EP2340898A2 - Rolling machine - Google Patents
Rolling machine Download PDFInfo
- Publication number
- EP2340898A2 EP2340898A2 EP11162489A EP11162489A EP2340898A2 EP 2340898 A2 EP2340898 A2 EP 2340898A2 EP 11162489 A EP11162489 A EP 11162489A EP 11162489 A EP11162489 A EP 11162489A EP 2340898 A2 EP2340898 A2 EP 2340898A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rollers
- rolling machine
- der
- workpiece
- oder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 81
- 230000002441 reversible effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 63
- 230000008569 process Effects 0.000 abstract description 37
- 238000004886 process control Methods 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 13
- 230000000875 corresponding effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H1/00—Making articles shaped as bodies of revolution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H1/00—Making articles shaped as bodies of revolution
- B21H1/18—Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/02—Rolling stand frames or housings; Roll mountings ; Roll chocks
- B21B31/04—Rolling stand frames or housings; Roll mountings ; Roll chocks with tie rods in frameless stands, e.g. prestressed tie rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/08—Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B35/00—Drives for metal-rolling mills, e.g. hydraulic drives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B35/00—Drives for metal-rolling mills, e.g. hydraulic drives
- B21B35/14—Couplings, driving spindles, or spindle carriers specially adapted for, or specially arranged in, metal-rolling mills
- B21B35/141—Rigid spindle couplings, e.g. coupling boxes placed on roll necks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/46—Roll speed or drive motor control
Definitions
- the invention relates to a method for forming a workpiece and a rolling machine, which is suitable for carrying out the method.
- longitudinal rolling the workpiece is moved perpendicular to the axes of rotation of the rollers in a translatory movement and usually without rotation through the gap between the rollers (nip).
- transverse rolling the workpiece does not translate with respect to the rollers or their axes of rotation, but rotates only about its own axis, which is usually a main axis of inertia, in particular the axis of symmetry in a rotationally symmetrical workpiece.
- the rollers are usually at an angle to each other and to the workpiece, which is translationally and rotationally moved.
- Profile transverse rolling machines in which two rollers with wedge-shaped profile tools arranged on the outer circumference rotate in the same direction about axes of rotation parallel to one another, are sometimes referred to as transverse wedge rolling.
- the tools have a wedge-shaped or triangular in cross-section geometry and can increase along the circumference in their radial dimension in one direction and / or extend obliquely to the axis of rotation of the rollers.
- cross wedge or cross-profile rollers allow a variety of forming workpieces in high precision or dimensional accuracy.
- the wedge-shaped tools can create circumferential grooves and other tapers in the rotating workpiece.
- the outer diameter of the tool wedges when passing around the axis of rotation can be generated in combination with the oblique arrangement axially extending slopes and continuous transitions between two tapers of different diameters in the workpiece.
- the wedge shape of the tools allows the production of fine structures through the wedge outer edges or outer surfaces.
- Particularly suitable are cross wedge rollers for producing elongate, rotationally symmetrical workpieces with constrictions or elevations such as cams or ribs.
- the forming pressure and the forming temperature depend on the material of which the workpiece is made, as well as the dimensional accuracy and surface quality requirements after forming. Especially In iron or steel materials, the forming is usually carried out at elevated temperatures during rolling, in order to achieve the formability or flowability of the material required for forming. These temperatures, in particular occurring during forging, can be in the range of room temperature in the case of so-called cold forming, or between 550 ° C. and 750 ° C. in the case of warm forging, and above 900 ° C. in the case of so-called hot forming. The forming or forging temperature is usually also placed in a temperature range in which run recovery and recrystallization processes in the material and unwanted phase transformations are avoided.
- Cross wedge rolling machines are known, in which the workpieces at the beginning of the rolling process by means of a positioning device comprising two positioning supports (so-called guide rulers), in an initial position between the two rollers, which usually corresponds to the geometric center or the center of the nip , positioned. Now, the positioning carriers of the positioning device are withdrawn, so that the workpiece rotates freely between the rollers and is kneaded between the tools in the desired shape. After this rolling or kneading process and the corresponding completion of the workpiece, the workpiece is detected and ejected via a recess in the rotating rolling tool.
- a positioning device comprising two positioning supports (so-called guide rulers)
- Out DE 1 477 088 C is a cross wedge rolling machine for the transverse rolling of bodies of revolution or flat workpieces with two rotating in the same direction of rotation work rolls on the roll surfaces wedge tools are arranged interchangeable.
- the wedge tools each have wedge-shaped or triangular extending from the roll shell to a height adjusted to the produced workpiece end, by knurling or otherwise roughened reduction strips and extending at the same distance from the roll shell, wedge-shaped smooth form surfaces with calibration effect.
- the wedge tools are formed as deformation segments and extend only over a partial circumference of the associated roll surface.
- the mutually facing surfaces and tools of the two work rolls move in opposite directions or in opposite directions to each other.
- the EP 1 256 399 A1 discloses a cross rolling machine with two parallel operated modules of two rollers rotating in the same direction of rotation, the half-shell-shaped tools having radially projecting tool wedges on its peripheral surface, wherein the deformation of a workpiece requires only the rotation of half the circumference of a pair of rollers. All four rollers are driven by only one drive motor via an interposed gear unit and drive shaft.
- the DE 21 31 300 B discloses a cross rolling machine with two axially parallel horizontal superimposed profiled rollers for forming and cutting rotationally symmetrical workpieces, in which the profile rollers touch the workpieces diametrically opposite circumferential points and the lower profile roller has a recess for discharging the rolled and cut workpieces from the nip.
- the invention is based on the object of specifying a new rolling machine.
- the rolling machine according to claim 1 comprises for each of the rollers an associated drive, wherein the drives are independent of each other, and comprises at least one permanent magnet motor, in particular a torque motor for driving the rollers.
- the rolling machine is a profile cross rolling machine or cross wedge rolling machine. Due to the speed-controllable and reversible drive, the rolling or cross wedge rolling machine can also be used as a stretching or short stretch roll.
- the permanent magnet motor preferably accelerates to the rated speed for operation of the rollers within a rotation angle of a maximum of 3 °, 2.2 °, 1 ° or 0.5 °. Furthermore, the permanent magnet motor preferably has a nominal torque between about 5,000 Nm and about 80,000 Nm, in particular between about 35,000 Nm and about 60,000 Nm, and / or a rated speed between about 20 U / min and 800 U / min, in particular about 30 U / min or 500 rpm.
- the drive comprises, in addition to the at least one permanent magnet motor, at least one transmission for transmitting the torque or the rotational movement of the permanent magnet motor to the at least two rollers.
- the transmission comprises at least one central drive gearwheel coupled to the output shaft of the permanent magnet motor and two roller gearwheels which engage or can be brought into engagement with the drive gearwheel and are coupled to one of the rollers.
- the gear ratio of the transmission from the drive motor to each of the rollers is then generally the same, and preferably selected in a range between 1: 1 and 1: 1.5.
- Such a drive is therefore in particular mechanically synchronized via the transmission.
- the rollers are electronically synchronized or controlled, in particular via inverters, which convert, for example, a mains voltage of 400 V and 50 Hz in an AC voltage or an AC of suitable amplitude and frequency.
- inverters which convert, for example, a mains voltage of 400 V and 50 Hz in an AC voltage or an AC of suitable amplitude and frequency.
- the in the 1 to 3 illustrated embodiment of a designed as a cross wedge roller or cross wedge rolling machine 1 comprises a first work roll 2 which is rotatable about an axis of rotation A or rotating and a second work roll 3, which is rotatable about a rotational axis B or rotating.
- the sense of rotation of both work rolls 2 and 3 is illustrated and the same with the arrows shown.
- the axes of rotation A and B are arranged substantially parallel to each other, in the example of 1 to 3 seen in the direction of gravity on top of each other, so that the work rolls 2 and 3 are arranged one above the other.
- the work rolls have a substantially cylindrical outer surface. The distance between the cylindrical outer surfaces of the two work rolls 2 and 3 is designated by W.
- wedge-shaped tools 20 and 21 or 30 and 31 are respectively fixed in cross-section, in particular braced.
- the tools 20 and 21 of the first work roll 2 and the tools 30 and 31 of the second work roll 3 are each oblique and at an angle to the respective one Rotary axis A and B are arranged, wherein the tools 20 and 21 of the work roll 2 with respect to the parallel between the two rollers parallel to the axes of rotation extending, the geometric center defining central axis M are arranged axially in the substantially same positions.
- the tools 20 and 21 and 30 and 31 take in the circumferential direction seen in its cross section, wherein the increase of the cross section in the tools 20 and 21 in the same direction of rotation or orientation and in the tools 30 and 31 of the second work roll 3 opposite or opposite directions to which the tools 20 and 21 of the first work roll 2 is.
- Each work roll 2 and 3 is releasably held in a two-part holding device and can be removed from the holding device in its unlocked state to replace the tools 20 and 21 or 30 and 31 or the entire work rolls 2 and 3 with the tools 20 and 21 and 30 and 31.
- the holding device for the work roll 2 is denoted by 12 and the holding device for the work roll 3 with 13.
- a in 1 and 2 The left-hand arranged first part 12A of the holding device 12 comprises a conical receptacle 14 for receiving a axially to the rotation axis A outwardly from the work roll 2 extending frusto-conical extension 24 (stub shaft).
- the second part 12B accordingly comprises a receptacle 15 for receiving a corresponding conically tapered away from the work roll 2 and axially to the axis of rotation A extending extension 25 of the work roll 2.
- the work roll 2 is fixed in the receptacles 14 and 15 of the holding device 12 clamped, wherein the axial force is generated on the receptacle 15 in the direction of the axis of rotation A to the work roll 2 towards the support of the work roll 2 by a spring 16 or other an axial force-exerting element.
- the receptacles 14 and 15 are rotationally symmetrical to the axis of rotation A and stored in unspecified pivot bearings.
- the receptacle 14 continues as a hollow shaft axially to the axis of rotation A and has in its facing away from the work roll 2 end portion of a gear 18, which as well as a corresponding gear 19, the second work roll 3 is associated with a control gear (pinion, drive gear) 5 is engaged.
- the control gear 5 is now coupled via an output shaft 45 with a drive motor 4.
- the control gear 5, the output shaft 45 and the - not shown - rotor of the drive motor 4 are rotatable about a common axis of rotation R or rotating.
- the built-up of the drive motor 4, the output shaft 45 and the control gear 5 drive for the gears (roller gears) 18 and 19 and thus the synchronously with the gears 18 and 19 rotating work rolls 2 and 3 is thus a direct drive.
- the mechanical power supplied by the drive motor 4 corresponds to the product of torque and angular velocity or angular frequency ⁇ , the angular frequency ⁇ being equal to the product of 2 ⁇ and the rotational speed n.
- the drive motor 4 is preferably a torque motor and has a high torque even at a comparatively low speed n of the drive motor 4 for generating the required drive power for the drive rollers 2 and 3.
- the transmission ratio of the control gear 5 to the gears 18 and 19 can thus be selected in the range of 1, in particular between about 1: 1 and about 1: 2.
