EP2380236B1 - Ecran plat avec antenne integree - Google Patents
Ecran plat avec antenne integree Download PDFInfo
- Publication number
- EP2380236B1 EP2380236B1 EP09801236.2A EP09801236A EP2380236B1 EP 2380236 B1 EP2380236 B1 EP 2380236B1 EP 09801236 A EP09801236 A EP 09801236A EP 2380236 B1 EP2380236 B1 EP 2380236B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flat screen
- slot
- antenna
- conductive strip
- screen according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011159 matrix material Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 10
- 230000005284 excitation Effects 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 229920001621 AMOLED Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241001639412 Verres Species 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2258—Supports; Mounting means by structural association with other equipment or articles used with computer equipment
- H01Q1/2266—Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/44—Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
Definitions
- the invention relates to a flat screen, of the active matrix type, comprising an integrated antenna.
- the invention also relates to a portable electronic device, such as a mobile phone, comprising such a screen.
- the screen - liquid crystal (LCD) or organic light-emitting diodes (OLED) - tends to occupy the largest possible area, usually at the expense of the keyboard that is sometimes purely and simply deleted to be replaced by a touch screen. It has therefore been envisaged to integrate transmitting and / or receiving antennas to flat screens.
- the document US2004189625 discloses an antenna made of a conductive material integrated in a pixel screen.
- the documents US 6,973,709 and US 6,825,811 describe antennas formed by a pattern made of transparent conductive material (ITO: indium oxide and tin) deposited on the screen. We speak of antennas printed on the screen (POD: printed-on-display).
- ITO transparent conductive material
- the document US 7,336,270 describes an RFID antenna made on the substrate of a liquid crystal screen, next to the screen itself, and connected to an electronic chip mounted on the same substrate.
- This antenna is made at the same time as a conductive element of the screen, without the need for an additional technological step.
- the antenna considered is an RFID antenna operating in the near field.
- the invention aims to solve the aforementioned drawbacks of the prior art by providing a screen provided with an integrated antenna whose manufacture does not require - or very few - additional technological steps, and allows more optimal use of the 'available space.
- antenna is meant a radiating antenna, operating in the far field, transmitting and / or receiving.
- this object can be achieved by a flat screen comprising an active matrix of pixels, an electrode common to said pixels and a conductive strip connected to said common electrode and at least partially surrounding said active matrix, characterized in that at least one slot forming an antenna is formed in said conductive strip.
- the conductive strip may form a ring surrounding at least a portion of said active matrix (this is the case most common in the prior art), but it may also have an open shape, for example L or U.
- the generally annular conductive strip surrounding the active matrix and its common electrode is normally provided in the active matrix flat screens in order to standardize the potential of said common electrode (generally the cathode). Therefore, the implementation of the invention does not increase the dimensions of the device.
- the slot antenna can be produced simultaneously with the production by deposition of the conductive strip, thanks to a suitable photolithographic mask. The extra cost generated is therefore virtually zero.
- Another object of the invention is a portable apparatus comprising: such a flat screen; an electronic card comprising a ground plane parallel to said flat screen and electrically connected with the conductive strip of the latter; means for generating and / or detecting radio frequency electrical signals; and an excitation port of the slot antenna integrated in the flat screen, connected to said means for generating and / or detecting radio frequency electrical signals.
- the slot antenna may be sized to have a resonance and be at least approximately impedance matched to the excitation port at a frequency of electrical signals generated or detected by said means.
- a flat screen E active matrix OLED type generally comprises a transparent substrate S, typically made of glass, on which is deposited a matrix M of electrodes (anodes) A transparent, individually connected to lines of d power supply (not shown) via thin-film transistors T.
- a layer of electroluminescent semiconductor polymer forming the OLEDs is deposited on the anodes A.
- Anode A and the corresponding OLED form a pixel, or more precisely a subpixel (a complete pixel consisting of three pixels of different colors: blue, green and red).
- a metal layer C disposed above this polymer layer, forms a cathode common to all the pixels.
- the common cathode C has a very small thickness, of the order of 1 micron, facing lateral dimensions (width, length) of a few centimeters.
- lateral dimensions width, length
- Such a ring - indicated by the reference R on the figures 2 and 3a - 3rd may typically have a thickness of between 50 nm and 2 ⁇ m, and preferably between 100 nm and 1 ⁇ m and a width of between 50 ⁇ m and 10 mm and preferably between 100 ⁇ m and 2 mm.
- the conductivity of the ring R is sufficient to maintain it at a substantially homogeneous potential, and thus to homogenize the potential of the common cathode C.
- This ring can be made of aluminum or silver or copper or even molybdenum for example.
- the ring R could be replaced by a conductive strip of "open" shape, for example U or L, extending over only a portion of the periphery of the cathode.
- the ring R does not protrude from the surface of the screen E to minimize the dimensions of the latter.
