EP2239505A1 - Method for analysing the tendency to hum of a combustion chamber and method for controlling a gas turbine - Google Patents
Method for analysing the tendency to hum of a combustion chamber and method for controlling a gas turbine Download PDFInfo
- Publication number
- EP2239505A1 EP2239505A1 EP09157596A EP09157596A EP2239505A1 EP 2239505 A1 EP2239505 A1 EP 2239505A1 EP 09157596 A EP09157596 A EP 09157596A EP 09157596 A EP09157596 A EP 09157596A EP 2239505 A1 EP2239505 A1 EP 2239505A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- gas turbine
- tendency
- value
- stability parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001228 spectrum Methods 0.000 claims abstract description 27
- 239000000446 fuel Substances 0.000 claims description 10
- 238000011002 quantification Methods 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000002238 attenuated effect Effects 0.000 claims description 2
- 238000013016 damping Methods 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/242—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/20—Gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00013—Reducing thermo-acoustic vibrations by active means
Definitions
- the invention relates to a method for analyzing the tendency to hum of a combustion chamber and a method for controlling the operation of a gas turbine with a combustion chamber, provided that hum of the combustion chamber is prevented.
- combustion chamber hum When combustion of a combustion air / fuel mixture in a combustion chamber, in particular in a combustion chamber of a gas turbine, it may lead to the formation of combustion oscillations.
- the occurrence of combustion oscillations is also known as "combustion chamber hum".
- the combustor of the gas turbine tends to hum when the gas turbine is operated at a high turbine inlet temperature to achieve high thermal efficiency of the gas turbine.
- the high turbine inlet temperature can be achieved by a correspondingly high combustion temperature in the combustion chamber, whereby the combustion chamber tends to hum.
- Remedy is the operation of the gas turbine with sufficient distance from the limit of self-excited combustion oscillations.
- the limit of the self-excited combustion vibrations can unfavorably shift, so that for the most unfavorable environmental conditions, a sufficient distance from the limit of self-excited combustion vibrations must be maintained. It is disadvantageous that thus the upper power range of the gas turbine must be excluded and can not be driven.
- the object of the invention is to provide a method for analyzing the rumble tendency of a combustion chamber, a method for controlling an operation of a gas turbine with a combustion chamber and a control device for controlling an operation of a gas turbine, the method being able to effectively operate the combustion chamber with sufficiently low rumbling tendency ,
- the method according to the invention for analyzing the rumble tendency of a combustion chamber in an operating state comprises the steps of: operating the combustion chamber in the operating state; Detecting a thermoacoustic size of the combustion chamber gas volume and / or a vibration magnitude of the combustion chamber structure in the operating state and determining a characteristic from the thermoacoustic variable and / or the vibration magnitude; Determining the spectrum of the characteristic in the operating state as the amplitude characteristic of the parameter over time; Identifying a first resonance and a second resonance of the characteristic using the spectrum; Determining the amplitude value of the first resonance and the amplitude value of the second resonance; Calculating the ratio value from the division of the amplitude value of the first resonance and the amplitude value of the second resonance as a stability parameter; Determine the lower distance value and / or the upper distance value by which the stability parameter is above a lower predetermined threshold and / or below an upper predetermined threshold, wherein the threshold values are selected such that when the combustion chamber is in an operating state with a just barely tolerate
- the thresholds may be selected depending on the operating and ambient conditions.
- the magnitude of the amplitude values of the parameter changes moderately with the combustion load of the combustion chamber and is only of limited significance for the analysis of the tendency to hum of the combustion chamber. Reaching the hum limit is often characterized by the fact that the amplitude values suddenly rise very sharply. It is therefore not recognized by the initially moderate course of the amplitude values that one approaches dangerously close to the hum. If the amplitudes rise suddenly when reaching the hum limit (usually in fractions of a second), the gas turbine can only be protected from mechanical damage by drastic measures which are disadvantageous from the point of view of the operator, such as immediate, significant load reduction.
- approaching the hum limit can be recognized by the fact that the shape of the spectrum of the parameter changes.
- the ratio of the amplitudes of two frequency bands could be used to quantify the rumbling tendency.
- the amplitude ratio remains constant when increasing the combustion load (despite the increase in the absolute amplitude values), there is no danger. But if the relationship changes, then one approaches the borderline or moves away from it.
- By quantifying the rumble tendency a tendency to approach the hum limit can be detected and thus timely countermeasures can be initiated be avoided, so that the reaching of the hum limit, with its adverse consequences for the operation is avoided.
- the stability parameter is calculated with the ratio value from the division of the amplitude value of the first resonance and the amplitude value of the second resonance.
- the stability parameter is formed as the logarithm of the ratio. Further, it is preferable that the stability parameter is attenuated over time with a damping function. In this way, excessive transient changes in the stability parameter can advantageously be contained.
- an attenuation function may be formed such that at a time instant n the stability parameter is formed from the arithmetic mean of the ratio value at time n and the ratio value at time n-1.
- the characteristic is measured at the same time and for each site the local spectrum is determined, the local spectra having an envelope used as the spectrum.
- the spectrum formed with the envelope of the entire possibly determined by spatial inhomogeneities operating state of the combustion chamber is represented.
- the combustion chamber is preferably designed as an annular combustion chamber rotationally symmetrical about an axis and has a plurality of locations at which the characteristics are measured, wherein the number of measurement points is reduced by utilizing the symmetry of waveforms.
- the parameter is the sound pressure in the combustion chamber and / or the acceleration of the combustion chamber structure.
- the method according to the invention for controlling an operation of a gas turbine with a combustion chamber comprises the steps of: performing the previous method for analyzing the tendency to hum of the combustion chamber of the gas turbine during its operation; once the quantification of the rumble tendency indicates that the stability parameter has reached at least one of the threshold values, reducing the output power of the gas turbine.
- the stability parameter can be used directly as a controlled variable for operating the gas turbine.
- the instantaneous load of the gas turbine is directly correlated to the stability parameter, so that with the stability parameter, a power control of the gas turbine with regard to the averting of the hum of the combustion chamber can be accomplished.