- the drive rollers 2 and 3 rotate twice as fast as that Control gear 5 and the drive motor 4, at a transmission ratio of 1: 1 just as fast.
- Typical speeds of work rolls 2 and 3 are between about 10 revolutions per minute (RPM) and about 40 RPM, typically at 15 RPM.
- a preferred embodiment of the drive motor 4 is a permanent magnet motor, in which, usually on the rotor, permanent magnets (permanent magnets) are arranged, which generate a magnetic flux generated in the induction field generated by electromagnets or windings of the stator, wherein by interaction of the magnetic flux of the permanent magnets and the induction field, the rotation of the rotor on the basis of the induction principle or electromotive principle arises.
- a torque motor is a synchronous motor, that is, the rotor rotates synchronously with the rotating magnetic flux.
- the induction windings of the stator are usually connected to the phases of a three-phase connection and arranged offset by 120 ° to each other.
- permanent magnets are used with the highest possible energy product, such as rare earth cobalt magnets.
- the stator usually has an iron core with the three-phase winding package, while the rotor has a cylindrical iron core with the permanent magnets.
- Such a torque motor can have a torque of up to 80,000 Nm.
- the high torque also causes a very fast spin.
- the permanent magnet motor or torque motor can accelerate the rollers within a rotation angle of only 1 °, preferably even only 0.5 °, to the rated speed, for example 30 rpm. This high dynamics or rotational acceleration of the torque motor allows a very dynamic control of the speed.
- the control or regulation of the speed n of each other and synchronously rotating work rolls 2 and 3 is now adapted according to the invention with a special control method or control method to the rolling process.
- the rotational speed n or angular velocity ⁇ of the work rolls 2 and 3 is adapted to the respective rotational position or angular position ⁇ of the work rolls 2 and 3 and controlled in dependence on this rotational position ⁇ .
- a positioning device for the workpiece 10 is designated 60 and comprises two relatively movable positioning parts (guide rulers) 61 and 62nd
- FIG. 4 shows a position of the work rolls 2 and 3 before the introduction of the workpiece.
- the same direction of rotation of the two rollers 2 and 3 about the respective axes of rotation A and B are marked with corresponding arrows.
- the tool 20 which extends in segments around the outer surface of the work roll 2 and about the axis of rotation A, a recess 23 is provided.
- a further recess 33 is also provided in the segment-like tool 30.
- the workpiece 10 is now taught by means of two guide ruler of a positioning device not shown in a position between the work rolls 2 and 3, in which it is detected by the recess 23 in the tool 20 of the first work roll 2.
- This process phase with incorporated tool 10 in the starting position shows FIG. 5 .
- the mutually facing surfaces of the work rolls 2 and 3 move in opposite directions or opposite to each other.
- the workpiece 10 Upon further rotation of the work rolls 2 and 3 to each other, the workpiece 10 is now placed between the tools 20 and 30 and under the pressure of the tools 20 and 30, which have a smaller distance w to each other than the original diameter of the workpiece 10 in a smaller diameter spent.
- the resulting after forming reduced diameter (recess) of the workpiece 10 at the in cross section The position shown corresponds largely to the minimum distance w between the tools 20 and 30 of the work rolls 2 and 3.
- a position of the work rolls 2 and 3 with the intermediate kneaded workpiece 10 during the actual rolling process is in FIG. 6 shown.
- FIG. 7 Finally, the position of the work rolls 2 and 3 is illustrated, in which the workpiece 10 falls into the recess 33 of the tool 30 of the second work roll 3 and, upon further rotation of the work roll 3, is ejected from the gap between work rolls 2 and 3.
- Hz Hertz
- ⁇ 9 nine consecutive angular positions ⁇ 1 to ⁇ 9 drawn on the ⁇ -axis and between the angular positions ⁇ 1 and ⁇ 9 the rotational speed n as a function of n ( ⁇ ) of the rotational angle ⁇ plotted.
- K The resulting curve is labeled K.
- This curve K is in turn subdivided into seven sub-curves K1 to K7, the first sub-curve K1 between the angular positions ⁇ 1 and ⁇ 2, the second sub-curve K2 between the angular positions ⁇ 2 and ⁇ 3, the third sub-curve K3 between the angular positions ⁇ 3 and ⁇ 4, the fourth sub-curve K4 between the angular positions ⁇ 4 and ⁇ 5, the fifth sub-curve K5 between the angular positions ⁇ 5 and ⁇ 6, the sixth sub-curve K6 between the angular positions ⁇ 6 and ⁇ 7 and the seventh sub-curve K7 is between the angular positions ⁇ 7 and ⁇ 8.
- the first part curve K1 and the second part curve K2 show a possible time profile of the speed n of the work rolls 2 and 3 in the lying between the angular positions ⁇ 1 and ⁇ 3 first process phase for preparation and positioning of the workpiece 10.
- Between the angular positions ⁇ 1 and ⁇ 2 is in a quite steep rise according to the sub-curve K1 increases the speed from 0 to a first speed n1> 0 and then held substantially constant between the angular positions ⁇ 2 and ⁇ 3, corresponding to the part curve K2.
- the workpiece 10 is positioned between the work rolls 2 and 3 and finally detected at approximately the angular position ⁇ 3 of the recess 23 of the tool 20 of the first work roll 2.
- the angular position ⁇ 3 is now the angular position of the first rotary roller 2, in which the workpiece 10 is fixed in the recess 23 and the rolling process can begin.
- the angular position or rotational position of the second work roll 3 is directly correlated with the angular position of the work roll 2 and changes synchronously, but in opposite directions with the angular position of the first work roll, wherein the rotation of the work rolls 2 and 3 takes place in the same direction. Therefore, it is sufficient to consider the rotational position of the first work roll 2.
- the angular position of the second work roll 3 are taken as a variable or parameter, of which the speed n is made dependent. In any case, it is sufficient to provide on one of the two work rolls 2 or 3 a position detection device for determining the angle of rotation ⁇ relative to a reference or zero position ⁇ 0, which in the 4 to 7 is selected down and drawn.
- the rotational speed n is reduced again during the part curve K5, preferably again with a angle ⁇ 6 of the first work roll 2 lying in front of the associated angular position ⁇ 7 of the first work roll 2 high braking acceleration and then with a lower braking acceleration, corresponding to a flatter slope in the sub-curve K6 between the angular positions ⁇ 7 and ⁇ 8 further lowered. It is therefore carried out the ejection of the workpiece at a lower speed n and a lower spin to gently eject the workpiece.
- FIG. 9 shows a dependence n ( ⁇ ), during which a more complicated profile is driven during the forming process.
- a first forming phase with a first tool is now accelerated between the angular positions ⁇ 4 and ⁇ 5 of a speed n2 to a higher speed n8 and maintain this speed n8 up to an angular position ⁇ 6. Then is braked again from the speed n8 to a speed n5 between the angular positions ⁇ 6 and ⁇ 7.
- the rotational speed n5 is maintained between the angular positions ⁇ 7 and ⁇ 8 and then accelerated again between ⁇ 8 and ⁇ 9 to a rotational speed n7, which is maintained again during a plateau phase between ⁇ 9 and ⁇ 10.
- This plateau phase between ⁇ 9 and ⁇ 10 with the speed n7 corresponds to another forming phase with another tool.
- the angle-dependent speed control according to the invention allows a variety of adapted rolling rotational movements for different processes, tools and workpieces.
- FIG. 1 and 3 further show a worm wheel 9, which is coupled to the gear 18 for the work roll 2 and allows adjustment or adjustment of the relative angular position of the work roll 2 relative to the work roll 3.
- a worm wheel 9 which is coupled to the gear 18 for the work roll 2 and allows adjustment or adjustment of the relative angular position of the work roll 2 relative to the work roll 3.
- an adjusting drive not shown, the rotational drive with the permanent magnet motor 4 and the transmission to the output shaft 45 and the control gear 5 relative to can move the two roller gears 18 and 19.
- an asymmetric engagement or backlash can be corrected.
- the holding devices 12 and 13 of the two work rolls 2 and 3 are supported by a support means 6 and stored or anchored in this.
- the support means 6 comprises four columnar support members 6A to 6D arranged in a rectangular arrangement and mounted or fixed on a common floor panel 6E supported on the floor 50.
- an associated tie rod 7A to 7B is vertically arranged in the longitudinal direction of the respective support member which is fixed to the bottom of the support plate 6E and above by means of an associated lock nut, preferably a hydraulically operated lock nut (9B, 9C in FIG. 3 ) is biased.
- a slotted Unterlagringsegment is placed under the hydraulic nut when the hydraulic nut is in the released state and then pressed by applying the hydraulic pressure, the nut on the Unterlagsringsegment.
- the support means forming the frame of the rolling machine can be set under a certain tension. This leads to a stiffening of the roll stand.
- FIG. 10 and 11 show a further embodiment of a cross wedge rolling machine 1, in which unlike the embodiment according to FIG 1 to 3 a first drive 42 for the first work roll 2 and a second, independent of the first drive 42 drive 43 for the second work roll 3.
- Each drive 42 and 43 includes an associated permanent magnet motor 44 and 45 and a - not shown - gear, for example, one, in particular three-stage, gear transmission, for transmitting the torque of the motor to the associated work roll 2 and 3.
- the reduction ratio of each transmission for example, be 1:35.
- 10 and 11 are the rotation axis C of the output shaft of the permanent magnet motor 44 of the first drive 42 and the rotation axis D of the output shaft of the permanent magnet motor 45 of the second drive 43 orthogonal to the axes of rotation A and B of the respective work rolls 2 and 3 directed and the motors accordingly laterally Roll stand arranged.
- Each of the permanent magnet motors 44 and 45 is controlled electronically, in particular via a converter. As a result, the work rolls 2 and 3 can be driven either electronically synchronously or asynchronously.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Rolling Contact Bearings (AREA)
- Press Drives And Press Lines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Control Of Metal Rolling (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Umformen eines Werkstückes und eine Walzmaschine, die zum Durchführen des Verfahrens geeignet ist.The invention relates to a method for forming a workpiece and a rolling machine, which is suitable for carrying out the method.
Zum Umformen von Werkstücken aus einer Ausgangsform in eine gewünschte Zwischenform (Halbzeug, Vorformen) oder Endform (Fertigprodukt, Fertigformen) sind neben vielen anderen Verfahren auch Walzverfahren bekannt, die zu den Druckumformverfahren gezählt werden. Beim Walzen wird das Werkstück (Walzgut) zwischen zwei rotierenden Walzen angeordnet und durch Ausüben eines Umformdrucks durch die rotierenden Walzen in seiner Form verändert. Beim Profilwalzverfahren sind Werkzeugprofile am Umfang der Walzen angeordnet, die die Erzeugung entsprechender Profile im Werkstück ermöglichen. Beim Flachwalzen wirken die zylindrischen oder kegeligen Außenflächen der Walzen unmittelbar auf das Werkstück.For forming workpieces from a starting shape into a desired intermediate shape (semifinished product, preforming) or final shape (finished product, finished forms), there are, among many other processes, also rolling processes which are counted among the pressure forming processes. During rolling, the workpiece (rolling stock) is placed between two rotating rolls and changed in shape by exerting a forming pressure by the rotating rolls. When profile rolling process tool profiles are arranged on the circumference of the rollers, which allow the production of corresponding profiles in the workpiece. In flat rolling, the cylindrical or tapered outer surfaces of the rollers act directly on the workpiece.
