[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2236452B1 - Lifting module - Google Patents

Lifting module Download PDF

Info

Publication number
EP2236452B1
EP2236452B1 EP09005013A EP09005013A EP2236452B1 EP 2236452 B1 EP2236452 B1 EP 2236452B1 EP 09005013 A EP09005013 A EP 09005013A EP 09005013 A EP09005013 A EP 09005013A EP 2236452 B1 EP2236452 B1 EP 2236452B1
Authority
EP
European Patent Office
Prior art keywords
pressure
main stage
module according
stepped piston
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09005013A
Other languages
German (de)
French (fr)
Other versions
EP2236452A1 (en
Inventor
Martin Ascherl
Recep Macit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hawe Hydraulik SE
Original Assignee
Hawe Hydraulik SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawe Hydraulik SE filed Critical Hawe Hydraulik SE
Priority to EP09005013A priority Critical patent/EP2236452B1/en
Priority to AT09005013T priority patent/ATE521568T1/en
Publication of EP2236452A1 publication Critical patent/EP2236452A1/en
Application granted granted Critical
Publication of EP2236452B1 publication Critical patent/EP2236452B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/008Valve failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31552Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7052Single-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8636Circuit failure, e.g. valve or hose failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies

Definitions

  • the invention relates to a lifting module specified in the preamble of claim 1. Art.
  • Out EP 1 369 598 A is a lifting module known in which an additional redundancy switch z. B. in the sink control section, is arranged to produce when stuck a hydraulic element, such as a pressure compensator or a current regulator due to wear, contamination or a metal chip via an additional control routine pressure signals that make the stuck hydraulic element again passable.
  • a hydraulic element such as a pressure compensator or a current regulator due to wear, contamination or a metal chip
  • LLSN controller for the sink control section of a lifting module
  • two throttles are connected in series in a connected to the working line to Hebehydromotor Mau-Abströmweg to the reservoir.
  • the main outflow path to the reservoir passes through a 3/2-way valve with pressure pre-control, wherein the 3/2-way control valve is also part of the lifting control section. Since both pressure during lifting and lowering can flow off pressure medium, additional elements must be provided to ensure the necessary stacker tightness, d. H. a tightness in the system, in which a suspended load for a certain period of time does not fall or only over a certain small amount.
  • the invention has for its object to provide a lifting module of the type mentioned, which is structurally simple and inexpensive and ensures a high safety standard against malfunction, especially in the sink control section due to contamination or metal shavings.
  • Each of the two series-connected main stage elements in the outflow path is controlled by the common solenoid pilot valve as the load is lowered the same as the other, i. the actually desired function is carried out twice.
  • Each element alone is capable of performing the sink function correctly. If one of the elements does not respond correctly due to a contamination or a metal chip, this does not affect the reaction of the other element, so that the load movement always remains controllable controllable. Should z. For example, if one of the elements fails to shut off properly as a result of contamination or metal chipping to stop and hold the load, then the load is reliably stopped and held by the other element in the series connection.
  • both elements are loaded in the direction of the shut-off position parallel to the locking pressure by springs, to ensure that in a depressurized state, both elements first occupy their shut-off positions.
  • both elements are identical, possibly even identical, and similarly interconnected (common part principle).
  • each element has a lateral pressure feed into an annular chamber, an axial outlet through a valve seat, a barrier pressure control chamber on the side facing away from the valve seat side of a displaceable in the annular chamber stepped piston, and disposed between the annular chamber and the barrier pressure control chamber throttle ,
  • the lateral pressure feed of the outflow downstream element is connected to the axial outlet through the valve seat of the upstream element.
  • the stepped piston cooperates with the valve seat in the manner of a seat valve, d. h., Closes leak-free in the shut-off position.
  • both elements are structurally different or at least different interconnected
  • the one element has a lateral pressure feed into an annular chamber, an axial outlet through a valve seat, a barrier pressure control chamber on the side facing away from the valve seat of a movable in the annular chamber stage piston, and the throttle arranged between the annular chamber and the barrier pressure control chamber
  • the other element an axial pressure feed through a valve seat, a lateral outlet of an annular chamber, and the here between the valve seat and the barrier pressure control chamber on the valve seat side facing away from Having in the annular chamber slidable stepped piston arranged throttle.
  • the lateral or axial pressure feed of the downstream element is then connected to the axial or side outlet of the upstream element.
  • each element functions as a seat valve with leak-free shut-off position, which ensures the required stacker tightness and achieved by the integrated redundancy function high safety standard.
  • Each of the two elements can be placed upstream or downstream of the other.
  • the throttle is arranged in the stepped piston itself, in a bypass channel which connects either the annular chamber or the valve seat with the barrier pressure control chamber.
  • the respective throttle could also be arranged in a housing of the element, namely there in a the annular chamber or the valve seat with the barrier pressure control chamber connecting bypass channel.
  • the respective bypass channel itself is designed as a throttle having a predetermined cross section at least in a section of the bypass channel.
  • the pressurizing surfaces of the stepped piston in the annular chamber and in the barrier pressure control chamber are at least substantially equal and larger than the pressurizing area of the stepped piston in the valve seat.
  • the degree of opening of the element is controlled by the solenoid pilot valve to control or regulate the amount of outflow, which in turn determines the lowering speed of the load or lift hydraulic motor (under load, e.g., 0.6 m / s max.).
  • At least one element has a mechanical limitation of the maximum opening stroke of the stepped piston, preferably a stop screw arranged in the barrier pressure control chamber.
  • the maximum lowering speed of the lifting hydraulic motor is limited at least under load, because the element can open only a passage cross section of limited size in Abströmweg (adjustable lowering brake function).
  • the solenoid pilot valve is a 2/2-way magnetic seat valve, which is held in the de-energized state of its switching magnet pressure-dependent by a spring and the barrier pressure in the barrier pressure control chamber in the leak-free shut-off for Abströmweg.
  • the solenoid pilot valve as the actuator to a proportional solenoid to operate as a proportional pressure control valve, which makes it possible to control the sink function proportionally.
  • a pressure compensator downstream of the two elements connected in series, can be arranged on the control side by a spring and a control pressure from the Abströmweg either between the elements or downstream of both elements, and closing control side of a control pressure from the load pressure Abströmweg upstream of both elements is acted upon. Thanks to the pressure compensator downstream of the two elements, load pressure independence is achieved in the lowering control.
  • a lifting module M of Fig. 1 to 5 are for example for a material handling vehicle such as a forklift, a mast, a work vehicle and the like.
  • a Hebehydromotor Z for example, a one-sided acted upon by the load plunger cylinder or differential cylinder ( Fig. 1 ), which, preferably, secured by a hose rupture valve 19 and connected via a working line 4 to the lifting module M.
  • the Hebehydromotor Z could also be acted on double-sided.
  • the lifting module M in Fig. 1 is shown in simplified form and optionally contains other, not shown components.
  • a lift control section 1 and a sink control section 2 communicate with each other via a node 3 in the working line 4.
  • a pressure line 9 connected to a pressure source P is connected to a 2/2-way magnetic seat valve 7 from which a line branch 5 leads to the node 3 on the output side.
  • the line branch 5 is secured by a check valve 6 in the flow direction to the pressure source P.
  • a discharge path 9 for working pressure medium from the Hebehydromotor Z runs to a reservoir R.
  • a branch 9a a lateral pressure feed 11 of a first main-stage element E1, of which a branch 9b to an axial pressure feed of a second Main stage element E2, which has a lateral outlet 11 ', from which a branch 9c leads to a reservoir line 24.
  • the two elements E1, E2 in Fig. 1 are structurally different, differently interconnected, but connected in the outflow 9 in series so that they work the same, ie allow for the Hebehydromotor Z at least substantially the same control functions.
  • the two elements E1, E2 are 2/2-way seat valves with a pressure precontrol via a common control line 20 to the reservoir line 24.
  • a solenoid pilot valve 21 is included in the Fig. 1 a 2/2-way solenoid seat valve with a spring 22 and a black and white magnet 23 is.
  • the control line 20 is connected to the reservoir line 24 to control a lowering movement of the load L via the two elements E1, E2 with disconnected or disconnected pressure source.
  • switching position of the load pressure in the working line 4 via the check valve 6 and the two standing in their shut-off elements E1, E2 is held, or even only on the upstream main stage element E1.
  • the element E1 has in a ring chamber 10 a displaceably guided, sealed movable stepped piston 12 with a valve closure member defining a piston extension 17 which cooperates with an axial valve seat 13 in the valve seat design.
  • a barrier pressure control chamber 14 is provided on the side facing away from the valve seat 13 side of the stepped piston 12 in which, preferably, a spring 15 is included, which acts on the stepped piston 12 in the direction of the shut-off position shown.
  • the loading surfaces of the stepped piston 12 in the annular chamber 10 and in the barrier pressure control chamber 14 are at least substantially equal to and larger than the loading surface of the piston extension 17 on the valve seat 13.
  • the stepped piston 12 (or in a housing of the element E1) runs a bypass of the Ring chamber 10 to the barrier pressure control chamber 14, which includes a throttle 16.
  • the second element E2 is similar, d. H. a 2/2-way seat valve.
  • the stepped piston 12 which is guided displaceably in the annular chamber 10, formed with a valve seat 13 with the barrier pressure control chamber 14 connecting bypass in which the throttle 16 is arranged, or which forms the throttle 16.
  • the respective throttle 16 could be housed in a bypass channel in the housing of the element E1, E2.
  • a manually operated cock 18 is provided to drain the system to the reservoir R, or to test, for example, the proper response of the hose rupture valve 19.
  • a filter device is optionally provided in the region of the pressure source P, it is unavoidable that in the main flow paths between the Hebehydromotor Z and the check valve 6 and the reservoir R dirt and possibly metal chips circulate, the proper functioning of the lifting module M especially at could jeopardize the lowering control of the load L or stopping and holding the load L. Since the solenoid pilot valve 21 in the control line 20 is isolated from the main flow paths by the throttles 16, with the throttles 16 retaining contaminants or functioning as filters, the risk of malfunction in the solenoid pilot valve 21 is negligible. However, contaminants or metal chips could affect the proper functioning of the two elements E1, E2.
  • both series-connected elements E1, E2 each perform the same function, controlled by the common solenoid pilot valve 21, it is precluded that an uncontrolled load movement (ie, faster and farther than controlled) occurs due to a malfunction in an element E1 or E2, or the load L to be stopped is not properly stopped and held.
  • the probability that both elements E1, E2 are subject to a malfunction at the same time is extremely low.
  • Fig. 1 illustrated situation pressure source P is switched off
  • the load pressure in the annular chamber 10 of the element E1 via the throttle 16 blocking pressure in the barrier pressure control chamber 14 which holds in the element E1 the piston extension 17 on the valve seat 13 in the shut-off position.
  • blocking pressure is built up in the barrier pressure control chamber 14 of the downstream element E2, so that the second element E2 as a precaution in the shut-off position.
  • the two elements E1, E2 are structurally simple and cost-effective 2/2-way valves, which work very reliable, and in which it is expected that even with an entering by a pollution or by a metal chip disturbance this disorder automatically after several control cycles again washed out or eliminated, so that the full redundancy function for the lifting module M sooner or later sets again.
  • the embodiment of the Fig. 2 is different from that of Fig. 1 in that the two elements E1, E2 are identical in construction, ie in each case have a lateral load pressure feed 11, an axial outlet through the valve seat 13, and the bypass connecting the annular chamber 10 with the barrier pressure control chamber 14 with the throttle 16, wherein the both the elements E1, E2 connected in series are also connected in the same way, ie the axial outlet of the first element E1 is connected to the side load pressure feed 11 of the downstream element E2, while the axial outlet of the downstream element E2 is connected to the reservoir line 24 via the branch 9c is.
  • Fig. 2 an example, manually operable shut-off member 28 which is arranged in a cross-connection between a node 27 in the control line 20 and the control line 20 and the reservoir line 24, and serves, regardless of an actuation of the solenoid pilot valve 21 abruptly to clear a large outflow cross-section to the reservoir R. to do that in Fig. 1 Test shown hose rupture valve 19.
  • both barrier pressure control chambers 14 of the elements E1, E2 When opening the shut-off member 28 both barrier pressure control chambers 14 of the elements E1, E2 abruptly and completely relieved so that both elements E1, E2 release a large cross-section Hauptabströmweg to the reservoir R, causing a momentary strong pressure drop in the working line 4, on which the hose rupture valve 19 so blocking responds that the load pressure of the Hebehydromotors Z is initially held as far as possible by the hose rupture valve. If system pressure is subsequently restored again, the blocking hose rupture-securing valve 19 also releases, so that the movement of the lifting-hydraulic motor Z can be controlled again via the lifting module M.
  • the two barrier pressure control chambers 14 of the elements E1, E2 are incidentally via a node 26 in the control line 20 connected to each other, so that the solenoid pilot valve 21 controls both elements E1, E2 together.
  • the embodiment of the lifting module M in Fig. 3 is different from that of Fig. 1 in that at least the upstream element E1 of the elements E1, E2 connected in series has a mechanical limit 25 for the maximum opening stroke of the stepped piston 12 when the control line 20 is relieved via the magnetic pilot valve 21.
  • This mechanical limit 25 is for example a screwed into the locking pressure control chamber 14 stop screw, which makes it possible to adjust the maximum opening stroke.
  • the upstream element E1 operates as a lowering brake, the maximum lowering speed of the Hebehydromotors Z limited, for example, to max. 0.6 m / s under load.
  • the embodiment of the lifting module in Fig. 4 is different from that of Fig. 1 in that the solenoid pilot valve 21 is designed as a proportional pressure control valve 29 which contains a proportional magnet 30 and an internal throttle 31. This allows the proportional electrical control of the sink function.
  • the embodiment of the lifting module M in Fig. 5 is different from the one in Fig. 4 in that the solenoid pilot control valve 21 designed as a proportional pressure control valve cooperates with a pressure compensator 31 which is arranged in the reservoir conduit 24.
  • the pressure compensator 31 is acted upon, for example, by a control valve 35 tapped at a node 26 of the Abströmwegs 9, 9c via a throttle 35 in the up direction and parallel to a spring 32, however, in Schmony Kunststofftechnisch via a control line 34, the control pressure from the Abströmweg 9 upstream of both elements E1 , E2 picks up.
  • a 2-way flow control function is achieved, which also generates a load pressure independence in the proportional control of the sink function.
  • the pressure compensator 31 could be acted upon in the opening direction by a pilot control pressure of a control line 33 'tapped between the two elements E1, E2 (in this case the node 36 is omitted and the control line 33' is connected to the control line 33).
  • the further construction of the lifting module in Fig. 5 corresponds to that of Fig. 1 with the structurally different and unequal interconnected elements E1, E2 in Abströmweg 9.
  • the pressure compensator 31 could also in the embodiments of Fig. 1 to 3 be provided.
  • the respective main stage element E1, E2 is structurally (not shown), for example realized by the fact that the stepped piston 12 in a stepped bore in a block housing is guided displaceably guided in a sealed manner, wherein the stepped bore contains the arranged between the annular chamber 10 and the axial outlet valve seat 13, and the barrier pressure control chamber 14 is closed by a screwed into the exposed end of the stepped bore final screw on which the spring 15 is supported.
  • the bypass channel in the stepped piston 12 can then be composed of individual bore sections and form the throttle 16 or contain a throttle section corresponding to the throttle 16 between different bore sections.
  • a check valve is included in the bypass channel.
  • the bypass channel opens laterally in the piston extension 17 or axially in the end face of the piston extension 17th