- the method of controlling the operation of the gas turbine further includes the step of: once the quantification of the rumble tendency indicates that the stability parameter has reached a predetermined distance value to at least one of the threshold values, controlling the operation of the gas turbine to reduce the rumble tendency.
- the turbine outlet temperature is reduced by changing the compressor air mass flow into the combustion chamber as a manipulated variable from its desired value and / or changes the temperature of the fuel in the combustion chamber as a control variable compared to their desired value is and / or the spatial distribution of the fuel supply is changed in the combustion chamber as a manipulated variable to its desired value.
- the manipulated variable is preferably reset to its desired value.
- the method of controlling the operation of the gas turbine comprises the step of, once the quantification of the rumble tendency indicates that the stability parameter has reached a predetermined and low rumble-defining distance value to at least one of the thresholds, controlling the operation of the gas turbine such that the operation the gas turbine is optimized in particular with regard to output power, emission and / or fuel consumption.
- a control device for controlling an operation of a gas turbine is set up to carry out the aforementioned method.
- FIG. 1 a coordinate system is shown, in which spectra 1, 1 'and 1 "are plotted, the abscissa axis 4 of the coordinate system shows a frequency in [Hz], with the ordinate axis 5 of the coordinate system showing an amplitude as a dimensionless quantity.
- the spectra 1, 1 ', 1 are the amplitude characteristics of a parameter over the frequency
- the characteristic is the sound pressure in a combustion chamber, which occurs during operation of the combustion chamber
- the sound pressure in the combustion chamber can be measured with one or more microphones in the combustion chamber become.
- the spectrum 1 results when the Brummneist the combustion chamber is low. If the operating state of the combustion chamber is changed in such a way that the tendency to humming increases, the spectrum 1 changes into the spectrum 1 '. If the operating state of the combustion chamber is further changed, that the rumbling tendency increases and reaches a just yet permissible limit range, the spectrum 1 'changes into the spectrum 1 ".As a first resonance, the spectra 1, 1', 1" first amplitude maximum 2, 2 ', 2 "and as a second resonance a second amplitude maximum 3, 3', 3" on.
- the natural logarithm of the ratio formed is taken from the first amplitude maximum 2, 2 ', 2 "and the second amplitude maximum 3, 3', 3".
- FIG. 2 a coordinate system is shown, over whose abscissa 8 the time from 0 to 2 minutes is plotted.
- the left ordinate 6 is the stability parameter and the right ordinate 7 is a turbine outlet temperature.
- the curve 10 of the turbine outlet temperature is 579 ° C. This results in the operating state in the combustion chamber, in which the sound pressure prevails, the spectrum of 1 in FIG. 1 is shown.
- the stability parameter 6 for the spectrum 1 is 0.6, as it is in the in FIG. 2 shown diagram with the curve 9 at the time 0 minutes. Will now be the operation of the gas turbine turbine outlet temperature increases as it does in the 10-minute trajectory FIG.
- FIG. 2 Furthermore, the course of the acceleration 14 of the combustion chamber structure is shown, which is substantially constant until the turbine outlet temperature 10 is raised to the first level 11. If the turbine outlet temperature 10 is increased to a second level 12, then the course 9 of the stability parameter 6 continues to drop and, in the combustion chamber, finally, hum occurs.
- the humming has the consequence that the combustion chamber structure is strongly vibrated with the thus self-excited combustion vibrations, whereby the acceleration increases 14 to an acceleration peak 15 abruptly.
- the acceleration tip 15 is so high that damage to the combustion chamber structure is to be expected. Therefore, to prevent damage to the combustor structure, the gas turbine is shut down resulting in a rapid drop in the turbine discharge temperature curve 10 FIG. 2 shows.
- a threshold 16 of the stability parameter 6 is plotted at 0.1.
- the course 9 of the stability parameter 6 falls below (in FIG. 2 17), threshold 16 at a first time 18, which is 1.55 minutes.
- the first time 18 is advanced 15 seconds from the second point in time 19, when the acceleration peak 15 occurs.
- the threshold value 16 becomes the stability parameter 6 falls below, it remains in accordance FIG. 2 a reaction time of 15 seconds, during which the operation of the gas turbine is to be changed in such a way to attenuate the rumbling tendency that the hum of the combustion chamber and thus the resulting rapid shutdown of the gas turbine can be avoided.
- the diagrams in 3 and 4 are similar to the diagram in FIG. 2 and show an operation of the gas turbine under the condition of preventing hum of the combustion chamber.
- the Brummneist the combustion chamber may increase, for example, that decreases in a compressor of the gas turbine due to wear or contamination, the pressure ratio. Further, the Brummneist the combustion chamber may increase by the fact that the ambient temperature and thus the compressor inlet temperature increases during operation of the gas turbine. For example, let the gas turbine operate at a turbine exhaust temperature level, as does the trajectory 10 at the origin of the abscissa in FIG FIG. 3 shows. Caused by, for example, one of the aforementioned influences, the tendency to hum of the combustion chamber increases, so that the course 9 of the stability parameter 6 drops.
- a second threshold 16 ' is plotted at 0.2 which is above the first threshold 16 (threshold 16 at 0.1).
- the fuel supply into the combustion chamber is reduced at a third time 20 by means of a control device for the gas turbine such that the curve 10 of the turbine outlet temperature within 3 seconds at the fourth time 21 7 lowers by 1 Kelvin.
- the lowering of the curve 9 of the stability parameter 6 is decelerated and vice versa, so that finally the curve 9 of the stability parameter 6 exceeds the threshold value 16 'again at the fifth time point 22.
- FIG. 4 The diagram shown, the operation of the gas turbine is shown, in which a segregation of the output power of the gas turbine by increasing the turbine outlet temperature 10 is to be achieved.
- the course 9 of the stability parameter 6 drops until it has reached the threshold value 16 '.