Bezüglich der Relativbewegung der Werkzeuge oder Walzen einerseits und des Werkstückes andererseits unterteilt man Walzverfahren in Längswalzen, Querwalzen und Schrägwalzen. Beim Längswalzen wird das Werkstück senkrecht zu den Drehachsen der Walzen in einer translatorischen Bewegung und meist ohne Drehung durch den Zwischenraum zwischen den Walzen (Walzenspalt) bewegt. Beim Querwalzen bewegt sich das Werkstück nicht translatorisch bezüglich der Walzen oder deren Drehachsen, sondern dreht sich nur um seine eigene Achse, die üblicherweise eine Hauptträgheitsachse, insbesondere die Symmetrieachse bei einem rotationssymmetrischen Werkstück, ist. Bei Kombination beider Bewegungsarten beim Längswalzen und beim Querwalzen spricht man von Schrägwalzen. Die Walzen stehen dabei in der Regel schräg zueinander und zum Werkstück, das translatorisch und rotatorisch bewegt wird.With regard to the relative movement of the tools or rollers on the one hand and the workpiece on the other hand, one divides rolling processes in longitudinal rolls, transverse rolls and oblique rolls. During longitudinal rolling, the workpiece is moved perpendicular to the axes of rotation of the rollers in a translatory movement and usually without rotation through the gap between the rollers (nip). During transverse rolling, the workpiece does not translate with respect to the rollers or their axes of rotation, but rotates only about its own axis, which is usually a main axis of inertia, in particular the axis of symmetry in a rotationally symmetrical workpiece. When combining both types of movement during longitudinal rolling and cross rolling one speaks of skew rolls. The rollers are usually at an angle to each other and to the workpiece, which is translationally and rotationally moved.
Profilquerwalzmaschinen, bei denen zwei Walzen mit am Außenumfang angeordneten keilförmigen Profilwerkzeugen um zueinander parallele Drehachsen gleichsinnig rotieren, bezeichnet man mitunter auch als Querkeilwalzen. Die Werkzeuge weisen dabei eine keilförmige oder im Querschnitt dreieckförmige Geometrie auf und können entlang des Umfangs in ihrer radialen Abmessung in einer Richtung zunehmen und/oder schräg zur Drehachse der Walzen verlaufen.Profile transverse rolling machines, in which two rollers with wedge-shaped profile tools arranged on the outer circumference rotate in the same direction about axes of rotation parallel to one another, are sometimes referred to as transverse wedge rolling. The tools have a wedge-shaped or triangular in cross-section geometry and can increase along the circumference in their radial dimension in one direction and / or extend obliquely to the axis of rotation of the rollers.
Diese Querkeilwalzen oder Profilquerwalzen erlauben ein vielfältiges Umformen von Werkstücken in hoher Präzision oder Maßgenauigkeit. Infolge der von den keilförmigen Werkzeugen auf das Werkstück ausgeübten Druckkraft wird dabei die Materialverteilung im Werkstück während des Umlaufs der Walzen durch einen Fließvorgang im Werkstück verändert. Die keilförmigen Werkzeuge können umlaufende Nuten und andere Verjüngungen in dem rotierenden Werkstück erzeugen. Durch den axialen Versatz in Umfangsrichtung oder die schräge Anordnung der Werkzeugkeile relativ zur Drehachse können beispielsweise axial zur Drehachse sich ändernde Strukturen und Verjüngungen im Werkstück erzeugt werden. Durch die Zunahme oder Abnahme des Außendurchmessers der Werkzeugkeile beim Verlauf um die Drehachse können in Kombination mit der schrägen Anordnung axial verlaufende Schrägen und kontinuierliche Übergänge zwischen zwei Verjüngungen unterschiedlichen Durchmessers im Werkstück erzeugt werden. Die Keilform der Werkzeuge erlaubt die Herstellung feiner Strukturen durch die Keilaußenkanten oder -außenflächen. Besonders geeignet sind Querkeilwalzen zum Herstellen von langgestreckten, rotationssymmetrischen Werkstücken mit Einschnürungen oder Erhöhungen wie Nocken oder Rippen.These cross wedge or cross-profile rollers allow a variety of forming workpieces in high precision or dimensional accuracy. As a result of the compressive force exerted by the wedge-shaped tools on the workpiece while the material distribution in the workpiece during the rotation of the rollers is changed by a flow in the workpiece. The wedge-shaped tools can create circumferential grooves and other tapers in the rotating workpiece. By the axial offset in the circumferential direction or the oblique arrangement of the tool wedges relative to the axis of rotation, for example, axially changing structures and tapers can be produced in the workpiece to the rotation axis. By the increase or decrease of the outer diameter of the tool wedges when passing around the axis of rotation can be generated in combination with the oblique arrangement axially extending slopes and continuous transitions between two tapers of different diameters in the workpiece. The wedge shape of the tools allows the production of fine structures through the wedge outer edges or outer surfaces. Particularly suitable are cross wedge rollers for producing elongate, rotationally symmetrical workpieces with constrictions or elevations such as cams or ribs.
Die Umformdruckkraft sowie die Umformtemperatur sind abhängig von dem Werkstoff, aus dem das Werkstück besteht, sowie von den Anforderungen an die Maßgenauigkeit und Oberflächenqualität nach der Umformung. Insbesondere bei Eisen- oder Stahlwerkstoffen wird üblicherweise die Umformung beim Walzen bei erhöhten Temperaturen durchgeführt, um die zum Umformen erforderliche Umformbarkeit oder Fließfähigkeit des Werkstoffes zu erreichen. Diese, insbesondere beim Schmieden auftretenden, Temperaturen können bei einer sogenannten Kaltumformung im Bereich von Raumtemperatur, bei einer Halbwarmumformung zwischen 550°C und 750°C und bei einer sogenannten Warmumformung oberhalb 900°C liegen. Die Umform- oder Schmiedetemperatur wird üblicherweise auch in einen Temperaturbereich gelegt, in dem Erholungs- und Rekristallisationsvorgänge im Werkstoff ablaufen und auch unerwünschte Phasenumwandlungen vermieden werden.The forming pressure and the forming temperature depend on the material of which the workpiece is made, as well as the dimensional accuracy and surface quality requirements after forming. Especially In iron or steel materials, the forming is usually carried out at elevated temperatures during rolling, in order to achieve the formability or flowability of the material required for forming. These temperatures, in particular occurring during forging, can be in the range of room temperature in the case of so-called cold forming, or between 550 ° C. and 750 ° C. in the case of warm forging, and above 900 ° C. in the case of so-called hot forming. The forming or forging temperature is usually also placed in a temperature range in which run recovery and recrystallization processes in the material and unwanted phase transformations are avoided.
Es sind Querkeilwalzmaschinen (oder: Profilquerwalzmaschinen) bekannt, bei denen die Werkstücke zu Beginn des Walzprozesses mittels einer Positioniereinrichtung, die zwei Positionierträger (sogenannte Leitlineale) umfasst, in eine Ausgangsposition zwischen den beiden Walzen, die üblicherweise der geometrischen Mitte oder der Mitte des Walzenspaltes entspricht, positioniert. Nun werden die Positionierträger der Positioniereinrichtung zurückgezogen, so dass sich das Werkstück frei zwischen den Walzen dreht und zwischen den Werkzeugen in die gewünschte Form geknetet wird. Nach diesem Walz- oder Knetvorgang und der entsprechenden Fertigstellung des Werkstückes wird das Werkstück über eine Aussparung im rotierenden Walzwerkzeug erfasst und ausgeworfen.Cross wedge rolling machines are known, in which the workpieces at the beginning of the rolling process by means of a positioning device comprising two positioning supports (so-called guide rulers), in an initial position between the two rollers, which usually corresponds to the geometric center or the center of the nip , positioned. Now, the positioning carriers of the positioning device are withdrawn, so that the workpiece rotates freely between the rollers and is kneaded between the tools in the desired shape. After this rolling or kneading process and the corresponding completion of the workpiece, the workpiece is detected and ejected via a recess in the rotating rolling tool.
Aus
Die
Aus der
Die
Der Erfindung liegt nun die Aufgabe zugrunde, eine neue Walzmaschine anzugeben.The invention is based on the object of specifying a new rolling machine.
Diese Aufgabe wird gelöst mit den Merkmalen des Anspruchs 1.This object is achieved with the features of
Die Walzmaschine gemäß Anspruch 1 umfasst für jede der Walzen einen zugehörigen Antrieb, wobei die Antriebe unabhängig voneinander sind, und umfasst wenigstens einen Permanentmagnet-Motor, insbesondere einen Torque-Motor zum Antreiben der Walzen.The rolling machine according to
Vorteilhafte Ausgestaltung und Weiterbildung der Walzmaschine ergeben sich aus den vom Anspruch 1 abhängigen Ansprüchen.Advantageous embodiment and development of the rolling machine resulting from the dependent of
In einer besonders vorteilhaften Ausführungsform ist die Walzmaschine eine Profilquerwalzmaschine oder Querkeilwalzmaschine. Aufgrund des drehzahlsteuerbaren und reversierbaren Antriebs ist die Walzmaschine oder Querkeilwalzmaschine auch als Reckwalzmaschine oder kurz Reckwalze einsetzbar.In a particularly advantageous embodiment, the rolling machine is a profile cross rolling machine or cross wedge rolling machine. Due to the speed-controllable and reversible drive, the rolling or cross wedge rolling machine can also be used as a stretching or short stretch roll.
Der Permanentmagnet-Motor beschleunigt vorzugsweise auf die Nenndrehzahl zum Betrieb der Walzen innerhalb eines Drehwinkels von maximal 3°, 2,2°, 1° oder 0,5°. Ferner weist der Permanentmagnet-Motor vorzugsweise ein Nenndrehmoment zwischen etwa 5.000 Nm und etwa 80.000 Nm, insbesondere zwischen etwa 35.000 Nm und etwa 60.000 Nm, auf und/oder eine Nenndrehzahl zwischen etwa 20 U/min und 800 U/min, insbesondere etwa 30 U/min oder 500 U/min.The permanent magnet motor preferably accelerates to the rated speed for operation of the rollers within a rotation angle of a maximum of 3 °, 2.2 °, 1 ° or 0.5 °. Furthermore, the permanent magnet motor preferably has a nominal torque between about 5,000 Nm and about 80,000 Nm, in particular between about 35,000 Nm and about 60,000 Nm, and / or a rated speed between about 20 U / min and 800 U / min, in particular about 30 U / min or 500 rpm.