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The module (M) has two main stage-elements (E1, E2) controlled by load pressure and connected in series in an outflow path (9), where the stage-elements are supplied with sealing pressure in a direction of a shut-off position. Pressure is derived from the load pressure by a throttle (16). The elements are commonly controlled in parallel by a magnetic servo valve (21) that is arranged in a sealing pressure-control line (20) that is shielded to a lifting hydraulic motor (Z), load pressure and a lifting section (1) by the throttle.

Description

Die Erfindung betrifft einen Hubmodul der im Oberbegriff des Patentanspruchs 1 angegebenen Art.The invention relates to a lifting module specified in the preamble of claim 1. Art.

Für Hubmodule z.B. von Flurförderfahrzeugen wie Gabelstaplern, oder in Hubgerüsten, Arbeitsfahrzeugen oder dgl., gelten strenge Sicherheitsvorschriften, um sicherzustellen, dass eine beim Senken angehaltene Last tatsächlich angehalten wird und dann stehen bleibt und in keinem Fall unkontrollierte Senkbewegungen ausführt. Dabei ist zu berücksichtigen, dass nach längeren Einsatzzeiten des Hubmoduls im Druckmittel unvermeidbar Verschmutzungen oder Metallspäne auftreten, die trotz vorgeschalteter Filtervorrichtungen in Hauptströmungswegen zirkulieren und sich in hydraulischen Elementen absetzen und deren Funktion beeinträchtigen und/oder zunichte machen können, wodurch die geforderte Sicherheit gegen unkontrollierte Lastsenkbewegungen oder eine nicht anhaltende Last nicht gegeben ist.For lifting modules e.g. of forklift trucks, or in masts, work vehicles or the like., strict safety regulations apply to ensure that a load stopped during lowering is actually stopped and then stops and in no case carries out uncontrolled lowering movements. It should be noted that after prolonged periods of use of the lifting module in the pressure unavoidable soiling or metal chips occur that circulate despite upstream filter devices in the main flow paths and settle in hydraulic elements and impair their function and / or can ruin, creating the required security against uncontrolled load lowering movements or a non-sustained load is not given.