- the curve 9 'of the stability parameter 6 would be such that the threshold value 16 is reached at 0.1, which would result in an early shutdown of the gas turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Regulation And Control Of Combustion (AREA)
- Testing Of Engines (AREA)
- Feeding And Controlling Fuel (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Analyse der Brummneigung einer Brennkammer und ein Verfahren zur Steuerung des Betriebs einer Gasturbine mit einer Brennkammer unter der Maßgabe, dass Brummen der Brennkammer verhindert wird.The invention relates to a method for analyzing the tendency to hum of a combustion chamber and a method for controlling the operation of a gas turbine with a combustion chamber, provided that hum of the combustion chamber is prevented.
Bei der Verbrennung eines Verbrennungsluft/Brennstoff-Gemischs in einer Brennkammer, insbesondere in einer Brennkammer einer Gasturbine, kann es zur Ausbildung von Verbrennungsschwingungen kommen. Das Auftreten von Verbrennungsschwingungen ist auch als "Brennkammerbrummen" bekannt. Insbesondere neigt die Brennkammer der Gasturbine zum Brummen, wenn die Gasturbine mit einer hohen Turbineneintrittstemperatur betrieben wird, um einen hohen thermischen Wirkungsgrad der Gasturbine zu erreichen. Die hohe Turbineneintrittstemperatur kann durch eine entsprechend hohe Verbrennungstemperatur in der Brennkammer erzielt werden, wodurch die Brennkammer zum Brummen neigt. Beim Brummen der Brennkammer treten zeitperiodisch korrelierte Fluktuationen des Verbrennungsumsatzes und des statischen Drucks in der Brennkammer auf, wobei die Verbrennungsschwingungen auf einer Wechselwirkung des in der Brennkammer strömenden Verbrennungsluft/Brennstoff-Gemischs mit dem momentanen Verbrennungsumsatz in der Flamme beruhen. Durch eine Änderung des Verbrennungsumsatzes beispielsweise hervorgerufen durch eine Erhöhung der Brennstoffzufuhr in die Brennkammer, kann es zu Druckschwankungen kommen, die ihrerseits zu einer Änderung des Verbrennungsumsatzes und damit zur Ausbildung einer stabilen Druckschwingung führen können. Die Verbrennungsschwingungen verursachen eine verstärkte mechanische und thermische Beanspruchung der Brennkammerstruktur sowie deren Aufhängung. Die Verbrennungsschwingungen können plötzlich in einer derartigen Intensität auftreten, dass die Brennkammerstruktur selbst oder andere Komponenten der Gasturbine beschädigt werden können. Treten derartige Betriebszustände auf wird herkömmlich die Gasturbine mit einem hohen Lastgradienten entlastet, wodurch nachteilig die Gasturbinenabtriebsleistung reduziert wird.When combustion of a combustion air / fuel mixture in a combustion chamber, in particular in a combustion chamber of a gas turbine, it may lead to the formation of combustion oscillations. The occurrence of combustion oscillations is also known as "combustion chamber hum". In particular, the combustor of the gas turbine tends to hum when the gas turbine is operated at a high turbine inlet temperature to achieve high thermal efficiency of the gas turbine. The high turbine inlet temperature can be achieved by a correspondingly high combustion temperature in the combustion chamber, whereby the combustion chamber tends to hum. When the combustion chamber hums, time-periodically correlated fluctuations of the combustion conversion and of the static pressure in the combustion chamber occur, the combustion vibrations being based on an interaction of the combustion air / fuel mixture flowing in the combustion chamber with the instantaneous combustion conversion in the flame. By changing the combustion conversion, for example, caused by an increase in the fuel supply to the combustion chamber, there may be pressure fluctuations, which in turn can lead to a change in the combustion conversion and thus to the formation of a stable pressure oscillation. The combustion vibrations cause increased mechanical and thermal stress on the combustion chamber structure and its suspension. The combustion vibrations may suddenly occur in such an intensity that the combustor structure itself or other components of the gas turbine may be damaged. To step Such operating conditions are conventionally relieved of the gas turbine with a high load gradient, thereby adversely reducing gas turbine output.
Abhilfe schafft das Betreiben der Gasturbine mit genügendem Abstand von der Grenze der selbsterregten Verbrennungsschwingungen. Beispielsweise aufgrund sich ändernden Umgebungsbedingungen kann sich jedoch die Grenze der selbsterregten Verbrennungsschwingungen ungünstig verschieben, so dass für möglichst ungünstige Umgebungsbedingungen ein ausreichender Abstand von der Grenze der selbsterregten Verbrennungsschwingungen vorgehalten werden muss. Dabei ist es nachteilig, dass somit der obere Leistungsbereich der Gasturbine ausgegrenzt werden muss und nicht gefahren werden kann.Remedy is the operation of the gas turbine with sufficient distance from the limit of self-excited combustion oscillations. For example, due to changing environmental conditions, however, the limit of the self-excited combustion vibrations can unfavorably shift, so that for the most unfavorable environmental conditions, a sufficient distance from the limit of self-excited combustion vibrations must be maintained. It is disadvantageous that thus the upper power range of the gas turbine must be excluded and can not be driven.