- the idea underlying the invention is to use a slot or groove made in the ring R as an antenna.
- the principle of the slot antenna, per se, is known from the prior art: see in particular the Chapter 7, lines 441 - 481 of R. Garg, P. Bhartia, I. Bahl & A. Ittipiboon, "Microstrip Antenna Design Handbook", 2001 Artech House .
- the figure 2 shows an active matrix screen E having a conducting ring R in which is practiced a slot F opening on an edge of the ring.
- a port P allows the excitation of the slot by a radio frequency signal or, conversely, the extraction of an electrical signal induced in the slot by an external radiofrequency electromagnetic field;
- Paragraph 7.3 of the above-mentioned work describes excitation ports of a slot antenna based on the principle of the coplanar waveguide.
- the wireless communication protocols for nomadic devices include the use of frequencies greater than 500 MHz, and can reach 5 - 6 GHz (for example, the GSM standard operates at 900 MHz, the GPS standard at 1, 5GHz, the UMTS standard at 2 GHz and the WiFi standard at 2.4 and 5 GHz).
- a ground plane PM extends parallel to the screen E at a distance of a few millimeters from the latter: such a ground plane is generally provided in the electronic boards of the apparatus equipped with the screen according to the invention.
- a CM connection connects the ring R to this ground plane.
- the opening slot ("notch" antenna, or “notch”) of figures 2 and 3a is only one possible embodiment of the invention.
- the slot may be non-opening and rectilinear ( figure 3b ), non-opening and L-shaped ( figure 3c ), L-shaped and opening at one end (not shown) or ring-shaped ( figure 3d ).
- the slot coming out of the figure 3a is the preferred embodiment of the invention, because of its small size: indeed, its length is only ⁇ / 4, instead of ⁇ / 2 for the case of a non-opening slot, ⁇ being the wavelength associated with the resonance frequency of the slot.
- the ring slot of the figure 3d is a relatively restrictive embodiment, because the dimensions of the ring determine the resonant frequency of the antenna. In addition, it is necessary to provide a conductive "bridge" for interconnecting the two parts of the ring R, separated by the slot.
- the graph of the figure 4a shows the impedance Z (curve ReZ: real part, curve ImZ: imaginary part) of the slot as a function of the frequency f, expressed in GHz.
- Z curve ReZ: real part
- curve ImZ imaginary part
- the first resonance peak makes it possible to perform an impedance quasi-adaptation (at 50 ⁇ ) between the slot and the port P at a frequency f m ⁇ 2.3 GHz.
- the graph of the parameter S 11 module (voltage reflection coefficient at the input), reproduced on the figure 2b confirms this result: a minimum value of
- f m does not depend solely on the geometry of the slot F, but also on its environment, and in particular the dielectric properties of the substrate S and the distance at which the ground plane PM is located.
- the resistivity of the ring R and especially the dielectric losses in the glass substrate limit the radiation efficiency R eff of the antenna, as shown in FIG. figure 4c . Since the structure has not been optimized, this efficiency is minimal at the frequency f m ; even under these conditions, however, it is compatible with the specifications of most wireless communications applications.
- the invention has been described with reference to a particular type of OLED screen, but this in no way constitutes a limitation. Indeed, the invention can also be applied to liquid crystal displays (LCD), as well as OLED or LCD screens of different structure, using an opaque substrate and a common electrode C (which may be a cathode, as in the example, or a transparent anode).
- LCD liquid crystal displays
- common electrode C which may be a cathode, as in the example, or a transparent anode.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Aerials (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
Description
- L'invention porte sur un écran plat, du type à matrice active, comportant une antenne intégrée. L'invention porte également sur un appareil électronique portable, tel qu'un téléphone portable, comportant un tel écran.
- Le marché des appareils portables, ou « nomades », communicants, tels que les téléphones portables, les ordinateurs palmaires, etc. est en expansion continue. Ces appareils nécessitent des antennes pour pouvoir se connecter à des réseaux de communications (GSM, UMTS, etc.), utiliser des liaisons sans-fils à courte portée (Wifi, Bluetooth, etc.) ou des systèmes de navigation et positionnement par satellite (GPS, Galileo, etc.). Parfois un seul appareil doit comporter plusieurs antennes, fonctionnant à des fréquences différentes.
- L'utilisation d'antennes de type traditionnel, réalisées en tant qu'éléments discrets et assemblées aux autres composants, s'avère peu satisfaisante du point de vue de la compacité de l'appareil et du coût de fabrication. Par conséquent, différentes solutions ont été développées pour intégrer des antennes dans d'autres composants.
- Dans les appareils modernes, l'écran - à cristaux liquides (LCD) ou à diodes électroluminescentes organiques (OLED : organic light-emitting diodes) - tend à occuper la plus grande surface possible, généralement au détriment du clavier qui est parfois purement et simplement supprimé pour être remplacé par un écran tactile. Il a donc été envisagé d'intégrer des antennes émettrices et/ou réceptrices à des écrans plats.
