EP2285476B1 - Rotor/stator system and process for producing dispersions - Google Patents
Rotor/stator system and process for producing dispersions Download PDFInfo
- Publication number
- EP2285476B1 EP2285476B1 EP09741843.8A EP09741843A EP2285476B1 EP 2285476 B1 EP2285476 B1 EP 2285476B1 EP 09741843 A EP09741843 A EP 09741843A EP 2285476 B1 EP2285476 B1 EP 2285476B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stator
- rotor
- dispersion
- premixing chamber
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000006185 dispersion Substances 0.000 title claims description 157
- 238000000034 method Methods 0.000 title claims description 28
- 230000008569 process Effects 0.000 title claims description 20
- 230000007704 transition Effects 0.000 claims description 123
- 239000000203 mixture Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000010924 continuous production Methods 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 claims 1
- 239000012071 phase Substances 0.000 description 103
- 239000012530 fluid Substances 0.000 description 44
- 239000000839 emulsion Substances 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000002156 mixing Methods 0.000 description 18
- 239000000126 substance Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000013543 active substance Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003995 emulsifying agent Substances 0.000 description 8
- 239000008384 inner phase Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 239000008385 outer phase Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000004581 coalescence Methods 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 239000008268 mayonnaise Substances 0.000 description 3
- 235000010746 mayonnaise Nutrition 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 235000013550 pizza Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/45—Mixing liquids with liquids; Emulsifying using flow mixing
- B01F23/451—Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/451—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by means for moving the materials to be mixed or the mixture
- B01F25/4511—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by means for moving the materials to be mixed or the mixture with a rotor surrounded by a stator provided with orifices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/452—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
- B01F25/4521—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/27—Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
- B01F27/271—Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
- B01F27/2711—Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with intermeshing elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/712—Feed mechanisms for feeding fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/7176—Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/71805—Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/912—Radial flow
- B01F2025/9121—Radial flow from the center to the circumference, i.e. centrifugal flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
Definitions
- the invention relates to a rotor-stator system and to a method for producing and / or treating dispersions.
- the invention relates to the preparation and / or treatment of dispersions in general and of emulsions in particular.
- dispersions are understood to mean a multiphase system which comprises at least components which are substantially insoluble in one another.
- dispersions comprise emulsions in which a liquid in the form of drops is distributed in another liquid.
- the phase which forms the drops is called a disperse phase or inner phase.
- the phase in which the drops are distributed is referred to as continuous phase or outer phase.
- Dispersions further include suspensions in which solid particles are dispersed in a liquid continuous phase.
- material systems which have both solid and liquid phases in dispersed form also belong to dispersions.
- a solid could be dispersed in a first liquid, which suspension forms the disperse phase of an emulsion.
- solids can be distributed.
- a mixture can be diluted by adding both one and the other phase.
- the disperse phase is not accessible from the outside;
- An emulsion can only be diluted by adding the continuous phase.
- a mixture may occur as an intermediate.
- ком ⁇ онент refers in particular to a phase of a dispersion. But a component can also be part of a phase.
- a phase can be formed from a plurality of, in particular, soluble components.
- Industrially dispersions in particular emulsions by various Processes made which process is selected depends on the nature of the dispersion and on the fineness of the disperse phase with which a stable dispersion over the required period of time can be obtained.
- a stable dispersion is understood as meaning a substance system whose article size distribution of the disperse phase and / or its flow behavior, in particular its viscosity, does not substantially change over a given period of time.
- containers with an agitator for example a doctor blade stirrer or a stirrer turbine, are frequently used for relatively coarse dispersions.
- an agitator for example a doctor blade stirrer or a stirrer turbine
- two-stage processes are used, in which a pre-mix is first prepared in a vessel with stirrer, followed by a passage through a rotor-stator dispersing machine. This can be for example a Koloidmühle.
- Particularly fine dispersions can be achieved by dispersing in a high-pressure homogenizer as an additional process step.
- a dispersion having a very broad particle size distribution As an example, consider an emulsion having a droplet size distribution between 30 and 500 microns. With a conventional rotor-stator system (see. FIG. 11 , see description below) are the drops of the pre-mix, which in the case of an emulsion is also referred to as crude emulsion is crushed until an average droplet size is reached, the specific energy input of the rotor-stator system (Energy density) corresponds.
- the emulsion is highly exposed to coalescence, since small volumes of small droplets are formed on a narrow volume, but they can not be removed and stabilized quickly enough to coalesce again. Even a related streaking can be observed.
- the coalescence and streaking increase as the addition volume of the inner phase increases. In this way, small amounts of the inner phase can be introduced into the outer phase. Significant problems, however, exist when larger amounts of internal phase have to be introduced.
- the difficulties are mainly due to the fact that it is not possible to produce a homogeneous crude emulsion or a homogeneous pre-mix with a definable particle size distribution of the outer and inner phase before the phases reach the zones of high shear forces of the rotor-stator system.
- WO 01/56687 ( PCT / EP00 / 117700 ) describes a rotor-stator system whose rotor has a premixing chamber.
- the premix chamber opens into several small chambers located on the rotor circumference. All chambers act together as a premixing chamber in the rotor, which is located in the dispersion chamber and rotates during operation of the rotor-stator system.
- the amount of internal phase which can be introduced into the external phase is very limited.
- U.S. 5,590,961 discloses a rotor-stator system according to the preamble of claim 1.
- the invention is therefore based on the object to provide a structurally simple way to be able to produce stable dispersions in a rotor-stator system even with a single pass. It is a further object of the invention to provide a way to react flexibly to changing requirements with regard to the composition of the dispersion to be produced with a rotor-stator system. In addition, it is an object of the invention to provide a rotor-stator system, which a variety possible generate energetic vortex in turbulent flow, to crush particles of the disperse phase of a dispersion efficiently.
- the invention provides a rotor-stator system for preparing and / or treating dispersions according to claim 1.
- the rotor-stator system has at least two premixing chambers, each of which has an inlet for feeding a component of the dispersion from outside the stator into the relevant premixing chamber.
- a component of the dispersion from outside the stator into the relevant premixing chamber.
- another component can be supplied via each premixing chamber.
- a large amount of a component may be supplied in divided form over several premix chambers.
- the Increased efficiency of the mixing process compared to a supply of the components directly into the dispersion.
- the premixing chamber bulges into the stator from the transition to the dispersion region.
- the domed shape allows easy and reliable cleaning of the premixing chamber.
- the formation of dead spaces is avoided, which can have a negative effect on the mixing effect in the premixing chamber.
- the premixing chamber at the transition to the dispersing region may have the form of a strip-shaped section of a circle segment, wherein the section has, in particular, a circumferentially continuous curve. Also by this design corners are avoided, which accommodates, among other things, the easy cleanability.
- the invention also offers the advantage of being able to adapt the flow guidance of the dispersion in the dispersing region to the respective process requirements with the position of the premixing chambers.
- the transition of the premixing chamber to the dispersing at a radial distance from the longitudinal axis of the stator, which corresponds to the axis of rotation of the rotor corresponding to the stator is mounted, that the premixing above a dispersing tool, in particular a ring gear of the Rotor is positioned when the stator is combined with the corresponding rotor to the rotor-stator system.
- the Vormischschsch can thus be mounted over the sprocket of a rotor with a sprocket.
- a premixing chamber may be mounted over the inner sprocket, over the outer sprocket, or over multiple sprockets, in a multi-sprocket rotor. Accordingly, the transition of the premixing chamber to the dispersing region is positioned at a radial distance from the longitudinal axis of the stator corresponding to the axis of rotation of the rotor corresponding to the stator such that the premixing chamber is positioned at least above the internal dispersing tool, in particular the inner sprocket of a multi-dispersing rotor is when the stator is combined with the corresponding rotor to the rotor-stator system.
- the invention further provides a rotor-stator system having Vormischsch which are positioned at different radial distances to the longitudinal axis of the stator.
- a stator is provided for use with a rotor having at least one inner and one outer ring gear, wherein at least one premixing chamber is positioned over the inner ring gear of the rotor and at least one further premixing chamber is positioned over the outer ring gear of the rotor, when the stator is used together with the rotor.
- premixing chambers are provided both above the inner and outer sprockets of the rotor, in a single pass through the rotor-stator system, relatively high viscosity media can be externally added and media of relatively low viscosity can be externally added. This offers advantages, for example, when dispersing low-viscosity media such as perfume or preservatives on the one hand and during dispersion of higher viscosity fluids and / or larger resulting drop sizes, on the other hand.
- the fluids added via the premixing chambers closer to the center axis are generally dispersed to smaller droplets with the same parameters, in particular with the same flow behavior of the fluids, than the fluids added via further outermost premixing chambers, since the path through the dispersing chamber is for them continues. As a result, the internally introduced fluids are exposed longer to the dispersing effect of the rotor-stator system.
- a transition piece is arranged according to the invention between the premixing chamber and the dispersing region.
- fluid is injected from the premixing chamber into the dispersing chamber and ejected from the dispersing chamber into the premixing chamber.
- the transition piece is also referred to as an injector or ejector.
- the transition piece may partially or completely fill the transition between the premixing chamber and the dispersing region.
- the transition piece in one embodiment of the invention has the form of a strip-shaped section of a circular segment.
- the transition piece can then have a curved peripheral line so that it is exactly adapted to the shape of the premixing chamber at its transition to the dispersion chamber.
- the transition piece is designed according to the invention in the manner of a perforated plate and having one or more circular and / or polygonal openings and / or a slot or more slots as holes , Preferably, a plurality of slots each extending substantially transverse to the main extension direction of the transition piece.
- the flow conditions in the vicinity of the transition piece can also be influenced by the direction of orientation of the holes in the transition piece.
- the invention provides in a further embodiment that the holes each extend through the transition piece along a hole axis which forms an angle with the perpendicular to the transition piece, in particular an angle in the range between about 10 ° and about 80 °, preferably in the range between about 30 ° and about 60 ° and most preferably an angle of about 45 °.
- the holes through the transition piece may have a tapered shape from one to the other side of the transition piece to enhance the injector or ejector action.
- the invention provides that the holes are delimited by a lateral surface having a first partial region and at least one further partial region, wherein at least one partial region runs along a sectional surface which encloses an angle with the perpendicular to the transition piece, in particular an angle in the region between about 10 ° and about 80 °, preferably in the range between about 30 ° and about 60 ° and most preferably an angle of about 45 °.
- stator in two parts.
- the stator then comprises a stator head and a stator body, wherein the at least one premixing chamber is arranged in the stator head and the stator body comprises a dispersing tool of the stator, in particular at least one ring gear.
- a stator for retrofitting existing rotor-stator systems can be created.
- Such a stator comprises a plurality of stator heads, which differ in number and / or geometry of the premixing chambers and can be mounted on a stator fuselage to form a stator with exchangeable stator head.
- premixing chamber is formed as a cavity in the stator head such that a transition piece can be mounted as a conclusion of the cavity on the stator head.
- the apparatus component which contains the premixing chamber includes is in the assembled state an integral part of the housing.
- the invention further relates to a process for preparing and / or treating dispersions under Use of a rotor-stator system according to claim 7.
- the throughput of the components and the rotational speed of the rotor can be adjusted and / or regulated and / or controlled, that the Residence time in a pre-mixing chamber ranges between about 0.005 seconds and about 0.02 seconds.
- the formation of the pre-mix within this short period of time and its further transport into the dispersion space counteract the coalescence of the disperse phase fluid elements formed in the premixing chamber.
- a stator is used with at least one further premixing chamber and in step a) at least one further phase of the dispersion is provided in at least one further feed tank, which communicates with the further premixing chamber.
- the further phase of the dispersion is fed into the further premixing chamber of the rotor-stator system, so that during operation of the rotor-stator system, the first phase passes through the dispersing space and optionally through the transition piece in the premixing chambers and in contacting the respective premixing chamber with the second or further phase, wherein a mixture and / or a dispersion of the phases is formed, and wherein the second or at least one further phase and / or the mixture and / or the dispersion formed in a premixing chamber from at least two phases is conveyed through the respective premixing chamber and optionally through the respective transition piece in the dispersion.
- premix chambers By metering in via a plurality of spatially separate premix chambers, a parallel operation of the premix chambers becomes possible.
- the individual components can each be separately subjected to a premix before they are fed to the dispersion.
- the equalization of the mixing process of all components of the dispersion by dividing the admixing of the Components via premix chambers improve the mixing process according to the invention over known processes.
- steps b), c) and d) are carried out simultaneously. So the process can be operated continuously.
- the process according to the invention offers the advantage of supplying the disperse phase as first in step b) Phase and supplying the continuous phase or a component of the continuous phase of the dispersion as fed in step c) second phase and undergoing a phase inversion in the preparation of the dispersion by the dispersion on the one hand due to the mixing action and the crushing effect of the rotor-stator system and on the other in addition to be able to produce particularly homogeneous dispersions by the rearrangement of the fluid elements in the inversion of the phases, even if the disperse phase fraction is high.
- these dispersions Compared to dispersions prepared without phase inversion, these dispersions have a narrower particle size distribution. These advantages are particularly valuable in the preparation of dispersions with a high disperse phase content, since there due to the high density of particles, especially drops (in emulsions) of the disperse phase, the risk of coalescence is large. Coalescence destroys the mixture or comminution of the disperse phase.
- the phase inversion can also be used in dispersions with a lower disperse phase fraction.
- FIG. 1 shows an overall view of a dispersing machine with a rotor-stator system according to the invention.
- a first phase of a dispersion to be prepared can be submitted. Through the inlet 8, this phase can get into the dispersion of the rotor-stator system, which of the rotor 4 and the stator 1 is formed. Through feeds 25, a further phase of the dispersion in Vormischhuntn 2, which are located in the head 11 of the stator, are supplied.
- a rotor-stator system with two premix chambers is shown.
- half of the second phase to be supplied in total can be introduced either into each of the two premixing chambers 2, or different components can be introduced into the dispersion to be prepared simultaneously via a respective inlet 25 and a premixing chamber 2.
- the rotor 4 can be driven by a motor 116 via the drive shaft 115.
- the teeth of the rotor 4 then rotate adjacent to the teeth of the stator and under the transition between the premixing chambers 2 and the dispersing space of the rotor-stator system.
- the dispersion is exposed to shear stresses in the dispersing chamber as well as in the premixing chambers and at the transition between the premixing chambers and the dispersing chamber. Furthermore, at least partially turbulent flow conditions are generated.
- the disperse phase of the dispersion is comminuted.