Aus EP 1 369 598 A ist ein Hubmodul bekannt, bei dem ein zusätzliches Redundanzschaltglied z. B. in der Senkensteuersektion, angeordnet ist, um bei Hängenbleiben eines hydraulischen Elements, wie einer Druckwaage oder eines Stromreglers aufgrund Verschleiß, Verschmutzung oder eines Metallspans über eine zusätzliche Steuerroutine Drucksignale zu erzeugen, die das hängengebliebene hydraulische Element wieder gangbar machen. Dies ist eine baulich aufwendige und teure Lösung, erfordert zusätzlich programmierte Steuerroutinen, und hat keinen automatisch hohen Sicherheitsstandard.Out EP 1 369 598 A is a lifting module known in which an additional redundancy switch z. B. in the sink control section, is arranged to produce when stuck a hydraulic element, such as a pressure compensator or a current regulator due to wear, contamination or a metal chip via an additional control routine pressure signals that make the stuck hydraulic element again passable. This is a structurally complex and expensive solution, requires additionally programmed control routines, and does not automatically have a high safety standard.

Ferner ist aus der Praxis ein sogenannter LLSN-Regler für die Senkensteuersektion eines Hubmoduls bekannt, bei dem in einem an die Arbeitsleitung zum Hebehydromotor angeschlossenen Neben-Abströmweg zum Reservoir zwei Drosseln hintereinander geschaltet sind. Der Haupt-Abströmweg zum Reservoir verläuft über ein 3/2-Wegeventil mit Druckvorsteuerung, wobei das 3/2-Wegesteuerventil gleichzeitig auch Teil der Hebensteuersektion ist. Da sowohl beim Heben als auch beim Senken permanent Druckmittel abströmen kann, müssen zusätzliche Elemente vorgesehen werden, um die notwendige Staplerdichtheit zu gewährleisten, d. h. eine Dichtheit im System, bei der eine angehaltene Last eine bestimmte Zeitdauer nicht oder nur über ein bestimmtes geringes Maß absinkt.Furthermore, from practice a so-called LLSN controller for the sink control section of a lifting module is known, in which two throttles are connected in series in a connected to the working line to Hebehydromotor Neben-Abströmweg to the reservoir. The main outflow path to the reservoir passes through a 3/2-way valve with pressure pre-control, wherein the 3/2-way control valve is also part of the lifting control section. Since both pressure during lifting and lowering can flow off pressure medium, additional elements must be provided to ensure the necessary stacker tightness, d. H. a tightness in the system, in which a suspended load for a certain period of time does not fall or only over a certain small amount.

Weiterer Stand der Technik ist enthalten in: DE 42 39 321 A , DE 20 2004 014 029 U und DE 199 56 717 A .Further prior art is contained in: DE 42 39 321 A . DE 20 2004 014 029 U and DE 199 56 717 A ,

Der Erfindung liegt die Aufgabe zugrunde, einen Hubmodul der eingangs genannten Art zu schaffen, der baulich einfach und kostengünstig ist und einen hohen Sicherheitsstandard gegen Funktionsstörungen speziell in der Senkensteuersektion aufgrund Verschmutzungen oder Metallspänen sicherstellt.The invention has for its object to provide a lifting module of the type mentioned, which is structurally simple and inexpensive and ensures a high safety standard against malfunction, especially in the sink control section due to contamination or metal shavings.

Die gestellte Aufgabe wird mit den Merkmalen des Patentanspruchs 1 gelöst.The stated object is achieved with the features of claim 1.

Jedes der beiden in Reihe geschalteten Hauptstufen-Elemente im Abströmweg wird durch das gemeinsame Magnetvorsteuerventil beim Senken der Last gleich wie das andere gesteuert, d.h. die eigentlich gewünschte Funktion wird zweifach ausgeführt. Jedes Element ist allein in der Lage, die Senkenfunktion korrekt auszuführen. Sollte eines der Elemente aufgrund einer Verschmutzung oder eines Metallspans nicht korrekt reagieren, hat dies keinen Einfluss auf die Reaktion des anderen Elements, sodass die Lastbewegung stets kontrolliert steuerbar bleibt. Sollte z. B. eines der Elemente aufgrund einer Verschmutzung oder eines Metallspans nicht wie eingesteuert korrekt absperren, um die Last anzuhalten und zu halten, dann wird die Last durch das andere Element in der Reihenschaltung zuverlässig angehalten und gehalten. Es wird eine integrierte Redundanzfunktion für einen hohen Sicherheitsstandard erzielt, weil die Wahrscheinlichkeit, dass beide Elemente gleichzeitig in ihrer Funktion gestört sind, nahezu auszuschließen ist. Hingegen wird die gewünschte Funktion ordnungsgemäß gesteuert, wenn eines der Elemente ausfallen oder vorübergehend gestört sein sollte. Die Funktion des Magnetvorsteuerventils ist ferner durch Verschmutzungen oder Metallspäne nicht gefährdet, weil das Magnetvorsteuerventil durch die Drosseln gegenüber den Hauptströmungswegen abgeschirmt ist, ohnedies nur sehr kleine Steuerdruckmengen zu verarbeiten hat, und die Drosseln wie zusätzliche Filter wirken. Zusätzliche Redundanz ist ferner dadurch gegeben, dass bei einer verschmutzten Drossel eines Elements der notwendige Sperrdruck rasch und in voller Höhe über die weiterhin funktionsfähige Drossel des anderen Elements für beide Elemente aufgebaut wird und beide Elemente somit zuverlässig die leckagefreie Absperrstellung für den Abströmweg des Arbeitsdruckmittels aus dem Hebe-Hydromotor einnehmen. Es wird mit einfachen Komponenten und ohne zusätzliche Steuerroutinen ein hoher Sicherheitsstandard erzielt, der den geltenden Anforderungen genügt.Each of the two series-connected main stage elements in the outflow path is controlled by the common solenoid pilot valve as the load is lowered the same as the other, i. the actually desired function is carried out twice. Each element alone is capable of performing the sink function correctly. If one of the elements does not respond correctly due to a contamination or a metal chip, this does not affect the reaction of the other element, so that the load movement always remains controllable controllable. Should z. For example, if one of the elements fails to shut off properly as a result of contamination or metal chipping to stop and hold the load, then the load is reliably stopped and held by the other element in the series connection. An integrated redundancy function for a high safety standard is achieved, because the probability that both elements are simultaneously disturbed in their function can almost be ruled out. On the other hand, the desired function is properly controlled if one of the elements fails or is temporarily disturbed. Furthermore, the function of the solenoid pilot valve is not jeopardized by debris or metal shavings because the solenoid pilot valve is shielded by the restrictors from the main flow passages, in which case only very small pilot pressures need to be handled and the throttles act as additional filters. Additional redundancy is further provided by the fact that in a dirty throttle of an element, the necessary barrier pressure is built up quickly and in full on the still functional throttle of the other element for both elements and both elements thus reliably the leak-free shut-off for the outflow of the working pressure medium from the Take lifting hydraulic motor. It is achieved with simple components and without additional control routines a high safety standard that meets the applicable requirements.

Bei einer zweckmäßigen Ausführungsform werden beide Elemente in Richtung zur Absperrstellung parallel zum Sperrdruck durch Federn belastet, um sicherzustellen, dass in drucklosem Zustand beide Elemente zunächst ihre Absperrstellungen einnehmen.In an expedient embodiment, both elements are loaded in the direction of the shut-off position parallel to the locking pressure by springs, to ensure that in a depressurized state, both elements first occupy their shut-off positions.

Baulich einfach sind bei einer weiteren Ausführungsform beide Elemente baugleich, gegebenenfalls sogar identisch, und gleichartig verschaltet (Gleichteil-Prinzip).Structurally simple in a further embodiment, both elements are identical, possibly even identical, and similarly interconnected (common part principle).

Bei baugleichen Elementen weist jedes Element eine seitliche Druckeinspeisung in eine Ringkammer, einen axialen Auslass durch einen Ventilsitz, eine Sperrdruck-Steuerkammer an der dem Ventilsitz abgewandeten Seite eines in der Ringkammer verschiebbaren Stufenkolbens, und die zwischen der Ringkammer und der Sperrdruck-Steuerkammer angeordnete Drossel auf. Die seitliche Druckeinspeisung des im Abströmweg stromab liegenden Elements ist an den axialen Auslass durch den Ventilsitz des stromauf liegenden Elements angeschlossen. Der Stufenkolben arbeitet mit dem Ventilsitz nach Art eines Sitzventils zusammen, d. h., sperrt in der Absperrstellung leckagefrei dicht ab.With identical elements, each element has a lateral pressure feed into an annular chamber, an axial outlet through a valve seat, a barrier pressure control chamber on the side facing away from the valve seat side of a displaceable in the annular chamber stepped piston, and disposed between the annular chamber and the barrier pressure control chamber throttle , The lateral pressure feed of the outflow downstream element is connected to the axial outlet through the valve seat of the upstream element. The stepped piston cooperates with the valve seat in the manner of a seat valve, d. h., Closes leak-free in the shut-off position.