- Le document
US2004189625 divulgue une antenne réalisée par un matériau conducteur intégrée dans un écran à pixels. Les documentsUS 6,973,709 etUS 6,825,811 décrivent des antennes formées par un motif réalisé en matériau conducteur transparent (ITO : oxyde d'indium et étain) déposé sur l'écran. On parle d'antennes imprimées sur l'écran (POD : printed-on-display). - Le document
US 7,242,353 décrit une antenne intégrée non directement à un écran, mais à un support mécanique enserrant ce dernier. - Ces solutions ne sont pas entièrement satisfaisantes d'un point de vue économique, car une ou plusieurs étapes technologiques supplémentaires doivent être prévues pour la fabrication de l'antenne.
- Le document
US 7,336,270 décrit une antenne RFID réalisée sur le substrat d'un écran à cristaux liquides, à côté de l'écran proprement dit, et connectée à une puce électronique montée sur le même substrat. Cette antenne est réalisée en même temps qu'un élément conducteur de l'écran, sans besoin d'une étape technologique supplémentaire. Cependant, il faut prévoir sur le substrat la place pour la puce et l'antenne à côté de l'écran, ce qui va à l'encontre des exigences de miniaturisation des appareils et a également une influence négative sur leur coût. Mais surtout, l'antenne considérée n'est qu'une antenne RFID fonctionnant en champs proche. - L'invention vise à résoudre les inconvénients précités de l'art antérieur en procurant un écran pourvu d'une antenne intégrée dont la fabrication ne nécessite pas - ou très peu - d'étapes technologiques additionnelles, et permet de plus une utilisation optimale de l'espace disponible. Par « antenne » on entend une antenne rayonnante, opérant en champ lointain, en émission et/ou en réception.
- Conformément à l'invention, ce but peut être atteint par un écran plat comportant une matrice active de pixels, une électrode commune auxdites pixels et une bande conductrice connectée à ladite électrode commune et entourant au moins partiellement ladite matrice active, caractérisé en ce qu'au moins une fente formant une antenne est pratiquée dans ladite bande conductrice. La bande conductrice peut former un anneau entourant au moins une partie de ladite matrice active (c'est là le cas le plus courant dans l'art antérieur), mais elle peut également présenter une forme ouverte, par exemple en L ou en U.
- La bande conductrice, généralement annulaire, entourant la matrice active et son électrode commune est normalement prévue dans les écrans plats à matrice active afin d'uniformiser le potentiel de ladite électrode commune (généralement, la cathode). Par conséquent, la mise en oeuvre de l'invention n'augmente pas les dimensions du dispositif. En outre, l'antenne à fente peut être réalisée simultanément à la fabrication par dépôt de la bande conductrice, grâce à un masque photolithographique opportun. Le surcoût engendré est donc pratiquement nul.
- Selon des modes de réalisation particuliers de l'invention :
- L'antenne peut être formée par une fente débouchant sur un bord de ladite bande, par une fente non débouchant ou par une fente annulaire entourant la matrice active de pixels.
- Ladite bande conductrice peut être réalisée par dépôt sur un substrat de l'écran et présenter une épaisseur comprise entre 50 nm et 2 µm (de préférence entre 100 nm et 1 µm) et/ou une largeur comprise entre 50 µm et 10 mm (de préférence entre 100 µm et 2 mm). Cette largeur peut être constante ou variable le long de la bande. On choisira avantageusement de réaliser la fente dans la partie la plus large de la bande
- Ladite fente peut être dimensionnée de manière à présenter au moins une résonance à une fréquence comprise entre 100 MHz et 10 GHz.
- Un autre objet de l'invention est un appareil portable comportant : un tel écran plat ; une carte électronique comportant un plan de masse parallèle audit écran plat et connecté électriquement avec la bande conductrice de ce dernier ; des moyens de génération et/ou de détection de signaux électriques à radiofréquence ; et un port d'excitation de l'antenne à fente intégrée dans l'écran plat, connecté auxdits moyens de génération et/ou de détection de signaux électriques à radiofréquence.
- Avantageusement, l'antenne à fente peut être dimensionnée de manière à présenter une résonance et être au moins approximativement adaptée en impédance au port d'excitation à une fréquence des signaux électriques générés ou détectés par lesdits moyens.
