[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2361232A1 - Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device - Google Patents

Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device

Info

Publication number
EP2361232A1
EP2361232A1 EP09760195A EP09760195A EP2361232A1 EP 2361232 A1 EP2361232 A1 EP 2361232A1 EP 09760195 A EP09760195 A EP 09760195A EP 09760195 A EP09760195 A EP 09760195A EP 2361232 A1 EP2361232 A1 EP 2361232A1
Authority
EP
European Patent Office
Prior art keywords
substrate
glass
index
face
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09760195A
Other languages
German (de)
French (fr)
Inventor
Arnaud Huignard
Julien Sellier
Guillaume Lecamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2361232A1 publication Critical patent/EP2361232A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2

Definitions

  • the invention relates to a glass substrate provided on one of its faces with an electrode.
  • OLED Organic Light Emitting Diodes
  • the OLED comprises a material or a stack of organic electroluminescent materials, and is framed by two electrodes, one of the electrodes the anode being constituted by that associated with the glass substrate and the other electrode, the cathode, being arranged on organic materials opposite the anode.
  • OLED is a device that emits light by electroluminescence using the recombination energy of holes injected from the anode and electrons injected from the cathode.
  • the cathode In the case of its use in an emissive device whose emission is only one side, the cathode is not transparent, and the emitted photons cross against the transparent anode and the glass substrate support of OLED to provide light outside the device.
  • An OLED usually finds its application in a display screen or more recently in a lighting device.
  • the solutions usually proposed concern the glass substrate, that is to say at the level of the glass-air interface, we will speak of geometrical optics solutions because most often using geometrical optics, or at the level of the glass-anode interface we will talk about diffractive optics solutions because they usually use diffractive optics.
  • the profile of the substrate is obtained by applying a photoresist mask on the surface of the substrate whose pattern corresponds to the desired one of the growths, then by etching the surface through the mask.
  • Document WO 05/081334 proposes another diffractive optical solution which consists in covering a flat glass substrate with a textured polymer layer obtained by embossing, the electrode and the organic layer being then deposited following the profile of the polymer layer.
  • the corrugations of the layer which may be periodic or not, have magnitudes such that the distance separating an apex from a corrugation background is between 0.5 ⁇ m and 200 ⁇ m.
  • the purpose of the invention is therefore to provide a mineral glass substrate provided on one of its faces with a transparent electrode, the substrate being intended to constitute the support of a light emitting device, in particular an OLED, which is of simple design, reliable and allows to improve over existing solutions, the extraction of light emitted by said device and to provide a white light.
  • the glass substrate has a first face and a second opposite face, the second face being provided with an electrode which is formed of at least one electrically conductive layer. It has at its entire second face, and a thickness e extending inwardly of the substrate towards the first face, a variation of the refractive index of the glass obtained by an exchange treatment ionic, the refractive index at the surface being greater than that of the glass located outside the thickness e (ie a thickness greater than the thickness e starting from the free surface of the substrate, on the side of the exchanged face).
  • Ion exchange in glass is the ability of certain glass ions, especially alkaline ions, to be able to exchange with other ions with different properties, such as polarizability. These other ions are reported on the surface of the glass and thus form in the glass near its surface an ionic pattern whose refractive index is distinct from that of the glass.
  • the surface of the glass remains sufficiently flat to avoid generating electrical contact between the anode and the cathode, which would then deteriorate the OLED.
  • the refractive index varies according to the thickness e to the surface of the second face to tend or be equal to the refractive index of the electrode.
  • the variation of the refractive index according to the thickness e can correspond to a profile passing from the value of the index of the glass established below the thickness e (outside the thickness e) to another value d 'index, in a direct way without intermediate value.
  • the variation of the refractive index of the substrate corresponds to an index gradient, that is to say a variation corresponding to a profile passing through several index values.
  • the profile is preferably (globally) linear.
  • Such a profile is obtained by selecting in known manner the glass in particular its diffusion properties, for example the interdiffusion coefficient between silver and sodium.
  • the index variation is greater than or equal to 0.05, preferably at least 0.08, or even at least 0.1.
  • the substrate advantageously has a refractive index which varies from the thickness of the glass to the surface to tend or be equal to the refractive index of the electrode.
  • the photons emitted from the OLED and passing through the electrode and then meeting the glass substrate are much less deviated from their trajectory due to a break in the index. less pronounced between the electrode and the glass.
  • An index gradient is defined as a gradual change in the index of the medium. This medium avoids too much reflection of the light that passes through it.
  • a variation of index in the thickness of the glass is sufficient to direct the light into the substrate at an angle of incidence adapted to optimally ensure the photon output of the substrate.
  • Ion exchange is the exchange of certain ions of the glass by ions selected from, in combination or not, barium, cesium, and preferably silver or thallium. These ions are chosen for their high polarizability in comparison with the ions they replace, which gives rise to a strong variation in the refractive index of the exchanged zone of the glass.
  • the use of silver or thallium ions as a doping ion makes it possible to create zones having a sufficiently high refractive index with respect to that of the glass to respond according to the invention to the particular application of electroluminescent devices.
  • Ion exchange is obtained by known techniques.
  • the surface of the glass substrate to be treated in a bath of molten salts of the exchange ions, for example silver nitrate (AgNOs) is placed at a high temperature between 200 and 550 ° C., and for a sufficient duration corresponding to the desired exchange depth.
  • molten salts of the exchange ions for example silver nitrate (AgNOs)
  • the substrate in contact with the bath can then undergo another heat treatment, advantageously at a temperature between the exchange temperature and the glass transition temperature of the glass, in order to diffuse the ions exchanged in a direction normal to the face of the substrate provided with the electrode, so as to obtain a linear profile index gradient.
  • the light transmission of the substrate of the invention may be greater than or equal to 80%.
  • the glass substrate may be extraclear.
  • Reference WO04 / 025334 may be referred to for the composition of an extraclear glass.
  • a silicosodocalcic glass with less than 0.05% Fe III or Fe 2 O 3 .
  • Saint-Gobain's Diamant glass Saint-Gobain's Albarino glass (textured or smooth)
  • Pilkington's Optiwhite glass Schott's B270 glass.
  • the glass substrate may advantageously have the following composition: SiO 2 67.0 - 73.0%, preferably 70.0 - 72.0%
  • Redox FeO / total iron 0.02 - 0.4%, preferably 0.02 - 0.2%
  • the glass substrate according to the invention is preferably used as a support in a light emitting device, in particular an electroluminescent diode (OLED) device comprising an organic layer disposed between two electrodes, one of the electrodes being constituted by the electrode of the glass substrate of the invention.
  • OLED electroluminescent diode
  • Such a light-emitting diode device is for example designed for display screens or lighting devices.
  • FIG. 1 illustrates a sectional view of a glass substrate according to the invention
  • FIG. 2 schematically illustrates, according to a first embodiment, the device for implementing the ion exchange process for obtaining a substrate whose refractive index is variable in its thickness;
  • FIG. 3 schematically illustrates, according to a second embodiment, the device for implementing the ion exchange process. for obtaining a substrate whose refractive index is variable in its thickness;
  • FIG. 4 is a sectional view of an OLED provided with the substrate of FIG.