In einer Weiterbildung der Walzmaschine umfasst der Antrieb neben dem wenigstens einen Permanentmagnet-Motor wenigstens ein Getriebe zur Übertragung des Drehmoments oder der Drehbewegung des Permanentmagnet-Motors auf die wenigstens zwei Walzen. Das Getriebe umfasst insbesondere wenigstens ein mit der Abtriebswelle des Permanentmagnet-Motors gekoppeltes zentrales Antriebszahnrad sowie zwei mit dem Antriebszahnrad in Eingriff stehende oder bringbare und mit jeweils einer der Walzen gekoppelte Walzenzahnräder. Das Übersetzungsverhältnis des Getriebes vom Antriebsmotor auf jede der Walzen ist dann im Allgemeinen gleich und vorzugsweise in einem Bereich zwischen 1 : 1 und 1 : 1,5 gewählt. Ein solcher Antrieb ist also insbesondere mechanisch synchronisiert über das Getriebe.In a development of the rolling machine, the drive comprises, in addition to the at least one permanent magnet motor, at least one transmission for transmitting the torque or the rotational movement of the permanent magnet motor to the at least two rollers. In particular, the transmission comprises at least one central drive gearwheel coupled to the output shaft of the permanent magnet motor and two roller gearwheels which engage or can be brought into engagement with the drive gearwheel and are coupled to one of the rollers. The gear ratio of the transmission from the drive motor to each of the rollers is then generally the same, and preferably selected in a range between 1: 1 and 1: 1.5. Such a drive is therefore in particular mechanically synchronized via the transmission.
Bei unabhängigen Antrieben für die Walzen werden dagegen die Walzen elektronisch synchronisiert oder gesteuert, insbesondere über Umrichter, die beispielsweise eine Netzspannung von 400 V und 50 Hz in eine Wechselspannung oder einen Wechselstrom geeigneter Amplitude und Frequenz umrichten. Hier ist besonders vorteilhaft, dass bei Querkeilwalzen die Kraftbelastung auf beide Motoren wegen des symmetrischen Aufbaus der Werkzeuge/Walzen und/oder des symmetrischen Umformvorgangs vergleichsweise gering ist und somit die Synchronisation der Antriebe begünstigt ist.In independent drives for the rollers, however, the rollers are electronically synchronized or controlled, in particular via inverters, which convert, for example, a mains voltage of 400 V and 50 Hz in an AC voltage or an AC of suitable amplitude and frequency. Here is particularly advantageous that in cross wedge rollers, the force load on both motors because of the symmetrical structure of the tools / rollers and / or the symmetrical forming process is relatively low and thus the synchronization of the drives is favored.
Folgende Patentansprüche aus der Stammanmeldung in der ursprünglich eingereichten Fassung könnten auch (teilweise) Gegenstand der vorliegenden Teilanmeldung sein:
- 1. Verfahren zum Umformen eines Werkstücks, bei dem
- a) das Werkstück zwischen wenigstens zwei rotierenden, mit Werkzeugen bestückten Walzen angeordnet wird und
- b) die Rotationsgeschwindigkeit wenigstens einer der Walzen in Abhängigkeit von der Drehposition wenigstens einer der Walzen gesteuert oder geregelt wird.
- 1. A method for forming a workpiece, wherein
- a) the workpiece between at least two rotating, equipped with tools rollers is arranged and
- b) the rotational speed of at least one of the rollers is controlled or regulated as a function of the rotational position of at least one of the rollers.
Das Verfahren zum Umformen eines Werkstücks umfasst demnach die folgenden Verfahrensschritte:
- a) Anordnen des Werkstücks zwischen wenigstens zwei rotierenden, mit Werkzeugen versehenen (bestückten) Walzen und
- b) Einstellen (Steuern oder Regeln) der Rotationsgeschwindigkeit, insbesondere der Winkelgeschwindigkeit, Drehzahl oder Umfangsgeschwindigkeit, wenigstens einer der Walzen in Abhängigkeit von der Drehposition wenigstens einer der Walzen.
- a) arranging the workpiece between at least two rotating, provided with tools (equipped) rollers and
- b) adjusting (controlling or regulating) the rotational speed, in particular the angular speed, rotational speed or circumferential speed, of at least one of the rollers as a function of the rotational position of at least one of the rollers.
Unter dem Begriff "Umformen" wird dabei jede Umwandlung der Form eines Werkstückes in eine andere Form verstanden, wie auch eingangs beschreiben, einschließlich Vorformen und Fertigformen.
- 2. Verfahren nach
Anspruch 1, bei dem die Abhängigkeit der Rotationsgeschwindigkeit von der Drehposition der Walze(n) abhängig vom bearbeiteten Werkstück gewählt ist. - 3.
Verfahren nach Anspruch 1oder Anspruch 2, bei dem das Werkstück- a) während einer ersten Prozessphase, vorzugsweise mittels einer Positioniereinrichtung, zwischen den Walzen positioniert wird,
- b) während einer zweiten Prozessphase zwischen den Werkzeugen der Walzen umgeformt wird und
- c) während einer dritten Prozessphase wieder aus dem Zwischenraum zwischen den Walzen entnommen oder ausgeworfen wird.
- 4.
Verfahren nach Anspruch 3, bei dem die Rotationsgeschwindigkeit in der ersten Prozessphase wenigstens im Mittel geringer ist als während der zweiten Prozessphase und/oder bei dem die Rotationsgeschwindigkeit der Walzen während der zweiten Prozessphase zumindest im Mittel größer ist als während der dritten Prozessphase. - 5.
Verfahren nach Anspruch 3oder Anspruch 4, bei dem das Werkstück zu Beginn der zweiten Prozessphase von dem oder den Werkzeug(en) wenigstens einer Walze erfasst wird und während der zweiten Prozessphase zwischen den Werkzeugen der beiden Walzen umgeformt wird und zu Beginn der dritten Prozessphase aus dem Zwischenraum zwischen den Walzen ausgeworfen wird. - 6.
Verfahren nach Anspruch 5, bei dem die Rotationsgeschwindigkeit nach Erfassen des Werkstückes durch die Werkzeuge der Walze(n) in der zweiten Prozessphase erhöht wird und/oder bei dem die Rotationsgeschwindigkeit vor dem Auswerfen des Werkstückes in der dritten Prozessphase erniedrigt wird und/oder bei dem die Rotationsgeschwindigkeit beim Erfassen des Werkstückes zu Beginn der zweiten Prozessphase und zum Ende der zweiten Prozessphase etwa gleich ist. - 7. Verfahren nach einem oder mehreren der Ansprüche 3
bis 6, bei dem die Rotationsgeschwindigkeit wenigstens einer der Walzen während der zweiten Prozessphase zumindest teilweise konstant gehalten wird oder bei dem die Rotationsgeschwindigkeit wenigstens einer der Walzen während der zweiten Prozessphase, insbesondere gemäß einem vorgegebenen Verlauf oder einer vorgegebenen Abhängigkeit, verändert wird. - 8. Verfahren nach einem der Ansprüche 3
bis 7, bei dem die zweite Prozessphase einzelne Teilprozessphasen umfasst, während der vorzugsweise das Werkstück von verschiedenen Werkzeugen auf den Walzen umgeformt wird, wobei vor oder nach einer Teilprozessphase und/oder zwischen den Teilprozessphasen und/oder während der Teilprozessphasen die Rotationsgeschwindigkeit verändert wird und/oder wobei die Rotationsgeschwindigkeit vor wenigstens einer oder vor jeder, Teilprozessphase reduziert wird. - 9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, bei dem die Rotationsgeschwindigkeit und/oder Drehrichtung der Walzen wenigstens phasenweise im Wesentlichen gleich zueinander eingestellt werden bzw. wird und/oder bei dem die Rotationsgeschwindigkeit und/oder Drehrichtung der Walzen wenigstens phasenweise unterschiedlich zueinander eingestellt werden bzw. wird.
- 10. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, bei dem die aktuelle Drehposition der Walze(n) aus einer Ausgangsposition oder Referenzposition der Walze(n) und dem Verlauf der Rotationsgeschwindigkeit ermittelt wird oder bei dem die Drehposition der Walze(n) mittels wenigstens einer Positionserfassungseinrichtung bestimmt wird.
- 11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, bei dem die Rotationsgeschwindigkeit bei wenigstens einer Drehposition verringert wird, um eine Überbeanspruchung des Werkstücks bei dieser Drehposition zu vermeiden, und/oder bei dem die Rotationsgeschwindigkeit bei wenigstens einer Drehposition so gesteuert oder geregelt wird, dass das auf die zugehörige Walze ausgeübte Drehmoment bei dieser Drehposition einen vorgegebenen Wert annimmt oder nicht überschreitet.
- 12. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, bei dem die aktuelle Position der Werkzeuge auf den Walzen bestimmt wird und eine Referenzdrehposition der Walzen abhängig von der bestimmten aktuellen Position der Werkzeuge eingestellt wird.
- 13. Verfahren nach einem oder mehreren der vorhergehende Ansprüche, bei dem das Werkstück kaltumgeformt oder warmumgeformt oder heißumgeformt wird und/oder bei dem das Werkstück aus einem eisenhaltigen Werkstoff oder aus einem nicht eisenhaltigen metallischen Werkstoff besteht.
- 14. Walzmaschine, insbesondere zum Durchführen eines Verfahrens nach einem der vorhergehenden Ansprüche, mit
- a) wenigstens zwei rotierbaren oder rotierenden, mit Werkzeugen bestückbaren oder bestückten Walzen zum Umformen eines zwischen den Walzen anordenbaren oder angeordneten Werkstücks,
- b) wenigstens einem Antrieb zum Antreiben der Walzen, wobei
- c) der wenigstens eine Antrieb wenigstens einen Permanentmagnet-Motor, insbesondere einen Torque-Motor, umfasst.
- 15.
Walzmaschine nach Anspruch 14, bei der jeder Permanentmagnet-Motor auf die Nenndrehzahl zum Betrieb der Walze(n) innerhalb eines maximalen Drehwinkelintervalls von höchstens 3° oder von höchstens 2,2°oder höchstens 1° oder sogar höchstens 0,5° beschleunigt oder verzögert. - 16.