- D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :
- la
figure 1 , une vue éclatée d'un écran plat à diodes électroluminescentes organiques connu de l'art antérieur ; - la
figure 2 , d'une manière schématique, une vue en élévation d'un écran plat selon l'invention, dans lequel une antenne à fente est intégrée ; - les
figures 3a, 3b, 3c, 3d et 3e , différentes géométries d'une antenne à fente pouvant être intégrée à un écran du type de lafigure 1 ; - les
figures 4a, 4b et 4c , des graphiques permettant d'apprécier les performances d'une antenne intégrée à un écran plat selon l'invention. - La
figure 1 montre qu'un écran plat E à matrice active de type OLED comporte en général un substrat transparent S, typiquement réalisé en verre, sur lequel est déposée une matrice M d'électrodes (anodes) A transparentes, connectées de manière individuelle à des lignes d'alimentation électrique (non représentées) par l'intermédiaire de transistors à film mince T. Une couche de polymère semiconducteur électroluminescent formant les OLED est déposée sur les anodes A. Une anode A et l'OLED correspondant forment un pixel, ou plus précisément un sous-pixel (un pixel complet étant constitué par trois pixels de couleurs différentes : bleu, vert et rouge). Une couche métallique C, disposée au-dessus de cette couche de polymère, forme une cathode commune à tous les pixels. - La cathode commune C présente une épaisseur très faible, de l'ordre de 1 µm, face à des dimensions latérales (largeur, longueur) de quelques centimètres. Pour éviter que la résistance relativement importante qui en résulte induise des chutes de tension non négligeables d'un point à l'autre de la cathode, et donc un potentiel électrique inhomogène qui pourrait interférer avec le bon fonctionnement de la matrice de transistors, il est connu de prévoir une bande conductrice en forme d'anneau plus épaisse à la périphérie de la cathode et en contact électrique avec ce dernier. Un tel anneau - indiqué par la référence R sur les
figures 2 et3a - 3e , peut présenter typiquement une épaisseur comprise entre 50 nm et 2 µm, et de préférence entre 100 nm et 1 µm et une largeur comprise entre 50 µm et 10 mm et de préférence entre 100 µm et 2 mm. La conductivité de l'anneau R est suffisante pour le maintenir à un potentiel sensiblement homogène, et pour homogénéiser ainsi le potentiel de la cathode commune C. Cet anneau peut être réalisé en aluminium ou en argent ou en cuivre ou encore en molybdène par exemple. Comme évoqué plus haut, l'anneau R pourrait être remplacé par une bande conductrice de forme « ouverte », par exemple en U ou en L, s'étendant sur une partie seulement de la périphérie de la cathode. - De préférence, comme dans le cas de la figure, l'anneau R ne déborde pas de la surface de l'écran E pour minimiser les dimensions de ce dernier.
- L'idée à la base de l'invention consiste à utiliser une fente ou rainure pratiquée dans l'anneau R en tant qu'antenne. Le principe de l'antenne à fente, en soi, est connu de l'art antérieur : voir en particulier le chapitre 7, lignes 441 - 481 de l'ouvrage de R. Garg, P. Bhartia, I. Bahl & A. Ittipiboon, « Microstrip Antenna Design Handbook », 2001 Artech House.
- La
figure 2 montre un écran à matrice active E comportant un anneau conducteur R dans lequel est pratiquée une fente F débouchant sur un bord de l'anneau. Un port P permet l'excitation de la fente par un signal à radiofréquence ou, inversement, l'extraction d'un signal électrique induit dans la fente par un champ électromagnétique externe à radiofréquence ; le paragraphe 7.3 de l'ouvrage précité décrit des ports d'excitation d'une antenne à fente basés sur le principe du guide d'onde coplanaire. - Le signal électromagnétique injecté dans la fente F par le port P, ou capté par ladite fente, n'influence pas le fonctionnement des transistors de l'écran E car sa fréquence est bien au-delà de la fréquence de coupure de ces dispositifs. En effet, typiquement les protocoles de communication sans fils pour appareils nomades comportent l'utilisation de fréquences supérieures à 500 MHz, et pouvant atteindre les 5 - 6 GHz (par exemple, le standard GSM fonctionne à 900 MHz, le standard GPS à 1,5GHz, le standard UMTS à 2 GHz et le standard Wifi à 2,4 et 5 GHz).
- Un plan de masse PM s'étend parallèlement à l'écran E à une distance de quelques millimètres de ce dernier : un tel plan de masse est généralement prévu dans les cartes électroniques de l'appareillage équipé de l'écran selon l'invention. Une connexion CM relie l'anneau R à ce plan de masse.