  • FIG. 1 represents a glass substrate 1 having a thickness in particular between 0.7 and 10 mm, comprising in its larger extensions a first face 10 and a second opposite face 11.
  • the substrate is provided on its second face 11 with an electrode 2 which consists of at least one thin layer of electrically conductive mathehau (x), this layer preferably being transparent for the use of the substrate as a means light transmission.
  • electrode 2 which consists of at least one thin layer of electrically conductive mathehau (x), this layer preferably being transparent for the use of the substrate as a means light transmission.
  • the substrate 1 has from its second face 11 to a depth e and over its entire surface a glass thickness whose refractive index is modified relative to that of the rest of the body of the substrate.
  • the thickness e is advantageously between 1 and 100 ⁇ m, preferably between 1 ⁇ m and 10 ⁇ m, and in particular between 1 ⁇ m and 5 ⁇ m.
  • the refractive index of glass which is usually 1.5, is varied by a variation of greater than or equal to 0.05, and preferably of at least 0.08 or even more than 0.1.
  • the substrate keeps a significant light transmission of at least 80%.
  • the light transmission is measured in a known manner in accordance with ISO 23539: 2005.
  • the index variation is advantageously gradual. It preferably constitutes a linear profile index gradient.
  • This variation of refractive index is obtained according to the invention by ion exchange treatment.
  • Some glass ions, in particular alkaline ions, are exchanged by ions such as silver, thallium, barium, cesium.
  • the first technique illustrated in FIG. 2 is carried out by immersing the face 11 of the substrate in a bath 3 containing the material whose ions are to be exchanged.
  • a bath 3 containing the material whose ions are to be exchanged.
  • the bath contains silver nitrate (AgNOs).
  • the immersion of the substrate may be complete with a protective layer, of the type Al, Ti, Al 2 O 3, coating the opposite face to be treated and which is removed after the bath, for example by polishing.
  • a protective layer of the type Al, Ti, Al 2 O 3, coating the opposite face to be treated and which is removed after the bath, for example by polishing.
  • the immersion of the substrate may be rather partial and preferably the entire thickness of the substrate flush with the opposite face to be treated.
  • the diffusion depth of the Ag + silver ions in the glass as a replacement for Na + sodium ions is a function of the time during which the substrate is left in the bath.
  • the second technique consists of an exchange carried out under an electric field with a possible additional step of heat treatment.
  • FIG. 3 illustrates the device for implementing the ion exchange method assisted by an electric field.
  • the device comprises two compartments 5 and 6 applied opposite one another, forming respective reservoirs.
  • the compartments are attached to the substrate 1 by means of an adhesive 7 which also acts as a seal with respect to the contents of the tanks.
  • One of the compartments contains a bath 50 AgNOs while the other compartment is filled with a mixture of KNO 3 (or LiNO 3 ) and NaNO 3 .
  • a platinum electrode 8 and, respectively, a platinum electrode 9 are immersed in each bath 50 and 60 respectively, these electrodes being connected to a voltage generator 80.
  • a layer of metallic silver may be deposited. It is deposited by magnetron, CVD, inkjet or silkscreen. An electrode layer is also deposited on the opposite side. The electric field is then applied between the silver layer and the metal layer. After the exchange, the electrode layer is removed by polishing or chemical bonding.
  • Ion exchange is carried out at a temperature of between 250 and 350 ° C.
  • the exchange depth is a function of the intensity of the field, the time during which the substrate is subjected to this field and the temperature at which the exchange is carried out.
  • the field is between 10 and 100 V.
  • This technique leads to a variation of index whose profile is similar to a step, by moving clearly from the value of the index of the glass to a second value with no variation spread between these two values.
  • it is chosen to carry out such an ionic exchange with a preferably extraclear glass, of 2 mm, at a temperature of 300 ° C., with a duration of 10 h under a field of 10 V / min.
  • a variation of stair type index and amplitude 0.1 we obtain a variation of stair type index and amplitude 0.1.
  • the profile of the index variation advantageously becomes progressive. This is to heat the substrate in an oven at a temperature between the ion exchange temperature and the glass transition temperature of the glass.
  • the temperature and the duration of the treatment depend on the required index gradient.
  • Some glass compositions will be preferred so that the ion exchange does not induce yellowing of the glass and therefore an unfortunate decrease in light transmission.
  • a glass composition is as follows: SiO 2 67.0 - 73.0%, preferably 70.0 - 72.0%
  • the ion exchange process thus makes it possible to easily treat large areas, to be reproducible industrially. It allows to act directly and in a simple manner on the glass without the need to proceed to intermediate and / or complementary steps such as deposition of layers, etching.
  • the unmodified surface state of the glass substrate provides a deposit of the cover electrode 2 under easy, usual conditions and in conventional thicknesses.
  • the electrode 2 is formed of a stack of layers of electrically conductive materials. It consists, for example, of a layer of ITO (Indium Tin Oxide) with a refractive index of about 1.9 or of a dielectric (s) / Ag / dielectric stack (s), generally with a first dielectric direct contact with glass having an index of 2.
  • ITO Indium Tin Oxide
  • s dielectric
  • s Ag / dielectric stack
  • FIG. 4 shows an OLED 7 comprising the substrate of the invention having the variation of refractive index and provided with the electrode 2.
  • the OLED thus comprises successively, the substrate 1 with variation of index serving as a support for the OLED, a first electroconductive coating transparent which consists of the electrode 2, a layer 70 of organic material (s) known per se, and a second electroconductive coating 71 which forms a second electrode and preferably and in known manner, facing of the organic layer 70, a reflecting surface for returning the light emitted by the organic layer to the opposite direction, that of the transparent substrate.
  • the examples all have the same constituent elements of the OLED (transparent electrode, layer of organic materials, second electrode, support glass substrate).
  • the support or base glass substrate is a standard glass substrate, of the ALBARINO® type marketed by SAINT-GOBAIN GLASS FRANCE, with 5 cm by 5 cm and 2.1 mm thick sides.
  • this base substrate When this base substrate is not treated, it corresponds to a reference substrate (reference example) for comparative tests which has a refractive index of 1, 52.
  • Example 1 relates to a base substrate which has undergone an ion exchange with silver according to the first technique, having been immersed in a silver nitrate bath (AgNOs), for twenty-one hours and at a temperature 345 ° C.
  • AgNOs silver nitrate bath
  • Example 2 relates to a base substrate which has undergone an ion exchange with thallium according to the first technique, having been immersed in a thallium nitrate bath (TINO3) for three hours and at a temperature of 400 ° C.
  • TINO3 thallium nitrate bath
  • the table below summarizes the values obtained for each of the examples, as regards the refraction index of the substrate, the index gradient obtained with respect to an untreated reference substrate, the ion exchange thickness in the substrate. , and the gain in extraction obtained when the substrate of each example is integrated in an OLED having the same characteristics for the elements other than the substrate.
  • the external quantum efficiency is first calculated, which corresponds to the ratio between the light optical power coming out of the OLED and the electric power injected into the OLED device. Then, considering an internal quantum yield of 25% for the OLED, the external quantum yield is divided by this internal quantum yield, here 0.25, to obtain the extraction efficiency.
  • the substrates of Examples 1 and 2 of the invention thus show a relative gain in light extraction efficiency of more than 19% compared to an untreated substrate.
  • the relative gain in extraction efficiency is the ratio between the difference in efficiency of the example of the invention and the reference example, and the efficiency of the reference example. It has also been demonstrated that this gain obtained is obtained without degradation of the other properties of the OLED, in particular the colorimetric variation as a function of the angle of observation of the light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