Aufgabe der Erfindung ist es ein Verfahren zur Analyse der Brummneigung einer Brennkammer, ein Verfahren zur Steuerung eines Betriebs einer Gasturbine mit einer Brennkammer und eine Steuerungseinrichtung zum Steuern eines Betriebs einer Gasturbine zu schaffen, wobei mit dem Verfahren die Brennkammer mit ausreichend geringer Brummneigung effektiv betreibbar sind.The object of the invention is to provide a method for analyzing the rumble tendency of a combustion chamber, a method for controlling an operation of a gas turbine with a combustion chamber and a control device for controlling an operation of a gas turbine, the method being able to effectively operate the combustion chamber with sufficiently low rumbling tendency ,
Das erfindungsgemäße Verfahren zur Analyse der Brummneigung einer Brennkammer in einem Betriebszustand weist die Schritte auf: Betreiben der Brennkammer in dem Betriebszustand; Erfassen einer thermoakustischen Größe des Brennkammergasvolumens und/oder einer Schwingungsgröße der Brennkammerstruktur in dem Betriebszustand und Ermitteln einer Kenngröße aus der thermoakustischen Größe und/oder der Schwingungsgröße; Ermitteln des Spektrums der Kenngröße in dem Betriebszustand als den Amplitudenverlauf der Kenngröße über die Zeit; Identifizieren einer ersten Resonanz und einer zweiten Resonanz der Kenngröße mit Hilfe des Spektrums; Ermitteln des Amplitudenwerts der ersten Resonanz und des Amplitudenwerts der zweiten Resonanz; Berechnen des Verhältniswerts aus der Division des Amplitudenwerts der ersten Resonanz und des Amplitudenwerts der zweiten Resonanz als ein Stabilitätsparameter; Ermitteln des unteren Abstandswerts und/oder des oberen Abstandswerts, um die der Stabilitätsparameter oberhalb eines unteren vorherbestimmten Schwellenwerts und/oder unterhalb eines oberen vorherbestimmten Schwellenwerts liegt, wobei die Schwellenwerte derart gewählt sind, dass, wenn die Brennkammer in einem Betriebszustand mit gerade noch zulässig hoher Brummneigung betrieben wird, der Stabilitätsparameter in diesem Betriebszustand auf einem der Schwellenwerte liegt; Quantifizieren der Brummneigung mittels des unteren Abstandswerts und/oder des oberen Abstandswerts.The method according to the invention for analyzing the rumble tendency of a combustion chamber in an operating state comprises the steps of: operating the combustion chamber in the operating state; Detecting a thermoacoustic size of the combustion chamber gas volume and / or a vibration magnitude of the combustion chamber structure in the operating state and determining a characteristic from the thermoacoustic variable and / or the vibration magnitude; Determining the spectrum of the characteristic in the operating state as the amplitude characteristic of the parameter over time; Identifying a first resonance and a second resonance of the characteristic using the spectrum; Determining the amplitude value of the first resonance and the amplitude value of the second resonance; Calculating the ratio value from the division of the amplitude value of the first resonance and the amplitude value of the second resonance as a stability parameter; Determine the lower distance value and / or the upper distance value by which the stability parameter is above a lower predetermined threshold and / or below an upper predetermined threshold, wherein the threshold values are selected such that when the combustion chamber is in an operating state with a just barely tolerated buzz is operated, the stability parameter in this operating state is at one of the threshold values; Quantify the rumble slope using the lower distance value and / or the upper distance value.
Die Schwellenwerte können in Abhängigkeit von vom Betriebs- und Umgebungszustand abhängig gewählt werden. Die Größe der Amplitudenwerte der Kenngröße ändert sich moderat mit der Brennlast der Brennkammer und ist allein nur bedingt aussagefähig zur Analyse der Brummneigung der Brennkammer. Das Erreichen der Brummgrenze ist oft dadurch gekennzeichnet, dass die Amplitudenwerte plötzlich sehr stark ansteigen. Man erkennt also an dem zunächst moderaten Verlauf der Amplitudenwerte nicht, dass man sich der Brummgrenze gefährlich annähert. Steigen die Amplituden dann beim Erreichen der Brummgrenze sprunghaft an (in der Regel in Bruchteilen einer Sekunde), so kann die Gasturbine nur noch durch drastische, aus der Sicht des Betreibers nachteilige Maßnahmen, wie z.B. sofortige, deutliche Lastabsenkung, vor mechanischen Schäden geschützt werden. Hier setzt die Erfindung an: Ein Annähern an die Brummgrenze lässt sich in bestimmten Fällen daran erkennen, dass sich die Form des Spektrums der Kenngröße verändert. So könnte z.B. das Verhältnis der Amplituden zweier Frequenzbänder zur Quantifizierung der Brummneigung herangezogen werden. Solange beim Steigern der Brennlast das Amplitudenverhältnis konstant bleibt (trotz Ansteigen der absoluten Amplitudenwerte), besteht keine Gefahr. Ändert sich aber das Verhältnis, so nähert man sich der Brummgrenze oder entfernt sich von ihr. Durch die Quantifizierung der Brummneigung kann eine Tendenz zum Annähern an die Brummgrenze erkannt werden und somit können rechtzeitig Gegenmaßnahmen eingeleitet werden, so dass das Erreichen der Brummgrenze mit seinen nachteiligen Folgen für den Betrieb vermieden wird.The thresholds may be selected depending on the operating and ambient conditions. The magnitude of the amplitude values of the parameter changes moderately with the combustion load of the combustion chamber and is only of limited significance for the analysis of the tendency to hum of the combustion chamber. Reaching the hum limit is often characterized by the fact that the amplitude values suddenly rise very sharply. It is therefore not recognized by the initially moderate course of the amplitude values that one approaches dangerously close to the hum. If the amplitudes rise suddenly when reaching the hum limit (usually in fractions of a second), the gas turbine can only be protected from mechanical damage by drastic measures which are disadvantageous from the point of view of the operator, such as immediate, significant load reduction. This is where the invention comes in: In certain cases, approaching the hum limit can be recognized by the fact that the shape of the spectrum of the parameter changes. For example, the ratio of the amplitudes of two frequency bands could be used to quantify the rumbling tendency. As long as the amplitude ratio remains constant when increasing the combustion load (despite the increase in the absolute amplitude values), there is no danger. But if the relationship changes, then one approaches the borderline or moves away from it. By quantifying the rumble tendency, a tendency to approach the hum limit can be detected and thus timely countermeasures can be initiated be avoided, so that the reaching of the hum limit, with its adverse consequences for the operation is avoided.
Es ist bevorzugt, dass der Stabilitätsparameter mit dem Verhältniswert aus der Division des Amplitudenwerts der ersten Resonanz und des Amplitudenwerts der zweiten Resonanz berechnet wird. Mit zunehmender Brennlast der Brennkammer verschieben sich die Frequenzlagen der Resonanzen, wobei für eine vorliegende Brennkammer Frequenzbänder, in denen die Resonanzen beim Betrieb der Brennkammer auftreten, beispielsweise experimentell vorherbestimmt werden können. Zum einfachen Identifizieren der Resonanzen können somit insbesondere diese Frequenzbänder untersucht werden, so dass ein Abtasten des gesamten Frequenzbereichs des Spektrums nicht zu erfolgen braucht.It is preferable that the stability parameter is calculated with the ratio value from the division of the amplitude value of the first resonance and the amplitude value of the second resonance. With increasing combustion load of the combustion chamber, the frequency positions of the resonances shift, wherein for a present combustion chamber frequency bands in which the resonances occur during operation of the combustion chamber, for example, can be predetermined experimentally. In order to easily identify the resonances, it is thus possible, in particular, to examine these frequency bands so that it is not necessary to scan the entire frequency range of the spectrum.