- La fente débouchant (antenne de type « notch », ou « encoche ») des
figures 2 et3a ne constitue qu'un mode de réalisation possible de l'invention. En variante, la fente peut être non-débouchant et rectiligne (figure 3b ), non-débouchant et en forme de L (figure 3c ), en forme de L et débouchant à une extrémité (non représentée), voire en forme d'anneau (figure 3d ). Il est également possible de réaliser plusieurs antennes à fente distinctes (F1, F2) pour opérer à des fréquences multiples, ou pour réaliser des systèmes à diversité d'antennes (figure 3e ). - En général, la fente débouchant de la
figure 3a constitue le mode de réalisation préféré de l'invention, en raison de ses petites dimensions : en effet, sa longueur n'est que de λ/4, au lieu de λ/2 pour le cas d'une fente non débouchant, λ étant la longueur d'onde associée à la fréquence de résonance de la fente. - La fente en anneau de la
figure 3d constitue un mode de réalisation relativement contraignant, car les dimensions de l'anneau déterminent la fréquence de résonance de l'antenne. En outre, il faut prévoir un « pont » conducteur pour relier entre elles les deux parties de l'anneau R, séparées par la fente. - Les
figures 4a - 4c montent les résultats d'une simulation basée sur le dispositif de lafigure 2 . Les caractéristiques de la structure simulée sont les suivantes : - substrat en verre pyrex de 1 mm d'épaisseur, avec |εr|=4,82 et tanδ=0,0054 et de dimensions 30 x 50 mm ;
- anneau conducteur en aluminium de largeur 2 mm, d'épaisseur 1 µm, de forme rectangulaire et de dimensions 22 x 42 mm ;
- plan de masse supposé infini, à 5 mm de la cathode C ;
- cathode C en aluminium, 1 µm d'épaisseur ;
- fente débouchant sur un côté long de l'anneau, de forme rectangulaire, largeur 0,5 mm ; longueur 3cm
- port P à 50 Ω.
- Le graphique de la
figure 4a montre l'impédance Z (courbe ReZ : partie réelle ; courbe ImZ : partie imaginaire) de la fente en fonction de la fréquence f, exprimée en GHz. On observe deux résonances, une aux alentours de 2,3 GHz et une autre à 2,75 GHz environ. Le premier pic de résonance permet de réaliser une quasi-adaptation d'impédance (à 50 Ω) entre la fente et le port P à une fréquence fm≅2,3 GHz. Le graphique du module du paramètre S11 (coefficient de réflexion en tension à l'entrée), reproduit sur lafigure 2b , confirme ce résultat : on observe une valeur minimale de |S11| de -25 dB et une bande B10 à -10 dB d'une largeur d'environ 25 MHz centrée autour de fm. - La valeur de fm ne dépend pas uniquement de la géométrie de la fente F, mais également de son environnement, et en particulier des propriétés diélectriques du substrat S et de la distance à laquelle est situé le plan de masse PM.
- La résistivité de l'anneau R et surtout les pertes diélectriques dans le substrat en verre limitent l'efficacité de rayonnement Reff de l'antenne, comme représenté sur la
figure 4c . La structure n'ayant pas été optimisée, cette efficacité est minimale à la fréquence fm; même dans ces conditions, cependant, elle est compatible avec les spécifications de la plupart des applications de communications sans-fils. - L'invention a été décrite en référence à un type particulier d'écran OLED, mais cela ne constitue nullement une limitation. En effet, l'invention peut s'appliquer également à des écrans à cristaux liquides (LCD), ainsi qu'à des écrans OLED ou LCD de structure différente, utilisant un substrat opaque et une électrode commune C (qui peut être une cathode, comme dans l'exemple, ou une anode) transparente.
Claims (11)
- Ecran plat (E) comportant une matrice active de pixels (M), une électrode (C) commune auxdites pixels et une bande conductrice (R) connectée électriquement à ladite électrode commune et entourant au moins partiellement ladite matrice active, caractérisé en ce qu'au moins une fente (F) formant une antenne est pratiquée dans ladite bande conductrice.
- Ecran plat selon la revendication 1, dans lequel ladite bande conductrice forme un anneau entourant au moins une partie de ladite matrice active.
- Ecran plat selon l'une des revendications 1 ou 2, dans lequel ladite antenne est formée par une fente débouchant sur un bord de ladite bande conductrice.
- Ecran plat selon l'une des revendications 1 ou 2, dans lequel ladite antenne est formée par une fente non débouchant.
- Ecran plat selon la revendication 2 dans lequel ladite antenne est formée par une fente annulaire entourant la matrice active de pixels.
- Ecran plat selon l'une des revendications précédentes, dans lequel ladite bande conductrice est réalisée par dépôt sur un substrat (S) de l'écran.
- Ecran plat selon la revendication 6, dans lequel ladite bande conductrice présente une épaisseur comprise entre 50 nm et 2 µm, et de préférence entre 100 nm et 1 µm.
- Ecran plat selon l'une des revendications précédentes, dans lequel ladite bande conductrice présente une largeur comprise entre 50 µm et 10 mm et de préférence entre 100 µm et 2 mm.
- Ecran plat selon l'une des revendications précédentes, dans lequel ladite fente est dimensionnée de manière à présenter au moins une résonance à une fréquence comprise entre 100 MHz et 10 GHz.