Walzmaschine nach Anspruch 14oder Anspruch 15, bei der wenigstens ein oder jeder Permanentmagnet-Motor ein Nenndrehmoment zwischen etwa 5.000 Nm und etwa 80.000 Nm oder zwischen etwa 35.000 Nm und etwa 60.000 Nm aufweist und/oder bei der wenigstens ein oder jeder Permanentmagnet-Motor eine Nenndrehzahl zwischen etwa 20 U/min und 800 U/min oder zwischen etwa 30 U/min und 500 U/min aufweist. - 17. Walzmaschine nach einem oder mehreren der Ansprüche 14
bis 16, bei der ein gemeinsamer Antrieb für wenigstens zwei der Walzen vorgesehen ist, der neben dem wenigstens einen Permanentmagnet-Motor wenigstens ein Getriebe umfasst zur Übertragung der Drehkraft oder der Drehbewegung des Permanentmagnet-Motors auf die wenigstens zwei Walzen, wobei vorzugsweise das Getriebe wenigstens ein mit der Abtriebswelle des Permanentmagnet-Motors gekoppeltes zentrales Antriebszahnrad sowie zwei mit dem Antriebszahnrad in Eingriff stehende oder bringbare und mit jeweils einer der Walzen gekoppelte Walzenzahnräder umfasst und/oder vorzugsweise das Übersetzungsverhältnis des Getriebes vom Antriebsmotor auf jede der Walzen gleich ist oder in einem Bereich zwischen 1 : 1 und 1 : 1,5 liegt. - 18. Walzmaschine nach Anspruch 17, bei der das Zahnflankenspiel oder der Zahneingriff der Walzenzahnräder zum Antriebszahnrad einstellbar oder korrigierbar ist, vorzugsweise Mittel zum Bewegen des Antriebszahnrades, vorzugsweise zusammen mit dem Permanentmagnet-Motor, relativ zu den Walzenzahnrädern vorgesehen sind, insbesondere wenigstens ein Verstellantrieb.
- 19. Walzmaschine nach einem oder mehreren der Ansprüche 14
bis 18 mit Mitteln zum Einstellen der relativen Winkelposition der beiden Walzen zueinander, die vorzugsweise ein mit einer der Walzen gekoppeltes Schneckenrad umfassen. - 20. Walzmaschine nach einem oder mehreren der Ansprüche 14
bis 19 und/oder zum Durchführen eines Verfahrens nach einem der Ansprüche 1bis 13 mit- a) wenigstens zwei rotierbaren oder rotierenden, mit Werkzeugen bestückbaren oder bestückten Walzen zum Umformen eines zwischen den Walzen anordenbaren oder angeordneten Werkstücks,
- b) wobei jeder Walze wenigstens ein Antrieb zugeordnet ist zum unabhängigen Antreiben der Walzen.
- 21. Walzmaschine nach einem oder mehreren der Ansprüche 14
bis 20, bei der wenigstens ein Antrieb einen Umrichter zum Versorgen des Motors mit elektrischer Energie aufweist. - 22. Walzmaschine nach einem oder mehreren der Ansprüche 14
bis 21, umfassend wenigstens eine Positionserfassungseinrichtung zum Erfassen oder Bestimmen der Drehposition wenigstens einer der Walzen. - 23. Walzmaschine nach einem oder mehreren der Ansprüche 14 bis 22, die als Profilquerwalzmaschine oder Querkeilwalzmaschine ausgebildet ist und/oder bei der die Walzen im Querschnitt keilförmige oder dreieckförmige Profilwerkzeuge aufweisen, die entlang des Umfangs in ihrer radialen Abmessung in einer Richtung zunehmen und/oder schräg zur Drehachse der zugehörigen Walze verlaufen.
- 2. The method of
claim 1, wherein the dependence of the rotational speed of the rotational position of the roller (s) is selected depending on the machined workpiece. - 3. The method of
claim 1 orclaim 2, wherein the workpiece- a) is positioned between the rollers during a first process phase, preferably by means of a positioning device,
- b) is formed during a second process phase between the tools of the rolls and
- c) is removed or ejected again from the space between the rollers during a third process phase.
- 4. The method of
claim 3, wherein the rotational speed in the first process phase is at least on average less than during the second process phase and / or in which the rotational speed of the rollers during the second process phase is at least on average greater than during the third process phase. - 5. The method of
claim 3 orclaim 4, wherein the workpiece is detected at the beginning of the second process phase of the tool or tools at least one roller and is formed during the second process phase between the tools of the two rolls and at the beginning of the third Process phase is ejected from the space between the rollers. - 6. The method of
claim 5, wherein the rotation speed after detecting the workpiece by the tools of the roller (s) is increased in the second process phase and / or in which the rotational speed is lowered before ejecting the workpiece in the third process phase and / or wherein the rotational speed when detecting the workpiece at the beginning of the second process phase and the end of the second process phase is about the same. - 7. The method according to one or more of
claims 3 to 6, wherein the rotational speed of at least one of the rollers during the second process phase is kept at least partially constant or in which the rotational speed of at least one of the rollers during the second process phase, in particular according to a predetermined course or a given dependence, is changed. - 8. The method according to any one of
claims 3 to 7, wherein the second process phase includes individual sub-process phases, during which preferably the workpiece is formed by different tools on the rollers, wherein before or after a sub-process phase and / or between the sub-process phases and / or during the sub-process phases, the rotational speed is changed and / or wherein the rotational speed is reduced before at least one or before each, sub-process phase. - 9. The method according to one or more of the preceding claims, wherein the rotational speed and / or direction of rotation of the rollers are set at least in phases substantially equal to each other and / or in which set the rotational speed and / or direction of rotation of the rollers at least in phases different from each other be or will.
- 10. The method according to one or more of the preceding claims, wherein the current rotational position of the roller (s) from a starting position or reference position of the roller (s) and the course of the rotational speed is determined or in which the rotational position of the roller (s) by means of at least a position detection device is determined.
- 11. The method according to one or more of the preceding claims, wherein the rotational speed is reduced in at least one rotational position to overstress the workpiece in this To avoid rotational position, and / or in which the rotational speed in at least one rotational position is controlled or regulated so that the force exerted on the associated roller torque at this rotational position assumes a predetermined value or not.
- 12. The method according to one or more of the preceding claims, wherein the current position of the tools is determined on the rollers and a reference rotational position of the rollers is adjusted depending on the determined current position of the tools.
- 13. The method according to one or more of the preceding claims, wherein the workpiece is cold-formed or hot-formed or hot-formed and / or wherein the workpiece consists of a ferrous material or of a non-ferrous metal material.
- 14. Rolling machine, in particular for carrying out a method according to one of the preceding claims, with
- a) at least two rotatable or rotating, can be fitted with tools or equipped rollers for forming a can be arranged between the rollers or arranged workpiece,
- b) at least one drive for driving the rollers, wherein
- c) the at least one drive comprises at least one permanent magnet motor, in particular a torque motor.
- 15. A rolling machine according to
claim 14, wherein each permanent magnet motor accelerates to the rated speed for operation of the roll (s) within a maximum rotation angle interval of at most 3 ° or at most 2.2 ° or at most 1 ° or even at most 0.5 ° or delayed. - 16. Rolling machine according to claim 14 or
claim 15, wherein the at least one or each permanent magnet motor has a nominal torque of between about 5,000 Nm and about 80,000 Nm or between about 35,000 Nm and about 60,000 Nm and / or wherein at least one or each permanent magnet Motor has a rated speed between about 20 U / min and 800 U / min or between about 30 U / min and 500 U / min. - 17. Rolling machine according to one or more of
claims 14 to 16, wherein a common drive is provided for at least two of the rollers, in addition to the at least one permanent magnet motor comprises at least one gear for transmitting the rotational force or the rotational movement of the permanent magnet motor the at least two rollers, wherein preferably the transmission comprises at least one coupled to the output shaft of the permanent magnet motor central drive gear and two meshing with the drive gear or engageable and coupled to each one of the rollers roller gears and / or preferably the transmission ratio of the transmission from the drive motor is equal to each of the rolls or is in a range between 1: 1 and 1: 1.5. - 18. Rolling machine according to claim 17, wherein the backlash or the meshing of the roller gears to the drive gear is adjustable or correctable, preferably means for moving the drive gear, preferably provided together with the permanent magnet motor, relative to the roller gears, in particular at least one adjustment.
- 19. Rolling machine according to one or more of
claims 14 to 18 with means for adjusting the relative angular position of the two rollers to each other, which preferably comprise a coupled with one of the rollers worm wheel. - 20. Rolling machine according to one or more of
claims 14 to 19 and / or for carrying out a method according to any one ofclaims 1 to 13 with- a) at least two rotatable or rotating, can be fitted with tools or equipped rollers for forming a can be arranged between the rollers or arranged workpiece,
- b) wherein each roller is associated with at least one drive for independently driving the rollers.
- 21. Rolling machine according to one or more of
claims 14 to 20, wherein at least one drive comprises a converter for supplying the motor with electrical energy. - 22. Rolling machine according to one or more of
claims 14 to 21, comprising at least one position detecting means for detecting or determining the rotational position of at least one of the rollers. - 23. Rolling machine according to one or more of
claims 14 to 22, which is designed as a profile cross rolling or cross wedge rolling machine and / or in which the rollers in cross-section wedge-shaped or triangular profile tools, which increase along the circumference in their radial dimension in one direction and / or run obliquely to the axis of rotation of the associated roller.