- the dispersing space is surrounded on the outside by an annular channel 112, which is delimited by the housing 113 of the dispersing machine. From the annular channel 112, the dispersion can be withdrawn through an outlet 9 from the dispersion.
- Gaskets 117 and 118 designed as a mechanical seal, that is as a rotating mechanical seal, or as a static seal, that is, for example, as an O-ring can separate the dispersion from the other driven or moving components of the dispersing machine.
- FIG. 2 is a view from below from the dispersing seen in a premixing chamber 2 to see.
- the premixing chamber 2 is formed as a cavity in the interior of the stator head 11.
- the premixing chamber 2 has a curved circumferential line 28.
- the premixing chamber 2 is formed curved into the interior of the stator head 11. That is, the shape of the premixing chamber 2 is designed such that substantially no corners and edges are present. This allows a particularly simple and reliable cleaning of the premixing chamber.
- the inlet 25 can be seen, through which a second phase can be fed into the premixing chamber.
- the first phase may enter through the premixing chamber through the transition of the premixing chamber to the dispersing space (not shown) delimited by the circumferential line 28.
- the transition between premixing chamber 2 and dispersing space of the rotor-stator system is in the in FIG. 2 shown representation no transition piece mounted.
- transition pieces which can be installed between the premixing chamber and the dispersion.
- such transition pieces are welded as a closure of the premixing chamber towards the dispersion in the stator head.
- the geometry of such transition pieces can be specifically selected in terms of width, shape and position relative to the rotor teeth in order to enable an optimum dispersion process.
- FIG. 3 is a transition piece with slot-shaped holes shown.
- ⁇ 6 is the angle by which the front surface of a rotor tooth lying in the direction of rotation is inclined backwards relative to the radial (cf. FIG. 12 ).
- An arrangement of slots as in FIG. 3 shown substantially parallel to the front of a rotor tooth ensures a good penetration depth of the injected through the transition piece in the premixing fluid from the dispersion. Compared with other arrangements (see FIG. 4 ) are achieved in the premixing while flow conditions with relatively little turbulence.
- This in FIG. 4 illustrated transition piece has slot-shaped openings 31, which compared to the main extension direction 32 of the transition piece 3 compared with the embodiment in FIG. 3 are inclined in the other direction.
- the slots 31 also extend inclined to the front side 53 of the rotor tooth 5, which is inclined by the angle ⁇ 6 relative to the radial. This arrangement brings a good penetration depth of the dispersion chamber from the mixing chamber 3 into the premixing chamber 2 and from the premixing chamber into the dispersion chamber ejected fluid.
- the number, dimensions and shape of the openings 31 can be selected flexibly depending on the dispersing task. With differently shaped transition pieces then a stator head according to the invention can be easily adapted to different dispersing tasks. For example, the width of the webs 39 between the slots 31 in the similar range as the width of the slots 31 measured in the main extension direction 32 of the transition piece 3 can be selected.
- FIG. 5 is a stator head 11, as seen from the side of the dispersing space of the rotor-stator system shown.
- the stator head 11 has a premixing chamber 2.
- the premixing chamber 2 is bounded by a transition piece 3 at its transition to the dispersion space.
- the transition piece completely fills the opening of the premixing chamber 2 towards the dispersion space.
- the outer contour of the transition piece 3 substantially coincides with the curved peripheral line 28 of the transition of the premixing chamber 2 to the dispersion chamber.
- FIG. 5 embodiment shown is not identical to in FIG. 1 illustrated variant of the invention, because there is shown an embodiment with two Vormischschsch.
- the premix chambers can be defined in number, geometry of the injectors / ejectors, their size and their location according to the process requirements. For example, for a dispersing machine having a nominal power of 30 kW, four premix chambers may be placed above the inner rotor rim at a volume for a premixing chamber of about 24 cm 3 .
- the invention thus makes it possible to make an adaptation according to the respective dispersing task on the product by means of the particles placed outside the dispersing space and without moving parts, that is to say statically acting premixing chambers.
- several components can be processed simultaneously but spatially separated.
- several premix chambers can be installed above each rotor ring via a replaceable stator head.
- the extent of the shearing and / or stretching forces which are to act on the respective raw material can be varied. If very large quantities of raw materials are to be introduced, the same raw material can be added in smaller single-volume streams via several premixing chambers.
- the raw materials or components of the dispersion are introduced through the premixing chambers via pumps.
- corresponding lines are created. Through these lines can from corresponding storage containers 102 (see FIG. 1 ) are introduced, for example via metering pumps, gear pumps or similar conveyors, the components of the dispersion in the premixing chambers.
- the proportion of the phase or phases which are fed to the dispersion chamber via the premixing chambers depends on the setting of the pumps used and can usually be preselected via a frequency converter, for example in combination with a flow meter.
- the size of the premixing chambers themselves and thus the contact volume between the phases, which in the Premixing can be brought into contact with each other, can be varied to adapt the geometry of the stator head to different dispersing tasks.
- the number, location and size of the premixing chambers and the injectors / ejectors and their arrangement can be adapted quickly to the respective process requirements.
- the number of premixing chambers is chosen depending on the number of raw materials or components which are to be introduced simultaneously or with a time offset.
- the size of the premixing chambers and / or the geometry of the holes in the transition piece can be chosen in accordance with the particle size distribution which is to be achieved by the treatment in the premixing chamber and when passing through the transition piece.
- the domed design of the premix chamber (cf. FIG. 2 ) allows on the one hand a very good mixing of the phases and on the other hand an easy cleaning of the premixing chamber. This is achieved by dispensing with sharp corners and edges to which product could adhere or which could lead to the formation of dead spaces. As a result, the substantially complete drainage of the rinse water is facilitated.
- the design of the transition pieces can additionally influence the flow conditions which occur during operation of the rotor-stator system.
- FIG. 6 are shown for the transition pieces various embodiments.
- FIG. 6 a is shown a plan view of a transition piece, in which, for example, two different geometries for the formation of the inlet / outlet ports 31 is shown.
- the geometry A10 corresponds to that in FIG. 4 shown embodiment of the transition piece.
- the geometry B10 corresponds to that in FIG. 3 illustrated geometry of the transition piece.
- FIG. 6b different channel shapes are shown for the holes in transition pieces.
- A11 is currently showing through holes. This form is in the in the Figures 3 and 4 realized transition pieces realized.
- the penetration depth (penetration depth) of fluid from the dispersion chamber into the premixing chamber is relatively large with this geometry A11.
- the holes 31 in the transition piece 3 are bounded by a lateral surface 35.
- the holes are slanted through the transition piece drilled.
- the hole axis 33 is inclined relative to the perpendicular to the transition piece. The inclination is in the range up to about 45 °.
- the lateral surface of the holes has different regions 36, 37.
- a first subregion of the lateral surface 36 extends inclined relative to the perpendicular to the transition piece 3.
- a second region 37 of the lateral surface extends parallel to the perpendicular to the transition piece 3.
- geometries B11 and C11 Due to the hole axis inclined with respect to the perpendicular to the transition piece, geometries B11 and C11 have a lower penetration depth. However, this ensures an increased turbulence of the fluid in the vicinity of the transition piece.
- FIG. 7 is a section through a transition piece in a schematic representation of the fluid movement during operation of the rotor-stator system shown. It can be seen the webs 39 of the transition piece, which is arranged at the transition between the premixing chamber 2 and the dispersing chamber, which consists between the stator 1 and the rotor 4.
- the rotor 4 carries rotor teeth 5. Rotate the Rotozähne 5 under the transition piece 3 away, arise areas with an overpressure in front of the rotor tooth, so that liquid is conveyed from the dispersing through the channels 31 in the premixing chamber 2. While the liquid is conveyed along the rotor tooth in the direction of the transition piece or the premixing chamber, the passage of the rotor tooth, whose geometry is described in more detail below, can lead to the formation of jet streams and negative pressures.
- Jet stream refers to the meteorological term “jet-oriented flow” in which the flow velocity is significantly higher than in the vicinity of the jet stream.
- FIG. 7 The schematic representation illustrated illustrates a simplified model concept, which does not claim to fully reflect the actual prevailing flow conditions.
- FIG. 8 a stator is shown in external view.
- the stator head 11 has an inlet bore 25, which allows the inlet to a premixing chamber 2 inside the stator.
- the stator head 11 is provided with a ring gear 123.
- the stator has a quick release 109, with which it to the container 101 (see FIG. FIG. 1 ) can be mounted.
- To the bore 25 may be an inlet pipe with valve, as in FIG. 1 represented, mounted.
- the stator has stator teeth, which run parallel to its longitudinal axis (vertical in the picture).
- FIG. 9 a stator core 12 of a stator with two sprockets is shown. Parallel to the longitudinal axis 14 of the stator fuselage run an inner ring gear 124 and outer sprocket 123. The teeth of the inner sprocket are about half as long as the teeth of the outer sprocket.
- the Statorrumpf has through holes through which it can be fixed by means of screws on the stator head.
- FIG. 10 An embodiment of the rotor status system according to the invention is shown.
- the stator 1 is shown.
- the stator 1 has an inner and an outer toothed rim 123, 124.
- the inlet 15 In the center region of the stator 1 is the inlet 15, through which, following the inlet 8 fluid from the master container 101 (see FIG. 1 ) can get into the dispersing area.
- two premixing chambers 2 are arranged, at the transition 27 to the dispersion region transition pieces 3 are arranged with slots.
- the stator 1 together with a rotor, forms a rotor-stator system according to the invention. As seen in the radial direction from the axis of rotation of the rotor, there is a gap between the rotor and the stator. The width of this gap is about 0.1 mm to about 1.5 mm. The gap width is adapted to the dispersion task.
- the gap width can be, for example, 0 , 35 mm, when added via pre-mixing chambers equidistant from the center axis, should be increased to 0.8 mm to obtain larger droplets.
- Such a rotor of the rotor-stator system according to the invention for example, as in FIG. 10 be designed below.
- This rotor 4 has a carrier plate 42 which carries an inner ring gear 424 and an outer ring gear 423.
- the teeth 5 have a concave form in plan view.
- the operation of the premixing chambers according to the invention is not limited to such a specific tooth geometry. Rather, the invention of a stator with internal premixing chambers can work with all tooth geometries or rotors which can build up a pressure in the direction of the premixing chamber from the dispersing chamber.
- FIG. 11 a rotor and a stator of a conventional rotor-stator system shown. Based on the invention, one can clearly see the differences in the design of the stator (on the right in FIG. 11 ), which has no premixing chambers, as well as this rotor (left in FIG. 11 ), which has substantially more teeth, but which do not form sprockets and have different orientations to a radial from the axis of rotation of the rotor.
- the rotor 4 has a carrier disk 42 with a through hole coaxial with the axis of rotation 14 of the rotor. This through-hole serves to connect the rotor 4 to the drive shaft 115 for connection to the motor 116 (see FIG FIG. 1 ).
- the carrier disk 42 of the rotor 4 carries rotor teeth 5.
- the external dimensions of the rotor and the height of the rotor teeth are selected in accordance with the rated power of the motor and thus of the rotor-stator system.
- the following table gives an exemplary overview of suitable combinations of the mentioned parameters.
- Rotor-stator systems can be designed in one or more stages, as an example, a two-stage dispersing machine is shown here. It is a rotor-stator system with two sprockets of the rotor, an inner and an outer sprocket.
- the inner sprocket 424 has 4 rotor teeth.
- the outer sprocket 423 has eight rotor teeth. This ratio of 1 to 2 is chosen to ensure continuous internal pressure build-up in the machine. Another ratio, for example 1 to 3, brings such success.
- the rotor teeth of the inner ring gear 424 have a width, measured in the radial direction from the rotation axis 14, which is approximately twice as large as the width of the rotor teeth of the outer ring gear 423 (see FIG. 12 top left).
- a rotor tooth 5 has an inner side 51 facing the center axis 14 of the rotor 4 and an outer side 52 facing the outer edge of the carrier disk 42. In the direction of rotation of the rotor 4 in front is the front 53 of the rotor. In the direction of rotation of the rotor in the back is the back 54 of the rotor tooth. On the side facing away from the support plate 42 side, a rotor tooth is closed by the top 55 of the rotor tooth.
- the rotor teeth of the inner ring gear have seen a distance d 1 from the center axis 14 of the rotor, which is smaller than the distance d 2 of the rotor teeth of the outer ring gear 423th
- the front side 53 of a rotor tooth 5 is inclined relative to a radially extending from the axis of rotation 14 of the rotor 4 from the reference line 57 by an angle ⁇ 6 relative to the direction of rotation of the rotor to the rear.
- the rear side 54 of the rotor tooth is oriented essentially perpendicular to the carrier disk 42.
- the back of the rotor tooth can also have any other orientations. In operation of the rotor-stator system causes the inclination of the front of the rotor tooth by the angle ⁇ 6, a radial acceleration of the product in the treatment in the dispersion.
- the front side 53 has a region 56, which is inclined relative to the perpendicular to the support plate 42 of the rotor 4 by an angle ⁇ 4 to the rear. Due to the offset of the region 56 of the front side 53 by the angle ⁇ 4 , a pressure component is imparted to the fluid in the dispersion chamber in the operating state of the rotor-stator system, which promotes the fluid in the direction of the stator head and in particular into the premixing chambers. In addition, the degree of turbulence of the flow is increased by the inclination of the region 56 of the front side of the rotor tooth through the angle ⁇ 4 when passing through the stator teeth, which are essentially parallelepipedal and parallel to the axis of rotation 14.
- the rotor tooth 5 is arranged in the Figures 12 . 13 . 14 and 16 shown embodiments on its front side 53 on an upper portion 58 which is inclined with respect to a parallel to the main extension direction of the support plate 42 extending reference line 45 downward in the direction of rotation of the rotor 4 by an angle ⁇ 5 .
- the jet stream is particularly pronounced where the rotor teeth pass through regions of the stator head which do not pass into a premixing chamber. Due to the multi-part design of the front side 53 with the inclined by the angle ⁇ 4 and ⁇ 5 areas 56 and 58, an additional dispersing edge is provided on the rotor tooth. Due to the additional dispersing edge, the dispersion efficiency compared to a rotor tooth with only one edge on the Transition of the front in the top of the rotor tooth increases.
- the top 55 of the rotor tooth is removed from its front beginning in the direction of rotation of the rotor at the upper end of the region 58 towards its rear end at the transition to the rear side 54 of the rotor tooth.