Glass substrate (1) having a first face (10) and an opposed second face (11), said substrate being provided on its second face with an electrode (2) formed from at least one electrically conducting layer, characterized in that it has, over its entire second face and with a thickness e extending towards the interior of the substrate in the direction of the first face (10), a variation of the refractive index of the glass obtained by an ion exchange treatment, the refractive index on the surface being higher than that of the glass located away from the thickness.

Description

SUBSTRAT VERRIER AVEC ELECTRODE NOTAMMENT DESTINE A UN DISPOSITIF A DIODE ELECTROLUMINESCENTE ORGANIQUE GLASS SUBSTRATE WITH ELECTRODE PARTICULARLY FOR ORGANIC ELECTROLUMINESCENT DIODE DEVICE
L'invention concerne un substrat verrier pourvu sur l'une de ses faces d'une électrode.The invention relates to a glass substrate provided on one of its faces with an electrode.
L'invention sera plus particulièrement décrite pour une structure servant de support à un dispositif à diode électroluminescente organique, dit « OLED » pour « Organic Light Emitting Diodes » en anglais.The invention will be more particularly described for a structure serving as a support for an organic light-emitting diode device, called "OLED" for "Organic Light Emitting Diodes" in English.
L'OLED comporte un matériau ou un empilement de matériaux électroluminescents organiques, et est encadré par deux électrodes, l'une des électrodes l'anode, étant constituée par celle associée au substrat verrier et l'autre électrode, la cathode, étant agencée sur les matériaux organiques à l'opposé de l'anode.The OLED comprises a material or a stack of organic electroluminescent materials, and is framed by two electrodes, one of the electrodes the anode being constituted by that associated with the glass substrate and the other electrode, the cathode, being arranged on organic materials opposite the anode.
L'OLED est un dispositif qui émet de la lumière par électroluminescence en utilisant l'énergie de recombinaison de trous injectés depuis l'anode et d'électrons injectés depuis la cathode. Dans le cas de son utilisation dans un dispositif émissif dont l'émission ne se fait que d'un seul côté, la cathode n'est alors pas transparente, et les photons émis traversent par contre l'anode transparente et le substrat verrier support de l'OLED pour fournir de la lumière en dehors du dispositif.OLED is a device that emits light by electroluminescence using the recombination energy of holes injected from the anode and electrons injected from the cathode. In the case of its use in an emissive device whose emission is only one side, the cathode is not transparent, and the emitted photons cross against the transparent anode and the glass substrate support of OLED to provide light outside the device.
Une OLED trouve généralement son application dans un écran de visualisation ou plus récemment dans un dispositif d'éclairage.An OLED usually finds its application in a display screen or more recently in a lighting device.
Une OLED présente une faible efficacité d'extraction de lumière : le rapport entre la lumière qui sort effectivement du substrat verrier et celle émise par les matériaux électroluminescents est relativement faible, de l'ordre de 0,25. Ce phénomène, s'explique d'une part, par le fait qu'une certaine quantité de photons reste emprisonnée dans des modes guidés entre la cathode et l'anode, et d'autre part, par la réflexion de la lumière au sein du substrat verrier du fait de la différence d'indice entre le verre du substrat (n=1 ,5) et l'air extérieur au dispositif (n=1 ).An OLED has a low light extraction efficiency: the ratio between the light that actually leaves the glass substrate and that emitted by the electroluminescent materials is relatively low, of the order of 0.25. This phenomenon is explained on the one hand by the fact that a certain quantity of photons remains trapped in guided modes between the cathode and the anode, and on the other hand by the reflection of light within the glass substrate because of the index difference between the glass of the substrate (n = 1, 5) and the air outside the device (n = 1).
Il est donc recherché des solutions pour améliorer l'efficacité d'une OLED, à savoir augmenter le gain en extraction tout en fournissant une lumière qui soit blanche, c'est-à-dire émettant dans certaines voire toutes longueurs d'onde du spectre visible.It is therefore sought solutions to improve the efficiency of an OLED, namely to increase the extraction gain while providing a light that is white, that is to say, emitting in some or all wavelengths of the spectrum visible.
Les solutions habituellement proposées concernent le substrat verrier, soit au niveau de l'interface verre-air, on parlera de solutions d'optique géométrique car faisant le plus souvent appel à l'optique géométrique, soit au niveau de l'interface verre-anode, on parlera de solutions d'optique diffractive car ayant recours habituellement à l'optique diffractive.The solutions usually proposed concern the glass substrate, that is to say at the level of the glass-air interface, we will speak of geometrical optics solutions because most often using geometrical optics, or at the level of the glass-anode interface we will talk about diffractive optics solutions because they usually use diffractive optics.
Il est connu en tant que solution d'optique diffractive d'apporter à l'interface verre-anode une structure à saillies périodiques qui constitue un réseau de diffraction. Le document US 2004/0227462 montre une solution d'optique diffractive. A cet effet il divulgue une OLED dont le substrat transparent, support de l'anode et de la couche organique, est texture. La surface du substrat présente ainsi une alternance d'excroissances et de creux dont le profil est suivi par l'anode et la couche organique déposées dessus.It is known as a diffractive optical solution to provide the glass-anode interface with a periodic projection structure which constitutes a diffraction grating. Document US 2004/0227462 shows a diffractive optical solution. For this purpose it discloses an OLED whose transparent substrate, support of the anode and the organic layer, is textured. The surface of the substrate thus has an alternation of excrescences and recesses whose profile is followed by the anode and the organic layer deposited on it.
Cependant si une telle solution est efficace pour extraire la lumière monochromatique, c'est-à-dire dans une direction donnée de l'espace, elle n'est pas aussi performante pour la lumière polychromatique telle que la lumière blanche pour une application d'éclairage. iHowever, if such a solution is effective for extracting monochromatic light, that is to say in a given direction of space, it is not as efficient for polychromatic light as white light for an application of lighting. i
En outre, dans ce document US 2004/0227462, le profil du substrat est obtenu en appliquant un masque en résine photosensible sur la surface du substrat dont le motif correspond à celui recherché des excroissances, puis en gravant la surface au travers du masque. Un tel procédé n'est pas facile de mise en œuvre de façon industrielle sur de grandes surfaces de substrat, et est surtout trop onéreux, tout particulièrement pour des applications d'éclairage.In addition, in this document US 2004/0227462, the profile of the substrate is obtained by applying a photoresist mask on the surface of the substrate whose pattern corresponds to the desired one of the growths, then by etching the surface through the mask. Such a method is not easy to implement industrially on large substrate surfaces, and is above all too expensive, especially for lighting applications.
Le document WO 05/081334 propose une autre solution d'optique diffractive qui consiste à recouvrir un substrat verrier plan d'une couche polymère texturée obtenue par embossage, l'électrode et la couche organique étant ensuite déposées en suivant le profil de la couche polymère. Les ondulations de la couche, qui peuvent être périodiques ou non, présentent des grandeurs telles que la distance séparant un sommet d'un fond d'ondulation est comprise entre 0,5 μm et 200 μm.Document WO 05/081334 proposes another diffractive optical solution which consists in covering a flat glass substrate with a textured polymer layer obtained by embossing, the electrode and the organic layer being then deposited following the profile of the polymer layer. . The corrugations of the layer, which may be periodic or not, have magnitudes such that the distance separating an apex from a corrugation background is between 0.5 μm and 200 μm.
Cependant, avec une telle solution, on a toutefois observé de nombreuses défaillances électriques des OLEDS.However, with such a solution, however, numerous electrical failures of the OLEDS have been observed.
L'invention a donc pour but de fournir un substrat en verre minéral pourvu sur l'une de ses faces d'une électrode transparente, le substrat étant destiné à constituer le support d'un dispositif émissif de lumière, en particulier une OLED, qui soit de conception simple, fiable et permette d'améliorer par rapport aux solutions existantes, l'extraction de lumière émise par ledit dispositif et de fournir une lumière blanche.The purpose of the invention is therefore to provide a mineral glass substrate provided on one of its faces with a transparent electrode, the substrate being intended to constitute the support of a light emitting device, in particular an OLED, which is of simple design, reliable and allows to improve over existing solutions, the extraction of light emitted by said device and to provide a white light.
Selon l'invention, le substrat en verre comporte une première face et une seconde face opposée, la seconde face étant pourvue d'une électrode qui est formée d'au moins une couche électriquement conductrice. Il présente au niveau de la totalité de sa seconde face, et selon une épaisseur e s'étendant vers l'intérieur du substrat en direction de la première face, une variation de l'indice de réfraction du verre obtenu par un traitement d'échange ionique, l'indice de réfraction en surface étant supérieur à celui du verre situé en dehors de l'épaisseur e (soit une épaisseur plus importante que l'épaisseur e en partant de la surface libre du substrat, du côté de la face échangée).According to the invention, the glass substrate has a first face and a second opposite face, the second face being provided with an electrode which is formed of at least one electrically conductive layer. It has at its entire second face, and a thickness e extending inwardly of the substrate towards the first face, a variation of the refractive index of the glass obtained by an exchange treatment ionic, the refractive index at the surface being greater than that of the glass located outside the thickness e (ie a thickness greater than the thickness e starting from the free surface of the substrate, on the side of the exchanged face).