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen weiter erläutert. Dabei wird auf die Zeichnungen Bezug genommen, in deren
- FIG 1
- eine Walzmaschine mit zwei Walzen und einem gemeinsamen Antrieb in einer teilweise geschnittenen Längsansicht,
- FIG 2
- die Walzmaschine gemäß
FIG 1 in einer teilweise geschnittenen Draufsicht von oben, - FIG 3
- die Walzmaschine gemäß
FIG 1 und FIG 2 in einer Seitenansicht, - FIG 4
- die beiden Arbeitswalzen einer Walzmaschine im Querschnitt vor Einbringen des Werkstückes,
- FIG 5
- die beiden Arbeitswalzen der Walzmaschine beim Einbringen des Werkstückes,
- FIG 6
- die Arbeitswalzen mit dem bearbeiteten Werkstück im Querschnitt,
- FIG 7
- die beiden Arbeitswalzen beim Auswerfen des Werkstückes und
- FIG 8
- eine mögliche Abhängigkeit der Winkelgeschwindigkeit einer Arbeitswalze vom Drehwinkel in einem Diagramm
- FIG 9
- eine weitere mögliche Abhängigkeit der Winkelgeschwindigkeit einer Arbeitswalze vom Drehwinkel in einem Diagramm
- FIG 10
- eine Ausführungsform einer Walzmaschine mit zwei Walzen und unabhängigen Antrieben für die Walzen in einer teilweise geschnitten Längsansicht und
- FIG 11
- die Walzmaschine gemäß
FIG 10 in einer Seitenansicht,
- FIG. 1
- a rolling machine with two rolls and a common drive in a partially sectioned longitudinal view,
- FIG. 2
- the rolling machine according to
FIG. 1 in a partially sectioned top view from above, - FIG. 3
- the rolling machine according to
1 and FIG. 2 in a side view, - FIG. 4
- the two work rolls of a rolling machine in cross section before introduction of the workpiece,
- FIG. 5
- the two work rolls of the rolling machine when introducing the workpiece,
- FIG. 6
- the work rolls with the machined workpiece in cross section,
- FIG. 7
- the two work rolls when ejecting the workpiece and
- FIG. 8
- a possible dependence of the angular velocity of a work roll on the angle of rotation in a diagram
- FIG. 9
- Another possible dependence of the angular velocity of a work roll from the angle of rotation in a diagram
- FIG. 10
- an embodiment of a rolling machine with two rolls and independent drives for the rolls in a partially cut longitudinal view and
- FIG. 11
- the rolling machine according to
FIG. 10 in a side view,
Die in den
An der Außenfläche oder Mantelfläche der Arbeitswalzen 2 und 3 sind jeweils im Querschnitt keilförmige Werkzeuge 20 und 21 bzw. 30 und 31 befestigt, insbesondere verspannt. In der dargestellten Ausführungsform sind die Werkzeuge 20 und 21 der ersten Arbeitswalze 2 und die Werkzeuge 30 und 31 der zweiten Arbeitswalze 3 jeweils schräg und unter einem Winkel zu der jeweiligen Drehachse A und B angeordnet, wobei die Werkzeuge 20 und 21 der Arbeitswalze 2 bezüglich der zwischen den beiden Walzen parallel zu den Drehachsen verlaufenden, die geometrische Mitte definierenden Mittelachse M axial in den im Wesentlichen gleichen Positionen angeordnet sind. Die Werkzeuge 20 und 21 sowie 30 und 31 nehmen in Umfangsrichtung gesehen in ihrem Querschnitt zu, wobei die Zunahme des Querschnittes bei den Werkzeugen 20 und 21 in der gleichen Drehrichtung oder Orientierung ist und bei den Werkzeugen 30 und 31 der zweiten Arbeitswalze 3 entgegengesetzt oder gegensinnig zu der zu den Werkzeugen 20 und 21 der ersten Arbeitswalze 2 ist.On the outer surface or lateral surface of the work rolls 2 and 3 wedge-shaped
Jede Arbeitswalze 2 und 3 ist in einer aus zwei Teilen bestehenden Halteeinrichtung lösbar gehalten und kann aus der Halteeinrichtung in deren entriegelten Zustand herausgenommen werden zum Auswechseln der Werkzeuge 20 und 21 bzw. 30 und 31 oder der gesamten Arbeitswalzen 2 und 3 mit den Werkzeugen 20 und 21 bzw. 30 und 31. Die Halteeinrichtung für die Arbeitswalze 2 ist mit 12 bezeichnet und die Halteeinrichtung für die Arbeitswalze 3 mit 13. Ein in
Die Aufnahme 14 setzt sich als Hohlwelle axial zur Drehachse A fort und weist in ihrem von der Arbeitswalze 2 abgewandten Endbereich ein Zahnrad 18 auf, das ebenso wie ein entsprechendes Zahnrad 19, das der zweiten Arbeitswalze 3 zugeordnet ist, mit einem Steuerzahnrad (Ritzel, Antriebszahnrad) 5 in Eingriff steht. Das Zahnrad 18, das zum Antrieb der ersten Arbeitswalze 2 über die Halteeinrichtung 12 dient, greift dabei von oben in das Steuerzahnrad 5 und das Zahnrad 19, das mit der zweiten Arbeitswalze 3 über die Halteeinrichtung 13 gekoppelt ist, greift von unten in das Steuerzahnrad 5.The
Das Steuerzahnrad 5 ist nun über eine Abtriebswelle 45 mit einem Antriebsmotor 4 gekoppelt. Das Steuerzahnrad 5, die Abtriebswelle 45 und der - nicht dargestellte - Rotor des Antriebsmotors 4 sind dabei um eine gemeinsame Rotationsachse R rotierbar oder rotierend. Der aus dem Antriebsmotor 4, der Abtriebswelle 45 und dem Steuerzahnrad 5 aufgebaute Antrieb für die Zahnräder (Walzenzahnräder) 18 und 19 und damit die synchron mit den Zahnrädern 18 und 19 drehenden Arbeitswalzen 2 und 3 ist somit ein Direktantrieb.The
Die vom Antriebsmotor 4 geleistete mechanische Leistung entspricht dem Produkt aus Drehmoment und Winkelgeschwindigkeit oder Kreisfrequenz ω, wobei die Kreisfrequenz ω gleich dem Produkt aus 2π und der Drehzahl n ist. Der Antriebsmotor 4 ist vorzugsweise ein Torque-Motor und weist ein hohes Drehmoment auch bei vergleichsweise kleiner Drehzahl n des Antriebsmotors 4 zum Erzeugen der erforderlichen Antriebsleistung für die Antriebswalzen 2 und 3 auf.The mechanical power supplied by the
Das Übertragungsverhältnis von dem Steuerzahnrad 5 auf die Zahnräder 18 und 19 kann somit im Bereich um 1 gewählt werden, insbesondere zwischen etwa 1 : 1 und etwa 1 : 2. Bei einem Übertragungsverhältnis von 2 drehen sich die Antriebswalzen 2 und 3 doppelt so schnell wie das Steuerzahnrad 5 und der Antriebsmotor 4, bei einem Übertragungsverhältnis von 1 : 1 genau so schnell. Typische Drehzahlen der Arbeitswalzen 2 und 3 liegen zwischen etwa 10 Umdrehungen pro Minute (U/min) und etwa 40 U/min, typischerweise bei 15 U/min.The transmission ratio of the
Mit einem derart niedrigtourigen oder mit geringer Drehzahl drehender Antriebsmotor 4 kann nun eine sehr dynamische Anpassung oder Steuerung oder Regelung der Drehzahl der Arbeitswalzen 2 und 3 realisiert werden.With such a low-speed or low-speed rotating
Eine bevorzugte Ausführungsform des Antriebsmotors 4 ist ein Permanentmagnet-Motor, bei dem, in der Regel auf dem Rotor, Permanentmagnete (Dauermagnete) angeordnet sind, die einen sich im durch Elektromagnete oder Wicklungen erzeugten Induktionsfeld des Stators drehenden magnetischen Fluss erzeugen, wobei durch Wechselwirkung des magnetischen Flusses der Permanentmagnete und dem Induktionsfeld die Drehung des Rotors auf der Grundlage des Induktionsprinzips oder elektromotorischen Prinzips entsteht. Im Allgemeinen ist ein Torque-Motor ein Synchronmotor, das heißt der Rotor dreht sich synchron mit dem rotierenden magnetischen Fluss. Die Induktionswicklungen des Stators sind in der Regel mit den Phasen eines Drehstromanschlusses verbunden und um 120° zueinander versetzt angeordnet. Vorzugsweise werden Permanentmagnete mit einem möglichst hohen Energieprodukt eingesetzt, beispielsweise Seltenerd-Kobalt-Magnete. Der Stator weist dazu in der Regel einen Eisenkern mit dem Dreiphasenwicklungspaket auf, während der Rotor einen zylindrischen Eisenkern mit den Permanentmagneten aufweist. Ein solcher Torque-Motor kann ein Drehmoment von bis zu 80.000 Nm aufweisen. Das hohe Drehmoment bewirkt auch eine sehr schnelle Drehbeschleunigung. Insbesondere kann der Permanentmagnetmotor oder Torque-Motor die Walzen innerhalb eines Drehwinkels von nur 1°, vorzugsweise sogar nur 0,5°, auf die Nenndrehzahl, beispielsweise 30 U/min beschleunigen. Diese hohe Dynamik oder Drehbeschleunigung des Torque-Motors erlaubt eine sehr dynamische Steuerung der Drehzahl.A preferred embodiment of the
Die Steuerung oder Regelung der Drehzahl n der zueinander und synchron rotierenden Arbeitswalzen 2 und 3 wird nun gemäß der Erfindung mit einem besonderen Steuerverfahren oder Regelverfahren an den Walzprozess angepasst. Dazu wird die Drehzahl n oder Winkelgeschwindigkeit ω der Arbeitswalzen 2 und 3 an die jeweilige Drehstellung oder Winkelposition ϕ der Arbeitswalzen 2 und 3 angepasst und in Abhängigkeit von dieser Drehposition ϕ gesteuert.The control or regulation of the speed n of each other and synchronously rotating work rolls 2 and 3 is now adapted according to the invention with a special control method or control method to the rolling process. For this purpose, the rotational speed n or angular velocity ω of the work rolls 2 and 3 is adapted to the respective rotational position or angular position φ of the work rolls 2 and 3 and controlled in dependence on this rotational position φ.
Damit kann abhängig vom jeweiligen Prozess, der jeweiligen Walzmaschine und vor allem abhängig vom zu bearbeitenden Werkstück die Umformung durch die Arbeitswalzen 2 und 3 durch Steuern der Drehzahl n oder der Winkelgeschwindigkeit ω = dϕ/dt optimiert werden.Thus, depending on the respective process, the respective rolling machine and, above all, depending on the workpiece to be machined, the deformation by the work rolls 2 and 3 can be optimized by controlling the rotational speed n or the angular velocity ω = dφ / dt.