Wenn bei einer anderen Ausführung beide Elemente baulich unterschiedlich oder zumindest unterschiedliche verschaltet sind, weist das eine Element eine seitliche Druckeinspeisung in eine Ringkammer, einen axialen Auslass durch einen Ventilsitz, eine Sperrdruck-Steuerkammer an der dem Ventilsitz abgewandten Seite eines in der Ringkammer verschiebbaren Stufenkolbens, und die zwischen der Ringkammer und der Sperrdruck-Steuerkammer angeordnete Drossel auf, während das andere Element eine axiale Druckeinspeisung durch einen Ventilsitz, einen seitlichen Auslass aus einer Ringkammer, und die hier zwischen dem Ventilsitz und der Sperrdruck-Steuerkammer an der dem Ventilsitz abgewandten Seite des in der Ringkammer verschiebbaren Stufenkolbens angeordnete Drossel aufweist. Die seitliche oder die axiale Druckeinspeisung des stromabliegenden Elements wird dann an den axialen oder seitlichen Auslass des stromaufliegenden Elements angeschlossen. Auch hierbei funktioniert jedes Element als Sitzventil mit leckagefreier Absperrstellung, wodurch die erforderliche Staplerdichtheit gewährleistet und durch die integrierte Redundanzfunktion hoher Sicherheitsstandard erreicht werden. Jedes der beiden Elemente kann stromauf oder stromab des anderen platziert werden.If, in another embodiment, both elements are structurally different or at least different interconnected, the one element has a lateral pressure feed into an annular chamber, an axial outlet through a valve seat, a barrier pressure control chamber on the side facing away from the valve seat of a movable in the annular chamber stage piston, and the throttle arranged between the annular chamber and the barrier pressure control chamber, while the other element an axial pressure feed through a valve seat, a lateral outlet of an annular chamber, and the here between the valve seat and the barrier pressure control chamber on the valve seat side facing away from Having in the annular chamber slidable stepped piston arranged throttle. The lateral or axial pressure feed of the downstream element is then connected to the axial or side outlet of the upstream element. Again, each element functions as a seat valve with leak-free shut-off position, which ensures the required stacker tightness and achieved by the integrated redundancy function high safety standard. Each of the two elements can be placed upstream or downstream of the other.

Baulich einfach wird die Drossel im Stufenkolben selbst angeordnet, und zwar in einem Bypasskanal, der entweder die Ringkammer oder den Ventilsitz mit der Sperrdruck-Steuerkammer verbindet. Alternativ könnte die jeweilige Drossel jedoch auch in einem Gehäuse des Elements angeordnet sein, und zwar dort in einem die Ringkammer oder den Ventilsitz mit der Sperrdruck-Steuerkammer verbindenden Bypasskanal. Gegebenenfalls ist der jeweilige Bypasskanal selbst als Drossel mit einem vorbestimmten Querschnitt zumindest in einem Abschnitt des Bypasskanals ausgebildet.Structurally simple, the throttle is arranged in the stepped piston itself, in a bypass channel which connects either the annular chamber or the valve seat with the barrier pressure control chamber. Alternatively, however, the respective throttle could also be arranged in a housing of the element, namely there in a the annular chamber or the valve seat with the barrier pressure control chamber connecting bypass channel. Optionally, the respective bypass channel itself is designed as a throttle having a predetermined cross section at least in a section of the bypass channel.

In jedem Element sind die Druckbeaufschlagungsflächen des Stufenkolbens in der Ringkammer und in der Sperrdruck-Steuerkammer zumindest im Wesentlichen gleichgroß und größer als die Druckbeaufschlagungsfläche des Stufenkolbens im Ventilsitz. Der Öffnungsgrad des Elements wird durch das Magnetvorsteuerventil gesteuert, um die abströmende Menge zu steuern oder zu regeln, die wiederum die Senkgeschwindigkeit der Last bzw. des Hebehydraulikmotors bestimmt (unter Last z.B. max. 0,6 m/s).In each element, the pressurizing surfaces of the stepped piston in the annular chamber and in the barrier pressure control chamber are at least substantially equal and larger than the pressurizing area of the stepped piston in the valve seat. The degree of opening of the element is controlled by the solenoid pilot valve to control or regulate the amount of outflow, which in turn determines the lowering speed of the load or lift hydraulic motor (under load, e.g., 0.6 m / s max.).

In einer zweckmäßigen Ausführungsform weist zumindest ein Element eine mechanische Begrenzung des maximalen Öffnungshubes des Stufenkolbens auf, vorzugsweise eine in der Sperrdruck-Steuerkammer angeordnete Anschlagschraube. Auf diese Weise wird die maximale Senkgeschwindigkeit des Hebehydraulikmotors zumindest unter Last beschränkt, weil das Element nur einen Durchgangs-Querschnitt mit begrenzter Größe im Abströmweg öffnen kann (einstellbare Senkbremsfunktion).In an expedient embodiment, at least one element has a mechanical limitation of the maximum opening stroke of the stepped piston, preferably a stop screw arranged in the barrier pressure control chamber. In this way, the maximum lowering speed of the lifting hydraulic motor is limited at least under load, because the element can open only a passage cross section of limited size in Abströmweg (adjustable lowering brake function).

In einer einfachen Ausführungsform ist das Magnetvorsteuerventil ein 2/2-Wege-Magnetsitz-ventil, das in stromlosen Zustand seines Schaltmagnetens druckabhängig durch eine Feder und dem Sperrdruck in der Sperrdruck-Steuerkammer in der leckagefreien Absperrstellung für den Abströmweg gehalten wird.In a simple embodiment, the solenoid pilot valve is a 2/2-way magnetic seat valve, which is held in the de-energized state of its switching magnet pressure-dependent by a spring and the barrier pressure in the barrier pressure control chamber in the leak-free shut-off for Abströmweg.

Bei einer weiteren, zweckmäßigen Ausführungsform weist das Magnetvorsteuerventil als Aktuator einen Proportionalmagneten auf, um als Proportionaldruckregelventil zu arbeiten, was es ermöglicht, die Senkenfunktion proportional anzusteuern.In a further expedient embodiment, the solenoid pilot valve as the actuator to a proportional solenoid to operate as a proportional pressure control valve, which makes it possible to control the sink function proportionally.

Bei einer weiteren zweckmäßigen Ausführungsform kann im Abströmweg stromab der beiden in Reihe geschalteten Elemente eine Druckwaage angeordnet sein, die aufsteuerseitig von einer Feder und einem Steuerdruck aus dem Abströmweg entweder zwischen den Elementen oder stromab beider Elemente, und schließsteuerseitig von einem Steuerdruck aus dem Lastdruck im Abströmweg stromauf beider Elemente beaufschlagt wird. Dank der den beiden Elemente nachgeschalteten Druckwaage wird bei der Senkensteuerung Lastdruckunabhängigkeit erzielt.In a further advantageous embodiment, downstream of the two elements connected in series, a pressure compensator can be arranged on the control side by a spring and a control pressure from the Abströmweg either between the elements or downstream of both elements, and closing control side of a control pressure from the load pressure Abströmweg upstream of both elements is acted upon. Thanks to the pressure compensator downstream of the two elements, load pressure independence is achieved in the lowering control.

Schließlich ist es zweckmäßig, den Hebehydromotor durch ein Schlauchbruchsicherungsventil abzusichern, das bei einem Schlauchbruch den Lastdruck hält, und dessen ordnungsgemäße Funktion schaltungs- und steuertechnisch einfach z.B. unter Nutzen der beiden in Reihe geschalteten Elemente von Zeit zu Zeit überprüfbar ist.Finally, it is expedient to secure the Hebehydromotor by a hose rupture valve that holds the load pressure at a hose break, and the proper function of switching and control technology is simple, for example, using the two series-connected elements from time to time verifiable.

Ausführungsformen des Erfindungsgegenstandes werden anhand der Zeichnung erläutert. Es zeigen:

Fig. 1
ein Blockschaltbild einer ersten Ausführungsform eines Hubmoduls,
Fig. 2
ein Blockschaltbild einer weiteren Ausführungsform eines Hubmoduls,
Fig. 3
eine Detailvariante des Hubmoduls von Fig. 1,
Fig. 4
eine weitere Detailvariante des Hubmoduls von Fig. 1, und
Fig. 5
eine Detailvariante des Hubmoduls von Fig. 4.
Embodiments of the subject invention will be explained with reference to the drawing. Show it:
Fig. 1
a block diagram of a first embodiment of a lifting module,
Fig. 2
a block diagram of another embodiment of a lifting module,
Fig. 3
a detail variant of the lifting module of Fig. 1 .
Fig. 4
another detail variant of the lifting module of Fig. 1 , and
Fig. 5
a detail variant of the lifting module of Fig. 4 ,

Die verschiedenen Ausführungsformen eines Hubmoduls M der Fig. 1 bis 5 sind beispielsweise für ein Flurförderfahrzeug wie einen Gabelstapler, ein Hubgerüst, ein Arbeitsfahrzeug und dgl. zur Bewegungs- und Geschwindigkeitssteuerung eines Hebehydromotors Z zum Heben und Senken einer Last L bestimmt, wobei der Hebehydromotor Z beispielsweise ein einseitig gegen die Last beaufschlagbarer Plungerzylinder oder Differentialzylinder (Fig. 1) ist, der, vorzugsweise, durch ein Schlauchbruchsicherungsventil 19 abgesichert und über eine Arbeitsleitung 4 an den Hubmodul M angeschlossen ist. Der Hebehydromotor Z könnte auch doppelseitig beaufschlagbar sein.The various embodiments of a lifting module M of Fig. 1 to 5 are for example for a material handling vehicle such as a forklift, a mast, a work vehicle and the like. For movement and speed control of a Hebehydromotors Z for lifting and lowering a load L determined, the Hebehydromotor Z, for example, a one-sided acted upon by the load plunger cylinder or differential cylinder ( Fig. 1 ), which, preferably, secured by a hose rupture valve 19 and connected via a working line 4 to the lifting module M. The Hebehydromotor Z could also be acted on double-sided.