Cette variation d'indice est obtenue par échange ionique. L'échange ionique dans le verre est la capacité que présentent certains ions du verre, en particulier les ions alcalins, de pouvoir s'échanger avec d'autres ions aux propriétés différentes, telles que la polarisabilité. Ces autres ions sont rapportés en surface du verre et forment ainsi dans le verre proche de sa surface un motif ionique dont l'indice de réfraction est distinct de celui du verre.This index variation is obtained by ion exchange. Ion exchange in glass is the ability of certain glass ions, especially alkaline ions, to be able to exchange with other ions with different properties, such as polarizability. These other ions are reported on the surface of the glass and thus form in the glass near its surface an ionic pattern whose refractive index is distinct from that of the glass.
La surface du verre reste suffisamment plane pour éviter d'engendrer un contact électrique entre l'anode et la cathode, qui détériorerait alors l'OLED.The surface of the glass remains sufficiently flat to avoid generating electrical contact between the anode and the cathode, which would then deteriorate the OLED.
Avantageusement, l'indice de réfraction varie selon l'épaisseur e jusqu'en surface de la seconde face pour tendre ou être égal à l'indice de réfraction de l'électrode. On préfère ainsi une variation d'indice, entre la surface du verre et l'électrode directement en contact avec le verre, qui soit égale à 0,4, voire à 0,3.Advantageously, the refractive index varies according to the thickness e to the surface of the second face to tend or be equal to the refractive index of the electrode. A variation in the index between the surface of the glass and the electrode directly in contact with the glass, which is equal to 0.4 or even 0.3, is thus preferred.
La variation de l'indice de réfraction selon l'épaisseur e peut correspondre à un profil passant de la valeur de l'indice du verre établi en dessous de l'épaisseur e (en dehors de l'épaisseur e) à une autre valeur d'indice, d'une manière directe sans valeur intermédiaire.The variation of the refractive index according to the thickness e can correspond to a profile passing from the value of the index of the glass established below the thickness e (outside the thickness e) to another value d 'index, in a direct way without intermediate value.
Selon une variante préférée, la variation de l'indice de réfraction du substrat correspond à un gradient d'indice, c'est-à-dire une variation correspondant à un profil passant par plusieurs valeurs d'indice. Le profil est de préférence (globalement) linéaire. Un tel profil est obtenu en sélectionnant de manière connue le verre notamment ses propriétés de diffusion, par exemple le coefficient d'interdiffusion entre l'argent et le sodium. La variation d'indice est supérieure ou égale à 0,05, de préférence au moins égale à 0,08, voire au moins égale à 0,1.According to a preferred variant, the variation of the refractive index of the substrate corresponds to an index gradient, that is to say a variation corresponding to a profile passing through several index values. The profile is preferably (globally) linear. Such a profile is obtained by selecting in known manner the glass in particular its diffusion properties, for example the interdiffusion coefficient between silver and sodium. The index variation is greater than or equal to 0.05, preferably at least 0.08, or even at least 0.1.
Le substrat présente avantageusement un indice de réfraction qui varie depuis l'épaisseur du verre jusqu'en surface pour tendre ou être égal à l'indice de réfraction de l'électrode.The substrate advantageously has a refractive index which varies from the thickness of the glass to the surface to tend or be equal to the refractive index of the electrode.
Ainsi lorsque le substrat verrier pourvu de son électrode sert de support à une OLED, les photons émis depuis l'OLED et traversant l'électrode puis rencontrant le substrat verrier sont bien moins déviés de leur trajectoire en raison d'une rupture d'indice beaucoup moins prononcée entre l'électrode et le verre. Un gradient d'indice est défini comme un changement progressif de l'indice du milieu. Ce milieu permet d'éviter une trop importante réflexion de la lumière qui le traverse.Thus, when the glass substrate provided with its electrode serves as a support for an OLED, the photons emitted from the OLED and passing through the electrode and then meeting the glass substrate are much less deviated from their trajectory due to a break in the index. less pronounced between the electrode and the glass. An index gradient is defined as a gradual change in the index of the medium. This medium avoids too much reflection of the light that passes through it.
Selon une caractéristique, une variation d'indice dans l'épaisseur du verre, avantageusement entre 1 et 100 μm, de préférence entre 1 μm et 10 μm, et en particulier entre 1 μm et 5 μm, suffit à diriger la lumière dans le substrat selon un angle d'incidence adapté à assurer de manière optimale la sortie des photons du substrat.According to one characteristic, a variation of index in the thickness of the glass, advantageously between 1 and 100 μm, preferably between 1 μm and 10 μm, and in particular between 1 μm and 5 μm, is sufficient to direct the light into the substrate at an angle of incidence adapted to optimally ensure the photon output of the substrate.
L'échange ionique est l'échange de certains ions du verre par des ions choisis parmi, en combinaison ou non, le baryum, le césium, et de préférence l'argent ou le thallium. Ces ions sont choisis pour leur forte polarisabilité en comparaison des ions qu'ils remplacent, ce qui engendre une forte variation de l'indice de réfraction de la zone échangée du verre.Ion exchange is the exchange of certain ions of the glass by ions selected from, in combination or not, barium, cesium, and preferably silver or thallium. These ions are chosen for their high polarizability in comparison with the ions they replace, which gives rise to a strong variation in the refractive index of the exchanged zone of the glass.
L'utilisation d'ions argent ou thallium comme ion dopant permet de créer des zones ayant un indice de réfraction suffisamment élevé par rapport à celui du verre pour répondre selon l'invention à l'application particulière des dispositifs électroluminescents. L'échange ionique est obtenu par des techniques connues. On place la surface du substrat verrier à traiter dans un bain de sels fondus des ions d'échange, par exemple du nitrate d'argent (AgNOs), à une température élevée entre 200 et 5500C, et pendant une durée suffisante correspondant à la profondeur d'échange souhaitée.The use of silver or thallium ions as a doping ion makes it possible to create zones having a sufficiently high refractive index with respect to that of the glass to respond according to the invention to the particular application of electroluminescent devices. Ion exchange is obtained by known techniques. The surface of the glass substrate to be treated in a bath of molten salts of the exchange ions, for example silver nitrate (AgNOs), is placed at a high temperature between 200 and 550 ° C., and for a sufficient duration corresponding to the desired exchange depth.
On peut avantageusement soumettre concomitamment le substrat en contact du bain à un champ électrique qui est fonction principalement de la conductivité du substrat en verre et de son épaisseur, et varie de préférence entre 10 et 100 V. Dans ce cas, le substrat peut ensuite subir un autre traitement thermique, avantageusement à une température comprise entre la température d'échange et la température de transition vitreuse du verre, afin de diffuser les ions échangés dans une direction normale à la face du substrat pourvue de l'électrode, de manière à obtenir un gradient d'indice à profil linéaire.It is advantageous to subject the substrate in contact with the bath to an electric field which is mainly a function of the conductivity of the glass substrate and its thickness, and preferably varies between 10 and 100 V. In this case, the substrate can then undergo another heat treatment, advantageously at a temperature between the exchange temperature and the glass transition temperature of the glass, in order to diffuse the ions exchanged in a direction normal to the face of the substrate provided with the electrode, so as to obtain a linear profile index gradient.
La transmission lumineuse du substrat de l'invention peut être supérieure ou égale à 80%.The light transmission of the substrate of the invention may be greater than or equal to 80%.
Le substrat en verre peut être extraclair, On peut se référer à la demande WO04/025334 pour la composition d'un verre extraclair. On peut choisir en particulier un verre silicosodocalcique avec moins de 0,05% de Fe III ou de Fe2O3. On peut choisir par exemple le verre Diamant de Saint-Gobain, le verre Albarino de Saint-Gobain (texture ou lisse), le verre Optiwhite de Pilkington, le verre B270 de Schott.The glass substrate may be extraclear. Reference WO04 / 025334 may be referred to for the composition of an extraclear glass. In particular, it is possible to choose a silicosodocalcic glass with less than 0.05% Fe III or Fe 2 O 3 . For example, Saint-Gobain's Diamant glass, Saint-Gobain's Albarino glass (textured or smooth), Pilkington's Optiwhite glass, Schott's B270 glass.
Le substrat en verre peut présenter avantageusement la composition suivante : SiO2 67,0 - 73,0 %, de préférence 70,0 - 72,0 %The glass substrate may advantageously have the following composition: SiO 2 67.0 - 73.0%, preferably 70.0 - 72.0%
AI2O3 0 - 3,0 %, de préférence 0,4 - 2,0 % CaO 7,0 - 13,0 %, de préférence 8,0 - 11 ,0 %Al 2 O 3 0 - 3.0%, preferably 0.4 - 2.0% CaO 7.0 - 13.0%, preferably 8.0 - 11.0%
MgO 0 - 6,0 %, de préférence 3,0 - 5,0 % Na2O 12,0 - 16,0 %, de préférence 13,0 - 15,0 %MgO 0 - 6.0%, preferably 3.0 - 5.0% Na 2 O 12.0 - 16.0%, preferably 13.0 - 15.0%
K2O 0 - 4,0 %K 2 O 0 - 4.0%
TiO2 0 - 0,1 % Fer total (exprimé en Fe2O3) 0 - 0,03 %, de préférence 0,005 - 0,01 %TiO 2 0 - 0.1% Total iron (expressed as Fe 2 O 3 ) 0 - 0.03%, preferably 0.005 - 0.01%
Redox (FeO/fer total) 0,02 - 0,4 %, de préférence 0,02 - 0,2 %Redox (FeO / total iron) 0.02 - 0.4%, preferably 0.02 - 0.2%
Sb2O3 0 - 0,3 %Sb 2 O 3 0 - 0.3%
CeO2 0 - 1 ,5 %CeO 2 0 - 1, 5%
SO3 0 - 0,8 %, de préférence 0,2 - 0,6 %SO 3 0 - 0.8%, preferably 0.2 - 0.6%
Le substrat verrier selon l'invention est préférentiellement utilisé en tant que support dans un dispositif émissif de lumière, notamment un dispositif à diode électroluminescente (OLED) comportant une couche organique disposée entre deux électrodes, l'une des électrodes étant constituée par l'électrode du substrat verrier de l'invention.The glass substrate according to the invention is preferably used as a support in a light emitting device, in particular an electroluminescent diode (OLED) device comprising an organic layer disposed between two electrodes, one of the electrodes being constituted by the electrode of the glass substrate of the invention.