Die
Das Werkstück 10 wird nun mittels zweier Leitlineale einer nicht weiter dargestellten Positioniereinrichtung in eine Position zwischen den Arbeitswalzen 2 und 3 beigebracht, in der es von der Aussparung 23 im Werkzeug 20 der ersten Arbeitswalze 2 erfasst wird. Diese Prozessphase mit eingebrachtem Werkzeug 10 in der Ausgangsposition zeigt
Bei der weiteren Drehung der Arbeitswalzen 2 und 3 zueinander wird nun das Werkstück 10 zwischen die Werkzeuge 20 und 30 gebracht und unter dem Druck der Werkzeuge 20 und 30, die einen geringeren Abstand w zueinander aufweisen als der ursprüngliche Durchmesser des Werkstückes 10 in einen kleineren Durchmesser verbracht. Der nach der Umformung entstandene verkleinerte Durchmesser (Einstich) des Werkstückes 10 an der im Querschnitt gezeigten Stelle entspricht weitgehend dem minimalen Abstand w zwischen den Werkzeugen 20 und 30 der Arbeitswalzen 2 und 3. Eine Stellung der Arbeitswalzen 2 und 3 mit dem dazwischenliegenden gekneteten Werkstück 10 während des eigentlichen Walzprozesses ist in
In
Man kann also in dem Walzprozess grundsätzlich drei Prozessphasen unterscheiden, nämlich einer ersten Prozessphase zur Vorbereitung des Walzprozesses und Positionierung des Werkstückes in der Ausgangsstellung, also einer Prozessphase, die in den
Die Winkelposition ϕ3 ist nun die Winkelposition der ersten Drehwalze 2, bei der das Werkstück 10 in der Aussparung 23 fixiert ist und der Walzprozess beginnen kann. Es sei dabei angemerkt, dass die Winkelposition oder Drehstellung der zweiten Arbeitswalze 3 direkt mit der Winkelposition der Arbeitswalze 2 korreliert ist und sich synchron, jedoch gegensinnig mit der Winkelposition der ersten Arbeitswalze ändert, wobei die Drehung der Arbeitswalzen 2 und 3 zueinander gleichsinnig erfolgt. Deshalb genügt es, die Drehposition der ersten Arbeitswalze 2 zu betrachten. Es könnte natürlich genau so die Winkelposition der zweiten Arbeitswalze 3 als Variable oder Parameter genommen werden, von der die Drehzahl n abhängig gemacht wird. Es genügt jedenfalls, an einer der beiden Arbeitswalzen 2 oder 3 eine Positionserfassungseinrichtung vorzusehen zur Bestimmung des Drehwinkels ϕ relativ zu einer Referenz- oder Nullposition ϕ0, die in den
Bei Erreichen der Winkelposition ϕ3 und dem Einrasten des Werkstückes 10 in der Aussparung 23 wird nun die Drehzahl n zwischen der Winkelposition ϕ3 und einer darauffolgenden Winkelposition ϕ4 schnell erhöht im Kurvenabschnitt K3 mit einer entsprechend hohen Drehbeschleunigung oder Steigung der Kennlinie K. Zur Winkelposition ϕ4 ist dann eine höhere Drehzahl n2 erreicht, auf der die Drehzahl n während der Teilkurve K4 bis zu einer neuen Winkelposition ϕ6 gehalten wird. Diese Teilkurve K4 zwischen den Winkelpositionen ϕ4 und ϕ6 markiert den eigentlichen Walzprozess. Die
Kurz bevor die Aussparung 33 des Werkzeuges 30 der zweiten Arbeitswalze 3 das Werkstück 10 erreicht, wird zu einem vor der zugehörigen Winkelposition ϕ7 der ersten Arbeitswalze 2 liegenden Winkel ϕ6 der ersten Arbeitswalze 2 die Drehzahl n wieder während der Teilkurve K5 herabgesetzt, vorzugsweise wieder mit einer hohen Bremsbeschleunigung und dann mit einer niedrigeren Bremsbeschleunigung, entsprechend einer flacheren Steigung in der Teilkurve K6 zwischen den Winkelpositionen ϕ7 und ϕ8 weiter erniedrigt. Es wird also das Auswerfen des Werkstückes bei einer niedrigeren Drehzahl n und einer niedrigeren Drehbeschleunigung durchgeführt, um das Werkstück schonend auszuwerfen. Das Auswerfen des Werkstückes ist am Ende der Teilkurve K6 bei der Winkelposition ϕ8 der ersten Arbeitswalze 2 beendet und die Drehzahl n wird nun bei der Beendigung des Bearbeitungsprozesses dieses Werkstückes 10 zwischen den Drehwinkeln ϕ8 und ϕ9 entsprechend der Teilkurve K7 wieder auf Drehzahl n = 0 Hz zurückgefahren. Ein Arbeitszyklus oder ein Umformprozess ist somit beendet.Shortly before the
Selbstverständlich können auch andere winkelpositionsabhängige Profile der Drehzahl n gefahren werden. So ist es auch möglich, die beiden Arbeitswalzen 2 und 3 während Teilphasen des Prozesses mit zueinander unterschiedlichen Drehzahlen oder sogar unterschiedlicher Drehrichtung zu drehen. Ferner kann abhängig von der Zahl und Anordnung der Werkzeuge auf den Arbeitswalzen das Profil n (ϕ) gesteuert werden.Of course, other angular position-dependent profiles of the speed n can be driven. So it is also possible to rotate the two work rolls 2 and 3 during partial phases of the process with mutually different speeds or even different directions of rotation. Further, depending on the number and arrangement of the tools on the work rolls, the profile n (φ) can be controlled.
Wie die Profile gemäß
Zum Einstellen oder Korrigieren des Zahnspiels oder Zahneingriffes zwischen den Walzenzahnrädern 18 und 19 sowie dem zentralen Steuerzahnrad 5 kann ferner ein nicht dargestellter Verstellantrieb vorgesehen sein, der den Rotationsantrieb mit dem Permanentmagnet-Motor 4 sowie dem Getriebe mit der Abtriebswelle 45 und dem Steuerzahnrad 5 relativ zu den beiden Walzenzahnrädern 18 und 19 bewegen kann. Dadurch kann ein asymmetrischer Eingriff oder Zahnflankenspiel korrigiert werden. Ferner ist es auch möglich, getrennte Antriebe zum Verstellen der Walzen 2 und 3 mit ihren Walzenzahnrädern 18 und 19 vorzusehen, so dass der Zahneingriff der Walzenzahnräder 18 und 19 zum zentralen Steuerzahnrad 5 jeweils unabhängig voneinander eingestellt werden kann.For setting or correcting the backlash or tooth engagement between the roller gears 18 and 19 and the
Die Halteeinrichtungen 12 und 13 der beiden Arbeitswalzen 2 und 3 sind von einer Trägereinrichtung 6 getragen und in dieser gelagert oder verankert. Die Trägereinrichtung 6 umfasst vier säulenartige Trägerelemente 6A bis 6D, die in einer rechteckigen Anordnung angeordnet sind und auf einer gemeinsamen Bodenplatte 6E, die auf dem Boden 50 abgestützt ist, montiert oder befestigt. In jedem der Trägerelemente 6A bis 6D ist eine zugehöriger Zuganker 7A bis 7B vertikal in der Längsrichtung des jeweiligen Trägerelements angeordnet, der unten an der Trägerplatte 6E befestigt ist und oben mittels einer zugehörigen Gegenmutter, vorzugsweise einer hydraulisch betätigten Gegenmutter (9B, 9C in
Jeder der Permanentmagnet-Motoren 44 und 45 wird elektronisch, insbesondere über einen Umrichter, angesteuert. Dadurch können die Arbeitswalzen 2 und 3 entweder elektronisch synchron oder auch asynchron angetrieben werden.Each of the
- 11
- Walzmaschinerolling machine
- 2,32.3
- ArbeitswalzeStripper
- 44
- Antriebsmotordrive motor
- 55
- Steuerzahnradtiming gear
- 66
- Trägereinrichtungsupport means
- 6A bis 6D6A to 6D
- Trägerelementsupport element
- 6E6E
- Bodenplattebaseplate
- 7A bis 7D7A to 7D
- Zugankertie rods
- 8A bis 8D8A to 8D
- Führungguide
- 99
- Schneckenradworm
- 9B, 9C9B, 9C
- Gegenmutterlocknut
- 1010
- Werkstückworkpiece
- 1212
- Halteeinrichtungholder
- 12A, 12B12A, 12B
- Teilpart
- 1313
- Halteeinrichtungholder
- 13A, 13B13A, 13B
- Teilpart
- 14, 1514, 15
- Aufnahmeadmission
- 1616
- Federfeather
- 18, 1918, 19
- Zahnradgear
- 20, 2120, 21
- WerkzeugTool
- 2323
- Aussparungrecess
- 24, 2524, 25
- Fortsatzextension
- 30, 3130, 31
- WerkzeugTool
- 3333
- Aussparungrecess
- 42, 4342, 43
- Rotationsantriebrotary drive
- 4545
- Abtriebswelleoutput shaft
- 46, 4746, 47
- RotationsantriebsgetriebeRotary drive gear
- 5050
- Bodenground
- 6060
- Positioniereinrichtungpositioning
- 61, 6261, 62
- Positionierteilepositioning parts
- A, BA, B
- Drehachseaxis of rotation
- C, DC, D
- Antriebsachsedrive axle
- GG
- Gravitationskraftgravitational force
- MM
- Mittelachsecentral axis
- PP
- Positionierachsepositioning
- RR
- Rotationsachseaxis of rotation
- ww
- Werkzeugabstandtool clearance
- WW
- WalzenabstandPlaten Gap
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10309536 | 2003-03-04 | ||
DE10319258A DE10319258B4 (en) | 2003-03-04 | 2003-04-28 | Rolling mill for forging work pieces has two profiled rollers with separate drive control and variable rolling speed for each process cycle |
EP04001862.4A EP1454684B1 (en) | 2003-03-04 | 2004-01-29 | Method for forming a workpiece and rolling machine |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04001862.4 Division | 2004-01-29 | ||
EP04001862.4A Division-Into EP1454684B1 (en) | 2003-03-04 | 2004-01-29 | Method for forming a workpiece and rolling machine |
EP04001862.4A Division EP1454684B1 (en) | 2003-03-04 | 2004-01-29 | Method for forming a workpiece and rolling machine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2340898A2 true EP2340898A2 (en) | 2011-07-06 |
EP2340898A3 EP2340898A3 (en) | 2013-11-27 |
EP2340898B1 EP2340898B1 (en) | 2016-11-02 |
Family
ID=32891870
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11162489.6A Expired - Lifetime EP2340898B1 (en) | 2003-03-04 | 2004-01-29 | Rolling machine |
EP07004135.5A Expired - Lifetime EP1782896B1 (en) | 2003-03-04 | 2004-02-11 | Method for forming a workpiece and rolling machine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07004135.5A Expired - Lifetime EP1782896B1 (en) | 2003-03-04 | 2004-02-11 | Method for forming a workpiece and rolling machine |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP2340898B1 (en) |
CN (1) | CN100467146C (en) |
DE (3) | DE10316249B4 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005022378B4 (en) | 2005-05-13 | 2007-04-05 | F.B. Lehmann Maschinenfabrik Gmbh | roll refiner |
DE102005056649B3 (en) * | 2005-11-25 | 2007-05-31 | Langenstein & Schemann Gmbh | Device for holding at least two rolls of a rolling machine and rolling machine |
DE102010010269C5 (en) | 2010-03-05 | 2023-11-16 | Mercedes-Benz Group AG | Method for producing a stator support |
DE102013100302B4 (en) | 2013-01-11 | 2017-02-02 | Langenstein & Schemann Gmbh | Method for forging, in particular stretch forging, of metallic workpieces |
DE102013108451B4 (en) | 2013-08-06 | 2022-09-22 | Langenstein & Schemann Gmbh | cross wedge rolling machine |
DE102014101150B4 (en) | 2014-01-30 | 2024-02-01 | Langenstein & Schemann Gmbh | Process for forging, especially stretch forging, of metallic workpieces |
DE102014101151B4 (en) | 2014-01-30 | 2023-08-10 | Langenstein & Schemann Gmbh | Process for forging, in particular stretch forging, of metal workpieces |
DE202017007601U1 (en) | 2017-06-20 | 2023-07-03 | Profiroll Technologies GmbH | forming machine |
DE102017113503A1 (en) * | 2017-06-20 | 2018-12-20 | Profiroll Technologies Gmbh | Forming machine and pressure forming process |