- top right in FIG. 12 a correspondingly curved extending contour of the top 55 of the rotor tooth 5 is shown, as it can be prepared for example by milling.
- the depth of the cutout considered with respect to line 45 is a measure of how much fluid can be drawn from the premixing chamber into the dispersing space as the rotor tooth 5 passes the transition from the premixing chamber into the dispersing space during operation of the rotor-stator system ,
- a simple bevel see Figures 13 . 15 and 16 ) to get voted.
- the rotor teeth are designed by the construction described above so that both a radial conveying direction is formed by the dispersing, which is in particular realized by the angle ⁇ 6 , as well as an axial pressure component on the stator out, so here from the dispersing into the premixing chamber, which is realized in particular by the angle ⁇ 4 . If a rotor tooth passes the transition between the premixing chamber and the dispersion chamber, an overpressure and a negative pressure are generated very rapidly, for example in the region of milliseconds, at each rotor tooth, which is passed on to the fluid in the premixing chamber, as a result of which strong turbulences of the two Phases emerge into each other. By lowering the top surface 55 of the rotor tooth with respect to the reference line 45, a negative pressure is generated so that fluid is simultaneously drawn from the premixing chamber into the dispersing space.
- FIG. 7 the model concept for the fluid movement described above is shown schematically.
- the comminution effect of the rotor-stator system can be adjusted by the choice of geometry, in particular by the choice of the angle ⁇ 4 of the rotor tooth, in coordination with the peripheral speed of the rotor tooth and the throughput through the dispersing machine.
- the angle ⁇ 4 and peripheral speed of the rotor teeth mainly determine the volume of fluid, which is conveyed from the dispersion into the premixing chambers. The larger ⁇ 4 at the same Circumferential speed is, the larger this volume.
- the volume of the second component or further components metered in via the premixing chambers depends mainly on the selected settings of the pumps in the inlet 25. For example, a combination of these pumps with a frequency converter, the desired pump setting can be specified. By positioning a flow meter in the inlet 25, the volume flow supplied to the dispersion space can be displayed via the inlet 25.
- FIG. 17 Further variants for the geometry of the rotor tooth 5 are shown.
- the rotor tooth 5 shown in FIG. 17 a has a front side with a lower region running vertically with respect to the main expansion direction of the carrier disk 42 and with an upper region inclined towards the rear with respect to the direction of rotation of the rotor with the rotor tooth 5.
- the upper side of the rotor tooth runs parallel to the main expansion direction of the carrier disk.
- the top surface 55 of the rotor tooth 5 has been chamfered as compared to the design shown in Figure 17a.
- 17 c has an inclined front side 53, an upper side 55 running parallel to the main extension direction of the carrier disk, and a rear side 54 which is inclined towards the front side 53.
- FIG. 18 is a model concept for the effect of different designs of rotor teeth on the flow conditions in the vicinity of the operation of the Rotor-stator system shown.
- an area was selected which has no premixing chambers in order to draw attention to the flow conditions in the vicinity of the rotor tooth.
- Figure 14a shows a rotor tooth with a flat cutout on the top side.
- Such a design is typically used for small to moderate amounts of addition to the components of the dispersion to be made via the inlet 25 via the premixing chamber.
- Low to medium addition levels correspond to a proportion of the respective component in the finished dispersion of about 5 vol .-% to about 30 vol .-%.
- the rotor tooth 5 shown in FIG. 18a also shows a smooth transition from the carrier disk 42 of the rotor to the rotor tooth in the lower region of its front side 53.
- FIG. 18b shows a rotor tooth according to a further embodiment with a very deep indentation of the upper side 55 of the rotor tooth in comparison to the rotor tooth shown in FIG. 18a.
- Such a design may be used for medium to large addition levels of the components of the dispersion fed via the inlet 25 through the premixing chambers into the dispersion space. Average to large addition levels of the corresponding component mean a proportion of this component in the range between more than about 30% by volume and about 80% by volume of the dispersion to be prepared.
- stator teeth With the in FIG. 18 from the stator 1 to the rotor extending vertical dashed lines are the stator teeth indicated. Where a rotor tooth passes such a straight stator tooth, microturbulences, which occur in FIG. 18 with turbulence I are designated. Compared to the jet stream flows designated turbulence II, the areas in which microturbulences are generated have many high-energy small vortices in the fluid of the dispersion space.
- FIG. 19 illustrates a model concept of making an emulsion in a rotor-stator system.
- On the left is the area marked 2, which shows an emulsion when passing through the dispersing chamber 7. Subsequent to the treatment in the dispersion space, further stabilization of the droplets of the emulsion can take place when the outlet 9 flows through.
- the two phases are mixed and droplets of the disperse phase are formed in the continuous phase.
- the disperse phase is a lipophilic phase and the continuous phase is an aqueous phase.
- Emulsifier molecules are dissolved in the continuous phase. These are presented in the continuous phase in an amount such that at least at the beginning of the process partially form micelles of emulsifier molecules.
- the emulsifier molecules begin to accumulate at this interface.
- Emulsifier molecules increasingly accumulate at the interface between the disperse and continuous phases.
- the comminution of the droplets and the stabilization of the interface by emulsifier molecules continue as they pass through the dispersion chamber 7. Also during the passage of the dispersion leaving the dispersing chamber 7 through the outlet 9, the process of stabilizing the droplets formed by emulsifier molecules can be continued.
- the model for the deformation of fluid elements by the Baker transformation is in FIG. 20 shown schematically.
- the baker's transformation was named after the dough kneading process. A dough is pulled twice the length and then folded so that the two ends are on top of each other. This procedure is repeated until good mixing has occurred. Two particles, which were originally close together, are far apart after a short time.
- FIGS. 20D to 20F The representation for the model concept for the deformation of fluid elements starts from a considered fluid element in surrounding medium ( Figure 20A ).
- This fluid element is stretched by stretching ( Figure 20B ), in which its height and width decreases accordingly.
- the fluid element is folded ( Figure 20C ).
- stretching and wrinkles continue ( FIGS. 20D to 20F ), wherein the fluid of the considered element and the surrounding medium are mixed together.
- FIGS. 20D to 20F stretching and folding through the alternating sequence leads to an exponential progress of mixing.
- FIG. 21 the mixing of the continuous and the disperse phase to form droplets in the premixing chamber is again illustrated, in comparison to the illustration in FIG. 19 taking into account the baker's transformation.
- This causes streaks to bubbles of the droplets forming disperse phase, which are then broken when passing through the first and second ring gear of the rotor 5 in the dispersing 7 to smaller droplets.
- the peripheral speed and thus in particular the shear rate, increases continuously as the fluid from the premixing chamber passes over the inner rotor rim and the outer rotor rim until the maximum is reached, thereby promoting the controlled dripping of droplets. Then follows a turbulent stabilization in the outlet channel and the circulation line.
- This intensive mixing of the disperse and continuous phases in the premixing chamber is promoted by cooperation with the rotors when the outer phase is forced through the axial component of the flow direction at the rotor teeth into the premixing chamber in the manner of an injector.
- the resulting jet cuts the disperse phase to streaks, which are folded by the sudden reversal of direction (negative pressure).
- the principle can be understood as the kneading of a pizza dough, wherein the outer phase is embedded in the streak.
- the key to pulling and folding the fluid elements lies in the sudden alternation of positive and negative pressure at each opening of the premixing chamber made possible by the invention.
- premixing chamber One purpose of the premixing chamber is to minimize irregular droplet formation prior to high energy dispersion in the dispersing space.
- a fine, homogeneous crude emulsion or raw dispersion prevents over-concentration of droplets (clustering) and guarantees a fine, homogeneous emulsion or dispersion after the high-energy zone, especially in one pass (inline).
- an over-concentration of droplets involves the risk of a phase reversal.
- premixing chamber Another purpose of the premixing chamber is to achieve the dispersing operation in one pass without the emulsifier settling completely around the droplets before or during dispersing. Thus, a discontinuous breakup of the droplets is achieved while the emulsifier film is not yet complete. This results in higher droplet breakup efficiency and smaller droplets, and is particularly important in fabric systems with high viscosity differences between disperse and continuous phases.
- the premixing chamber described above can be used not only in stators for rotor-stator systems of dispersing machines, but also in pumps, agitators and similar apparatus in which a plurality of at least partially liquid components are to be mixed together.
- FIG. 22 is a schematic sketch a premixing chamber, which can be welded into a pump housing.
- the premixing chamber is made, for example, from a solid stainless steel piece and corresponds in geometry to the example in relation to FIG. 2 given description.
- the premix chamber is mounted on the pressure generating side of the apparatus. Due to the overpressure of the moving part, that is, for example, the rotor or the stirrer or the moving pump component, the pumped component of the dispersion is forced into the premixing chamber.
- the change of overpressure and negative pressure as a result of the movement of the dispersing element or the moving pump part presses or sucks the increasingly homogenized premix from the premixing chamber.
- a post-mixing can be carried out.
- static mixers or Rrockwerktanks and similar arrangements can be used.
- the supply of components into the premixing chambers is effected by feed pipes corresponding to the inlets 25 in FIG. 1 , By pumps such as positive displacement pumps, the raw materials are fed into the premixing chambers.
- FIG. 23 is a front view of a pump equipped with a premixing pump shown in the pump housing.
- the pump has an inlet 8 for a fluid and a further inlet 81 for a further fluid, by which this is supplied into the premixing chamber 2. Through an outlet 9, the mixture of fluids is withdrawn from the pump.
- the premixing chamber is shown in FIG FIG. 23 to the left of the pump outlet 9.
- the Direction of rotation of the moving pump component is counterclockwise in the plane of the drawing.
- the pump wheels can be designed as standard pump wheels such as those of centrifugal pumps and take over the function of the rotor in the above description of the rotor-stator systems.
- a dispersing machine with a rotor and a stator has a rated power of 30 kW.
- the rotor has an outer diameter of about 175 mm.
- the stator has four premix chambers, which are arranged above the inner of the two rotor crowns of the rotor.
- the premix chambers each have a length of about 10 cm, measured along the main extension direction of the premix chambers. Perpendicular to the main extension direction, they are about 1.2 cm wide. They have an average depth of about 2 cm, measured from the transition region of the premixing chamber into the dispersing chamber, into the interior of the stator.
- Each chamber has a volume of about 24 cm 3 .
- this volume is washed out by any rotor tooth passing through the premix chamber during operation of the rotor-stator system. This means a throughput of 288,000 cm 3 / min or 0.288 m 3 / min or 17.3 m 3 / h for each pre-mixing chamber at 3000 revolutions / minute and four teeth on the inner rotor ring.
- Highly concentrated washing-active substances with a content of 70% by volume of the substance dissolved in water such as AE3S, LES or similar, are delivered in a standard container of about 23,000 kg.
- the unloading time is about 60 to 90 minutes and is limited by the pipe connections of the containers and the high viscosity of the product.
- the WAS is stored in storage tanks and then continuously diluted to a concentration of 25% by volume of wash-active substance in water. For production, the detergent substance diluted in this way is stored in other storage tanks.
- a system with premixing chambers is able to dilute the quantity of washing-active substance to be supplied for dilution directly from the container in which the substance is delivered, in a continuous process.
- a batch process can also be used, for which purpose a correspondingly smaller machine with premixing chambers is used.
- a dispersing machine 455 kg / min of water may be supplied to the stator under the control of a flow meter, so that this volume of water passes into the dispersing space.
- HIP emulsions high internal phase emulsion
- mayonnaise a large internal phase fraction
- 10,000 kg / h of mayonnaise with a water phase of 20% by volume and an oil phase of 80% by volume are produced.
- the oil phase forms the disperse phase of an oil-in-water emulsion.
- Water phase and oil phase are the machine in the correct proportion controlled via flow meter via the feeds to the premixing chamber (oil phase) and fed through the stator in the dispersion (water phase).
- a large interface between the two phases must be created.
- the continuous production of such a large interface combined with a desired homogeneous distribution of the oil droplets in the water phase is made possible by the pre-mixing chamber dispersing machine.
- a second dispersing machine which is connected in series with a first, can be used to continuously introduce further additives, such as lemon juice, into the emulsion prepared in the first dispersing machine.
- the dispersing machine can be designed such that it circulates a larger volume, for example three to five times the actual production volume, in a bypass in order to achieve optimum homogeneity of the product.
- All piping of the dispersing machine can be made coolable. However, cooling is usually not necessary because heat generation is limited by the large throughputs and low residence times for most products.
- the droplets of the water phase should have a mean diameter of about 100 microns (microns), so that when applying the make-up the moisture Water phase is perceived as a feeling of freshness.
- the silicone base of the make-up means that with increasing shear, the make-up always receives a higher viscosity (shear-thickening). As a result, smaller and smaller droplets of water would be created as you spread your make-up. This is not wanted.
- the silicone base material can be conveyed via a transition piece of the form B10 (cf. FIG. 6a ) are conveyed into the premixing chamber.
- the water phase supplied via the premixing chamber is distributed in droplet form in the silicone base mass and then gently dispersed. Uniform distribution and size of the water droplets in the matrix can be achieved by a suitable choice of the dispersing machine supplied volume flows of the speed of the rotor and shape of the transition piece already with one pass.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Description
Die Erfindung betrifft ein Rotor-Stator-System sowie ein Verfahren zum Herstellen und/oder Behandeln von Dispersionen. Die Erfindung betrifft die Herstellung und/oder Behandlung von Dispersionen im allgemeinen und von Emulsionen im besonderen.The invention relates to a rotor-stator system and to a method for producing and / or treating dispersions. The invention relates to the preparation and / or treatment of dispersions in general and of emulsions in particular.
Unter dem Begriff "Dispersion" wird ein Mehrphasensystem verstanden, welches mindestens ineinander im wesentlichen nicht lösliche Komponenten umfaßt. Dispersionen umfassen insbesondere Emulsionen, bei welchen eine Flüssigkeit in Form von Tropfen in einer anderen Flüssigkeit verteilt vorliegt. Die Phase, welche die Tropfen bildet, wird als disperse Phase oder innere Phase bezeichnet. Die Phase, in welcher die Tropfen verteilt sind, wird als kontinuierliche Phase oder äußere Phase bezeichnet.The term "dispersion" is understood to mean a multiphase system which comprises at least components which are substantially insoluble in one another. In particular, dispersions comprise emulsions in which a liquid in the form of drops is distributed in another liquid. The phase which forms the drops is called a disperse phase or inner phase. The phase in which the drops are distributed is referred to as continuous phase or outer phase.