Bevorzugtermaßen wird der Stabilitätsparameter als der Logarithmus des Verhältniswerts gebildet. Ferner ist es bevorzugt, dass der Stabilitätsparameter über die Zeit mit einer Dämpfungsfunktion gedämpft wird. Damit können vorteilhaft übermäßige instationäre Veränderungen des Stabilitätsparameters eingedämmt werden. Beispielsweise kann eine Dämpfungsfunktion derart gebildet sein, dass zu einem Zeitpunkt n der Stabilitätsparameter gebildet wird aus dem arithmetischen Mittel des Verhältniswerts zum Zeitpunkt n und dem Verhältniswert zum Zeitpunkt n-1.Preferably, the stability parameter is formed as the logarithm of the ratio. Further, it is preferable that the stability parameter is attenuated over time with a damping function. In this way, excessive transient changes in the stability parameter can advantageously be contained. For example, an attenuation function may be formed such that at a time instant n the stability parameter is formed from the arithmetic mean of the ratio value at time n and the ratio value at time n-1.
Es ist bevorzugt, dass an mehreren Stellen die Kenngröße zeitgleich gemessen und für jede Stelle das lokale Spektrum ermittelt wird, wobei die lokalen Spektren eine Einhüllende haben, die als das Spektrum verwendet wird. Von dem mit der Einhüllenden gebildeten Spektrum ist der gesamte eventuell von räumlichen Inhomogenitäten bestimmte Betriebszustand der Brennkammer repräsentiert. Dadurch kann vorteilhaft die Brummneigung der Brennkammer in einem Betriebszustand abgeschätzt werden, bei dem die Brennkammer räumlich inhomogen beaufschlagt ist. Die Brennkammer ist bevorzugt als eine Ringbrennkammer rotationssymmetrisch um eine Achse ausgebildet und weist mehrere Stellen auf, an denen die Kenngrößen gemessen werden, wobei die Anzahl der Messstellen unter Ausnutzung der Symmetrie von Schwingungsformen reduziert ist. Ferner ist es bevorzugt, dass die Kenngröße der Schalldruck in der Brennkammer und/oder die Beschleunigung der Brennkammerstruktur ist.It is preferred that at multiple locations the characteristic is measured at the same time and for each site the local spectrum is determined, the local spectra having an envelope used as the spectrum. Of the spectrum formed with the envelope of the entire possibly determined by spatial inhomogeneities operating state of the combustion chamber is represented. As a result, the tendency to hum of the combustion chamber can advantageously be estimated in an operating state in which the combustion chamber is spatially inhomogeneously charged. The combustion chamber is preferably designed as an annular combustion chamber rotationally symmetrical about an axis and has a plurality of locations at which the characteristics are measured, wherein the number of measurement points is reduced by utilizing the symmetry of waveforms. Furthermore, it is preferred that the parameter is the sound pressure in the combustion chamber and / or the acceleration of the combustion chamber structure.
Das erfindungsgemäße Verfahren zur Steuerung eines Betriebs einer Gasturbine mit einer Brennkammer weist die Schritte auf: Durchführen des vorherigen Verfahrens zur Analyse der Brummneigung der Brennkammer der Gasturbine während deren Betrieb; sobald das Quantifizieren der Brummneigung ergibt, dass der Stabilitätsparameter mindestens einen der Schwellenwerte erreicht hat, Reduzieren der Abtriebsleistung der Gasturbine.The method according to the invention for controlling an operation of a gas turbine with a combustion chamber comprises the steps of: performing the previous method for analyzing the tendency to hum of the combustion chamber of the gas turbine during its operation; once the quantification of the rumble tendency indicates that the stability parameter has reached at least one of the threshold values, reducing the output power of the gas turbine.
Somit kann der Stabilitätsparameter direkt als Regelgröße zum Betrieb der Gasturbine verwendet werden. Die momentane Last der Gasturbine steht in direkter Korrelation zum Stabilitätsparameter, so dass mit dem Stabilitätsparameter eine Leistungsregelung der Gasturbine im Hinblick auf das Abwenden von dem Brummen der Brennkammer bewerkstelligbar ist.Thus, the stability parameter can be used directly as a controlled variable for operating the gas turbine. The instantaneous load of the gas turbine is directly correlated to the stability parameter, so that with the stability parameter, a power control of the gas turbine with regard to the averting of the hum of the combustion chamber can be accomplished.
Das Verfahren zur Steuerung des Betriebs der Gasturbine weist ferner den Schritt auf: sobald das Quantifizieren der Brummneigung ergibt, dass der Stabilitätsparameter einen vorherbestimmten Abstandswert zu mindestens einem der Schwellenwerte erreicht hat, Steuern des Betriebs der Gasturbine derart, dass die Brummneigung herabgesetzt wird. Dadurch kann vorteilhaft im Vorfeld des Eintretens einer unzulässig hohen Brummneigung ein Herunterfahren der Gasturbine verhindert werden, so dass ein möglichst kontinuierlicher Betrieb der Gasturbine ermöglicht ist. Es ist bevorzugt, dass zum Herabsetzen der Brummneigung als Maßnahme die Turbinenaustrittstemperatur durch Veränderung des Verdichter-Luftmassenstroms in die Brennkammer als Stellgröße gegenüber ihrem Sollwert herabgesetzt wird und/oder die Temperatur des Brennstoffs in die Brennkammer als Stellgröße gegenüber ihrem Sollwert verändert wird und/oder die räumliche Verteilung der Brennstoffzufuhr in die Brennkammer als Stellgröße gegenüber ihrem Sollwert verändert wird. Nach der Manipulation der Stellgröße und sobald das Quantifizieren der Brummneigung ergibt, dass die Brummneigung sich weiter verringert hat, wird bevorzugt die Stellgröße auf ihren Sollwert zurückgesetzt.The method of controlling the operation of the gas turbine further includes the step of: once the quantification of the rumble tendency indicates that the stability parameter has reached a predetermined distance value to at least one of the threshold values, controlling the operation of the gas turbine to reduce the rumble tendency. As a result, a shutdown of the gas turbine can advantageously be prevented in advance of the occurrence of an inadmissibly high rumbling tendency, so that a possible continuous operation of the gas turbine is made possible. It is preferred that to reduce the tendency to hum as a measure, the turbine outlet temperature is reduced by changing the compressor air mass flow into the combustion chamber as a manipulated variable from its desired value and / or changes the temperature of the fuel in the combustion chamber as a control variable compared to their desired value is and / or the spatial distribution of the fuel supply is changed in the combustion chamber as a manipulated variable to its desired value. After the manipulation of the manipulated variable and as soon as the quantification of the rumbling tendency shows that the rumbling tendency has further decreased, the manipulated variable is preferably reset to its desired value.