CN108246808A (en) * | 2018-01-31 | 2018-07-06 | 湖北环电磁装备工程技术有限公司 | The cross wedge rolling mill roller that rimless combination type permanent-magnet synchronous motor directly drives |
CN108555030A (en) * | 2018-01-31 | 2018-09-21 | 湖北环电磁装备工程技术有限公司 | The cross wedge rolling mill roller that no frame permanent magnet synchronous motor directly drives |
CN109261716B (en) * | 2018-09-29 | 2020-02-07 | 安阳复星合力新材料股份有限公司 | Rolling process of cold-rolled ribbed steel bar |
CN109926449A (en) * | 2019-03-25 | 2019-06-25 | 浙江泽广泰精密科技有限公司 | A kind of two roller rolling device of hydraulic servo horizontal |
DE102020132399B4 (en) | 2020-12-07 | 2024-05-16 | Langenstein & Schemann Gmbh | Cross rolling device, in particular cross wedge rolling device, method for operating a cross rolling device and control device |
CN118162467B (en) * | 2024-05-14 | 2024-07-30 | 福建南粤厨具股份有限公司 | Rolling device for kitchen tableware |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2131300B2 (en) | 1970-06-25 | 1974-04-11 | Mitsubishi Jukogyo K.K., Tokio | Cross rolling machine |
DE1477088C3 (en) | 1962-08-21 | 1974-04-11 | Vyzkumny Ustav Tvarzecich Stroju A Technologie Tvarzeni, Bruenn (Tschechoslowakei) | |
DE19526071A1 (en) | 1995-07-18 | 1997-01-23 | Rollwalztechnik Abele & Hoelti | Process for rolling profiles into a workpiece |
EP1256399A1 (en) | 2001-05-10 | 2002-11-13 | SMS EUMUCO GmbH | Cross rolling mill |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2038783A (en) * | 1932-10-27 | 1936-04-28 | Schloemann Ag | Rolling mill |
US3208251A (en) * | 1961-05-03 | 1965-09-28 | Westinghouse Canada Ltd | Rolling mill control system |
US3358485A (en) * | 1965-02-15 | 1967-12-19 | United States Steel Corp | Measuring and controlling gap between rolls |
FR1426815A (en) * | 1965-03-24 | 1966-01-28 | Zentrale Entwicklung Konstrukt | Combined transverse and longitudinal rolling process |
GB1329312A (en) * | 1970-08-14 | 1973-09-05 | British Steel Corp | Taper rolling of metals |
US4044580A (en) * | 1975-07-02 | 1977-08-30 | Marotta Scientific Controls, Inc. | Rolling mill gap sensor |
DE2736659A1 (en) * | 1977-08-13 | 1979-02-22 | Krupp Gmbh | ROLLER LINE DRIVE SYSTEM |
US4457155A (en) * | 1982-03-03 | 1984-07-03 | White Consolidated Industries, Inc. | Overhung bar rolling mill stand and two-axis gauge control system |
JPS58168452A (en) * | 1982-03-30 | 1983-10-04 | Sumitomo Metal Ind Ltd | Method and apparatus for roughing-down in case of hot forging |
ZA837038B (en) * | 1982-10-26 | 1984-06-27 | Kennecott Corp | Hot mill hydraulic direct roll drive |
JPS6082211A (en) * | 1983-10-04 | 1985-05-10 | Sumitomo Metal Ind Ltd | Method for setting roll gap |
LU86043A1 (en) * | 1985-08-16 | 1987-03-06 | Arbed | METHOD AND DEVICE FOR ADJUSTING THE COUPLING OF A ROLLER PAIR |
DE3619412A1 (en) * | 1986-06-12 | 1987-12-17 | Hoesch Stahl Ag | METHOD AND DEVICE FOR ROLL GAP MEASUREMENT AND CONTROL |
GB8822328D0 (en) * | 1988-09-22 | 1988-10-26 | Stoddard Sekers Int | Pressure roller assembly |
JPH02182339A (en) * | 1989-01-10 | 1990-07-17 | Kobe Steel Ltd | Manufacture of rolled deformed bar stock |
JPH0671636B2 (en) * | 1989-11-09 | 1994-09-14 | 日本発条株式会社 | Leaf spring manufacturing apparatus and leaf spring manufacturing method |
JPH03189006A (en) * | 1989-12-20 | 1991-08-19 | Nkk Corp | Flying thickness change control method of thick plate |
JPH03226301A (en) * | 1990-01-31 | 1991-10-07 | Kobe Steel Ltd | Method for controlling thickness of rolled sheet with reversing mill |
CN2060698U (en) * | 1990-02-15 | 1990-08-22 | 丹东五一八内燃机配件总厂 | Forging rolls |
DE4435935C3 (en) * | 1994-10-07 | 2003-11-06 | Rieter Werke Haendle | Method of adjusting the nip of a rolling mill and rolling mill |
DE19544988C2 (en) * | 1995-12-02 | 2000-09-07 | Anton Breyer Ohg | Positioning control in the smoothing unit |
RU2106223C1 (en) * | 1996-03-15 | 1998-03-10 | Анатолий Федорович Косов | Vacuum cross-wedge mill |
JP3507645B2 (en) * | 1997-02-26 | 2004-03-15 | 東芝Itコントロールシステム株式会社 | Rolling device with built-in rolling motor and rolling device using this rolling device |
EP0947258B1 (en) * | 1998-04-02 | 2006-08-16 | Nissei Co. Ltd. | Round die type form rolling apparatus |
DE10019175A1 (en) * | 1999-05-12 | 2000-12-14 | Hjb Rolling Mill Technology Gm | Method for producing a strip-shaped primary material made of metal, in particular of such a primary material which is profiled in regularly recurring sections, and the use of a device therefor |
-
2003
- 2003-04-08 DE DE10316249A patent/DE10316249B4/en not_active Expired - Lifetime
- 2003-04-28 DE DE2003162061 patent/DE10362061B4/en not_active Expired - Lifetime
- 2003-04-28 DE DE10319258A patent/DE10319258B4/en not_active Expired - Lifetime
-
2004
- 2004-01-29 EP EP11162489.6A patent/EP2340898B1/en not_active Expired - Lifetime
- 2004-02-11 EP EP07004135.5A patent/EP1782896B1/en not_active Expired - Lifetime
- 2004-03-03 CN CN 200610007409 patent/CN100467146C/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1477088C3 (en) | 1962-08-21 | 1974-04-11 | Vyzkumny Ustav Tvarzecich Stroju A Technologie Tvarzeni, Bruenn (Tschechoslowakei) | |
DE2131300B2 (en) | 1970-06-25 | 1974-04-11 | Mitsubishi Jukogyo K.K., Tokio | Cross rolling machine |
DE19526071A1 (en) | 1995-07-18 | 1997-01-23 | Rollwalztechnik Abele & Hoelti | Process for rolling profiles into a workpiece |
EP1256399A1 (en) | 2001-05-10 | 2002-11-13 | SMS EUMUCO GmbH | Cross rolling mill |
Also Published As
Publication number | Publication date |
---|---|
EP1782896A2 (en) | 2007-05-09 |
DE10316249A1 (en) | 2004-09-23 |
EP2340898A3 (en) | 2013-11-27 |
CN1806953A (en) | 2006-07-26 |
EP1782896A3 (en) | 2014-02-12 |
DE10362061B4 (en) | 2013-10-17 |
DE10319258B4 (en) | 2006-03-16 |
CN100467146C (en) | 2009-03-11 |
EP1782896B1 (en) | 2016-12-14 |
DE10319258A1 (en) | 2004-09-23 |
EP2340898B1 (en) | 2016-11-02 |
DE10316249B4 (en) | 2010-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1454684B1 (en) | Method for forming a workpiece and rolling machine | |
EP2340898B1 (en) | Rolling machine | |
DE3717698A1 (en) | METHOD AND SYSTEM FOR PRODUCING SEAMLESS TUBES | |
DE10100868B4 (en) | Cold rolling forming machine and tool for making flange-shaped products or flanges from a cylindrical precursor | |
EP2591866A1 (en) | Method for manufacturing a rotationally symmetrical hollow part and hollow part produced according to the method | |
DE102007039959B4 (en) | Method for cold rolling of longitudinal gears and profiles for long shaft-shaped workpieces and profile rolling machine for this purpose | |
EP1910002A1 (en) | Machine tool | |
DE69211654T2 (en) | DEVICE AND METHOD FOR COLD FORMING GROOVES IN THE WALL OF A ROTATION BODY | |
EP0761338A1 (en) | Method and apparatus for the production of profiled articles | |
EP2504113A1 (en) | Drive for a pilger roller system | |
DE10317312A1 (en) | Device for holding at least one roller of a rolling machine | |
EP3159068B1 (en) | Forming machine for pressing/pressure rolling and method for pressing/pressure rolling | |
EP1790423B1 (en) | Holding device for the at least two rollers of a rolling machine and rolling machine | |
EP3880384B1 (en) | Device and method for the cold-forming shaping of workpieces | |
DE102006006192A1 (en) | Profiling hot rolling forge has two rollers bearing tools and powered by hydraulic motor | |
DE1299271B (en) | Thread rolling machine | |
DE19710730B4 (en) | Rolling process and two-roll profile rolling machine for producing pitch profiles with an odd number of turns on rotationally symmetrical workpieces | |
EP3831503B1 (en) | Rolling system for cold pilgering | |
DE19513168A1 (en) | Profile rolling machine with three spindles rotating in same plane | |
DE10056803B4 (en) | Method for producing a band-shaped primary material made of metal, in particular of such a primary material, which is profiled in regularly recurring sections, and a device therefor | |
EP1454685B1 (en) | Method for forming a workpiece | |
DE889888C (en) | Process for the manufacture of helical wire spools | |
EP1183117A1 (en) | Method for producing a striplike pre-material made of metal, especially a pre-material which has been profiled into regularly reoccurring sections, and device therefor | |
WO2022253942A1 (en) | Device and method for the cold-forming profiling of workpieces | |
DE102013112371A1 (en) | Cold pilger rolling mill and method for forming a billet to a pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1454684 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CZ DE FR IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CZ DE FR IT |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21H 1/20 20060101ALI20131022BHEP Ipc: B21H 1/00 20060101ALI20131022BHEP Ipc: B21B 31/08 20060101ALN20131022BHEP Ipc: B21B 35/14 20060101ALN20131022BHEP Ipc: B21B 35/00 20060101ALN20131022BHEP Ipc: B21B 31/04 20060101ALN20131022BHEP Ipc: B21B 37/46 20060101ALN20131022BHEP Ipc: B21B 37/58 20060101AFI20131022BHEP Ipc: B21H 1/18 20060101ALI20131022BHEP |
|
17P | Request for examination filed |
Effective date: 20140307 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CZ DE FR IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21B 35/00 20060101ALN20160428BHEP Ipc: B21H 1/00 20060101ALI20160428BHEP Ipc: B21B 31/04 20060101ALN20160428BHEP Ipc: B21B 37/46 20060101ALN20160428BHEP Ipc: B21H 1/20 20060101ALI20160428BHEP Ipc: B21B 35/14 20060101ALN20160428BHEP Ipc: B21B 37/58 20060101AFI20160428BHEP Ipc: B21H 1/18 20060101ALI20160428BHEP Ipc: B21B 31/08 20060101ALN20160428BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21B 35/14 20060101ALN20160503BHEP Ipc: B21B 31/04 20060101ALN20160503BHEP Ipc: B21B 37/58 20060101AFI20160503BHEP Ipc: B21B 35/00 20060101ALN20160503BHEP Ipc: B21H 1/20 20060101ALI20160503BHEP Ipc: B21B 37/46 20060101ALN20160503BHEP Ipc: B21H 1/18 20060101ALI20160503BHEP Ipc: B21H 1/00 20060101ALI20160503BHEP Ipc: B21B 31/08 20060101ALN20160503BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1454684 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CZ DE FR IT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015370 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015370 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230130 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230130 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004015370 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240129 |