Der Hubmodul M in Fig. 1 ist vereinfacht dargestellt und enthält gegebenenfalls weitere, nicht dargestellte Komponenten. Eine Hebensteuersektion 1 und eine Senkensteuersektion 2 kommunizieren über einen Knoten 3 in der Arbeitsleitung 4 miteinander. In der Hebensteuersektion 1 ist eine mit einer Druckquelle P verbundene Druckleitung 9 an ein 2/2-Wegemagnetsitzventil 7 angeschlossen, von dem ausgangsseitig ein Leitungszweig 5 zum Knoten 3 führt. Der Leitungszweig 5 ist durch ein Rückschlagventil 6 in Strömungsrichtung zur Druckquelle P abgesichert. Vom Knoten 3 verläuft ein Abströmweg 9 für Arbeitsdruckmittel aus dem Hebehydromotor Z zu einem Reservoir R. In dem Abströmweg 9 ist an einem Zweig 9a eine seitliche Druckeinspeisung 11 eines ersten Hauptstufen-Elements E1 angeschlossen, von dem ein Zweig 9b zu einer axialen Druckeinspeisung eines zweiten Hauptstufen-Elements E2 verläuft, das einen seitlichen Auslass 11' besitzt, von dem ein Zweig 9c zu einer Reservoirleitung 24 führt. Die beiden Elemente E1, E2 in Fig. 1 sind baulich unterschiedlich, verschieden verschaltet, jedoch im Abströmweg 9 so in Reihe geschaltet, dass sie gleich funktionieren, d.h. für den Hebehydromotor Z zumindest im Wesentlichen die gleichen Steuerfunktionen ermöglichen.The lifting module M in Fig. 1 is shown in simplified form and optionally contains other, not shown components. A lift control section 1 and a sink control section 2 communicate with each other via a node 3 in the working line 4. In the lifting control section 1, a pressure line 9 connected to a pressure source P is connected to a 2/2-way magnetic seat valve 7 from which a line branch 5 leads to the node 3 on the output side. The line branch 5 is secured by a check valve 6 in the flow direction to the pressure source P. From the node 3, a discharge path 9 for working pressure medium from the Hebehydromotor Z runs to a reservoir R. In the outflow 9 is connected to a branch 9a a lateral pressure feed 11 of a first main-stage element E1, of which a branch 9b to an axial pressure feed of a second Main stage element E2, which has a lateral outlet 11 ', from which a branch 9c leads to a reservoir line 24. The two elements E1, E2 in Fig. 1 are structurally different, differently interconnected, but connected in the outflow 9 in series so that they work the same, ie allow for the Hebehydromotor Z at least substantially the same control functions.

Die beiden Elemente E1, E2 sind 2/2-Wegesitzventile mit einer Druckvorsteuerung über eine gemeinsame Steuerleitung 20 zur Reservoirleitung 24. In der Steuerleitung 20 ist ein Magnetvorsteuerventil 21 enthalten, das in Fig. 1 ein 2/2-Wegemagnetsitzventil mit einer Feder 22 und einem Schwarz-Weiß-Magneten 23 ist. In stromlosen Zustand des Schwarz-Weiß-Magneten 23 nimmt das Vorsteuermagnetventil 21 für den Abströmweg 9 die gezeigte Absperrstellung (leckagefrei dicht) unter der Wirkung der Feder 22 ein. Bei bestromtem Schwarz-Weiß-Magneten 23 wird die Steuerleitung 20 mit der Reservoirleitung 24 verbunden, um über die beiden Elemente E1, E2 bei abgeschalteter oder abgetrennter Druckquelle eine Senkbewegung der Last L zu steuern. In der in Fig. 1 gezeigten Schaltstellung wird der Lastdruck in der Arbeitsleitung 4 über das Rückschlagventil 6 und die beiden in ihren Absperrstellungen stehenden Elemente E1, E2 gehalten, oder sogar nur über das stromaufliegende Hauptstufen-Element E1.The two elements E1, E2 are 2/2-way seat valves with a pressure precontrol via a common control line 20 to the reservoir line 24. In the control line 20, a solenoid pilot valve 21 is included in the Fig. 1 a 2/2-way solenoid seat valve with a spring 22 and a black and white magnet 23 is. In de-energized state of the black-and-white magnet 23 takes the pilot solenoid valve 21 for the Abströmweg 9 the shut-off position shown (leak-proof seal) under the action of the spring 22 a. When energized black and white magnet 23, the control line 20 is connected to the reservoir line 24 to control a lowering movement of the load L via the two elements E1, E2 with disconnected or disconnected pressure source. In the in Fig. 1 shown switching position of the load pressure in the working line 4 via the check valve 6 and the two standing in their shut-off elements E1, E2 is held, or even only on the upstream main stage element E1.

Das Element E1 weist in einer Ringkammer 10 einen verschiebbar geführten, abgedichtet beweglichen Stufenkolben 12 mit einem ein Ventilschließglied definierenden Kolbenansatz 17 auf, der mit einem axialen Ventilsitz 13 in Sitzventilbauweise zusammenwirkt. An der dem Ventilsitz 13 abgewandten Seite des Stufenkolbens 12 ist eine Sperrdruck-Steuerkammer 14 vorgesehen, in der, vorzugsweise, eine Feder 15 enthalten ist, die den Stufenkolben 12 in Richtung zur gezeigten Absperrstellung beaufschlagt. Die Beaufschlagungsflächen des Stufenkolbens 12 in der Ringkammer 10 und in der Sperrdruck-Steuerkammer 14 sind zumindest im Wesentlichen gleichgroß und größer als die Beaufschlagungsfläche des Kolbenansatzes 17 am Ventilsitz 13. Im Stufenkolben 12 (oder in einem Gehäuse des Elements E1) verläuft ein Bypass von der Ringkammer 10 zur Sperrdruck-Steuerkammer 14, der eine Drossel 16 enthält.The element E1 has in a ring chamber 10 a displaceably guided, sealed movable stepped piston 12 with a valve closure member defining a piston extension 17 which cooperates with an axial valve seat 13 in the valve seat design. On the side facing away from the valve seat 13 side of the stepped piston 12, a barrier pressure control chamber 14 is provided in which, preferably, a spring 15 is included, which acts on the stepped piston 12 in the direction of the shut-off position shown. The loading surfaces of the stepped piston 12 in the annular chamber 10 and in the barrier pressure control chamber 14 are at least substantially equal to and larger than the loading surface of the piston extension 17 on the valve seat 13. In the stepped piston 12 (or in a housing of the element E1) runs a bypass of the Ring chamber 10 to the barrier pressure control chamber 14, which includes a throttle 16.

Das zweite Element E2 ist ähnlich ausgebildet, d. h. ein 2/2-Wege-Sitzventil. Jedoch ist der Stufenkolben 12, der in der Ringkammer 10 verschieblich geführt wird, mit einem den Ventilsitz 13 mit der Sperrdruck-Steuerkammer 14 verbindenden Bypass ausgebildet, in dem die Drossel 16 angeordnet ist, oder der die Drossel 16 bildet.The second element E2 is similar, d. H. a 2/2-way seat valve. However, the stepped piston 12, which is guided displaceably in the annular chamber 10, formed with a valve seat 13 with the barrier pressure control chamber 14 connecting bypass in which the throttle 16 is arranged, or which forms the throttle 16.

Alternativ könnte die jeweilige Drossel 16 in einem Bypass-Kanal im Gehäuse des Elements E1, E2 untergebracht sein.Alternatively, the respective throttle 16 could be housed in a bypass channel in the housing of the element E1, E2.

Ein manuell betätigter Hahn 18 ist vorgesehen, um das System zum Reservoir R zu entleeren, oder beispielsweise das ordnungsgemäße Ansprechverhalten des Schlauchbruchsicherungsventils 19 zu testen.A manually operated cock 18 is provided to drain the system to the reservoir R, or to test, for example, the proper response of the hose rupture valve 19.