- Appareil portable comportant :- un écran plat (E) selon l'une des revendications précédentes ;- une carte électronique comportant un plan de masse (PM) parallèle audit écran plat et connecté électriquement avec la bande conductrice de ce dernier ;- des moyens de génération et/ou de détection de signaux électriques à radiofréquence ; et- un port (P) d'excitation de l'antenne à fente intégrée dans l'écran plat, connecté auxdits moyens de génération et/ou de détection de signaux électriques à radiofréquence.
- Appareil portable selon la revendication 10, dans lequel l'antenne à fente est dimensionnée de manière à présenter une résonance et être au moins approximativement adaptée en impédance au port d'excitation à une fréquence (fm) des signaux électriques générés ou détectés par lesdits moyens.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0900036A FR2940872B1 (fr) | 2009-01-07 | 2009-01-07 | Ecran plat avec antenne integree |
PCT/FR2009/001461 WO2010079268A1 (fr) | 2009-01-07 | 2009-12-18 | Ecran plat avec antenne integree |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2380236A1 EP2380236A1 (fr) | 2011-10-26 |
EP2380236B1 true EP2380236B1 (fr) | 2018-10-24 |
Family
ID=40852203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09801236.2A Active EP2380236B1 (fr) | 2009-01-07 | 2009-12-18 | Ecran plat avec antenne integree |
Country Status (6)
Country | Link |
---|---|
US (1) | US8922434B2 (fr) |
EP (1) | EP2380236B1 (fr) |
JP (1) | JP5539392B2 (fr) |
KR (1) | KR101630241B1 (fr) |
FR (1) | FR2940872B1 (fr) |
WO (1) | WO2010079268A1 (fr) |
Families Citing this family (212)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2940872B1 (fr) | 2009-01-07 | 2012-05-18 | Commissariat Energie Atomique | Ecran plat avec antenne integree |
JP5515540B2 (ja) * | 2009-09-10 | 2014-06-11 | 富士通株式会社 | 表示装置 |
US8489162B1 (en) * | 2010-08-17 | 2013-07-16 | Amazon Technologies, Inc. | Slot antenna within existing device component |
WO2013139001A1 (fr) * | 2012-03-21 | 2013-09-26 | Tsai Hsiung-Kuang | Dispositif d'interface visuelle et système de transmission de données |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9876379B1 (en) * | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
USD832782S1 (en) | 2015-12-30 | 2018-11-06 | Energous Corporation | Wireless charging device |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
USD773506S1 (en) | 2014-12-30 | 2016-12-06 | Energous Corporation | Display screen with graphical user interface |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
US9678540B2 (en) | 2013-09-23 | 2017-06-13 | Apple Inc. | Electronic component embedded in ceramic material |
US9632537B2 (en) | 2013-09-23 | 2017-04-25 | Apple Inc. | Electronic component embedded in ceramic material |
JP6636432B2 (ja) * | 2013-09-23 | 2020-01-29 | アップル インコーポレイテッドApple Inc. | セラミック材料に埋め込まれた電子部品 |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US9225056B2 (en) | 2014-02-12 | 2015-12-29 | Apple Inc. | Antenna on sapphire structure |
USD786836S1 (en) * | 2014-04-10 | 2017-05-16 | Energous Corporation | Television with antenna |
USD784300S1 (en) * | 2014-04-10 | 2017-04-18 | Energous Corporation | Laptop computer with antenna |
USD784302S1 (en) * | 2014-04-10 | 2017-04-18 | Energous Corporation | Monitor with antenna |
USD784964S1 (en) * | 2014-04-10 | 2017-04-25 | Energous Corporation | Television with antenna |
USD805066S1 (en) * | 2014-04-10 | 2017-12-12 | Energous Corporation | Laptop computer with antenna |
USD784301S1 (en) * | 2014-04-10 | 2017-04-18 | Energous Corporation | Monitor with antenna |
US9647331B2 (en) * | 2014-04-15 | 2017-05-09 | The Boeing Company | Configurable antenna assembly |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
DE102014226947A1 (de) * | 2014-12-23 | 2016-06-23 | Siemens Healthcare Gmbh | Schaltlogik zur Verteilung von Empfangssignalen eines MR-Systems auf Empfänger |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
KR20160129336A (ko) * | 2015-04-30 | 2016-11-09 | 엘지전자 주식회사 | 이동 단말기 |
USD941815S1 (en) * | 2015-09-03 | 2022-01-25 | Sony Corporation | Display |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10401548B2 (en) * | 2015-09-24 | 2019-09-03 | Intel Corporation | Integrated antenna with display uniformity |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10277054B2 (en) | 2015-12-24 | 2019-04-30 | Energous Corporation | Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10263476B2 (en) | 2015-12-29 | 2019-04-16 | Energous Corporation | Transmitter board allowing for modular antenna configurations in wireless power transmission systems |