Dispersionen umfassen des Weiteren Suspensionen, bei welchen Feststoffpartikel in einer flüssigen kontinuierlichen Phase dispergiert sind. Außerdem gehören Stoffsysteme, welche sowohl feste als auch flüssige Phasen in dispergierter Form aufweisen, ebenfalls zu Dispersionen. Beispielsweise könnte ein Feststoff in einer ersten Flüssigkeit verteilt vorliegen, wobei diese Suspension die disperse Phase einer Emulsion bildet. Auch in der kontinuierlichen Phase von Emulsionen können Feststoffe verteilt sein. Man spricht in diesem Zusammenhang auch von Suspoemulsionen.Dispersions further include suspensions in which solid particles are dispersed in a liquid continuous phase. In addition, material systems which have both solid and liquid phases in dispersed form also belong to dispersions. For example, a solid could be dispersed in a first liquid, which suspension forms the disperse phase of an emulsion. Also in the continuous phase of emulsions, solids can be distributed. One speaks in this connection of suspoemulsions.
Sind zwei ineinander im Wesentlichen unlösliche Flüssigkeiten miteinander vermischt, so daß jede der beiden Phasen zugänglich ist, wird das entsprechende Stoffsystem als Gemisch bezeichnet. Ein Gemisch kann durch Zugabe sowohl der einen, als auch der anderen Phase verdünnt werden. Im Gegensatz dazu ist bei einer Emulsion die disperse Phase von außen nicht zugänglich; eine Emulsion kann nur durch Zugabe der kontinuierlichen Phase verdünnt werden. Bei der Herstellung einer Emulsion kann ein Gemisch als Zwischenstufe auftreten.If two liquids which are essentially insoluble in one another are mixed with one another so that each of the two phases is accessible, the corresponding substance system is referred to as a mixture. A mixture can be diluted by adding both one and the other phase. In contrast, in an emulsion, the disperse phase is not accessible from the outside; An emulsion can only be diluted by adding the continuous phase. In the preparation of an emulsion, a mixture may occur as an intermediate.
Mit dem Begriff "Komponente" wird im Folgenden insbesondere eine Phase einer Dispersion bezeichnet. Eine Komponente kann aber auch ein Bestandteil einer Phase sein. Beispielsweise kann eine Phase aus mehreren, insbesondere ineinander löslichen, Komponenten gebildet werden.In the following, the term "component" refers in particular to a phase of a dispersion. But a component can also be part of a phase. For example, a phase can be formed from a plurality of, in particular, soluble components.
Beim Herstellen von Dispersionen insbesondere beim Herstellen von Emulsionen ist es für den Erhalt eines Endprodukts mit den gewünschten Eigenschaften hinsichtlich der Größenverteilung der dispersen Phase, des Fließverhaltens und der Stabilität des Produkts gegenüber thermische und mechanische Belastung sowie zeitlichen Veränderungen gegenüber wichtig, dass die notwendigen Schritte des Einbringens der inneren Phase in die äußere Phase zum Herstellen eines Pre-Mixes, das Feindispergieren und das Stabilisieren des erhaltenen Produktes prozesstechnisch definiert und zuverlässig durchgeführt werden. Aus der Küche kennt man den entsprechenden Vorgang durch die Herstellung einer Mayonnaise. Die Ölphase wird langsam in die Wasserphase eingerührt. Es entsteht dabei zuerst eine grobe Emulsion mit geringer Viskosität als Pre-Mix. Durch weiteres, schnelles Rühren wird die Emulsion feiner und die Viskosität steigt an. Industriell werden Dispersionen insbesondere Emulsionen durch verschiedene Prozesse hergestellt. Welcher Prozess ausgewählt wird hängt von der Art der Dispersion ab sowie von der Feinheit der dispersen Phase, mit welcher eine über den geforderten Zeitraum hinweg stabile Dispersion erhalten werden kann. Unter einer stabilen Dispersion wird ein Stoffsystem verstanden, dessen Artikelgrößenverteilung der dispersen Phase und/oder dessen Fließverhalten insbesondere dessen Viskosität sich über einen vorgegebenen Zeitraum im Wesentlichen nicht ändert.When preparing dispersions, in particular when preparing emulsions, it is important for obtaining an end product with the desired properties in terms of the size distribution of the disperse phase, the flow behavior and the stability of the product against thermal and mechanical stress as well as temporal changes that the necessary steps of the Introduction of the inner phase in the outer phase for preparing a pre-mix, the fine dispersion and the stabilization of the product obtained process-defined and performed reliably. From the kitchen one knows the appropriate process by the production of a Mayonnaise. The oil phase is slowly stirred into the water phase. The result is first a coarse emulsion with low viscosity as a pre-mix. By further rapid stirring, the emulsion becomes finer and the viscosity increases. Industrially dispersions in particular emulsions by various Processes made. Which process is selected depends on the nature of the dispersion and on the fineness of the disperse phase with which a stable dispersion over the required period of time can be obtained. A stable dispersion is understood as meaning a substance system whose article size distribution of the disperse phase and / or its flow behavior, in particular its viscosity, does not substantially change over a given period of time.
Zum industriellen Herstellen von Dispersionen werden für relativ grobe Dispersionen häufig Behälter mit einem Rührwerk beispielsweise einem Schaberrührwerk oder einer Rührwerksturbine eingesetzt. Für feinere Dispersionen werden zweistufige Prozesse verwendet, in welchem zunächst in einem Behälter mit Rührwerk ein Pre-Mix hergestellt wird und anschließend ein Durchlauf durch eine Rotor-Stator-Dispergiermaschine erfolgt. Diese kann beispielsweise eine Koloidmühle sein. Besonders feine Dispersionen lassen sich erzielen, indem als zusätzlicher Prozessschritt das Dispergieren in einem Hochdruck-Homogenisator eingesetzt wird.For the industrial production of dispersions, containers with an agitator, for example a doctor blade stirrer or a stirrer turbine, are frequently used for relatively coarse dispersions. For finer dispersions, two-stage processes are used, in which a pre-mix is first prepared in a vessel with stirrer, followed by a passage through a rotor-stator dispersing machine. This can be for example a Koloidmühle. Particularly fine dispersions can be achieved by dispersing in a high-pressure homogenizer as an additional process step.
Zum Herstellen einer feinen Dispersion mit einem Rotor-Stator-System aus einem Pre-Mix, welche in einem Behälter mit Rührwerk hergestellt wurde, geht man in der Regel von einer Dispersion mit einer sehr breiten Partikelgrößenverteilung aus. Als Beispiel sei eine Emulsion betrachtet mit einer Tröpfchengrößenverteilung zwischen 30 und 500 µm. Mit einem herkömmlichen Rotor-Stator-System (vgl.
Um den oben beschriebenen Prozess zu beschleunigen, haben einige Dispergiermaschinen-Hersteller angefangen, die innere Phase über Zuführungen wie Rohre oder Bohrungen direkt vor die Rotorzähne oder auf die Rotorzähne eines Rotor-Stator-Systems zu geben. Derartige Rotor-Stator-Systeme werden in
Die Schwierigkeiten beruhen hauptsächlich darauf, dass es nicht gelingt, eine homogene Rohemulsion beziehungsweise einen homogenen Pre-Mix mit einer definierbaren Partikelgrößenverteilung aus der äußeren und der inneren Phase herzustellen bevor die Phasen in die Zonen hoher Scherkräfte des Rotor-Stator-Systems gelangen.The difficulties are mainly due to the fact that it is not possible to produce a homogeneous crude emulsion or a homogeneous pre-mix with a definable particle size distribution of the outer and inner phase before the phases reach the zones of high shear forces of the rotor-stator system.
In
Der Erfindung liegt daher die Aufgabe zugrunde, eine konstruktiv einfache Möglichkeit zu schaffen, um in einem Rotor-Stator-System auch bereits mit einem Durchlauf stabile Dispersionen herstellen zu können. Es ist eine weitere Aufgabe der Erfindung, eine Möglichkeit zu schaffen, um mit einem Rotor-Stator-System flexibel auf wechselnde Anforderungen hinsichtlich der Zusammensetzung der herzustellenden Dispersion reagieren zu können. Zudem ist es eine Aufgabe der Erfindung, ein Rotor-Stator-System bereitzustellen, welches eine Vielzahl möglichst energiereicher Wirbel in turbulenter Strömung erzeugen kann, um Partikel der dispersen Phase einer Dispersion effizient zerkleinern zu können.The invention is therefore based on the object to provide a structurally simple way to be able to produce stable dispersions in a rotor-stator system even with a single pass. It is a further object of the invention to provide a way to react flexibly to changing requirements with regard to the composition of the dispersion to be produced with a rotor-stator system. In addition, it is an object of the invention to provide a rotor-stator system, which a variety possible generate energetic vortex in turbulent flow, to crush particles of the disperse phase of a dispersion efficiently.
Diese Aufgaben werden auf überraschend einfache Weise gelöst, mit einem Rotor-Stator-System gemäß Anspruch 1.These objects are achieved in a surprisingly simple manner, with a rotor-stator system according to
Die Erfindung stellt ein Rotor-Stator-System zum Herstellen und/oder Behandeln von Dispersionen entsprechend Anspruch 1 zur Verfügung.The invention provides a rotor-stator system for preparing and / or treating dispersions according to
In einer Weiterbildung der Erfindung weist das Rotor-Stator-System zumindest zwei Vormischkammern auf, welche jeweils einen Zulauf zum Zuführen einer Komponente der Dispersion von außerhalb des Stators in die betreffende Vormischkammer aufweisen. So können entweder über jede Vormischkammer eine andere Komponente zugeführt werden. Oder eine große Menge einer Komponente kann aufgeteilt über mehrere Vormischkammern zugeführt werden. In jedem Fall wird die Effizienz des Mischvorganges gegenüber einer Zuführung der Komponenten direkt in den Dispergierraum erhöht.In one development of the invention, the rotor-stator system has at least two premixing chambers, each of which has an inlet for feeding a component of the dispersion from outside the stator into the relevant premixing chamber. Thus, either another component can be supplied via each premixing chamber. Or a large amount of a component may be supplied in divided form over several premix chambers. In any case, the Increased efficiency of the mixing process compared to a supply of the components directly into the dispersion.
Nach einer weiteren vorteilhaften Ausführungsform wölbt sich die Vormischkammer vom Übergang zum Dispergierbereich aus in den Stator hinein. Die gewölbte Formgebung ermöglicht ein leichtes und zuverlässiges Reinigen der Vormischkammer. Zudem wird die Bildung von Toträumen vermieden, welche sich negativ auf die Mischwirkung ind er Vormischkammer auswirken können.According to a further advantageous embodiment, the premixing chamber bulges into the stator from the transition to the dispersion region. The domed shape allows easy and reliable cleaning of the premixing chamber. In addition, the formation of dead spaces is avoided, which can have a negative effect on the mixing effect in the premixing chamber.
Die Erfindung sieht zudem vor, daß die Vormischkammer am Übergang zum Dispergierbereich die Form eines streifenförmigen Ausschnitts aus einem Kreissegment aufweisen kann, wobei der Ausschnitt insbesondere eine durchgängig geschwungen verlaufende Umfangslinie hat. Auch durch diese Gestaltung werden Ecken vermieden, was unter anderem der leichten Reinigbarkeit entgegenkommt.The invention also provides that the premixing chamber at the transition to the dispersing region may have the form of a strip-shaped section of a circle segment, wherein the section has, in particular, a circumferentially continuous curve. Also by this design corners are avoided, which accommodates, among other things, the easy cleanability.
Die Erfindung bietet zudem den Vorteil, mit der Lage der Vormischkammern die Strömungsführung der Dispersion in den Dispergierbereich den jeweiligen Prozeßanforderungen anpassen zu können. In einer Weiterbildung der Erfindung ist vorgesehen, daß der Übergang der Vormischkammer zum Dispergierbereich in einem solchen radialen Abstand zur Längsachse des Stators, welche der Rotationsachse des zu dem Stator korrespondierenden Rotors entspricht, angebracht ist, daß die Vormischkammer oberhalb eines Dispergierwerkzeuges, insbesondere eines Zahnkranzes des Rotors positioniert ist, wenn der Stator mit dem korrespondieren Rotor zu dem Rotor-Stator-System kombiniert ist. Die Vormischkammern können somit über dem Zahnkranz eines Rotors mit einem Zahnkranz angebracht sein.The invention also offers the advantage of being able to adapt the flow guidance of the dispersion in the dispersing region to the respective process requirements with the position of the premixing chambers. In a further development of the invention it is provided that the transition of the premixing chamber to the dispersing at a radial distance from the longitudinal axis of the stator, which corresponds to the axis of rotation of the rotor corresponding to the stator is mounted, that the premixing above a dispersing tool, in particular a ring gear of the Rotor is positioned when the stator is combined with the corresponding rotor to the rotor-stator system. The Vormischkammern can thus be mounted over the sprocket of a rotor with a sprocket.
Eine Vormischkammer kann bei einem Rotor mit mehreren Zahnkränzen über dem inneren Zahnkranz, über dem äußeren Zahnkranz oder sich über mehrere Zahnkränze hinweg erstreckend angebracht sein. Demgemäß ist der Übergang der Vormischkammer zum Dispergierbereich in einem solchen radialen Abstand zur Längsachse des Stators, welche der Rotationsachse des zu dem Stator korrespondierenden Rotors entspricht, positioniert, daß die Vormischkammer zumindest oberhalb des inneren Dispergierwerkzeuges, insbesondere des inneren Zahnkranzes eines Rotors mit mehreren Dispergierwerkzeugen positioniert ist, wenn der Stator mit dem korrespondieren Rotor zu dem Rotor-Stator-System kombiniert ist.A premixing chamber may be mounted over the inner sprocket, over the outer sprocket, or over multiple sprockets, in a multi-sprocket rotor. Accordingly, the transition of the premixing chamber to the dispersing region is positioned at a radial distance from the longitudinal axis of the stator corresponding to the axis of rotation of the rotor corresponding to the stator such that the premixing chamber is positioned at least above the internal dispersing tool, in particular the inner sprocket of a multi-dispersing rotor is when the stator is combined with the corresponding rotor to the rotor-stator system.