Obwohl gegebenenfalls im Bereich der Druckquelle P eine Filtervorrichtung vorgesehen ist, lässt es sich nicht vermeiden, dass in den Hauptströmungswegen zwischen dem Hebehydromotor Z und dem Rückschlagventil 6 bzw. dem Reservoir R Verschmutzungen und gegebenenfalls Metallspäne zirkulieren, die das ordnungsgemäße Funktionieren des Hubmoduls M speziell bei der Senkensteuerung der Last L oder beim Anhalten und Halten der Last L gefährden könnten. Da das Magnetvorsteuerventil 21 in der Steuerleitung 20 durch die Drosseln 16 gegenüber den Hauptströmungswegen isoliert ist, wobei die Drosseln 16 Verunreinigungen zurückhalten oder wie Filter funktionieren, ist die Gefahr einer Funktionsstörung bei dem Magnetvorsteuerventil 21 vernachlässigbar. Allerdings könnten Verunreinigungen oder Metallspäne die ordnungsgemäße Funktion der beiden Elemente E1, E2 beeinträchtigen. Da beide in Reihe geschalteten Elemente E1, E2 jeweils die gleiche Funktion ausführen, gesteuert durch das gemeinsame Magnetvorsteuerventil 21, ist jedoch ausgeschlossen, dass aufgrund einer Funktionsstörung bei einem Element E1 oder E2 eine unkontrollierte Lastbewegung (d. h. schneller und weiter als eingesteuert) eintritt, oder die anzuhaltende Last L nicht ordnungsgemäß angehalten und gehalten wird. Die Wahrscheinlichkeit, dass beide Elemente E1, E2 einer Funktionsstörung gleichzeitig unterliegen, ist äußerst gering.Although a filter device is optionally provided in the region of the pressure source P, it is unavoidable that in the main flow paths between the Hebehydromotor Z and the check valve 6 and the reservoir R dirt and possibly metal chips circulate, the proper functioning of the lifting module M especially at could jeopardize the lowering control of the load L or stopping and holding the load L. Since the solenoid pilot valve 21 in the control line 20 is isolated from the main flow paths by the throttles 16, with the throttles 16 retaining contaminants or functioning as filters, the risk of malfunction in the solenoid pilot valve 21 is negligible. However, contaminants or metal chips could affect the proper functioning of the two elements E1, E2. However, since both series-connected elements E1, E2 each perform the same function, controlled by the common solenoid pilot valve 21, it is precluded that an uncontrolled load movement (ie, faster and farther than controlled) occurs due to a malfunction in an element E1 or E2, or the load L to be stopped is not properly stopped and held. The probability that both elements E1, E2 are subject to a malfunction at the same time is extremely low.

Funktion:Function:

In der Fig. 1 dargestellten Situation (Druckquelle P abgeschaltet) wird aus dem Lastdruck in der Ringkammer 10 des Elements E1 über die Drossel 16 Sperrdruck in der Sperrdruck-Steuerkammer 14 aufgebaut, der im Element E1 den Kolbenansatz 17 am Ventilsitz 13 in der Absperrstellung hält. Über den gemeinsamen Anschluss an die Steuerleitung 20 wird auch in der Sperrdruck-Steuerkammer 14 des stromabliegenden Elements E2 Sperrdruck aufgebaut, so dass auch das zweite Element E2 vorsichtshalber in der Absperrstellung ist. Sollte sich beispielsweise zwischen dem Stufenkolben 16 und dem Ventilsitz 13 eines Elements E1 oder E2 ein Metallspan festlegen, dann wird dennoch der Abströmweg 9 zum Reservoir R leckagefrei abgesperrt, da die Wahrscheinlichkeit, dass auch ein Metallspan den Stufenkolben des zweiten Elements behindern kann, vernachlässigbar ist. Würde sich eine Verschmutzung oder ein Metallspan in der Drossel 16 eines der Elemente E1, E2 festsetzen, so dass der Sperrdruck in der Sperrdruck-Steuerkammer 14 dieses Elements nicht ordnungsgemäß aufgebaut wird, dann wird der Sperrdruck vom jeweils anderen Element her über dessen durchgängige Drossel 16 zuverlässig aufgebaut. Wird, sobald das Magnetvorsteuerventil 21 in die gezeigte Absperrstellung geht, das Einnehmen der Absperrstellung bei einem der Elemente E1, E2 behindert, beispielsweise weil der Stufenkolben 12 klemmt, z. B. beim stromaufliegenden Element E1, dann nimmt das andere Element E2 die Absperrstellung zuverlässig ein, um den Abströmweg 9 zum Reservoir R zu blockieren, und auch umgekehrt.In the Fig. 1 illustrated situation (pressure source P is switched off) is constructed from the load pressure in the annular chamber 10 of the element E1 via the throttle 16 blocking pressure in the barrier pressure control chamber 14 which holds in the element E1 the piston extension 17 on the valve seat 13 in the shut-off position. About the common connection to the control line 20 blocking pressure is built up in the barrier pressure control chamber 14 of the downstream element E2, so that the second element E2 as a precaution in the shut-off position. Should, for example, a metal chip be defined between the stepped piston 16 and the valve seat 13 of an element E1 or E2, then the outflow path 9 to the reservoir R is shut off leak-free, since the probability that a metal chip can obstruct the stepped piston of the second element is negligible , If a contamination or a metal chip in the throttle 16 of one of the elements E1, E2 set, so that the barrier pressure in the barrier pressure control chamber 14 of this element is not built up properly, then the barrier pressure from the other element forth via its continuous throttle 16th built reliably. Is, as soon as the solenoid pilot valve 21 goes into the shut-off position shown, taking the shut-off impeded in one of the elements E1, E2, for example, because the stepped piston 12 jammed, z. As the upstream element E1, then the other element E2 takes the shut-off reliably to block the outflow 9 to the reservoir R, and vice versa.

Die beiden Elemente E1, E2 sind baulich einfache und kostengünstige 2/2-Wegeventile, die sehr zuverlässig arbeiten, und bei denen zu erwarten ist, dass selbst bei einer durch eine Verschmutzung oder durch einen Metallspan eintretenden Störung diese Störung nach mehreren Steuerzyklen wieder selbsttätig wieder ausgeschwemmt oder beseitigt wird, so dass sich die volle Redundanzfunktion für den Hubmodul M früher oder später wieder einstellt.The two elements E1, E2 are structurally simple and cost-effective 2/2-way valves, which work very reliable, and in which it is expected that even with an entering by a pollution or by a metal chip disturbance this disorder automatically after several control cycles again washed out or eliminated, so that the full redundancy function for the lifting module M sooner or later sets again.

Die Ausführungsform der Fig. 2 unterscheidet sich von der der Fig. 1 dadurch, dass die beiden Elemente E1, E2 baugleich sind, d. h. jeweils eine seitliche Lastdruck-Einspeisung 11, einen axialen Auslass durch den Ventilsitz 13, und den die Ringkammer 10 mit der Sperrdruck-Steuerkammer 14 verbindenden Bypass mit der Drossel 16 aufweisen, wobei die beiden in Reihe geschalteten Elemente E1, E2 auch gleich geschaltet sind, d. h. der axiale Auslass des ersten Elements E1 ist mit der seitlichen Lastdruckeinspeisung 11 des stromabliegenden Elements E2 verbunden, während der axiale Auslass des stromabliegenden Elements E2 über den Zweig 9c mit der Reservoirleitung 24 verbunden ist.The embodiment of the Fig. 2 is different from that of Fig. 1 in that the two elements E1, E2 are identical in construction, ie in each case have a lateral load pressure feed 11, an axial outlet through the valve seat 13, and the bypass connecting the annular chamber 10 with the barrier pressure control chamber 14 with the throttle 16, wherein the both the elements E1, E2 connected in series are also connected in the same way, ie the axial outlet of the first element E1 is connected to the side load pressure feed 11 of the downstream element E2, while the axial outlet of the downstream element E2 is connected to the reservoir line 24 via the branch 9c is.

Als zusätzliche Detailvariante enthält die Ausführungsform in Fig. 2 ein beispielsweise manuell betätigbares Absperrglied 28, das in einer Querverbindung zwischen einem Knoten 27 in der Steuerleitung 20 und der Steuerleitung 20 bzw. der Reservoirleitung 24 angeordnet ist, und dazu dient, unabhängig von einer Betätigung des Magnetvorsteuerventils 21 schlagartig einen großen Abströmquerschnitt zum Reservoir R freizumachen, um das in Fig. 1 gezeigte Schlauchbruchsicherungsventil 19 zu testen. Bei Öffnen des Absperrgliedes 28 werden beide Sperrdruck-Steuerkammern 14 der Elemente E1, E2 schlagartig und vollständig entlastet, sodass beide Elemente E1, E2 einen großquerschnittigen Hauptabströmweg zum Reservoir R freigeben, was einen momentanen starken Druckabfall in der Arbeitsleitung 4 hervorruft, auf den das Schlauchbruchsicherungsventil 19 so blockierend anspricht, dass der Lastdruck des Hebehydromotors Z zunächst weitestgehend vom Schlauchbruchsicherungsventil gehalten wird. Wenn nachfolgend wieder Systemdruck aufgebaut wird, löst sich auch das blockierende Schlauchbruchsicherungsventil 19, so dass die Bewegung des Hebehydromotors Z wieder über den Hubmodul M steuerbar ist. Die beiden Sperrdruck-Steuerkammern 14 der Elemente E1, E2 sind im Übrigen über einen Knoten 26 in der Steuerleitung 20 miteinander verbunden, sodass das Magnetvorsteuerventil 21 beide Elemente E1, E2 gemeinsam steuert.As an additional detail variant contains the embodiment in Fig. 2 an example, manually operable shut-off member 28 which is arranged in a cross-connection between a node 27 in the control line 20 and the control line 20 and the reservoir line 24, and serves, regardless of an actuation of the solenoid pilot valve 21 abruptly to clear a large outflow cross-section to the reservoir R. to do that in Fig. 1 Test shown hose rupture valve 19. When opening the shut-off member 28 both barrier pressure control chambers 14 of the elements E1, E2 abruptly and completely relieved so that both elements E1, E2 release a large cross-section Hauptabströmweg to the reservoir R, causing a momentary strong pressure drop in the working line 4, on which the hose rupture valve 19 so blocking responds that the load pressure of the Hebehydromotors Z is initially held as far as possible by the hose rupture valve. If system pressure is subsequently restored again, the blocking hose rupture-securing valve 19 also releases, so that the movement of the lifting-hydraulic motor Z can be controlled again via the lifting module M. The two barrier pressure control chambers 14 of the elements E1, E2 are incidentally via a node 26 in the control line 20 connected to each other, so that the solenoid pilot valve 21 controls both elements E1, E2 together.