USD832783S1 (en) | 2015-12-30 | 2018-11-06 | Energous Corporation | Wireless charging device |
DE102016105454A1 (de) * | 2016-03-23 | 2017-09-28 | Osram Oled Gmbh | Organisches lichtemittierendes Bauelement, Verfahren zum Herstellen eines organischen lichtemittierenden Bauelements und Verfahren zum Betreiben eines organischen lichtemittierenden Bauelements |
KR102334098B1 (ko) * | 2016-04-20 | 2021-12-03 | 삼성전자주식회사 | 디스플레이가 포함된 전자 장치 |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
JP6691273B2 (ja) | 2016-12-12 | 2020-04-28 | エナージャス コーポレイション | 配送される無線電力を最大化するために近接場充電パッドのアンテナ区域を選択的に活性化する方法 |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
WO2018183892A1 (fr) | 2017-03-30 | 2018-10-04 | Energous Corporation | Antennes plates ayant deux fréquences de résonance ou plus destinées à être utilisées dans des systèmes de transmission de puissance sans fil |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US10775490B2 (en) * | 2017-10-12 | 2020-09-15 | Infineon Technologies Ag | Radio frequency systems integrated with displays and methods of formation thereof |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
JP2022523022A (ja) | 2019-01-28 | 2022-04-21 | エナージャス コーポレイション | 無線送電のための小型アンテナ用のシステム及び方法 |
EP3921945A1 (fr) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systèmes et procédés d'estimation de phases optimales à utiliser pour des antennes individuelles dans un réseau d'antennes |
US11804660B2 (en) * | 2019-02-25 | 2023-10-31 | Huawei Technologies Co., Ltd. | Antenna for integration with a display |
CN114731061A (zh) | 2019-09-20 | 2022-07-08 | 艾诺格思公司 | 使用无线功率发射系统中的功率放大器控制器集成电路来分类和检测异物 |
US11411441B2 (en) | 2019-09-20 | 2022-08-09 | Energous Corporation | Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers |
WO2021055898A1 (fr) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systèmes et procédés de détection d'objet étranger basée sur l'apprentissage automatique pour transmission de puissance sans fil |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021119483A1 (fr) | 2019-12-13 | 2021-06-17 | Energous Corporation | Station de charge présentant des contours de guidage permettant d'aligner un dispositif électronique sur la station de charge et de transférer efficacement de l'énergie radiofréquence en champ proche au dispositif électronique |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
KR20210086142A (ko) * | 2019-12-31 | 2021-07-08 | 엘지디스플레이 주식회사 | 터치 디스플레이 장치 |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US11929548B2 (en) * | 2021-07-28 | 2024-03-12 | Snap Inc. | Eyewear with slot-ring antenna |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316403A (ja) * | 1989-06-14 | 1991-01-24 | Kimoto & Co Ltd | 電波受信用シートアンテナ |
JPH06332011A (ja) * | 1993-05-18 | 1994-12-02 | Sony Corp | 半導体集合基板及び半導体装置 |
US6853336B2 (en) * | 2000-06-21 | 2005-02-08 | International Business Machines Corporation | Display device, computer terminal, and antenna |
US6339400B1 (en) * | 2000-06-21 | 2002-01-15 | International Business Machines Corporation | Integrated antenna for laptop applications |
JP2002151939A (ja) * | 2000-10-03 | 2002-05-24 | Internatl Business Mach Corp <Ibm> | アンテナ装置、情報処理装置および携帯電話 |
US6927668B1 (en) * | 2000-11-21 | 2005-08-09 | Richard Odle | Print access security system |
US6973709B2 (en) | 2001-04-19 | 2005-12-13 | Chunghwa Picture Tubes | Method of manufacturing printed-on-display antenna for wireless device |
JP2003060422A (ja) | 2001-08-09 | 2003-02-28 | Matsushita Electric Ind Co Ltd | ディスプレイ−アンテナ一体型構造体、通信装置 |
JP3794411B2 (ja) * | 2003-03-14 | 2006-07-05 | セイコーエプソン株式会社 | 表示装置および電子機器 |
US20040257283A1 (en) * | 2003-06-19 | 2004-12-23 | International Business Machines Corporation | Antennas integrated with metallic display covers of computing devices |
TWI243512B (en) | 2003-11-18 | 2005-11-11 | Hon Hai Prec Ind Co Ltd | Planar inverted-f antenna and method of manufacturing of the same |
JP2005345704A (ja) * | 2004-06-02 | 2005-12-15 | Seiko Epson Corp | 電子機器 |
JP4445343B2 (ja) * | 2004-08-10 | 2010-04-07 | 株式会社日立製作所 | Icタグ実装液晶表示器、およびその製造方法 |
JP4586524B2 (ja) * | 2004-12-15 | 2010-11-24 | ソニー株式会社 | 表示装置並びにアンテナ装置 |
