE ON A CONDITIONED CATALYST |
US6656346B2 (en) | 2001-06-07 | 2003-12-02 | King Fahd University Of Petroleum And Minerals | Fluid catalytic cracking process for heavy oil |
FR2837213B1 (en) * | 2002-03-15 | 2004-08-20 | Inst Francais Du Petrole | PROCESS FOR THE JOINT PRODUCTION OF PROPYLENE AND GASOLINE FROM A RELATIVELY HEAVY LOAD |
US7008527B2 (en) | 2002-10-23 | 2006-03-07 | Institut Francais Du Petrole | Process for catalytic cracking two integrated cracking zones of different degrees of severity followed by a cooling zone |
US7128827B2 (en) * | 2004-01-14 | 2006-10-31 | Kellogg Brown & Root Llc | Integrated catalytic cracking and steam pyrolysis process for olefins |
US20060231459A1 (en) * | 2005-03-28 | 2006-10-19 | Swan George A Iii | FCC process combining molecular separation with staged conversion |
KR100632571B1 (en) * | 2005-10-07 | 2006-10-09 | 에스케이 주식회사 | Process for the preparation of light olefins in catalytic cracking from hydrocarbon feedstock |
US7491315B2 (en) * | 2006-08-11 | 2009-02-17 | Kellogg Brown & Root Llc | Dual riser FCC reactor process with light and mixed light/heavy feeds |
FR2918070B1 (en) | 2007-06-27 | 2012-10-19 | Inst Francais Du Petrole | REACTIONAL ZONE COMPRISING TWO PARALLEL RISERS AND A COMMON SOLID GAS SEPARATION AREA FOR THE PRODUCTION OF PROPYLENE |
FR2932495B1 (en) * | 2008-06-17 | 2011-03-25 | Inst Francais Du Petrole | DEVICE FOR CONTROLLING OPERATIVE CONDITIONS IN A CATALYTIC CRACKING UNIT WITH TWO RISERS. |
US8889076B2 (en) * | 2008-12-29 | 2014-11-18 | Uop Llc | Fluid catalytic cracking system and process |
FR2959748B1 (en) * | 2010-05-06 | 2012-05-18 | Inst Francais Du Petrole | CATALYTIC CRACKING PROCESS WITH RECYCLED OF OLEFIN CUT FROM THE GAS SEPARATION SECTION TO MAXIMIZE PRODUCTION OF PROPYLENE. |
-
2010
- 2010-05-06 FR FR1001955A patent/FR2959748B1/en not_active Expired - Fee Related
-
2011
- 2011-04-10 EG EG2011040552A patent/EG26842A/en active
- 2011-04-12 EP EP11290184.8A patent/EP2385094B1/en active Active
- 2011-04-12 ES ES11290184.8T patent/ES2578200T3/en active Active
- 2011-05-04 RU RU2011117948/04A patent/RU2570418C2/en active
- 2011-05-05 US US13/101,221 patent/US8920632B2/en active Active
- 2011-05-06 CN CN201110116692.2A patent/CN102234523B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102234523A (en) | 2011-11-09 |
US20110272326A1 (en) | 2011-11-10 |
US8920632B2 (en) | 2014-12-30 |
FR2959748A1 (en) | 2011-11-11 |
EG26842A (en) | 2014-10-26 |
RU2011117948A (en) | 2012-11-10 |
ES2578200T3 (en) | 2016-07-21 |
EP2385094A1 (en) | 2011-11-09 |
RU2570418C2 (en) | 2015-12-10 |
FR2959748B1 (en) | 2012-05-18 |
CN102234523B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1526165B1 (en) | Process for producing liquid fuels from a solid hydrocarbonaceous feedstock | |
EP2930226B1 (en) | Method for producing light olefins and btx using an ncc catalytic cracking unit treating a naphtha feedstock, with a catalytic reformer unit and an aromatic complex | |
EP2321385B1 (en) | Method of converting a heavy charge into petrol and propylene, having a variable-yield structure | |
EP2385094B1 (en) | Catalytic cracking method with recycling of an olefin cut taken upstream from the gas-separation section in order to maximise the production of propylene | |
FR2910487A1 (en) | RESIDUE CONVERSION PROCESS INCLUDING 2 SERIAL PASSHALTINGS | |
WO2016146326A1 (en) | Improved method for converting heavy hydrocarbon feedstocks | |
FR2964387A1 (en) | METHOD OF CONVERTING RESIDUE INTEGRATING A DISASPHALTAGE STEP AND A HYDROCONVERSION STEP WITH RECYCLE OF DESASPHALTEE OIL | |
WO2006067305A1 (en) | Method for direct conversion of a feedstock comprising olefins with four and/or five carbon atoms, for producing propylene with co-production of gasoline | |