Die Ausführungsform des Hubmoduls M in Fig. 3 unterscheidet sich von der von Fig. 1 dadurch, dass zumindest das stromaufliegende Element E1 der in Reihe geschalteten Elemente E1, E2 eine mechanische Begrenzung 25 für den maximalen Öffnungshub des Stufenkolbens 12 bei Entlastung der Steuerleitung 20 über das Magnetvorsteuerventil 21 aufweist. Diese mechanische Begrenzung 25 ist beispielsweise eine in die Sperrdruck-Steuerkammer 14 eingeschraubte Anschlagschraube, die es ermöglicht, den maximalen Öffnungshub einzustellen. Auf diese Weise arbeitet das stromaufliegende Element E1 als eine Senkbremse, die maximale Senkgeschwindigkeit des Hebehydromotors Z limitiert, z.B. auf max. 0,6 m/s unter Last.The embodiment of the lifting module M in Fig. 3 is different from that of Fig. 1 in that at least the upstream element E1 of the elements E1, E2 connected in series has a mechanical limit 25 for the maximum opening stroke of the stepped piston 12 when the control line 20 is relieved via the magnetic pilot valve 21. This mechanical limit 25 is for example a screwed into the locking pressure control chamber 14 stop screw, which makes it possible to adjust the maximum opening stroke. In this way, the upstream element E1 operates as a lowering brake, the maximum lowering speed of the Hebehydromotors Z limited, for example, to max. 0.6 m / s under load.

Die Ausführungsform des Hubmoduls in Fig. 4 unterscheidet sich von der der Fig. 1 dadurch, dass das Magnetvorsteuerventil 21 als Proportionaldruckregelventil 29 ausgebildet ist, das einen Proportionalmagneten 30 und eine innenliegende Drossel 31 enthält. Dies ermöglicht die proportionale elektrische Ansteuerung der Senkenfunktion.The embodiment of the lifting module in Fig. 4 is different from that of Fig. 1 in that the solenoid pilot valve 21 is designed as a proportional pressure control valve 29 which contains a proportional magnet 30 and an internal throttle 31. This allows the proportional electrical control of the sink function.

Die Ausführungsform des Hubmoduls M in Fig. 5 unterscheidet sich von der in Fig. 4 dadurch, dass das als Proportionaldruckregelventil ausgebildete Magnetvorsteuerventil 21 mit einer Druckwaage 31 zusammenwirkt, die in der Reservoirleitung 24 angeordnet ist. Die Druckwaage 31 wird beispielsweise durch an einem Knoten 26 des Abströmwegs 9, 9c abgegriffenen Steuerdruck über eine Drossel 35 in Aufsteuerrichtung und parallel zu einer Feder 32 beaufschlagt, hingegen in Schließsteuerrichtung über eine Steuerleitung 34, die einen Steuerdruck aus dem Abströmweg 9 stromauf beider Elemente E1, E2 abgreift. Dadurch wird eine 2-Wege-Stromregelfunktion erreicht, die bei der proportionalen Ansteuerung der Senkenfunktion auch eine Lastdruckunabhängigkeit erzeugt. Alternativ könnte die Druckwaage 31 in Aufsteuerrichtung durch einen Vorsteuerdruck einer Steuerleitung 33' beaufschlagt werden, der zwischen den beiden Elementen E1, E2 abgegriffen wird (hierbei entfällt der Knoten 36 und wird die Steuerleitung 33' mit der Steuerleitung 33 verbunden). Der weitere Aufbau des Hubmoduls in Fig. 5 entspricht dem von Fig. 1 mit den baulich verschieden und ungleich verschalteten Elementen E1, E2 im Abströmweg 9. Die Druckwaage 31 könnte auch in den Ausführungsformen der Fig. 1 bis 3 vorgesehen werden.The embodiment of the lifting module M in Fig. 5 is different from the one in Fig. 4 in that the solenoid pilot control valve 21 designed as a proportional pressure control valve cooperates with a pressure compensator 31 which is arranged in the reservoir conduit 24. The pressure compensator 31 is acted upon, for example, by a control valve 35 tapped at a node 26 of the Abströmwegs 9, 9c via a throttle 35 in the up direction and parallel to a spring 32, however, in Schließsteuerrichtung via a control line 34, the control pressure from the Abströmweg 9 upstream of both elements E1 , E2 picks up. As a result, a 2-way flow control function is achieved, which also generates a load pressure independence in the proportional control of the sink function. Alternatively, the pressure compensator 31 could be acted upon in the opening direction by a pilot control pressure of a control line 33 'tapped between the two elements E1, E2 (in this case the node 36 is omitted and the control line 33' is connected to the control line 33). The further construction of the lifting module in Fig. 5 corresponds to that of Fig. 1 with the structurally different and unequal interconnected elements E1, E2 in Abströmweg 9. The pressure compensator 31 could also in the embodiments of Fig. 1 to 3 be provided.

Das jeweilige Hauptstufen-Element E1, E2 ist (nicht gezeigt) baulich einfach beispielsweise dadurch realisierbar, dass der Stufenkolben 12 in einer Stufenbohrung in einem Blockgehäuse abgedichtet verschieblich geführt wird, wobei die Stufenbohrung den zwischen der Ringkammer 10 und dem axialen Auslass angeordneten Ventilsitz 13 enthält, und die Sperrdruck-Steuerkammer 14 durch eine in das freiliegende Ende der Stufenbohrung eingeschraubte Schlussschraube verschlossen wird, an der sich die Feder 15 abstützt. Der Bypasskanal im Stufenkolben 12 kann dann aus einzelnen Bohrungsabschnitten zusammengesetzt sein und die Drossel 16 bilden oder zwischen verschiedenen Bohrungsabschnitten einen Drosselabschnitt entsprechend der Drossel 16 enthalten. Gegebenenfalls ist im Bypasskanal auch ein Rückschlagventil enthalten. Abhängig davon, ob in dem Stufenkolben der Bypasskanal die Ringkammer mit der Sperrdruck-Steuerkammer verbindet, oder den Ventilsitz 13 mit der Sperrdruck-Steuerkammer, mündet der Bypasskanal seitlich im Kolbenansatz 17 oder axial in der Stirnseite des Kolbenansatzes 17.The respective main stage element E1, E2 is structurally (not shown), for example realized by the fact that the stepped piston 12 in a stepped bore in a block housing is guided displaceably guided in a sealed manner, wherein the stepped bore contains the arranged between the annular chamber 10 and the axial outlet valve seat 13, and the barrier pressure control chamber 14 is closed by a screwed into the exposed end of the stepped bore final screw on which the spring 15 is supported. The bypass channel in the stepped piston 12 can then be composed of individual bore sections and form the throttle 16 or contain a throttle section corresponding to the throttle 16 between different bore sections. Optionally, a check valve is included in the bypass channel. Depending on whether in the stepped piston of the bypass channel connects the annular chamber with the barrier pressure control chamber, or the valve seat 13 with the barrier pressure control chamber, the bypass channel opens laterally in the piston extension 17 or axially in the end face of the piston extension 17th

Claims (15)