Ferner weist das Verfahren zur Steuerung des Betriebs der Gasturbine den Schritt auf: sobald das Quantifizieren der Brummneigung ergibt, dass der Stabilitätsparameter einen vorherbestimmten und eine geringe Brummneigung definierenden Abstandswert zu mindestens einem der Schwellenwerte erreicht hat, Steuern des Betriebs der Gasturbine derart, dass der Betrieb der Gasturbine insbesondere hinsichtlich Abtriebsleistung, Emission und/oder Brennstoffverbrauch optimiert wird.Further, the method of controlling the operation of the gas turbine comprises the step of, once the quantification of the rumble tendency indicates that the stability parameter has reached a predetermined and low rumble-defining distance value to at least one of the thresholds, controlling the operation of the gas turbine such that the operation the gas turbine is optimized in particular with regard to output power, emission and / or fuel consumption.
Eine erfindungsgemäße Steuerungseinrichtung zum Steuern eines Betriebs einer Gasturbine ist eingerichtet das vorher genannte Verfahren durchzuführen.A control device according to the invention for controlling an operation of a gas turbine is set up to carry out the aforementioned method.
Im Folgenden wird eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens zur Analyse der Brummneigung einer Brennkammer und eines Verfahrens zur Steuerung des Betriebs einer Gasturbine anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:
- FIG 1
- ein Diagramm eines Spektrums einer Kenngröße der Brennkammer bei unterschiedlichen Betriebszuständen,
- FIG 2
- ein Diagramm des zeitlichen Verlaufs eines Stabilitätsparameters bei steigender Turbinenaustrittstemperatur,
- FIG 3
- ein Diagramm eines Steuerungsverlaufs für die Gasturbine bei sich ungünstig verändernden Umgebungsbedingungen und
- FIG 4
- ein Diagramm eines Steuerungsverlaufs für die Gasturbine bei Leistungsanhebung.
- FIG. 1
- a diagram of a spectrum of a characteristic of the combustion chamber at different operating states,
- FIG. 2
- a diagram of the time profile of a stability parameter with increasing turbine outlet temperature,
- FIG. 3
- a diagram of a control curve for the gas turbine in unfavorable changing environmental conditions and
- FIG. 4
- a diagram of a control curve for the gas turbine with power boost.
In
Das Spektrum 1 ergibt sich, wenn die Brummneigung der Brennkammer gering ist. Wird der Betriebszustand der Brennkammer derart geändert, dass sich die Brummneigung erhöht, so verändert sich das Spektrum 1 in das Spektrum 1'. Wird der Betriebszustand der Brennkammer weiter verändert, dass die Brummneigung sich erhöht und in einen gerade noch zulässigen Grenzbereich gelangt, so verändert sich das Spektrum 1' in das Spektrum 1". Als eine erste Resonanz weisen die Spektren 1, 1', 1" ein erstes Amplitudenmaximum 2, 2', 2" und als eine zweite Resonanz ein zweites Amplitudenmaximum 3, 3', 3" auf.The
Als ein Stabilitätsparameter zum Quantifizieren der Brummneigung der Brennkammer wird der natürliche Logarithmus des Verhältnisses gebildet aus dem ersten Amplitudenmaximum 2, 2', 2" und dem zweiten Amplitudenmaximum 3, 3', 3" genommen.As a stability parameter for quantifying the rumble tendency of the combustion chamber, the natural logarithm of the ratio formed is taken from the
In
In
In dem in
Die Diagramme in
Der Verlauf 9 des Stabilitätsparameters 6 steigt nun so weit an, bis ein Schwellenwert 16" bei 0,4 erreicht ist. In diesem Betriebszustand gilt die Brummneigung der Brennkammer als gering, so dass stufenweise das Niveau der Turbinenaustrittstemperatur 7 in ihrem Verlauf 10 wieder auf das ursprüngliche Niveau angehoben werden kann. Durch diese Eingriffe in die Steuerung des Betriebs der Gasturbine ist einerseits das Brummen der Brennkammer unterbunden, wobei dennoch eine hohe Leistungsabgabe der Gasturbine erzielt ist.The
In dem in
Claims (13)
wobei der Stabilitätsparameter (9, 9') mit dem Verhältniswert aus der Division des Amplitudenwerts (2, 2', 2") der ersten Resonanz und des Amplitudenwerts (3, 3', 3") der zweiten Resonanz berechnet wird.Method according to claim 1,
wherein the stability parameter (9, 9 ') is calculated with the ratio value from the division of the amplitude value (2, 2', 2 ") of the first resonance and the amplitude value (3, 3 ', 3") of the second resonance.
wobei der Stabilitätsparameter (9, 9') als der Logarithmus des Verhältniswerts gebildet wird.Method according to claim 1 or 2,
wherein the stability parameter (9, 9 ') is formed as the logarithm of the ratio value.
wobei der Stabilitätsparameter (9, 9') über die Zeit mit einer Dämpfungsfunktion gedämpft wird.Method according to one of claims 1 to 3,
wherein the stability parameter (9, 9 ') is attenuated over time with a damping function.