FR2887557A1 (en) | Syncrude production for extracting e.g. zueta, involves subjecting residue to combustion and gasification to generate water vapor and/or electricity and hydrogen, for using in heavy crude extraction, cut conversion and hydro treating | |
CA2816666A1 (en) | Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking | |
FR2968010A1 (en) | METHOD FOR CONVERTING A HEAVY LOAD TO MEDIUM DISTILLATE | |
FR2964386A1 (en) | METHOD FOR CONVERTING RESIDUE INTEGRATING A DESASHPHALTAGE STEP AND A HYDROCONVERSION STEP | |
EP2616416A1 (en) | Producing olefins by pyrolytic cracking of refinery off-gas | |
FR2984916A1 (en) | IMPROVED METHOD OF CONVERTING A HEAVY LOAD TO MEDIUM DISTILLATE USING UP-TO-THE-END PRETREATMENT OF THE CATALYTIC CRACKING UNIT | |
FR3061199A1 (en) | METHOD AND DEVICE FOR HYDROCRACKING WITH REDUCTION OF AROMATIC POLYNUCLEAR COMPOUNDS | |
FR2999599A1 (en) | PROCESS FOR CONVERTING A HEAVY HYDROCARBON LOAD INTEGRATING SELECTIVE DESHALING WITH RECYCLING OF DESASPHALTEE OIL | |
CA1191805A (en) | Process for converting heavy oils or slop oil into gaseous and distillable hydrocarbons | |
WO2017108295A1 (en) | Method for converting a feedstock for hydrocarbon production via fischer-tropsch synthesis | |
LU86288A1 (en) | GASOILS TREATMENT PROCESS | |
CA2815618A1 (en) | Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and liquid/liquid extraction of the heavy fraction | |
EP3999613A1 (en) | Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking | |
CA2607252A1 (en) | Method and installation for fixed bed conversion of heavy petroleum fractions with integrated production of middle distillates with a very low sulphur content | |
CA2815685A1 (en) | Method for converting hydrocarbon feedstock comprising a shale oil by decontamination, hydroconversion in an ebullating bed, and fractionation by atmospheric distillation | |
FR2983862A1 (en) | Conversion of coal to aromatic compounds involves liquefying, separating light hydrocarbons, hydrocracking, separating naphtha and heavier fractions, reforming naphtha to give hydrogen and reformate with aromatic compounds, and separation | |
WO2023241930A1 (en) | Hydrocracking process with optimized management of the recycling for the production of naphtha |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120509 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 11/18 20060101AFI20151012BHEP Ipc: C07C 11/06 20060101ALI20151012BHEP Ipc: B01J 8/24 20060101ALI20151012BHEP Ipc: C07C 4/06 20060101ALI20151012BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151026 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 783145 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011024273 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2578200 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160721 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160624 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160623 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 783145 Country of ref document: AT Kind code of ref document: T Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160723 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160725 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011024273 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160623 |
|
26N | No opposition filed |
Effective date: 20170102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160412 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110412 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160412 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240425 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240429 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240516 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240423 Year of fee payment: 14 Ref country code: FR Payment date: 20240430 Year of fee payment: 14 |