Un tel dispositif à diode électroluminescente est par exemple conçu pour des écrans de visualisation ou des dispositifs d'éclairage.Such a light-emitting diode device is for example designed for display screens or lighting devices.
L'invention sera à présent décrite à l'aide d'exemples uniquement illustratifs et nullement limitatifs de la portée de l'invention, et à partir des illustrations ci- jointes, dans lesquelles :The invention will now be described by way of purely illustrative and non-limiting examples of the scope of the invention, and from the attached drawings, in which:
- La figure 1 illustre une vue en coupe d'un substrat verrier selon l'invention; - La figure 2 illustre de manière schématique, selon un premier mode de réalisation, le dispositif de mise en œuvre du procédé d'échange ionique pour l'obtention d'un substrat dont l'indice de réfraction est variable dans son épaisseur;- Figure 1 illustrates a sectional view of a glass substrate according to the invention; FIG. 2 schematically illustrates, according to a first embodiment, the device for implementing the ion exchange process for obtaining a substrate whose refractive index is variable in its thickness;
- La figure 3 illustre de manière schématique, selon un second mode de réalisation, le dispositif de mise en œuvre du procédé d'échange ionique pour l'obtention d'un substrat dont l'indice de réfraction est variable dans son épaisseur;FIG. 3 schematically illustrates, according to a second embodiment, the device for implementing the ion exchange process. for obtaining a substrate whose refractive index is variable in its thickness;
- La figure 4 est une vue en coupe d'une OLED pourvu du substrat de la figure 1.FIG. 4 is a sectional view of an OLED provided with the substrate of FIG.
Les figures ne sont pas à l'échelle pour en faciliter la lecture.The figures are not scaled for easy reading.
La figure 1 représente un substrat verrier 1 d'épaisseur comprise notamment entre 0,7 et 10 mm, comportant selon ses plus grandes extensions une première face 10 et une seconde face opposée 11.FIG. 1 represents a glass substrate 1 having a thickness in particular between 0.7 and 10 mm, comprising in its larger extensions a first face 10 and a second opposite face 11.
Le substrat est pourvu sur sa seconde face 11 d'une électrode 2 qui est constituée d'au moins une couche mince de matéhau(x) électriquement conducteurs, cette couche étant de préférence transparente en vue de l'utilisation du substrat en tant que moyen de transmission de lumière.The substrate is provided on its second face 11 with an electrode 2 which consists of at least one thin layer of electrically conductive mathehau (x), this layer preferably being transparent for the use of the substrate as a means light transmission.
Selon l'invention, le substrat 1 présente depuis sa seconde face 11 jusqu'à une profondeur e et sur la totalité de sa surface une épaisseur de verre dont l'indice de réfraction est modifié par rapport à celui du reste du corps du substrat.According to the invention, the substrate 1 has from its second face 11 to a depth e and over its entire surface a glass thickness whose refractive index is modified relative to that of the rest of the body of the substrate.
L'épaisseur e est avantageusement comprise entre 1 et 100 μm, de préférence entre 1 μm et 10 μm, et en particulier entre 1 μm et 5μm. L'indice de réfraction du verre qui est habituellement de 1 ,5 est modifié selon une variation qui est supérieure ou égale à 0,05, et de préférence d'au moins 0,08, voire d'au moins 0,1 .The thickness e is advantageously between 1 and 100 μm, preferably between 1 μm and 10 μm, and in particular between 1 μm and 5 μm. The refractive index of glass, which is usually 1.5, is varied by a variation of greater than or equal to 0.05, and preferably of at least 0.08 or even more than 0.1.
Le substrat garde une transmission lumineuse significative, d'au moins 80%. La transmission lumineuse est mesurée de manière connue conformément à la norme ISO 23539:2005. La variation d'indice est avantageusement graduelle. Elle constitue de préférence un gradient d'indice à profil linéaire.The substrate keeps a significant light transmission of at least 80%. The light transmission is measured in a known manner in accordance with ISO 23539: 2005. The index variation is advantageously gradual. It preferably constitutes a linear profile index gradient.
Cette variation d'indice de réfraction est obtenue selon l'invention par traitement d'échange ionique. Certains ions du verre, en particulier les ions alcalins, sont échangés par des ions tels qu'argent, thallium, baryum, césium.This variation of refractive index is obtained according to the invention by ion exchange treatment. Some glass ions, in particular alkaline ions, are exchanged by ions such as silver, thallium, barium, cesium.
Deux techniques dans le processus d'échange ionique sont proposées.Two techniques in the ion exchange process are proposed.
La première technique illustrée sur la figure 2 est réalisée en plongeant la face 11 du substrat dans un bain 3 contenant le matériau dont les ions sont à échanger. Par exemple, pour un échange d'ions argent, le bain contient du nitrate d'argent (AgNOs).The first technique illustrated in FIG. 2 is carried out by immersing the face 11 of the substrate in a bath 3 containing the material whose ions are to be exchanged. For example, for a silver ion exchange, the bath contains silver nitrate (AgNOs).
L'immersion du substrat peut être totale avec une couche de protection, du type Al, Ti, AI2O3, revêtant la face opposée à traiter et qui est retirée après le bain, par exemple par polissage.The immersion of the substrate may be complete with a protective layer, of the type Al, Ti, Al 2 O 3, coating the opposite face to be treated and which is removed after the bath, for example by polishing.
L'immersion du substrat peut être plutôt partielle et de préférence selon toute l'épaisseur du substrat en affleurant la face opposée à traiter.The immersion of the substrate may be rather partial and preferably the entire thickness of the substrate flush with the opposite face to be treated.
La profondeur de diffusion des ions argent Ag+ dans le verre en remplacement d'ions sodium Na+ est fonction du temps durant lequel le substrat est laissé dans le bain.The diffusion depth of the Ag + silver ions in the glass as a replacement for Na + sodium ions is a function of the time during which the substrate is left in the bath.
Après le retrait du substrat hors du bain, celui-ci est refroidi à température ambiante et abondamment rincé à l'eau afin d'éviter toute trace résiduelle de nitrate d'argent.After removing the substrate from the bath, it is cooled to room temperature and thoroughly rinsed with water to avoid residual traces of silver nitrate.
Cette technique réalise avantageusement un profil quasi-linéaire du gradient d'indice. La seconde technique consiste en un échange réalisé sous un champ électrique avec une étape complémentaire éventuelle de traitement thermique.This technique advantageously produces a quasi-linear profile of the index gradient. The second technique consists of an exchange carried out under an electric field with a possible additional step of heat treatment.
La figure 3 illustre le dispositif de mise en œuvre du procédé d'échange ionique assisté par un champ électrique.FIG. 3 illustrates the device for implementing the ion exchange method assisted by an electric field.
Le dispositif comporte deux compartiments 5 et 6 appliqués en regard l'un de l'autre, formant des réservoirs respectifs. Les compartiments sont fixés au substrat 1 par l'intermédiaire d'un adhésif 7 qui joue également le rôle de joint d'étanchéité au regard du contenu des réservoirs. L'un des compartiments contient un bain 50 d'AgNOs tandis que l'autre compartiment est rempli d'un mélange de KNO3 (ou LiNO3) et de NaNO3.The device comprises two compartments 5 and 6 applied opposite one another, forming respective reservoirs. The compartments are attached to the substrate 1 by means of an adhesive 7 which also acts as a seal with respect to the contents of the tanks. One of the compartments contains a bath 50 AgNOs while the other compartment is filled with a mixture of KNO 3 (or LiNO 3 ) and NaNO 3 .
Une électrode en platine 8, et respectivement, une électrode en platine 9 sont plongées dans respectivement chaque bain 50 et 60, ces électrodes étant reliées à un générateur de tension 80.A platinum electrode 8 and, respectively, a platinum electrode 9 are immersed in each bath 50 and 60 respectively, these electrodes being connected to a voltage generator 80.
Lorsqu'un champ électrique est appliqué entre les électrodes 8 et 9, les ions alcalins du verre sont déplacés vers le bain 60 et sont remplacés progressivement par les ions Ag+ contenus dans le bain 50 (sens de migration indiqué par les flèches).When an electric field is applied between the electrodes 8 and 9, the alkali ions of the glass are moved to the bath 60 and are gradually replaced by the Ag + ions contained in the bath 50 (direction of migration indicated by the arrows).
En variante du bain d'AgNO3, il peut être déposé une couche d'argent métallique. Celle-ci est déposée par magnétron, CVD, jet d'encre ou sérigraphie. Une couche formant électrode est par ailleurs déposée sur la face opposée. Le champ électrique est ensuite appliqué entre la couche d'argent et la couche métallique. Après l'échange, on enlève par polissage ou attache chimique la couche formant électrode.As a variant of the AgNO 3 bath, a layer of metallic silver may be deposited. It is deposited by magnetron, CVD, inkjet or silkscreen. An electrode layer is also deposited on the opposite side. The electric field is then applied between the silver layer and the metal layer. After the exchange, the electrode layer is removed by polishing or chemical bonding.
Le champ électrique appliqué entre la couche métallique ou le bain, et l'électrode, engendre donc l'échange ionique. L'échange ionique est effectué à une température comprise entre 250 et 3500C. La profondeur d'échange est fonction de l'intensité du champ, du temps durant lequel le substrat est soumis à ce champ et de la température à laquelle est réalisé l'échange. Le champ est compris entre 10 et 100 V.The electric field applied between the metal layer or the bath, and the electrode, therefore generates the ion exchange. Ion exchange is carried out at a temperature of between 250 and 350 ° C. The exchange depth is a function of the intensity of the field, the time during which the substrate is subjected to this field and the temperature at which the exchange is carried out. The field is between 10 and 100 V.
Cette technique conduit à une variation d'indice dont le profil s'apparente à une marche, en passant de manière nette de la valeur de l'indice du verre à une seconde valeur sans variation étalée entre ces deux valeurs. Par exemple on choisit de réaliser un tel échange ionique avec un verre de préférence extraclair, de 2 mm, à une température de 3000C, avec une durée de 10 h sous un champ de 10 V/mnn. On obtient une variation d'indice de type marche d'escalier et d'amplitude 0,1.This technique leads to a variation of index whose profile is similar to a step, by moving clearly from the value of the index of the glass to a second value with no variation spread between these two values. For example, it is chosen to carry out such an ionic exchange with a preferably extraclear glass, of 2 mm, at a temperature of 300 ° C., with a duration of 10 h under a field of 10 V / min. We obtain a variation of stair type index and amplitude 0.1.