wobei an mehren Stellen die Kenngröße zeitgleich gemessen wird und für jede Stelle das lokale Spektrum ermittelt wird,
wobei die lokalen Spektren eine Einhüllende haben, die als das Spektrum (1, 1', 1") verwendet wird.Method according to one of claims 1 to 4,
where the parameter is measured at several points at the same time and the local spectrum is determined for each position,
where the local spectra have an envelope used as the spectrum (1, 1 ', 1 ").
wobei die Brennkammer als eine Ringbrennkammer rotationssymmetrisch um eine Achse ausgebildet ist und mehrere Stellen aufweist, an denen die Kenngrößen gemessen werden, wobei die Anzahl der Messstellen unter Ausnutzung der Symmetrie von Schwingungsformen reduziert ist.Method according to claim 5,
wherein the combustion chamber is formed as an annular combustion chamber rotationally symmetrical about an axis and having a plurality of points at which the parameters are measured, wherein the number of measuring points is reduced by utilizing the symmetry of waveforms.
wobei die Kenngröße der Schalldruck in der Brennkammer und/oder die Beschleunigung der Brennkammerstruktur ist.Method according to one of claims 1 to 6,
wherein the characteristic is the sound pressure in the combustion chamber and / or the acceleration of the combustion chamber structure.
wobei zum Herabsetzen der Brummneigung als Maßnahme die Turbinenaustrittstemperatur (10) durch Veränderung des Verdichter-Luftmassenstroms in die Brennkammer als Stellgröße gegenüber ihrem Sollwert (10') herabgesetzt wird und/oder die Temperatur des Brennstoffs in die Brennkammer als Stellgröße gegenüber ihrem Sollwert verändert wird und/oder die räumliche Verteilung der Brennstoffzufuhr in die Brennkammer als Stellgröße gegenüber ihrem Sollwert verändert wird.Method according to claim 9,
wherein for reducing the tendency to hum as a measure, the turbine outlet temperature (10) is reduced by changing the compressor air mass flow into the combustion chamber as a manipulated variable with respect to their desired value (10 ') and / or the temperature of the fuel is changed in the combustion chamber as a manipulated variable to its desired value and / or the spatial distribution of the fuel supply to the combustion chamber is changed as a manipulated variable to its desired value.
wobei nach der Manipulation der Stellgröße (10) und sobald das Quantifizieren der Brummneigung ergibt, dass die Brummneigung sich weiter verringert hat, die Stellgröße (10) auf ihren Sollwert (10') zurückgesetzt wird.Method according to claim 10,
wherein after the manipulation of the manipulated variable (10) and as soon as the quantification of the rumbling tendency shows that the rumbling tendency has further decreased, the manipulated variable (10) is reset to its desired value (10 ').
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09157596A EP2239505A1 (en) | 2009-04-08 | 2009-04-08 | Method for analysing the tendency to hum of a combustion chamber and method for controlling a gas turbine |
RU2011145037/06A RU2548233C2 (en) | 2009-04-08 | 2010-04-07 | Method to diagnose disposition of combustion chamber to buzz and method to control gas turbine |
ES10713903T ES2700444T3 (en) | 2009-04-08 | 2010-04-07 | Procedure for analyzing the buzzing tendency of a combustion chamber and procedure for controlling a gas turbine |
PCT/EP2010/054585 WO2010115921A2 (en) | 2009-04-08 | 2010-04-07 | Method for analysing the humming tendency of a combustion chamber, and method for controlling a gas turbine |
EP10713903.2A EP2417395B1 (en) | 2009-04-08 | 2010-04-07 | Method for analysing the humming tendency of a combustion chamber, and method for controlling a gas turbine |
CN201080015017.4A CN102713438B (en) | 2009-04-08 | 2010-04-07 | Method for analysing the humming tendency of a combustion chamber, and method for controlling a gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09157596A EP2239505A1 (en) | 2009-04-08 | 2009-04-08 | Method for analysing the tendency to hum of a combustion chamber and method for controlling a gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2239505A1 true EP2239505A1 (en) | 2010-10-13 |
Family
ID=41010879
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09157596A Withdrawn EP2239505A1 (en) | 2009-04-08 | 2009-04-08 | Method for analysing the tendency to hum of a combustion chamber and method for controlling a gas turbine |
EP10713903.2A Active EP2417395B1 (en) | 2009-04-08 | 2010-04-07 | Method for analysing the humming tendency of a combustion chamber, and method for controlling a gas turbine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10713903.2A Active EP2417395B1 (en) | 2009-04-08 | 2010-04-07 | Method for analysing the humming tendency of a combustion chamber, and method for controlling a gas turbine |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP2239505A1 (en) |
CN (1) | CN102713438B (en) |
ES (1) | ES2700444T3 (en) |
RU (1) | RU2548233C2 (en) |
WO (1) | WO2010115921A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2520863A1 (en) * | 2011-05-05 | 2012-11-07 | Alstom Technology Ltd | Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method |
EP3045676A1 (en) | 2015-01-13 | 2016-07-20 | Siemens Aktiengesellschaft | Method for avoiding a rotating stall |
EP3101343A1 (en) * | 2015-06-05 | 2016-12-07 | Siemens Aktiengesellschaft | Intelligent control method with variable thresholds based on vibration readings |
EP3104078A1 (en) * | 2015-06-12 | 2016-12-14 | IFTA Ingenieurbüro Für Thermoakustik GmbH | Thermoacoustic precursor method and apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2618774C1 (en) * | 2016-01-11 | 2017-05-11 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Method for controlling vibration combustion in combustion chamber of gas turbine engine |
DE102019204422A1 (en) * | 2019-03-29 | 2020-10-01 | Siemens Aktiengesellschaft | Prediction of the combustion dynamics of a gas turbine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6341727A (en) * | 1986-08-05 | 1988-02-23 | Babcock Hitachi Kk | Device for monitoring combustion vibration |