In einer vorteilhaften Weiterbildung stellt die Erfindung ferner ein Rotor-Stator-System zur Verfügung, welcher Vormischkammern aufweist, die in unterschiedlichen radialen Entfernungen zur Längsachse des Stators positioniert sind. Auf diese Weise wird zum Beispiel ein Stator zur Verwendung mit einem Rotor, welcher mindestens einen inneren und einen äußeren Zahnkranz aufweist, geschaffen, wobei zumindest eine Vormischkammer über dem inneren Zahnranz des Rotors und zumindest eine weitere Vormischkammer über dem äußeren Zahnkranz des Rotors positioniert ist, wenn der Stator mit dem Rotor zusammen verwendet wird.In an advantageous development, the invention further provides a rotor-stator system having Vormischkammern which are positioned at different radial distances to the longitudinal axis of the stator. In this way, for example, a stator is provided for use with a rotor having at least one inner and one outer ring gear, wherein at least one premixing chamber is positioned over the inner ring gear of the rotor and at least one further premixing chamber is positioned over the outer ring gear of the rotor, when the stator is used together with the rotor.
Werden Vormischkammern sowohl über dem inneren als auch über weiter außen liegenden Zahnkränzen des Rotors vorgesehen, können bei einem einzigen Durchlauf durch das Rotor-Stator-System Medien mit relativ höher Viskosität innen und Medien mit relativ geringer Viskosität außen zugeben. Dies bietet Vorteile zum Beispiel beim Eindispergieren von dünnflüssigen Medien wie Parfum oder Konservierungsstoffen einerseits und beim Eindispergieren von Fluiden mit höherer Viskosität und/oder größeren resultierenden Tropfengrößen andererseits.If premixing chambers are provided both above the inner and outer sprockets of the rotor, in a single pass through the rotor-stator system, relatively high viscosity media can be externally added and media of relatively low viscosity can be externally added. This offers advantages, for example, when dispersing low-viscosity media such as perfume or preservatives on the one hand and during dispersion of higher viscosity fluids and / or larger resulting drop sizes, on the other hand.
Die über die näher an der Zentrumsachse liegenden Vormischkammern zugegebenen Fluide werden bei im Übrigen gleichen Parametern, insbesondere bei gleichem Fließverhalten der Fluide, in der Regel zu kleineren Tropfen dispergiert als die über weiter außen liegende vormischkammern zugegebenen Fluide, da der Weg durch den Dispergierraum für sie weiter ist. Dadurch sind die innen eingebrachten Fluide länger der Dispergierwirkung des Rotor-Stator-Systems ausgesetzt.The fluids added via the premixing chambers closer to the center axis are generally dispersed to smaller droplets with the same parameters, in particular with the same flow behavior of the fluids, than the fluids added via further outermost premixing chambers, since the path through the dispersing chamber is for them continues. As a result, the internally introduced fluids are exposed longer to the dispersing effect of the rotor-stator system.
Um weiteren Einfluß auf die Strömung am Übergang zwischen Vormischkammer und Dispergierraum nehmen zu können, ist gemäß der Erfindung zwischen der Vormischkammer und dem Dispergierbereich ein Übergangsstück angeordnet. Im Betrieb des Rotor-Stator-Systems wird Fluid aus der Vormischkammer in den Dispergierraum injiziert und aus dem Dispergierraum in die Vormischkammer ejiziert. Im Folgenden wird das Übergangsstück auch als Injektor beziehungsweise Ejektor bezeichnet. Je nach Anwendungsfall kann das Übergangsstück den Übergang zwischen der Vormischkammer und dem Dispergierbereich bereichsweise oder vollständig ausfüllen.In order to be able to further influence the flow at the transition between the premixing chamber and the dispersion chamber, a transition piece is arranged according to the invention between the premixing chamber and the dispersing region. During operation of the rotor-stator system, fluid is injected from the premixing chamber into the dispersing chamber and ejected from the dispersing chamber into the premixing chamber. In the following, the transition piece is also referred to as an injector or ejector. Depending on the application, the transition piece may partially or completely fill the transition between the premixing chamber and the dispersing region.
In Abstimmung auf die vorteilhafte Geomentrie der Vormischkammer weist das Übergangsstück in einer Ausführungsform der Erfindung die Form eines streifenförmigen Ausschnitts aus einem Kreissegment auf. Das Übergangsstück kann dann eine geschwungene Umfangslinie haben, so daß es genau an die Form der Vormischkammer an ihrem Übergang zum Dispergierraum angepaßt ist.In accordance with the advantageous geometry of the premixing chamber, the transition piece in one embodiment of the invention has the form of a strip-shaped section of a circular segment. The transition piece can then have a curved peripheral line so that it is exactly adapted to the shape of the premixing chamber at its transition to the dispersion chamber.
Für eine besonders gute Vermischung der Flüssigkeit am Übergang zwischen Vormischkammer und Dispergierraum ist des Weiteren vorgesehen, daß das Übergangsstück erfindungsgemäß in der Art eines Lochbleches gestaltet ist und eines oder mehrere kreisförmige und/oder polygone Öffnungen und/oder einen Schlitz oder mehrere Schlitze als Löcher aufweist, wobei vorzugsweise mehrere Schlitze jeweils im wesentlichen quer zur Hauptausdehnungsrichtung des Übergangsstücks verlaufen.For a particularly good mixing of the liquid at the transition between the premixing chamber and the dispersion chamber is further provided that the transition piece is designed according to the invention in the manner of a perforated plate and having one or more circular and / or polygonal openings and / or a slot or more slots as holes , Preferably, a plurality of slots each extending substantially transverse to the main extension direction of the transition piece.
Auf die Strömungsverhältnisse in der Nachbarschaft des Übergangsstücks kann ferner durch die Richtung der Orientierung der Löcher im Übergangsstück Einfluß genommen werden. Die Erfindung sieht in einer weiteren Ausführungsform vor, daß die Löcher durch das Übergangsstück jeweils entlang einer Lochachse verlaufen, welche mit der Senkrechten auf das Übergangsstück einen Winkel einschließt, insbesondere einen Winkel im Bereich zwischen etwa 10° und etwa 80°, vorzugsweise im Bereich zwischen etwa 30° und etwa 60° und besonders bevorzugt einen Winkel von etwa 45°.The flow conditions in the vicinity of the transition piece can also be influenced by the direction of orientation of the holes in the transition piece. The invention provides in a further embodiment that the holes each extend through the transition piece along a hole axis which forms an angle with the perpendicular to the transition piece, in particular an angle in the range between about 10 ° and about 80 °, preferably in the range between about 30 ° and about 60 ° and most preferably an angle of about 45 °.
Außerdem können die Löcher durch das Übergangsstück eine sich von einer zur anderen Seite des Übergangsstücks hin verjüngende Form aufweisen, um die Injkektorbeziehungsweise Ejektorwirkung zu verstärken. Insbesondere sieht die Erfindung vor, daß die Löcher von einer Mantelfläche mit einem ersten Teilbereich und zumindest einem weiteren Teilbereich begrenzt werden, wobei zumindest ein Teilbereich entlang einer Schnittfläche verläuft, welche mit der Senkrechten auf das Übergangsstück einen Winkel einschließt, insbesondere einen Winkel im Bereich zwischen etwa 10° und etwa 80°, vorzugsweise im Bereich zwischen etwa 30° und etwa 60° und besonders bevorzugt einen Winkel von etwa 45°.In addition, the holes through the transition piece may have a tapered shape from one to the other side of the transition piece to enhance the injector or ejector action. In particular, the invention provides that the holes are delimited by a lateral surface having a first partial region and at least one further partial region, wherein at least one partial region runs along a sectional surface which encloses an angle with the perpendicular to the transition piece, in particular an angle in the region between about 10 ° and about 80 °, preferably in the range between about 30 ° and about 60 ° and most preferably an angle of about 45 °.
Um auf einfache Weise ein flexibles Anpassen des Rotor-Stator-Systems an unterschiedliche Dispergieraufgaben zu ermöglichen, ist des Weiteren vorgesehen, den Stator zweiteilig auszubilden. Der Stator umfaßt dann einen Statorkopf sowie einen Statorrumpf, wobei die zumindest eine Vormischkammer im Statorkopf angeordnet ist und der Statorrumpf ein Dispergierwerkzeug des Stators, insbesondere mindestens einen Zahnkranz, umfaßt.In order to enable in a simple manner a flexible adaptation of the rotor-stator system to different dispersing tasks, it is further provided to form the stator in two parts. The stator then comprises a stator head and a stator body, wherein the at least one premixing chamber is arranged in the stator head and the stator body comprises a dispersing tool of the stator, in particular at least one ring gear.
Auf diese Weise kann zum Beispiel ein Stator zum Nachrüsten bestehender Rotor-Stator- Systeme geschaffen werden. Ein derartiger Stator umfaßt mehrere Statorköpfe, welche sich in Anzahl und/oder Geometrie der Vormischkammern unterscheiden und auf einen Statorrumpf montierbar sind, um einen Stator mit auswechselbarem Statorkopf zu bilden.In this way, for example, a stator for retrofitting existing rotor-stator systems can be created. Such a stator comprises a plurality of stator heads, which differ in number and / or geometry of the premixing chambers and can be mounted on a stator fuselage to form a stator with exchangeable stator head.
Eine besonders einfache Kontruktion wird realisiert, indem die Vormischkammer als Kavität derart im Statorkopf ausgebildet ist, daß ein Übergangsstück als Abschluß der Kavität am Statorkopf montierbar ist.A particularly simple design is realized by the premixing chamber is formed as a cavity in the stator head such that a transition piece can be mounted as a conclusion of the cavity on the stator head.
Diejenige Apparatekomponente, welche die Vormischkammer umfaßt, ist im montierten Zustand ein integraler Bestandteil des Gehäuses.The apparatus component which contains the premixing chamber includes is in the assembled state an integral part of the housing.
Die Erfindung betrifft des Weiteren ein Verfahren zum Herstellen und/oder Behandeln von Dispersionen unter Verwendung eines Rotor-Stator-Systems Anspruch 7.The invention further relates to a process for preparing and / or treating dispersions under Use of a rotor-stator system according to
Mit dem erfindungsgemäßen Verfahren wird es möglich, zumindest eine Phase oder eine Komponente einer Dispersion in dem im Verhältnis zum Dispergierraum kleinen Volumen einer Vormischkammer zuzugeben. So wird ein Pre-Mix der Komponenten dem Dispergierraum zugeführt, wobei bereits die Komponenten des Pre-Mixes homogen ineinander verteilt sind.With the method according to the invention, it becomes possible to add at least one phase or one component of a dispersion in the small volume of a premixing chamber in relation to the dispersion space. Thus, a pre-mix of the components is fed to the dispersion, wherein already the components of the pre-mix are homogeneously distributed.
Gemäß der Erfindung kann vorteilhafterweise der Durchsatz der Komponenten und die Drehzahl des Rotors so eingestellt und/oder geregelt und/oder gesteuert werden, daß die Verweilzeit in einer Vormischkammer im Bereich zwischen etwa 0,005 Sekunden und etwa 0,02Sekunden liegt. Durch die innerhalb dieses kurzen Zeitraums erfolgende Bildung des Pre-Mixes und dessen Weiterförderung in den Dispergierraum wird der Koaleszenz der in der Vormischkammer gebildeten Fluidelemente der dispersen Phase entgegengewirkt.According to the invention, advantageously, the throughput of the components and the rotational speed of the rotor can be adjusted and / or regulated and / or controlled, that the Residence time in a pre-mixing chamber ranges between about 0.005 seconds and about 0.02 seconds. The formation of the pre-mix within this short period of time and its further transport into the dispersion space counteract the coalescence of the disperse phase fluid elements formed in the premixing chamber.
Gemäß einer vorteilhaften Weiterbildung des Verfahrens wird ein Stator mit zumindest einer weiteren Vormischkammer verwendet und in Schritt a) zumindest eine weitere Phase der Dispersion in zumindest einem weiteren Vorlagebehälter, welcher mit der weiteren Vormischkammer in Verbindung steht, bereitgestellt. In Schritt c) wird die weitere Phase der Dispersion in die weitere Vormischkammer des Rotor-Stator-Systems zugeführt, so daß im Betrieb des Rotor-Stator-Systems die erste Phase durch den Dispergierraum und gegebenenfalls durch das Übergangsstück in die Vormischkammern gelangt und dabei in der jeweiligen Vormischkammer mit der zweiten oder weiteren Phase in Kontakt tritt, wobei ein Gemisch und/oder eine Dispersion aus den Phasen gebildet wird, und wobei die zweite oder zumindest eine weitere Phase und/oder das Gemisch und/oder die in einer Vormischkammer gebildete Dispersion aus zumindest zwei Phasen durch die jeweilige Vormischkammer und gegebenenfalls durch das jeweilige Übergangsstück in den Dispergierraum gefördert wird.According to an advantageous development of the method, a stator is used with at least one further premixing chamber and in step a) at least one further phase of the dispersion is provided in at least one further feed tank, which communicates with the further premixing chamber. In step c), the further phase of the dispersion is fed into the further premixing chamber of the rotor-stator system, so that during operation of the rotor-stator system, the first phase passes through the dispersing space and optionally through the transition piece in the premixing chambers and in contacting the respective premixing chamber with the second or further phase, wherein a mixture and / or a dispersion of the phases is formed, and wherein the second or at least one further phase and / or the mixture and / or the dispersion formed in a premixing chamber from at least two phases is conveyed through the respective premixing chamber and optionally through the respective transition piece in the dispersion.
Durch das Zudosieren über mehrere, räumlich voneinander getrennte Vormischkammern wird ein Parallel-betrieb der Vormischkammern möglich. Außerdem können die einzelnen Komponenten jeweils gesondert einer Vormischung unterzogen werden, bevor sie dem Dispergierraum zugeführt werden. Die Entzerrung des Mischvorganges aller Komponenten der Dispersion durch das Aufteilen des Zumischens der Komponenten über Vormischkammern verbessert den Mischvorgang gemäß der Erfindung gegenüber bekannten Verfahren.By metering in via a plurality of spatially separate premix chambers, a parallel operation of the premix chambers becomes possible. In addition, the individual components can each be separately subjected to a premix before they are fed to the dispersion. The equalization of the mixing process of all components of the dispersion by dividing the admixing of the Components via premix chambers improve the mixing process according to the invention over known processes.
In einer Ausführungsform des Verfahrens werden die Schritte b), c) und d) gleichzeitig durchgeführt. So kann das Verfahren kontinuierlich betrieben werden.In one embodiment of the method, steps b), c) and d) are carried out simultaneously. So the process can be operated continuously.