JP4231867B2 (ja) * | 2005-11-18 | 2009-03-04 | 株式会社東芝 | 無線装置および電子機器 |
US20070194994A1 (en) * | 2006-02-22 | 2007-08-23 | Waltho Alan E | Extendible mobile slot antenna apparatus, systems, and methods |
JP2008090724A (ja) * | 2006-10-04 | 2008-04-17 | Fuji Xerox Co Ltd | 画像表示媒体 |
CN101682111B (zh) * | 2007-09-27 | 2013-01-16 | 夏普株式会社 | 显示装置基板、液晶显示单元、显示系统、和显示装置基板的制造方法 |
FR2940872B1 (fr) | 2009-01-07 | 2012-05-18 | Commissariat Energie Atomique | Ecran plat avec antenne integree |
JP5423165B2 (ja) * | 2009-06-10 | 2014-02-19 | 株式会社ニコン | 撮影装置 |
JP5649910B2 (ja) * | 2010-10-22 | 2015-01-07 | 京セラ株式会社 | 携帯通信端末 |
-
2009
- 2009-01-07 FR FR0900036A patent/FR2940872B1/fr active Active
- 2009-12-18 JP JP2011544896A patent/JP5539392B2/ja active Active
- 2009-12-18 US US13/143,589 patent/US8922434B2/en active Active
- 2009-12-18 KR KR1020117018173A patent/KR101630241B1/ko active IP Right Grant
- 2009-12-18 WO PCT/FR2009/001461 patent/WO2010079268A1/fr active Application Filing
- 2009-12-18 EP EP09801236.2A patent/EP2380236B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP5539392B2 (ja) | 2014-07-02 |
US20120019419A1 (en) | 2012-01-26 |
KR101630241B1 (ko) | 2016-06-14 |
US8922434B2 (en) | 2014-12-30 |
FR2940872A1 (fr) | 2010-07-09 |
JP2012514926A (ja) | 2012-06-28 |
KR20110103452A (ko) | 2011-09-20 |
EP2380236A1 (fr) | 2011-10-26 |
FR2940872B1 (fr) | 2012-05-18 |
WO2010079268A1 (fr) | 2010-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2380236B1 (fr) | Ecran plat avec antenne integree | |
EP3669422B1 (fr) | Antenne plaquée présentant deux modes de rayonnement différents à deux fréquences de travail distinctes, dispositif utilisant une telle antenne | |
CN111033893B (zh) | 薄膜天线和包括薄膜天线的显示装置 | |
EP1902491A1 (fr) | Systeme d'antenne a diversite d'ordre 2 et carte pour appareil de communication sans fil munie d'un tel systeme | |
US20170373228A1 (en) | Micro-light emitting diode with metal side mirror | |
EP2795726B1 (fr) | Antenne imprimee optiquement transparente et réseau d'antennes optiquement transparentes | |
WO2005036697A1 (fr) | Antenne interne de faible volume | |
EP2710676B1 (fr) | Element rayonnant pour antenne reseau active constituee de tuiles elementaires | |
FR2942676A1 (fr) | Systeme d'antennes compact a diversite d'ordre 2. | |
EP3146593B1 (fr) | Système d'antennes pour réduire le couplage électromagnétique entre antennes | |
EP2086053A1 (fr) | Antenne imprimée presentant un diagramme bi-faisceaux | |
CN111033892A (zh) | 薄膜天线和包含该薄膜天线的显示装置 | |
WO2003061062A1 (fr) | Dispositif pour la reception et/ou l'emission d'ondes electromagnetiques a diversite de rayonnement | |
FR2976146A1 (fr) | Carte de test pour carte de circuit imprime dans le domaine des systemes sans fils | |
EP2432072B1 (fr) | Symétriseur large bande sur circuit multicouche pour antenne réseau | |
EP2879234B1 (fr) | Appareil électronique avec antenne radio repliée dans un boîtier | |
WO2003019718A1 (fr) | Antenne a resonateur dielectrique polarisee circulairement | |
EP3610577B1 (fr) | Antenne configurée pour être conformée à une surface transparente, dispositif d'affichage et dispositif de paiement électronique correspondants | |
KR20210057707A (ko) | 투명 안테나 및 그 제조 방법 | |
EP1532579B1 (fr) | Antenne pour etiquette electronique | |
EP3942649B1 (fr) | Antenne directive compacte, dispositif comportant une telle antenne | |
EP3605730B1 (fr) | Dispositif d'antenne à deux substrats plans différents et sécants | |
Shinde et al. | Circularly polarized transparent equilateral triangular shaped antenna with defected ground | |
WO2011036418A1 (fr) | Antenne miniature | |
WO2024051947A1 (fr) | Dispositif radiofréquence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180518 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009055270 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1057785 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1057785 Country of ref document: AT Kind code of ref document: T Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009055270 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181218 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20190725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091218 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231221 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231218 Year of fee payment: 15 Ref country code: DE Payment date: 20231219 Year of fee payment: 15 |