EP1327824A1 (en) * | 2001-12-24 | 2003-07-16 | ABB Schweiz AG | Detection and control of gas turbine combustion operation above lean blowout condition |
EP1688671A1 (en) * | 2005-02-03 | 2006-08-09 | ALSTOM Technology Ltd | Protection method and control system for a gas turbine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55110823A (en) * | 1979-02-16 | 1980-08-26 | Kobe Steel Ltd | Controlling method of air ratio at combustion furnace |
RU2046312C1 (en) * | 1991-10-08 | 1995-10-20 | Машиностроительное конструкторское бюро "Гранит" | Method of diagnosis of degree of choking of manifold with injectors of gas-turbine engine combustion chamber |
US5719791A (en) * | 1995-03-17 | 1998-02-17 | Georgia Tech Research Corporation | Methods, apparatus and systems for real time identification and control of modes of oscillation |
US5706643A (en) * | 1995-11-14 | 1998-01-13 | United Technologies Corporation | Active gas turbine combustion control to minimize nitrous oxide emissions |
US5865609A (en) * | 1996-12-20 | 1999-02-02 | United Technologies Corporation | Method of combustion with low acoustics |
GB2344883B (en) * | 1998-12-16 | 2003-10-29 | Graviner Ltd Kidde | Flame monitoring methods and apparatus |
-
2009
- 2009-04-08 EP EP09157596A patent/EP2239505A1/en not_active Withdrawn
-
2010
- 2010-04-07 CN CN201080015017.4A patent/CN102713438B/en active Active
- 2010-04-07 WO PCT/EP2010/054585 patent/WO2010115921A2/en active Application Filing
- 2010-04-07 ES ES10713903T patent/ES2700444T3/en active Active
- 2010-04-07 EP EP10713903.2A patent/EP2417395B1/en active Active
- 2010-04-07 RU RU2011145037/06A patent/RU2548233C2/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6341727A (en) * | 1986-08-05 | 1988-02-23 | Babcock Hitachi Kk | Device for monitoring combustion vibration |
EP1327824A1 (en) * | 2001-12-24 | 2003-07-16 | ABB Schweiz AG | Detection and control of gas turbine combustion operation above lean blowout condition |
EP1688671A1 (en) * | 2005-02-03 | 2006-08-09 | ALSTOM Technology Ltd | Protection method and control system for a gas turbine |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2520863A1 (en) * | 2011-05-05 | 2012-11-07 | Alstom Technology Ltd | Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method |
US9068512B2 (en) | 2011-05-05 | 2015-06-30 | Alstom Technology Ltd. | Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting the method |
EP3045676A1 (en) | 2015-01-13 | 2016-07-20 | Siemens Aktiengesellschaft | Method for avoiding a rotating stall |
EP3101343A1 (en) * | 2015-06-05 | 2016-12-07 | Siemens Aktiengesellschaft | Intelligent control method with variable thresholds based on vibration readings |
WO2016193069A1 (en) * | 2015-06-05 | 2016-12-08 | Siemens Aktiengesellschaft | Intelligent control method with variable thresholds based on vibration readings |
EP3104078A1 (en) * | 2015-06-12 | 2016-12-14 | IFTA Ingenieurbüro Für Thermoakustik GmbH | Thermoacoustic precursor method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2010115921A2 (en) | 2010-10-14 |
ES2700444T3 (en) | 2019-02-15 |
CN102713438A (en) | 2012-10-03 |
RU2011145037A (en) | 2013-05-20 |
EP2417395B1 (en) | 2018-09-05 |
WO2010115921A3 (en) | 2013-03-14 |
EP2417395A2 (en) | 2012-02-15 |
RU2548233C2 (en) | 2015-04-20 |
CN102713438B (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2417395B1 (en) | Method for analysing the humming tendency of a combustion chamber, and method for controlling a gas turbine | |
EP1880141B1 (en) | Method and apparatus for regulating the functioning of a gas turbine combustor | |
EP1688671B1 (en) | Protection method and control system for a gas turbine | |
DE102010016615A1 (en) | Error detection and protection of multi-stage compressors | |
EP2011963B1 (en) | Method for operating a gas turbine with axial thrust balance | |
CH706985B1 (en) | Method, apparatus and system for determining a target exhaust gas temperature for a gas turbine. | |
DE112008003188T5 (en) | Active combustion control for a turbine engine | |
DE102007029573A1 (en) | System for detecting and correcting unwanted steam turbine operating modes has control unit processor that implements software commands to monitor sensors to detect whether operating parameters lie in range with unacceptable risk | |
DE112014003023B4 (en) | Compressor control device, compression equipment, compressor control method and compression deterioration determination method | |
EP3617481B1 (en) | Monitoring of servo valve filter elements | |
WO2013117271A1 (en) | Method for avoiding pump surges in a compressor | |
DE102007010189A1 (en) | Particle-filter method for controlling regeneration of a particle filter in an internal combustion engine's exhaust gas system controls burn-up of particles in a particle filter | |
EP1971804B1 (en) | Method for the operation of a firing plant | |
EP1934528B1 (en) | Method and device for monitoring the deposition of solid particles, in particular in the fuel line of a gas turbine | |
EP1533569B1 (en) | Method for operating a furnace | |
CH702827A1 (en) | A method for cooling a gas turbine. | |
DE102008002610A1 (en) | Online method for monitoring and controlling a gas-turbine installation calculates a mathematical-cum-physical processing model for a gas turbine | |
DE102013211042B3 (en) | Compressor operating method for aero engine gas turbine, involves controlling air valve arrangement based on detected operating mode, and cooling air flow by coolant valve arrangement through injecting arrangement | |
EP3928033B1 (en) | Method for controlling a gas turbine | |
WO2015058858A1 (en) | Display device, method and controller for analysing an oscillation behaviour of a firing system | |
DE102015214702A1 (en) | Method and device for operating an internal combustion engine | |
WO2008138828A1 (en) | Device and method for measuring acoustic vibrations in a fluid flow and a gas turbine installation with such a device | |
EP4045851B1 (en) | Method for controlling a combustor | |
EP1792242B1 (en) | Method and device for determining an error state in a rotating compressor | |
EP2638269B1 (en) | Method for controlling a gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110414 |