Um insbesondere für die Herstellung von Dispersionen mit hohem Dispersphasenanteil über 50 Vol.-% die größere Menge an disperser Phase in die kleinere Menge an kontinuierlicher Phase einzubringen, bietet das erfindungsgemäße Verfahren den Vorteil, durch Zuführen der dispersen Phase als in Schritt b) zugeführte erste Phase und Zuführen der kontinuierlichen Phase oder eines Bestandteil der kontinuierlichen Phase der Dispersion als in Schritt c) zugeführte zweite Phase und das Durchlaufen eine Phaseninversion bei der Herstellung der Dispersion durch die Dispergierung einerseits infolge der Mischwirkung und der Zerkleinerungswirkung des Rotor-Stator-Systems und andererseits zusätzlich durch die Neuordnung der Fluidelemente bei der Inversion der Phasen besonders homogene Dispersionen herstellen zu können, auch wenn der Dispersphasenanteil hoch ist.In order to introduce the larger amount of disperse phase into the smaller amount of continuous phase, in particular for the production of dispersions with a high disperse phase fraction of more than 50% by volume, the process according to the invention offers the advantage of supplying the disperse phase as first in step b) Phase and supplying the continuous phase or a component of the continuous phase of the dispersion as fed in step c) second phase and undergoing a phase inversion in the preparation of the dispersion by the dispersion on the one hand due to the mixing action and the crushing effect of the rotor-stator system and on the other in addition to be able to produce particularly homogeneous dispersions by the rearrangement of the fluid elements in the inversion of the phases, even if the disperse phase fraction is high.
Verglichen mit Dispersionen, die ohne Phaseninversion hergestellt wurden, haben diese Dispersionen eine engere Partikelgrößenverteilung. Diese Vorteile sind besonders wertvoll beim Herstellen von Dispersionen mit hohem Dispersphasenanteil, da dort aufgrund der hohen Dichte an Partikeln, insbesondere Tropfen (bei Emulsionen) der dispersen Phase, die Gefahr der Koaleszens groß ist. Durch Koaleszenz wird die Mischung beziehungsweise Zerkleinerung der dispersen Phase wieder zunichte gemacht. Die Vorteile der Phaseninversion lassen sich jedoch auch bei Dispersionen mit niedrigerem Dispersphasenanteil nutzen.Compared to dispersions prepared without phase inversion, these dispersions have a narrower particle size distribution. These advantages are particularly valuable in the preparation of dispersions with a high disperse phase content, since there due to the high density of particles, especially drops (in emulsions) of the disperse phase, the risk of coalescence is large. Coalescence destroys the mixture or comminution of the disperse phase. The advantages However, the phase inversion can also be used in dispersions with a lower disperse phase fraction.
Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand von Ausführungsbeispielen näher erläutert. Dieselben Bauteile sind in allen Zeichnungen mit den selben Bezugszeichen versehen. Es zeigen:
- Fig. 1
- das Rotor-Stator-System gemäß einer ersten Ausführungsform der Erfindung in eingebautem Zustand in eine Dispergiermaschine im Querschnitt,
- Fig. 2
- einen Ausschnitt aus einer Fotografie eines Statorkopfes, wobei der Ausschnitt eine Vormischkammer zeigt,
- Fig. 3
- eine Fotografie eines Übergangsstücks, wobei das Übergangsstück auf einer Unterlage liegt, welche die Geometrie eines Rotorzahns veranschaulicht,
- Fig. 4
- eine Fotografie eines Übergangsstücks wobei das Übergangsstück auf einer Unterlage liegt, welche die Geometrie eines Rotorzahns veranschaulicht,
- Fig. 5
- eine Fotografie eines Statorkopfes mit einer Vormischkammer, an deren Übergang zum Dispergierbereich im komplett montierten Zustand des Statorkopfes ein Übergangsstück eingeschweißt ist,
- Fig. 6
- verschiedene Gestaltungen von Übergangsstücken , nämlich in
- Fig. 6a
- eine Aufsicht auf ein Übergangsstück mit schematisch angedeuteten Geometrien für die Anordnung von Schlitzen B10) und A10), in
- Fig. 6b
- Ausschnitte aus Querschnitten durch Übergangsstücke gemäß weiteren Ausführungsformen der Erfindung, zu welchen als Verständnishilfe jeweils ein Ausbruch aus einem Rotorzahn dargestellt ist, mit unterschiedlichen Gestaltungen der Löcher im Übergangsstück A11, B11, C11, A12 und B12, und in
- Fig. 6c
- eine Aufsicht auf den Übergang zwischen Vormischkammern und dem Dispergierraum des Rotor-Stator-Systems, für welchen oben schematisch Zähne des inneren Rotorkranzes angedeutet sind. Dargestellt sind Geometrien A15, B15, C15 und D15 für Größe der Vormischkammer und Gestaltung von Übergangsstücken (A15, B15), wie sie miteinander kombiniert oder alternativ eingesetzt werden können. Zur Orientierung ist in
Fig. 6c rechts unten ein schematischer Schnitt durch eine Vormischkammer eingezeichnet. - Fig. 7
- eine schematische Darstellung der Passage von zu behandelndem Fluid bei der Herstellung von Dispersionen mit Vormischkammer und Dispergierraum im Querschnitt,
- Fig. 8
- eine Fotografie der Seitenansicht eines Stators,
- Fig. 9
- Zahnkränze für einen Stator in Querschnitt und Aufsicht,
- Fig. 10
- Fotografie eines Stators mit zwei Vormischkammern und zwei Zahnkränzen sowie eines Rotors mit einem inneren und einem äußeren Zahnkranz, wobei der Rotor und der Stator ein Rotor-Stator-System gemäß einer Ausführungsform der Erfindung bilden,
- Fig. 11
- eine Fotografie eines Stators mit zwei Zahnkränzen (rechts) und eines Rotors mit mehreren schräg angeordneten Zähnen (links) eines herkömmlichen Rotor-Stator-Systems,
- Fig. 12
- einen Rotor (vergleiche
Fig. 10 unten) in Querschnitt und Aufsicht (linke Seite inFig. 12 ) mit einer vergrößerten Detaildarstellung eines Rotorzahns im Querschnitt (rechts oben inFig. 12 ), - Fig. 13
- einen Rotor (vergleiche
Fig. 10 unten) in Querschnitt und Aufsicht (linke Seite inFig. 13 ) mit einer vergrößerten Detaildarstellung eines Rotorzahns im Querschnitt (rechts oben inFig. 13 ), - Fig. 14
- einen Rotor (vergleiche
Fig. 10 unten) in Querschnitt und Aufsicht (linke Seite inFig. 14 ) mit einer vergrößerten Detaildarstellung eines Rotorzahns im Querschnitt (rechts oben inFig. 14 ), - Fig. 15
- einen Rotor (vergleiche
Fig. 10 unten) in Querschnitt und Aufsicht (linke Seite inFig. 15 ) mit einer vergrößerten Detaildarstellung eines Rotorzahns im Querschnitt (rechts oben inFig. 15 ), - Fig. 16
- einen Rotor (vergleiche
Fig. 10 unten) in Querschnitt und Aufsicht (linke Seite inFig. 16 ) mit einer vergrößerten Detaildarstellung eines Rotorzahns im Querschnitt (rechts oben inFig. 16 ), - Fig. 17
- Schnittdarstellungen weiterer Formen für Rotorzähne
- Fig. 18
- eine schematische Darstellung zur Illustration einer Modellvorstellung der Passage einer Emulsion durch den Dispergierraum eines Rotor-Stator-Systems,
- Fig. 19
- eine schematische Darstellung einer Modellvorstellung zum Herstellen einer Emulsion während des Durchlaufs durch ein erfindungsgemäßes Rotor-Stator-System,
- Fig. 20
- eine schematische Darstellung einer Modellvorstellung zur Bäcker-Transformation,
- Fig. 21
- eine schematische Darstellung einer Modellvorstellung zum Tropfenaufbruch unter der sogenannten Bäker-Transformation während eines einmaligen Durchlaufs durch ein erfindungsgemäßes Rotor-Stator-System,
- Fig. 22
- eine schematische Darstellung einer Vormischkammer gemäß einer weiteren Ausführungsform der Erfindung, welche in ein Pumpengehäuse eingeschweißt werden kann,
- Fig. 23
- eine schematische Darstellung einer Vorderansicht einer Pumpe mit Pumpengehäuse, in welcher eine Vormischkammer angeordnet ist (vgl.
Fig. 22 ).
- Fig. 1
- the rotor-stator system according to a first embodiment of the invention in the installed state in a dispersing machine in cross-section,
- Fig. 2
- a section of a photograph of a stator head, wherein the section shows a premixing chamber,
- Fig. 3
- a photograph of a transition piece, wherein the transition piece lies on a base, which illustrates the geometry of a rotor tooth,
- Fig. 4
- a photograph of a transition piece with the transition piece lying on a base which illustrates the geometry of a rotor tooth,
- Fig. 5
- a photograph of a stator head with a premixing chamber, at the transition to the dispersion area in the completely assembled state of the stator head, a transition piece is welded,
- Fig. 6
- various designs of transition pieces, namely in
- Fig. 6a
- a plan view of a transition piece with schematically indicated geometries for the arrangement of slots B10) and A10), in
- Fig. 6b
- Excerpts from cross sections through transition pieces according to further embodiments of the invention, to which an outbreak from a rotor tooth is shown as an aid to understanding, with different configurations of the holes in the transition piece A11, B11, C11, A12 and B12, and in
- Fig. 6c
- a plan view of the transition between premixing chambers and the dispersing space of the rotor-stator system, for which above schematically teeth of the inner rotor rim are indicated. Illustrated are geometries A15, B15, C15 and D15 for size of the premix chamber and design of transition pieces (A15, B15) as they may be combined together or alternatively employed. For orientation is in
Fig. 6c at the bottom right a schematic section through a premixing chamber drawn. - Fig. 7
- a schematic representation of the passage of fluid to be treated in the preparation of dispersions with premixing and dispersing in cross-section,
- Fig. 8
- a photograph of the side view of a stator,
- Fig. 9
- Sprockets for a stator in cross-section and supervision,
- Fig. 10
- Photograph of a stator with two premix chambers and two sprockets and a rotor with an inner and an outer sprocket, wherein the rotor and the stator form a rotor-stator system according to an embodiment of the invention,
- Fig. 11
- a photograph of a stator with two sprockets (right) and a rotor with a plurality of obliquely arranged teeth (left) of a conventional rotor-stator system,
- Fig. 12
- a rotor (see
Fig. 10 below) in cross section and top view (left side inFig. 12 ) with an enlarged detail of a rotor tooth in cross section (top right inFig. 12 ) - Fig. 13
- a rotor (see
Fig. 10 below) in cross section and top view (left side inFig. 13 ) with an enlarged detail of a rotor tooth in cross section (top right inFig. 13 ) - Fig. 14
- a rotor (see
Fig. 10 below) in cross section and top view (left side inFig. 14 ) with an enlarged detail of a rotor tooth in cross section (top right inFig. 14 ) - Fig. 15
- a rotor (see
Fig. 10 below) in cross section and top view (left side inFig. 15 ) with an enlarged detail of a rotor tooth in cross section (top right inFig. 15 ) - Fig. 16
- a rotor (see
Fig. 10 below) in Cross section and supervision (left side inFig. 16 ) with an enlarged detail of a rotor tooth in cross section (top right inFig. 16 ) - Fig. 17
- Sectional views of other forms for rotor teeth
- Fig. 18
- a schematic representation for illustrating a model of the passage of an emulsion through the dispersing space of a rotor-stator system,
- Fig. 19
- a schematic representation of a model for preparing an emulsion during the passage through a rotor-stator system according to the invention,
- Fig. 20
- a schematic representation of a model presentation on the baker's transformation,
- Fig. 21
- 2 is a schematic representation of a model idea for droplet breakup under the so-called Bäker transformation during a single pass through a rotor-stator system according to the invention;
- Fig. 22
- 1 is a schematic representation of a premixing chamber according to a further embodiment of the invention, which can be welded into a pump housing,
- Fig. 23
- a schematic representation of a front view of a pump with pump housing, in which a premixing chamber is arranged (see.
Fig. 22 ).
Der Rotor 4 kann durch einen Motor 116 über die Antriebswelle 115 angetrieben werden. Die Zähne des Rotors 4 rotieren dann benachbart zu den Zähnen des Stators und unter dem Übergang zwischen den Vormischkammern 2 und dem Dispergierraum des Rotor-Stator-Systems. Im Betrieb des Rotor-Stator-Systems wird dadurch die Dispersion sowohl im Dispergierraum als auch in den Vormischkammern und am Übergang zwischen den Vormischkammern und dem Dispergierraum unter anderem Scherbeanspruchungen ausgesetzt. Des Weiteren werden zumindest teilweise turbulente Strömungsverhältnisse erzeugt. Bei der Passage der Vormischkammer, des Übergangs zwischen Vormischkammer und Dispergierraum sowie des Dispergierraums selbst, wird die disperse Phase der Dispersion zerkleinert.The
Der Dispergierraum ist außen durch einen Ringkanal 112 umgeben, welcher vom Gehäuse 113 der Dispergiermaschine begrenzt wird. Aus dem Ringkanal 112 kann die Dispersion durch einen Auslass 9 aus dem Dispergierraum abgezogen werden.The dispersing space is surrounded on the outside by an
Dichtungen 117 und 118, die als mechanische Dichtung, das heißt als rotierenden Gleitringdichtung, oder als statische Dichtung, das heißt zum Beispiel als O-Ring, ausgestaltet sein können, trennen den Dispergierraum von den weiteren angetriebenen beziehungsweise bewegten Komponenten der Dispergiermaschine ab.
In
In
In den
In
Das in
Gleichzeitig werden im Vergleich zu den Strömungsverhältnissen, welche mit einem Übergangsstück wie dem in
Anzahl, Abmessungen und Form der Öffnungen 31 können je nach Dispergieraufgabe flexibel gewählt werden. Mit unterschiedlich gestalteten Übergangsstücken kann dann ein Statorkopf gemäß der Erfindung leicht verschiedenen Dispergieraufgaben angepaßt werden. Beispielsweise kann die Breite der Stege 39 zwischen den Schlitzen 31 im ähnlichen Bereich wie die Breite der Schlitze 31 gemessen in Hauptausdehnungsrichtung 32 des Übergangsstücks 3 gewählt werden.The number, dimensions and shape of the
In
Die Vormischkammern können in Anzahl, Geometrie der Injektoren/Ejektoren, deren Größe und deren Lage gemäß den prozesstechnischen Erfordernissen definiert werden. Beispielsweise können für eine Dispergiermaschine mit einer Nennleistung von 30 kW bei einem Volumen für eine Vormischkammer von ca. 24 cm3 über dem inneren Rotorkranz vier Vormischkammern platziert werden.The premix chambers can be defined in number, geometry of the injectors / ejectors, their size and their location according to the process requirements. For example, for a dispersing machine having a nominal power of 30 kW, four premix chambers may be placed above the inner rotor rim at a volume for a premixing chamber of about 24 cm 3 .