En complétant par un traitement thermique du substrat, le profil de la variation d'indice devient avantageusement progressif. Il s'agit de réchauffer le substrat dans un four à une température comprise entre la température d'échange ionique et la température de transition vitreuse du verre. La température et la durée du traitement sont fonction du gradient d'indice requis.By supplementing with a heat treatment of the substrate, the profile of the index variation advantageously becomes progressive. This is to heat the substrate in an oven at a temperature between the ion exchange temperature and the glass transition temperature of the glass. The temperature and the duration of the treatment depend on the required index gradient.
Certaines compositions verrières seront préférées afin que l'échange ionique n'induise pas une coloration par jaunissement du verre et par conséquent une diminution malencontreuse de la transmission lumineuse.Some glass compositions will be preferred so that the ion exchange does not induce yellowing of the glass and therefore an unfortunate decrease in light transmission.
A titre d'exemple, une composition verrière est la suivante : SiO2 67,0 - 73,0 %, de préférence 70,0 - 72,0 %For example, a glass composition is as follows: SiO 2 67.0 - 73.0%, preferably 70.0 - 72.0%
AI2O3 0 - 3,0 %, de préférence 0,4 - 2,0 %AI 2 O 3 0 - 3.0%, preferably 0.4 - 2.0%
CaO 7,0 - 13,0 %, de préférence 8,0 - 11 ,0 %CaO 7.0 - 13.0%, preferably 8.0 - 11.0%
MgO 0 - 6,0 %, de préférence 3,0 - 5,0 %MgO 0 - 6.0%, preferably 3.0 - 5.0%
Na2O 12,0 - 16,0 %, de préférence 13,0 - 15,0 % K2O 0 - 4,0 %Na 2 O 12.0 - 16.0%, preferably 13.0 - 15.0% K 2 O 0 - 4.0%
TiO2 0 - 0,1 % Fer total (exprimé en Fe2O3) 0 - 0,03 %, de préférence 0,005 - 0,01 % Redox (FeO/fer total) 0,02 - 0,4 %, de préférence 0,02 - 0,2 %TiO 2 0 - 0.1% Total iron (expressed as Fe 2 O 3 ) 0 - 0.03%, preferably 0.005 - 0.01% Redox (FeO / total iron) 0.02 - 0.4%, preferably 0.02 - 0.2 %
Sb2O3 0 - 0,3 %Sb 2 O 3 0 - 0.3%
CeO2 0 - 1 ,5 % SO3 0 - 0,8 %, de préférence 0,2 - 0,6 %CeO 2 0 - 1, 5% SO 3 0 - 0.8%, preferably 0.2 - 0.6%
Le procédé par échange ionique permet ainsi de traiter aisément de grandes surfaces, d'être reproductible industriellement. Il permet d'agir directement et de manière simple sur le verre sans avoir besoin de procéder à des étapes intermédiaires et/ou complémentaires telles que de dépôt de couches, de gravure.The ion exchange process thus makes it possible to easily treat large areas, to be reproducible industrially. It allows to act directly and in a simple manner on the glass without the need to proceed to intermediate and / or complementary steps such as deposition of layers, etching.
En outre, l'état de surface non modifié du substrat verrier assure un dépôt de l'électrode de recouvrement 2 dans des conditions faciles, usuelles, et dans des épaisseurs conventionnelles.In addition, the unmodified surface state of the glass substrate provides a deposit of the cover electrode 2 under easy, usual conditions and in conventional thicknesses.
L'électrode 2 est formée d'un empilement de couches en matériaux électriquement conducteur. Il est par exemple constitué d'une couche d'ITO (Indium Tin Oxyde) d'indice de réfraction 1 ,9 environ, ou d'un empilement diélectrique(s) / Ag /diélecthque(s), généralement avec un premier diélectrique en contact direct avec le verre présentant un indice de 2.The electrode 2 is formed of a stack of layers of electrically conductive materials. It consists, for example, of a layer of ITO (Indium Tin Oxide) with a refractive index of about 1.9 or of a dielectric (s) / Ag / dielectric stack (s), generally with a first dielectric direct contact with glass having an index of 2.
Selon l'invention, la variation du gradient d'indice de réfraction est tel qu'en profondeur dans le verre, il correspond à celui du verre (n=1 ,5) tandis qu'en surface, il est plus important et se rapproche de l'indice de réfraction de la première couche de l'empilement de l'électrode, proche de 2.According to the invention, the variation of the refractive index gradient is such that at depth in the glass, it corresponds to that of the glass (n = 1.5), whereas at the surface, it is more important and approaches the refractive index of the first layer of the stack of the electrode, close to 2.
La figure 4 montre une OLED 7 comprenant le substrat de l'invention présentant la variation d'indice de réfraction et pourvu de l'électrode 2.FIG. 4 shows an OLED 7 comprising the substrate of the invention having the variation of refractive index and provided with the electrode 2.
L'OLED comporte ainsi successivement, le substrat 1 à variation d'indice servant de support pour l'OLED, un premier revêtement électro-conducteur transparent qui est constitué de l'électrode 2, une couche 70 de matériau(x) organique(s) connue en soi, et un second revêtement électro-conducteur 71 qui forme une seconde électrode et présente de préférence et de manière connue, en regard de la couche organique 70, une surface réfléchissante destinée à renvoyer la lumière émise par la couche organique vers la direction opposée, celle du substrat transparent.The OLED thus comprises successively, the substrate 1 with variation of index serving as a support for the OLED, a first electroconductive coating transparent which consists of the electrode 2, a layer 70 of organic material (s) known per se, and a second electroconductive coating 71 which forms a second electrode and preferably and in known manner, facing of the organic layer 70, a reflecting surface for returning the light emitted by the organic layer to the opposite direction, that of the transparent substrate.
Des exemples comparatifs d'OLED ont été réalisés afin de montrer l'intérêt de l'invention.Comparative examples of OLEDs have been made in order to show the interest of the invention.
Les exemples présentent tous les mêmes éléments constitutifs de l'OLED (électrode transparente, couche de matériaux organiques, seconde électrode, substrat verrier de support). Le substrat verrier de support ou de base est un substrat de verre standard, du type ALBARINO® commercialisé par la société SAINT-GOBAIN GLASS FRANCE, de côtés 5 cm par 5 cm et par 2,1 mm d'épaisseur.The examples all have the same constituent elements of the OLED (transparent electrode, layer of organic materials, second electrode, support glass substrate). The support or base glass substrate is a standard glass substrate, of the ALBARINO® type marketed by SAINT-GOBAIN GLASS FRANCE, with 5 cm by 5 cm and 2.1 mm thick sides.
Lorsque ce substrat de base n'est pas traité, il correspond à un substrat de référence (exemple de référence) pour les tests comparatifs qui présente un indice de réfraction de 1 ,52.When this base substrate is not treated, it corresponds to a reference substrate (reference example) for comparative tests which has a refractive index of 1, 52.
L'exemple 1 porte sur un substrat de base qui a subi un échange ionique à l'argent selon la première technique, en ayant été immergé dans un bain de nitrate d'argent (AgNOs), durant vingt et une heures et à une température de 345°C.Example 1 relates to a base substrate which has undergone an ion exchange with silver according to the first technique, having been immersed in a silver nitrate bath (AgNOs), for twenty-one hours and at a temperature 345 ° C.
L'exemple 2 porte sur un substrat de base qui a subi un échange ionique au thallium selon la première technique, en ayant été immergé dans un bain de nitrate de thallium (TINO3) durant trois heures et à une température de 4000C. Le tableau ci-dessous résume les valeurs obtenues pour chacun des exemples, quant à l'indice de réfaction du substrat, le gradient d'indice obtenu par rapport à un substrat de référence non traité, l'épaisseur d'échange ionique dans le substrat, et le gain en extraction obtenu lorsque le substrat de chaque exemple est intégré dans une OLED présentant les mêmes caractéristiques pour les éléments autres que le substrat.Example 2 relates to a base substrate which has undergone an ion exchange with thallium according to the first technique, having been immersed in a thallium nitrate bath (TINO3) for three hours and at a temperature of 400 ° C. The table below summarizes the values obtained for each of the examples, as regards the refraction index of the substrate, the index gradient obtained with respect to an untreated reference substrate, the ion exchange thickness in the substrate. , and the gain in extraction obtained when the substrate of each example is integrated in an OLED having the same characteristics for the elements other than the substrate.
Pour calculer l'efficacité d'extraction, on calcule d'abord le rendement quantique externe qui correspond au rapport entre la puissance optique lumineuse qui sort de l'OLED et la puissance électrique injectée dans le dispositif OLED. Ensuite, en considérant un rendement quantique interne de 25% pour l'OLED, on divise le rendement quantique externe par ce rendement quantique interne, ici de 0,25, pour obtenir l'efficacité d'extraction.To calculate the extraction efficiency, the external quantum efficiency is first calculated, which corresponds to the ratio between the light optical power coming out of the OLED and the electric power injected into the OLED device. Then, considering an internal quantum yield of 25% for the OLED, the external quantum yield is divided by this internal quantum yield, here 0.25, to obtain the extraction efficiency.
Les substrats des exemples 1 et 2 de l'invention montrent ainsi un gain relatif en efficacité d'extraction de lumière de plus de 19% par rapport à un substrat non traité. Le gain relatif en efficacité d'extraction est le rapport entre, la différence d'efficacité de l'exemple de l'invention et de l'exemple de référence, et l'efficacité de l'exemple de référence. Il a été démontré par ailleurs que ce gain procuré est obtenu sans dégradation des autres propriétés de l'OLED, notamment la variation colorimétrique en fonction de l'angle d'observation de la lumière. The substrates of Examples 1 and 2 of the invention thus show a relative gain in light extraction efficiency of more than 19% compared to an untreated substrate. The relative gain in extraction efficiency is the ratio between the difference in efficiency of the example of the invention and the reference example, and the efficiency of the reference example. It has also been demonstrated that this gain obtained is obtained without degradation of the other properties of the OLED, in particular the colorimetric variation as a function of the angle of observation of the light.