  1. Hoist module (M), in particular for industrial trucks like forklift trucks, lifting bridge vehicles, mobile hydraulic appliances, working vehicles or the like, comprising a lifting control section (1) and a lowering control section (2) both connected with at least one single acting or double acting hoisting hydromotor (Z), wherein a discharge flow path (9) for pressure medium under load pressure and leading to a reservoir (R) is arranged in the lowering control section (2) and a hydraulic element in the discharge flow path (9) for controlling the hydromotor lowering speed between zero and a predetermined value, characterised in that two main stage elements (E1, E2) controlled to open under load pressure are switched in series in the discharge flow path (9), each main stage element (E1, E2) being actuable in a direction towards a blocking position by a blocking pressure derived via a respective aperture (16) from the load pressure, and that both main stage elements (E1, E2) are controlled in parallel and commonly by a solenoid pilot control valve (21) arranged in a blocking pressure pilot line (20) which is shielded by the apertures (16) versus the hoist hydromotor (Z), the load pressure and the lifting control section (1).
  2. Hoist module according to claim 1, characterised in that both main stage elements (E1, E2) are spring loaded parallel to the blocking pressure actuation and in a direction towards a leakage-free blocking position.
  3. Hoist module according to claim 1, characterised in that both main stage elements (E1, E2) are equally structured and are equally switched in the series.
  4. Hoist module according to claim 3, characterised in that both equally structured main stage elements (E1, E2) respectively comprise a sideward pressure supply port (11) leading to a ring chamber (10), and axial outlet port through a valve seat (13), a blocking pressure control chamber (14) at a side of a stepped piston (12) remote from the valve seat (13) the stepped piston (12) being displaceably accommodated in the ring chamber (10), and the respective aperture (16) arranged between the ring chamber (12) and the blocking pressure control chamber (14), and that the sideward pressure inlet port (11) of the main stage element (E2) which is positioned downstream in the discharge flow path (9) is connected with the axial outlet port of the valve seat (13) of the upstream main stage element (E1).
  5. Hoist module according to claim 1, characterised in that both main stage elements (E1, E2) are structurally different but are equally switched in the series.
  6. Hoist module according to claim 5, characterised in that among the differently structured main stage elements (E1, E2) one main stage element (E1) comprises a sideward pressure inlet port (11) leading to a ring chamber (10), and an axial outlet port through a valve seat (13), a blocking pressure control chamber (14) at a side of a stepped piston (12) remote from the valve seat (13), the stepped piston (12) being displaceably accommodated in the ring chamber (10), and the respective aperture (16) which is arranged between the ring chamber (10) and the blocking pressure control chamber (14), and that the other main stage element (E2) comprises an axial pressure inlet port through the valve seat (13), a sideward outlet port (11') leading outwardly from the ring chamber (10), and the respective aperture (16) arranged between the valve seat (13) and the blocking pressure control chamber (14) at a side of the stepped piston (12) remote from the valve seat (13), the stepped piston (12) being displaceably accommodated in the ring chamber (10), and that the sideward or the axial pressure inlet port (11) of the main stage element (E2) positioned downstream in the series is connected with the axial or sideward outlet port of the upstream main stage element (E1).
  7. Hoist module according to claim 4 or 6, characterised in that the aperture (16) is arranged in the stepped piston (12) in a bypass channel arranged within the stepped piston (12).
  8. Hoist module according to claim 4 or 6m, characterised in that the aperture (16) is arranged in a bypass channel of a housing of the main stage element (E1, E2), the bypass channel interconnecting the ring chamber (10) respectively the valve seat (13) and the blocking pressure control chamber (14)
  9. Hoist module according to claim 4 or 6, characterised in that pressure receiving areas of the stepped piston (12) in the ring chamber (10) and in the blocking pressure control chamber (14) are at least substantially equally sized and are larger than the pressure receiving area of the stepped piston (12) in the valve seat (13).
  10. Hoist module according to at least one of the preceding claims, characterised in that at least one of both main stage elements (E1, E2) comprises a mechanical limit (25) of the maximum opening stroke of the stepped piston (12) in lifting direction of the stepped piston (12) from the valve seat (13), preferably an abutment screw arranged in the blocking pressure control chamber (14).
  11. Hoist module according to at least one of the preceding claims, characterised in that a testing exit port (28) is arranged in the blocking pressure discharge line (20) between both main stage elements (E1, E2) and the solenoid pilot control valve (21), which testing exit port can be opened selectively.
  12. Hoist module according to claim 1, characterised in that the solenoid pilot control valve (21) is a 2/2-way solenoid seat valve which is held in current-free condition by a spring (22) in a leakage-free blocking position.
  13. Hoist module according to claim 12, characterised in that the 2/2-way solenoid seat valve is a proportional pressure regulating valve (29) comprising a proportional solenoid (30).
  14. Hoist module according to at least one of the preceding claims, characterised in that a pressure compensator (31) is arranged in the discharge flow path (9) downstream of both serially switched main stage elements (E1, E2), the pressure compensator (31) being actuated in opening direction by a spring (32) and by a pilot pressure derived from the discharge flow path (9, 9b, 9c) either between both main stage elements (E1, E2) or downstream of both main stage elements (E1, E2), and being actuated in closing direction by a pilot pressure derived from the discharge flow path (9) upstream of both main stage elements (E1, E2).
  15. Hoist module according to at least one of the preceding claims, characterised in that the lifting hydromotor (Z) is protected by a hose breakage safety valve (19).
EP09005013A 2009-04-03 2009-04-03 Lifting module Not-in-force EP2236452B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09005013A EP2236452B1 (en) 2009-04-03 2009-04-03 Lifting module
AT09005013T ATE521568T1 (en) 2009-04-03 2009-04-03 HUB MODULE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09005013A EP2236452B1 (en) 2009-04-03 2009-04-03 Lifting module

Publications (2)

Publication Number Publication Date
EP2236452A1 EP2236452A1 (en) 2010-10-06
EP2236452B1 true EP2236452B1 (en) 2011-08-24

Family

ID=40974400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09005013A Not-in-force EP2236452B1 (en) 2009-04-03 2009-04-03 Lifting module

Country Status (2)

Country Link
EP (1) EP2236452B1 (en)
AT (1) ATE521568T1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123003B3 (en) * 2016-11-29 2017-12-21 Hawe Hydraulik Se Main control section for high pressure hydraulic systems and method of operating the same
DE102017208873B3 (en) 2017-05-24 2018-06-14 Hawe Hydraulik Se Lifting module and hydraulically operated equipment with one lifting module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037678B1 (en) * 2014-12-23 2017-05-24 HAWE Hydraulik SE Lifting module
CN114704508B (en) * 2022-04-13 2023-01-24 浙江大学 Multi-margin hydraulic system for electro-hydraulic servo six-degree-of-freedom parallel robot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239321C2 (en) 1992-11-23 1995-11-09 Heilmeier & Weinlein Electro-hydraulic lifting module
JP3919399B2 (en) 1998-11-25 2007-05-23 カヤバ工業株式会社 Hydraulic control circuit
DE20208577U1 (en) 2002-06-03 2003-12-11 Hawe Hydraulik Gmbh & Co. Kg Electro-hydraulic lift control device for industrial trucks
DE202004014029U1 (en) 2004-09-08 2006-01-12 Hawe Hydraulik Gmbh & Co. Kg Electrohydraulic control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123003B3 (en) * 2016-11-29 2017-12-21 Hawe Hydraulik Se Main control section for high pressure hydraulic systems and method of operating the same
DE102017208873B3 (en) 2017-05-24 2018-06-14 Hawe Hydraulik Se Lifting module and hydraulically operated equipment with one lifting module

Also Published As

Publication number Publication date
ATE521568T1 (en) 2011-09-15
EP2236452A1 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
EP1369598B1 (en) Electro-hydraulic lifting control device for industrial use vehicles
DE102012207880B4 (en) Hydraulic drive device for a work machine
EP1450048B1 (en) Valve arrangement
EP2638297B1 (en) Hydraulic or pneumatic drive for actuating a fitting comprising a control valve or selector valve
DE102011104530A1 (en) Hydraulic actuating arrangement
DE102013222954A1 (en) Hydraulic drive device for a work machine
EP0016719B1 (en) Hydraulic motor control device
EP2236452B1 (en) Lifting module
DE10202607C1 (en) Control device, in particular for use in hydraulically operating lifting devices
EP1635070B1 (en) Electro-hydraulic control device
EP1875084A1 (en) Directional control valve and control system provided therewith
EP3037678B1 (en) Lifting module
EP0823559B1 (en) Hydraulic control device
EP2719903A2 (en) Valve assembly
EP3436705B1 (en) Control device
EP2891805A2 (en) Control assembly and a control valve for such a control assembly
EP1616997B1 (en) Hydraulic control device
EP0893606B1 (en) Hydraulic control device for a tipper lorry
DE102019207539A1 (en) Blocking and safety block
DE102017208873B3 (en) Lifting module and hydraulically operated equipment with one lifting module
EP3244072A1 (en) Hydrostatic valve assembly and hydrostatic lifting device with the valve assembly
WO1999024720A1 (en) Hydraulic circuit
EP3133043A1 (en) Lifting module
WO2003074883A1 (en) Valve arrangement
EP2985473A1 (en) Lifting module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ASCHERL, MARTIN

Inventor name: MACIT, RECEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001155

Country of ref document: DE

Effective date: 20111020

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110824

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001155

Country of ref document: DE

Effective date: 20120525

BERE Be: lapsed

Owner name: HAWE HYDRAULIK SE

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140417

Year of fee payment: 6

Ref country code: FR

Payment date: 20140424

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 521568

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140403

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160429

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009001155

Country of ref document: DE

Representative=s name: GROSSE, SCHUMACHER, KNAUER, VON HIRSCHHAUSEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009001155

Country of ref document: DE

Representative=s name: GROSSE, SCHUMACHER, KNAUER, VON HIRSCHHAUSEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009001155

Country of ref document: DE

Owner name: HAWE HYDRAULIK SE, DE

Free format text: FORMER OWNER: HAWE HYDRAULIK SE, 81673 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180424

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001155

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523