Die Erfindung ermöglicht es somit, durch die außerhalb des Dispergierraums angebrachten und ohne bewegte Teile, das heißt statisch wirkenden Vormischkammern eine Anpassung gemäß der jeweiligen Dispergieraufgabe an das Produkt vorzunehmen. Insbesondere können mehrere Komponenten gleichzeitig, jedoch räumlich getrennt verarbeitet werden. Über einen auswechselbaren Statorkopf können zum Beispiel je nach Rezeptur mehrere Vormischkammern oberhalb jedes Rotorkranzes angebracht werden. Somit kann insbesondere auch für die kontinuierliche Dispergierung verschiedener Rohstoffe das Ausmaß der Scher- und/oder Dehnkräfte, welche auf den jeweiligen Rohstoff wirken sollen, variiert werden. Wenn sehr große Rohstoffmengen eingebracht werden sollen, kann über mehrere Vormischkammern derselbe Rohstoff in kleineren Einzelmengenströmen zudosiert werden.The invention thus makes it possible to make an adaptation according to the respective dispersing task on the product by means of the particles placed outside the dispersing space and without moving parts, that is to say statically acting premixing chambers. In particular, several components can be processed simultaneously but spatially separated. For example, depending on the recipe, several premix chambers can be installed above each rotor ring via a replaceable stator head. Thus, in particular for the continuous dispersion of various raw materials, the extent of the shearing and / or stretching forces which are to act on the respective raw material can be varied. If very large quantities of raw materials are to be introduced, the same raw material can be added in smaller single-volume streams via several premixing chambers.
Die Rohstoffe beziehungweise Komponenten beziehungsweise Phasen der Dispersion werden durch die Vormischkammern über Pumpen eingebracht. An die Einläufe 25 sind entsprechende Leitungen angelegt. Durch diese Leitungen können aus entsprechenden Vorlagebehältern 102 (vergleiche
Der Anteil der Phase beziehungsweise der Phasen, welche dem Dispergierraum über die Vormischkammern zugeführt werden, ist abhängig von der Einstellung der verwendeten Pumpen und kann in der Regel über einen Frequenzumrichter vorgewählt werden, zum Beispiel in Kombination mit einem Durchflußmesser.The proportion of the phase or phases which are fed to the dispersion chamber via the premixing chambers, depends on the setting of the pumps used and can usually be preselected via a frequency converter, for example in combination with a flow meter.
Auch die Größe der Vormischkammern selbst und damit das Kontaktvolumen zwischen den Phasen, welche in der Vormischkammer miteinander in Kontakt gebracht werden, kann variiert werden, um die Geometrie des Statorkopfes an verschiedene Dispergieraufgaben anzupassen. Durch ein Auswechseln des Statorkopfes, der die Vormischkammern enthält, können Anzahl, Lage und Größe der Vormischkammern sowie der Injektoren/Ejektoren und deren Anordnung den jeweiligen Prozeßanforderungen schnell angepaßt werden.Also, the size of the premixing chambers themselves and thus the contact volume between the phases, which in the Premixing can be brought into contact with each other, can be varied to adapt the geometry of the stator head to different dispersing tasks. By changing the stator head containing the premixing chambers, the number, location and size of the premixing chambers and the injectors / ejectors and their arrangement can be adapted quickly to the respective process requirements.
Die Anzahl der Vormischkammern wird dabei je nach Anzahl der Rohstoffe beziehungsweise Komponenten, welche gleichzeitig oder zeitlich versetzt eingebracht werden sollen, gewählt. Die Größe der Vormischkammern und/oder die Geometrie der Löcher im Übergangsstück können in Abstimmung auf die Partikelgrößenverteilung gewählt werden, welche durch die Behandlung in der Vormischkammer und beim Durchtritt durch das Übergangsstück erreicht werden soll.The number of premixing chambers is chosen depending on the number of raw materials or components which are to be introduced simultaneously or with a time offset. The size of the premixing chambers and / or the geometry of the holes in the transition piece can be chosen in accordance with the particle size distribution which is to be achieved by the treatment in the premixing chamber and when passing through the transition piece.
Die Abstimmung dieser Parameter auf die jeweilige Dispergieraufgabe ist wichtig für das Herstellen stabiler Dispersionen. Durch diese Abstimmung kann beispielsweise beim Herstellen von Emulsionen verhindert werden, daß hohe Konzentrationen frisch gebildeter Tropfen an disperser Phase in solchen Bereichen auftreten, in welchen die Strömungsverhältnisse die Tropfen nicht ausreichend schnell voneinander entfernen, so daß die Tropfen nach ihrer Entstehung wieder koaleszieren.The coordination of these parameters to the respective dispersing task is important for the preparation of stable dispersions. By this vote, for example, can be prevented in the production of emulsions that high concentrations of freshly formed droplets of disperse phase occur in those areas in which the flow conditions do not remove the drops sufficiently quickly from each other, so that the drops coalesce after their formation again.
Die gewölbte Gestaltung der Vormischkammer (vergleiche
Neben den Variationsmöglichkeiten, die die Vormischkammern selbst bieten, kann über die Gestaltung der Übergangsstücke zusätzlich Einfluß auf die Strömungsverhältnisse genommen werden, welche sich beim Betrieb Rotor-Stator-Systems einstellen. In
In
Neben der Ausrichtung der Löcher bzw. Schlitze 31 in Relation zur Hauptausdehnungsrichtung 32 des Übergangsstücks 3 spielt auch die Gestaltung der Löcher in ihrem Durchgang durch die Dicke des Übergangsstücks senkrecht zur in
In
Die Löcher 31 im Übergangsstück 3 werden von einer Mantelfläche 35 begrenzt. Gemäß den Ausführungsformen B11 und C11 sind die Löcher schräg durch das Übergangsstück gebohrt. Die Lochachse 33 ist gegenüber der Senkrechten auf das Übergangsstück geneigt. Die Neigung liegt im Bereich bis etwa 45°. Gemäß den Ausführungsformen A12 und B12 hat die Mantelfläche der Löcher verschiedene Bereiche 36, 37. Ein erster Teilbereich der Mantelfläche 36 verläuft geneigt in Bezug auf die Senkrechte auf das Übergangsstück 3. Ein zweiter Bereich 37 der Mantelfläche verläuft parallel zur Senkrechten auf das Übergangsstück 3.The
Aufgrund der gegenüber der Senkrechten auf das Übergangsstück geneigten Lochachse haben die Geometrien B11 und C11 eine geringere Penetrationstiefe. Jedoch ist dadurch eine erhöhte Verwirbelung des Fluids in Nachbarschaft des Übergangsstückes gewährleistet.Due to the hole axis inclined with respect to the perpendicular to the transition piece, geometries B11 and C11 have a lower penetration depth. However, this ensures an increased turbulence of the fluid in the vicinity of the transition piece.
Mit Geometrie A12 kann ein großes Volumen an Fluid in die Vormischkammer gefördert werden. Durch die Verengung der Löcher in Richtung zur Vormischkammer hin wird gleichzeitig ein Injektoreffekt erzielt, welcher zu hohen Verwirbelungen in der Vormischkammer führt. Die Geometrie B12 führt dagegen zu einer geringeren Penetrationstiefe. Im allgemeinen gilt: wenn der Zufluß durch die Einlässe 25 in die Vormischkammern 2 groß ist, soll mit der über den Einlauf 8 in den Dispergierraum und von dort in die Vormischkammer 2 zugeführten Flüssigkeit eine große Eindringtiefe in die Vormischkammer erzielt werden.With geometry A12, a large volume of fluid can be pumped into the premixing chamber. Due to the narrowing of the holes in the direction of the premixing chamber, an injector effect is simultaneously achieved, which leads to high turbulences in the premixing chamber. The geometry B12, however, leads to a lower penetration depth. In general, if the inflow through the
In
Der Rotor 4 trägt Rotorzähne 5. Drehen sich die Rotozähne 5 unter dem Übergangsstück 3 hinweg, entstehen Bereiche mit einem Überdruck vor dem Rotorzahn, so daß Flüssigkeit aus dem Dispergierraum durch die Kanäle 31 in die Vormischkammer 2 gefördert wird. Während die Flüssigkeit am Rotorzahn entlang in Richtung auf das Übergangsstück beziehungsweise die Vormischkammer gefördert wird, kann es bei der Passage des Rotorzahns, dessen Geometrie weiter unten näher beschrieben wird, zur Ausbildung von Jet-Streams und Unterdrücken kommen. Mit "Jet-Stream" wird in Anlehnung an den meteorologischen Fachbegriff eine strahlförmig ausgerichtete Strömung bezeichnet, in welcher die Strömungsgeschwindigkeit deutlich höher als in der Umgebung des Jet-Streams ist.The
Die in
In
In
In
Der Stator 1 bildet zusammen mit einem Rotor ein Rotor-Stator-System gemäß der Erfindung. In radialer Richtung gesehen von der Rotationsachse des Rotors aus besteht zwischen dem Rotor und dem Stator ein Spalt. Die Breite dieses Spaltes beträgt etwa 0,1 mm bis etwa 1,5 mm. Die Spaltweite wird der Dispergieraufgabe angepaßt.The
Werden Vormischkammern sowohl über dem inneren als auch über weiter außen liegenden Zahnkränzen des Rotors vorgesehen, um bei einem einzigen Durchlauf durch das Rotor-Stator-System Medien mit relativ hoher Viskosität innen und Medien mit relativ geringer Viskosität außen zuzugeben, kann die Spaltweite von beispielsweise 0,35 mm bei Zugabe über gleich weit von der Zentrumsachse entfernten Vormischkammern auf 0,8 mm erhöht werden, um größere Tröpfchen zu erhalten.If premixing chambers are provided both above the inner and outer sprockets of the rotor in order to externally add relatively high viscosity media and relatively low viscosity media in a single pass through the rotor-stator system, the gap width can be, for example, 0 , 35 mm, when added via pre-mixing chambers equidistant from the center axis, should be increased to 0.8 mm to obtain larger droplets.
Ein solcher Rotor des erfindungsgemäßen Rotor-Stator-Systems kann beispielsweise wie der in
Zum Vergleich ist
In den
Die Außenmaße des Rotors und die Höhe der Rotorzähne werden in Abstimmung auf die Nennleistung des Motors und somit des Rotor-Stator-Systems gewählt. Die folgende Tabelle gibt einen beispielhaften Überblick über geeignete Kombinationen der genannten Parameter.