Claims

REVENDICATIONS
1. Substrat en verre (1 ) comportant une première face (10) et une seconde face opposée (11 ), et pourvu sur sa seconde face d'une électrodeA glass substrate (1) having a first face (10) and a second opposite face (11) and provided on its second face with an electrode
(2) qui est formée d'au moins une couche électriquement conductrice, caractérisé en ce qu'il présente au niveau de la totalité de sa seconde face et selon une épaisseur e s'étendant vers l'intérieur du substrat en direction de la première face (10), une variation de l'indice de réfraction du verre obtenu par un traitement d'échange ionique, l'indice de réfraction en surface étant supérieur à celui du verre situé en dehors de l'épaisseur e .(2) which is formed of at least one electrically conductive layer, characterized in that it has at its entire second face and a thickness e extending inwardly of the substrate towards the first face (10), a variation of the refractive index of the glass obtained by an ion exchange treatment, the refractive index at the surface being greater than that of the glass located outside the thickness e.
2. Substrat selon la revendication 1 , caractérisé en ce que l'indice de réfraction varie selon l'épaisseur e jusqu'en surface de la seconde face, pour tendre ou être égal à l'indice de réfraction de l'électrode (2).2. Substrate according to claim 1, characterized in that the refractive index varies according to the thickness e to the surface of the second face, to tend or be equal to the refractive index of the electrode (2) .
3. Substrat selon l'une des revendications 1 ou 2, caractérisé en ce que la variation de l'indice de réfraction selon l'épaisseur e correspond à un profil passant de la valeur de l'indice du verre établi en dessous de l'épaisseur e à une autre valeur d'indice, d'une manière directe sans valeur intermédiaire ou bien par plusieurs valeurs d'indice, le profil étant de préférence linéaire.3. Substrate according to one of claims 1 or 2, characterized in that the variation of the refractive index according to the thickness e corresponds to a profile passing from the value of the index of the glass established below the thickness e at another index value, in a direct manner without intermediate value or by several index values, the profile being preferably linear.
4. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que la variation d'indice est supérieure ou égale à 0,05, de préférence au moins égale à 0,08, voire au moins égale à 0,1.4. Substrate according to any one of the preceding claims, characterized in that the index variation is greater than or equal to 0.05, preferably at least 0.08, or even at least 0.1.
5. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur e de variation d'indice est comprise avantageusement entre 1 et 100 μm, de préférence entre 1 μm et 10 μm, et en particulier entre 1 μm et 5 μm. 5. Substrate according to any one of the preceding claims, characterized in that the index variation thickness e is advantageously between 1 and 100 μm, preferably between 1 μm and 10 μm, and in particular between 1 μm and 5 μm.
6. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que la variation d'indice est obtenue par un traitement d'échange d'ions du verre par des ions argent et/ou thallium, et/ou césium et/ou baryum.6. Substrate according to any one of the preceding claims, characterized in that the index variation is obtained by an ion exchange treatment of glass with silver ions and / or thallium, and / or cesium and / or barium.
7. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que sa transmission lumineuse est supérieure ou égale à 80%.7. Substrate according to any one of the preceding claims, characterized in that its light transmission is greater than or equal to 80%.
8. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce le substrat en verre présente la composition suivante : SiO2 67,0 - 73,0 %, de préférence 70,0 - 72,0 % AI2O3 0 - 3,0 %, de préférence 0,4 - 2,0 % CaO 7,0 - 13,0 %, de préférence 8,0 - 11 ,0 %8. Substrate according to any one of the preceding claims, characterized in that the glass substrate has the following composition: SiO 2 67.0 - 73.0%, preferably 70.0 - 72.0% Al 2 O 3 0 3.0%, preferably 0.4 - 2.0% CaO 7.0 - 13.0%, preferably 8.0 - 11.0%
MgO 0 - 6,0 %, de préférence 3,0 - 5,0 %MgO 0 - 6.0%, preferably 3.0 - 5.0%
Na2O 12,0 - 16,0 %, de préférence 13,0 - 15,0 %Na 2 O 12.0 - 16.0%, preferably 13.0 - 15.0%
K2O 0 - 4,0 %K 2 O 0 - 4.0%
TiO2 0 - 0,1 % Fer total (exprimé en Fe2O3) 0 - 0,03 %, de préférence 0,005 - 0,01 %TiO 2 0 - 0.1% Total iron (expressed as Fe 2 O 3 ) 0 - 0.03%, preferably 0.005 - 0.01%
Redox (FeO/fer total) 0,02 - 0,4 %, de préférence 0,02 - 0,2 %Redox (FeO / total iron) 0.02 - 0.4%, preferably 0.02 - 0.2%
Sb2O3 0 - 0,3 %Sb 2 O 3 0 - 0.3%
CeO2 0 - 1 ,5 %CeO 2 0 - 1, 5%
SO3 0 - 0,8 %, de préférence 0,2 - 0,6 %.SO 3 0 - 0.8%, preferably 0.2 - 0.6%.
9. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est utilisé comme support dans un dispositif émissif de lumière, notamment un dispositif à diode électroluminescente organique, l'électrode (2) du substrat constituant une des électrodes du dispositif. 9. Substrate according to any one of the preceding claims, characterized in that it is used as a support in a light emitting device, in particular an organic electroluminescent diode device, the electrode (2) of the substrate constituting one of the electrodes of the device.
10. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est utilisé dans un écran de visualisation ou dans un dispositif d'éclairage. 10. Substrate according to any one of the preceding claims, characterized in that it is used in a display screen or in a lighting device.
EP09760195A 2008-10-24 2009-10-22 Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device Withdrawn EP2361232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857237A FR2937798B1 (en) 2008-10-24 2008-10-24 GLASS SUBSTRATE WITH ELECTRODE PARTICULARLY FOR ORGANIC ELECTROLUMINESCENT DIODE DEVICE
PCT/FR2009/052027 WO2010046604A1 (en) 2008-10-24 2009-10-22 Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device

Publications (1)

Publication Number Publication Date
EP2361232A1 true EP2361232A1 (en) 2011-08-31

Family

ID=40673950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09760195A Withdrawn EP2361232A1 (en) 2008-10-24 2009-10-22 Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device

Country Status (8)

Country Link
US (1) US20110266562A1 (en)
EP (1) EP2361232A1 (en)
JP (1) JP2012506607A (en)
KR (1) KR20110073615A (en)
CN (1) CN102203025A (en)
EA (1) EA201170603A1 (en)
FR (1) FR2937798B1 (en)
WO (1) WO2010046604A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042945A1 (en) * 2010-10-26 2012-04-26 Schott Ag Transparent laminates
US10308545B2 (en) 2010-10-26 2019-06-04 Schott Ag Highly refractive thin glasses
US10343946B2 (en) 2010-10-26 2019-07-09 Schott Ag Highly refractive thin glasses
KR20140069004A (en) * 2011-09-28 2014-06-09 아사히 가라스 가부시키가이샤 Glass plate fitted with transparent electroconductive film and glass plate for forming transparent electroconductive film
CN102617034B (en) * 2012-03-31 2014-12-24 上海吉驰玻璃科技有限公司 Formula and application of photovoltaic glass
DE102012109209B4 (en) * 2012-09-28 2017-05-11 Osram Oled Gmbh Method for producing an optoelectronic component and optoelectronic component
JPWO2014088066A1 (en) * 2012-12-07 2017-01-05 旭硝子株式会社 High transmission glass

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857689A (en) * 1971-12-28 1974-12-31 Nippon Selfoc Co Ltd Ion exchange process for manufacturing integrated optical circuits
JPS6212633A (en) * 1985-07-05 1987-01-21 Hoya Corp Glass composition suitable for producing transparent material of refractive index distribution type
JPS62128952A (en) * 1985-11-26 1987-06-11 Nippon Sheet Glass Co Ltd Production of glass body having refractive index distribution
JPH01194292A (en) * 1987-08-29 1989-08-04 Hoya Corp Electroluminescence element and its manufacture
JP2553696B2 (en) * 1989-03-24 1996-11-13 松下電器産業株式会社 Multicolor light emitting thin film electroluminescent device
JPH02279537A (en) * 1989-04-18 1990-11-15 Nippon Sheet Glass Co Ltd Ion exchange treatment of glass body
IT1245420B (en) * 1991-02-27 1994-09-20 Cselt Centro Studi Lab Telecom PROCEDURE FOR THE MANUFACTURE OF INTEGRATED GLASS OPTICAL GUIDES
JPH07211458A (en) * 1994-01-17 1995-08-11 Fuji Electric Co Ltd Thin film electroluminescent element
JPH11354271A (en) * 1998-06-05 1999-12-24 Canon Inc Photosensitive material writing device
US6366017B1 (en) * 1999-07-14 2002-04-02 Agilent Technologies, Inc/ Organic light emitting diodes with distributed bragg reflector
JP2001221926A (en) * 1999-11-30 2001-08-17 Fdk Corp Production of optical waveguide element
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
KR100415625B1 (en) * 2001-08-06 2004-01-24 한국전자통신연구원 Method for manufacturing a planar type waveguide using an ion exchange method
EP1478034A2 (en) * 2003-05-16 2004-11-17 Kabushiki Kaisha Toyota Jidoshokki Light-emitting apparatus and method for forming the same
US7202504B2 (en) * 2004-05-20 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and display device
JP4383996B2 (en) * 2004-09-29 2009-12-16 株式会社東芝 Refractive index changing device and refractive index changing method
JP4511440B2 (en) * 2004-10-05 2010-07-28 三星モバイルディスプレイ株式會社 ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
KR20070091288A (en) * 2004-11-17 2007-09-10 컬러 칩 (이스라엘) 리미티드. Methods and process of tapering waveguides and of forming optimized waveguide structures
KR100700013B1 (en) * 2004-11-26 2007-03-26 삼성에스디아이 주식회사 Organic Electroluminescence Display Device and Fabricating Method of the same
EP1701395B1 (en) * 2005-03-11 2012-09-12 Novaled AG Transparent light emitting element
EP1895608A3 (en) * 2006-09-04 2011-01-05 Novaled AG Organic light-emitting component and method for its manufacture
US7601558B2 (en) * 2006-10-24 2009-10-13 Applied Materials, Inc. Transparent zinc oxide electrode having a graded oxygen content
WO2008143232A1 (en) * 2007-05-22 2008-11-27 Nippon Electric Glass Co., Ltd. Transparent electrode
KR101434361B1 (en) * 2007-10-16 2014-08-26 삼성디스플레이 주식회사 White organic light emitting device and color display apparatus employing the same
WO2009057317A1 (en) * 2007-11-01 2009-05-07 Panasonic Corporation Light-emitting device and display device
JP5143142B2 (en) * 2007-12-05 2013-02-13 パナソニック株式会社 Light emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010046604A1 *

Also Published As

Publication number Publication date
FR2937798A1 (en) 2010-04-30
KR20110073615A (en) 2011-06-29
US20110266562A1 (en) 2011-11-03
EA201170603A1 (en) 2011-10-31
CN102203025A (en) 2011-09-28
JP2012506607A (en) 2012-03-15
FR2937798B1 (en) 2010-12-24
WO2010046604A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
EP1012662B1 (en) Method for treating an electrochemical device
EP1776612B1 (en) Electrochemical system comprising at least one partial making up zone
WO2010046604A1 (en) Glass substrate with an electrode, especially a substrate intended for an organic light-emitting diode device
EP1952194B1 (en) Electrochromic system on a plastic substrate
WO2009056732A2 (en) Glass substrate coated with layers with improved resistivity
FR2924274A1 (en) SUBSTRATE CARRYING AN ELECTRODE, ORGANIC ELECTROLUMINESCENT DEVICE INCORPORATING IT, AND ITS MANUFACTURING
EP3170214B1 (en) Electrically conductive oled carrier, oled incorporating it, and its manufacture
FR2939240A1 (en) LAYERED ELEMENT AND PHOTOVOLTAIC DEVICE COMPRISING SUCH A MEMBER
EP2695216A1 (en) Layered electronic device
FR3003084A1 (en) ELECTROCONDUCTIVE SUPPORT FOR OLED, OLED INCORPORATING THE SAME, AND MANUFACTURING THE SAME
EP1779100A2 (en) Non-oxidised electrolyte electrochemical system
WO2012076799A1 (en) Electrochemical device with electrocontrollable optical transmission and/or energy-related properties
FR2936241A1 (en) FRONT ELECTRODE FOR SOLAR CELL WITH ANTIREFLECTION COATING.
WO2013117862A1 (en) Transparent supported electrode for an oled
WO2014013183A1 (en) Transparent, supported electrode for oled
EP2783402A1 (en) Substrate with a functional layer comprising a sulphurous compound
WO2010001014A2 (en) Photovoltaic cell, and substrate for same
FR2939788A1 (en) Glass substrate for a photovoltaic module, comprises a transparent coating to form an electrode, where the transparent coating is a doped transparent metal oxide having a wavelength of maximum efficiency of an absorber
EP2104145A1 (en) Glass substrate coated with thin films and method of manufacturing same
FR2717033A1 (en) Heated mirror with laminated structure.
WO2024079419A1 (en) Electrochromic glazing
WO2011135195A1 (en) Power supply support for electronic devices
BE1019243A3 (en) TRANSPARENT SUBSTRATE FOR PHOTONIC DEVICES.
FR2992475A1 (en) Organic LED, has stack of thin organic layers including light emitting layer between electron transport layer and hole transport layer, and cathode including silver layer and aluminum layer deposited on silver layer
FR2984609A1 (en) Conducting substrate/photoactive dye laser assembly for photovoltaic cell, has conducting layer including substrate, and coating electrode including homogeneous silver layer, where source of contact of substrate has specific roughness

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120921

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130327