Rotor-Stator-Systeme können ein- oder mehrstufig ausgebildet sein, als Beispiel wird hier eine zweistufige Dispergiermaschine gezeigt. Es handelt sich um ein Rotor-Stator-System mit zwei Zahnkränzen des Rotors, einem inneren und einem äußeren Zahnkranz. Der innere Zahnkranz 424 weist 4 Rotorzähne auf. Der äußere Zahnkranz 423 weist acht Rotorzähne auf. Dieses Verhältnis 1 zu 2 ist gewählt um in der Maschine einen kontinuierlichen Druckaufbau von innen nach außen zu gewährleisten. Auch ein anderes Verhältnis, zum Beispiel 1 zu 3, bringt einen solchen Erfolg.Rotor-stator systems can be designed in one or more stages, as an example, a two-stage dispersing machine is shown here. It is a rotor-stator system with two sprockets of the rotor, an inner and an outer sprocket. The
Die Rotorzähne des inneren Zahnkranzes 424 haben eine Breite, gemessen in radialer Richtung von der Rotationsachse 14 aus, welche zirka doppelt so groß ist wie die Breite der Rotorzähne des äußeren Zahnkranzes 423 (siehe
Ein Rotorzahn 5 weist eine der Zentrumsachse 14 des Rotors 4 zugewandte Innenseite 51 und eine der Außenkante der Trägerscheibe 42 zugewandte Außenseite 52 auf. In Drehrichtung des Rotors 4 vorne liegend befindet sich die Vorderseite 53 des Rotors. In Drehrichtung des Rotors hinten liegend ist die Rückseite 54 des Rotorzahns. Auf der von der Trägerscheibe 42 abgewandten Seite wird ein Rotorzahn von der Oberseite 55 des Rotorzahns abgeschlossen. Die Rotorzähne des inneren Zahnkranzes haben einen Abstand d1 von der Zentrumsachse 14 des Rotors gesehen, welche kleiner ist als der Abstand d2 der Rotorzähne des äußeren Zahnkranzes 423.A
Die Vorderseite 53 eines Rotorzahns 5 ist gegenüber einer radial von der Rotationsachse 14 des Rotors 4 aus verlaufenden Bezugslinie 57 um einen Winkel α6 bezogen auf die Drehrichtung des Rotors nach hinten geneigt. In den gezeigten Ausführungsbeispielen ist die Rückseite 54 des Rotorzahns im wesentlichen senkrecht zur Trägerscheibe 42 orientiert. Die Rückseite des Rotorzahns kann jedoch auch beliebige andere Orientierungen aufweisen. Im Betrieb des Rotor-Stator-Systems bewirkt die Neigung der Vorderseite des Rotorzahns um den Winkel α6 eine radiale Beschleunigung des Produktes bei der Behandlung im Dispergierraum.The
Die Vorderseite 53 weist einen Bereich 56 auf, welche gegenüber der Senkrechten auf die Trägerscheibe 42 des Rotors 4 um einen Winkel α4 nach hinten geneigt ist. Durch den Versatz des Bereiches 56 der Vorderseite 53 um den Winkel α4 wird im Betriebszustand des Rotor-Stator-Systems auf das Fluid im Dispergierraum eine Druckkomponente aufgeprägt, welche das Fluid in Richtung des Statorkopfes und insbesondere in die Vormischkammern hinein fördert. Zudem wird durch die Neigung des Bereiches 56 der Vorderseite des Rotorzahns um den Winkel α4 beim Passieren der im wesentlichen quaderförmig und parallel zur Rotationsachse 14 verlaufenden Statorzähne der Turbulenzgrad der Strömung erhöht.The
Während vorzugsweise der Bereich 56 der Vorderseite, welcher um den Winkel α4 nach hinten geneigt ist, im unteren Bereich der Vorderseite, also der Trägerscheibe 42 zugewandt, angeordnet ist, weist der Rotorzahn 5 der in den
Gemäß der Modellvorstellung ist der Jet-Stream besonders dort stark ausgeprägt, wo die Rotorzähne Bereiche des Statorkopfes passieren, welche nicht in eine Vormischkammer übergehen. Durch die mehrteilige Ausbildung der Vorderseite 53 mit den um die Winkel α4 beziehungsweise α5 geneigten Bereiche 56 und 58 wird eine zusätzliche Dispergierkante am Rotorzahn bereitgestellt. Durch die zusätzliche Dispergierkante wird die Effizienz der Dispergierung gegenüber einem Rotorzahn mit lediglich einer Kante am Übergang der Vorderseite in die Oberseite des Rotorzahns erhöht.According to the model presentation, the jet stream is particularly pronounced where the rotor teeth pass through regions of the stator head which do not pass into a premixing chamber. Due to the multi-part design of the
Zwischen der von der Trägerseite 42 abgewandten oberen Begrenzung der Rückseite 54 des Rotorzahns 5 und der oberen Begrenzung des oberen Bereichs 58 der Vorderseite 53 des Rotorzahns verläuft die Oberseite 55 des Rotorzahns. Gemäß den in den
In Bezug auf die Gestaltung des Rotorzahnes bieten sich unterschiedliche Möglichkeiten, durch die Formgebung die Strömungsverhältnisse im Dispergierraum beim Betrieb des Rotor-Stator-Systems zu beeinflussen und dabei insbesondere die Vorraussetzungen für einen erhöhten Turbulenzgrad im Vergleich zu herkömmlichen Bauformen (siehe
Die Rotorzähne sind durch die oben beschriebene Konstruktion so ausgelegt, daß sowohl eine radiale Förderrichtung durch den Dispergierraum entsteht, welche insbesondere durch den Winkel α6 realisiert wird, als auch eine axiale Druckkomponente auf den Stator hin, hier also aus dem Dispergierraum in die Vormischkammer, welche insbesondere durch den Winkel α4 realisiert wird. Passiert ein Rotorzahn den Übergang zwischen den Vormischkammer und dem Dispergierraum, entsteht äußerst schnell, beispielsweise im Bereich von Millisekunden, an jedem Rotorzahn ein Über- sowie ein Unterdruck, der an das Fluid in der Vormischkammer weitergegeben wird, wodurch in der Vormischkammer starke Verwirbelungen der beiden Phasen ineinander entstehen. Durch die Absenkung der Oberseite 55 des Rotorzahns in Bezug auf die Bezugslinie 45, wird ein Unterdruck erzeugt, so daß Fluid gleichzeitig aus der Vormischkammer in den Dispergierraum gezogen wird.The rotor teeth are designed by the construction described above so that both a radial conveying direction is formed by the dispersing, which is in particular realized by the angle α 6 , as well as an axial pressure component on the stator out, so here from the dispersing into the premixing chamber, which is realized in particular by the angle α 4 . If a rotor tooth passes the transition between the premixing chamber and the dispersion chamber, an overpressure and a negative pressure are generated very rapidly, for example in the region of milliseconds, at each rotor tooth, which is passed on to the fluid in the premixing chamber, as a result of which strong turbulences of the two Phases emerge into each other. By lowering the
In
Das Volumen der über die Vormischkammern zudosierten zweiten Komponente beziehungsweise weiteren Komponenten hängt hauptsächlich von den gewählten Einstellungen der Pumpen im Zulauf 25 ab. Beispielsweise über eine Kombination dieser Pumpen mit einem Frequenzumrichter kann die gewünschte Pumpeneinstellung vorgegeben werden. Durch Positionieren eines Durchflußmessers im Zulauf 25 kann der dem Dispergierraum zugeführte Volumenstrom über den Zulauf 25 angezeigt werden.The volume of the second component or further components metered in via the premixing chambers depends mainly on the selected settings of the pumps in the
In
In
In Bild 14a ist ein Rotorzahn mit flacher Ausfräsung der Oberseite dargestellt. Ein solche Gestaltung wird typischerweise für geringe bis mitterle Zugabemengen der über den Einlaß 25 über die Vormischkammer zugeführten Komponenten der herzustellenden Dispersion verwendet. Geringe bis mittlere Zugabemengen entsprechen einem Anteil der betreffenden Komponente an der fertigen Dispersion von etwa 5 Vol.-% bis etwa 30 Vol.-%.Figure 14a shows a rotor tooth with a flat cutout on the top side. Such a design is typically used for small to moderate amounts of addition to the components of the dispersion to be made via the
Der in Figur 18a dargestellte Rotorzahn 5 zeigt zudem einen fließenden Übergang von der Trägerscheibe 42 des Rotors zum Rotorzahn im unteren Bereich seiner Vorderseite 53. Durch eine derart fließende Gestaltung am Ursprung der Vorderseite des Rotorzahns aus der Trägerscheibe reduzierten Totzonen für das Fluid im Dispergierraum. In Figur 18b ist ein Rotorzahn gemäß einer weiteren Ausführungsform mit einer im Vergleich zu dem in Figur 18a dargestellten Rotorzahn sehr tiefen Einbuchtung der Oberseite 55 des Rotorzahns gezeigt. Eine solche Gestaltung kann für mittlere bis große Zugabemengen der über den Zulauf 25 durch die Vormischkammern in den Dispergierraum zugeführten Komponenten der Dispersion verwendet werden. Mittlere bis große Zugabemengen der entsprechenden Komponente bedeuten einen Anteil dieser Komponente im Bereich zwischen mehr als etwa 30 Vol.-% und etwa 80 Vol.-% der herzustellenden Dispersion.The
Mit den in
Nach dem ersten Kontakt der beiden Phasen der Emulsion in der Vormischkammer (Beginn ganz links in
Sobald durch den Kontakt der dispersen Phase mit der kontinuierlichen Phase eine Grenzfläche zwischen den lipophilen und wässrigen Fluiden bereitgestellt wird, beginnen die Emulgatormoleküle, sich an dieser Grenzfläche anzulagern. Beim Durchlaufen der Vormischkammer werden die zunächst großen Tropfen der dispersen Phase weiter zerkleinert. Dabei lagern sich zunehmend Emulgatormoleküle an der Grenzfläche zwischen disperser und kontinuierlicher Phase an. Die Zerkleinerung der Tropfen und die Stabilisierung der Grenzfläche durch Emulgatormoleküle setzt sich beim Durchlaufen des Dispergierraums 7 fort. Auch während des Durchströmens der den Dispergierraum 7 verlassenden Emulsion durch den Auslaß 9 kann der Vorgang der Stabilisierung der gebildeten Tröpfchen durch Emulgatormoleküle fortgesetzt werden.As soon as an interface between the lipophilic and aqueous fluids is provided by the contact of the disperse phase with the continuous phase, the emulsifier molecules begin to accumulate at this interface. When passing through the premixing the first large drops of disperse phase further crushed. Emulsifier molecules increasingly accumulate at the interface between the disperse and continuous phases. The comminution of the droplets and the stabilization of the interface by emulsifier molecules continue as they pass through the
Zum Ablauf der Zerkleinerung der zunächst großen Tropfen der dispersen Phase insbesondere beim Durchlaufen der Vormischkammer wurde des Weiteren eine detailliertere Modellvorstellung entwickelt. Demnach erfolgt die Deformatin und der Aufbruch der Tropfen zumindest teilweise unter Beteiligung Bäcker-Transformation (siehe zum Beispiel
Die Modellvorstellung zur Deformation von Fluidelementen durch die Bäcker-Transformation ist in
Die Darstellung für die Modellvorstellung zur Deformation von Fluidelementen geht von einem betrachteten Fluidelement in umgebenden Medium aus
In
Diese intensive Mischung der dispersen und der kontinuierlichen Phase in der Vormischkammer wird durch das Zusammenwirken mit den Rotoren begünstigt, wenn die äußere Phase durch die axiale Komponente der Strömungsrichtung an den Rotorzähnen in die Vormischkammer nach Art eines Injektors hineingedrückt wird. Der dabei entstehende Strahl schneidet die disperse Phase zu Schlieren, die durch die schlagartige Richtungsumkehr (Unterdruck) gefaltet werden. Das Prinzip läßt sich wie das Kneten eines Pizza-Teiges verstehen, wobei die äußere Phase in die Schliere eingebettet wird. Der Schlüssel für das Ziehen und Falten der Fluidelemente liegt in dem durch die Erfindung ermöglichten schlagartigen Wechseln zwischen Über- und Unterdruck an jeder Öffnung der Vormischkammer.This intensive mixing of the disperse and continuous phases in the premixing chamber is promoted by cooperation with the rotors when the outer phase is forced through the axial component of the flow direction at the rotor teeth into the premixing chamber in the manner of an injector. The resulting jet cuts the disperse phase to streaks, which are folded by the sudden reversal of direction (negative pressure). The principle can be understood as the kneading of a pizza dough, wherein the outer phase is embedded in the streak. The key to pulling and folding the fluid elements lies in the sudden alternation of positive and negative pressure at each opening of the premixing chamber made possible by the invention.
Ein Zweck der Vormischkammer ist die Minimierung von unregelmäßiger Tröpfchenbildung vor der Hochenergie-Dispergierung im Dispergierraum. Eine feine, homogene Rohemulsion beziehungsweise Rohdispersion verhindert eine Überkonzentration von Tröpfchen (Clusterbildung) und garantiert eine feine, homogene Emulsion beziehungsweise Dispersion nach der Hochenergie-Zone, speziell bei einem Durchgang (inline). Demgegenüber birgt eine Überkonzentration von Tröpfchen die Gefahr einer Phasenumkehr.One purpose of the premixing chamber is to minimize irregular droplet formation prior to high energy dispersion in the dispersing space. A fine, homogeneous crude emulsion or raw dispersion prevents over-concentration of droplets (clustering) and guarantees a fine, homogeneous emulsion or dispersion after the high-energy zone, especially in one pass (inline). In contrast, an over-concentration of droplets involves the risk of a phase reversal.
Ein weiterer Zweck der Vormischkammer ist es, den Dispergiervorgang in einem Durchgang zu erreichen, ohne daß sich der Emulgator vor oder beim Dispergieren voll um die Tröpfchen legt. Somit wird ein wontinuierliches Aufbrechen der Tröpfchen erreicht, während der Emulgatorfilm noch nicht vollständig ist. Dies führt zu höherer Effizienz beim Tropfenaufbruch und zu kleineren Tröpfchen und ist besonders wichtig bei Stoffsystemen mit hohen Viskositätsunterschieden zwischen disperser und kontinuierlicher Phase.Another purpose of the premixing chamber is to achieve the dispersing operation in one pass without the emulsifier settling completely around the droplets before or during dispersing. Thus, a discontinuous breakup of the droplets is achieved while the emulsifier film is not yet complete. This results in higher droplet breakup efficiency and smaller droplets, and is particularly important in fabric systems with high viscosity differences between disperse and continuous phases.
Die oben beschriebene Vormischkammer kann nicht nur in Statoren für Rotor-Stator-Systeme von Dispergiermaschinen, sondern auch in Pumpen, Rührwerken und ähnlichen Apparaten, in welchen mehrere zumindest teilweise flüssige Komponenten miteinander vermischt werden sollen, eingesetzt werden. In
Die Vormischkammer wird auf der druckerzeugenden Seite des Apparates angebracht. Durch den Überdruck des bewegten Teiles, also beispielsweise des Rotors oder des Rührers oder der bewegten Pumpenkomponente, wird die geförderte Komponente der Dispersion in die Vormischkammer gedrückt. Der Wechsel von Überdruck und Unterdruck in Folge der Bewegung des Dispergierelements beziehungsweise des bewegten Pumpenteils, drückt beziehungsweise saugt das zunehmend homogenisierte Vorgemisch aus der Vormischkammer.The premix chamber is mounted on the pressure generating side of the apparatus. Due to the overpressure of the moving part, that is, for example, the rotor or the stirrer or the moving pump component, the pumped component of the dispersion is forced into the premixing chamber. The change of overpressure and negative pressure as a result of the movement of the dispersing element or the moving pump part, presses or sucks the increasingly homogenized premix from the premixing chamber.
Bei sehr hochviskosen Produkten kann nach dem Durchlauf durch eine mit einer Vormischkammer ausgerüsteten Pumpe, eine Nachvermischung durchgeführt werden. Dazu können beispielsweise statische Mischer oder Rührwerktanks und ähnliche Anordnungen eingesetzt werden.In the case of very high-viscosity products, after passing through a pump equipped with a premixing chamber, a post-mixing can be carried out. For this example, static mixers or Rührwerktanks and similar arrangements can be used.
Die Zuführung von Komponenten in die Vormischkammern erfolgt durch Zulaufrohre entsprechend den Zuläufen 25 in
In
Eine Dispergiermaschine mit einem Rotor und einem Stator hat eine Nennleistung von 30 kW. Der Rotor hat einen Außendurchmesser von etwa 175 mm. Der Stator weist vier Vormischkammern auf, welche über dem inneren der beiden Rotorkränze des Rotors angeordnet sind. Die Vormischkammern haben eine Länge von jeweils etwa 10 cm, gemessen entlang der Hauptausdehnungsrichtung der Vormischkammern. Senkrecht zur Hauptausdehnungsrichtung sind sie etwa 1,2 cm breit. Sie haben eine mittlere Tiefe von etwa 2 cm, gemessen vom Übergangsbereich der Vormischkammer in den Dispergierraum aus, in das Innere des Stators hinein. Jede Kammer hat ein Volumen von etwa 24 cm3 . A dispersing machine with a rotor and a stator has a rated power of 30 kW. The rotor has an outer diameter of about 175 mm. The stator has four premix chambers, which are arranged above the inner of the two rotor crowns of the rotor. The premix chambers each have a length of about 10 cm, measured along the main extension direction of the premix chambers. Perpendicular to the main extension direction, they are about 1.2 cm wide. They have an average depth of about 2 cm, measured from the transition region of the premixing chamber into the dispersing chamber, into the interior of the stator. Each chamber has a volume of about 24 cm 3 .
Es wird angenommen, das dieses Volumen von jedem in Betrieb des Rotor-Stator-Systems die Vormischkammer passierenden Rotorzahn ausgewaschen wird. Das bedeutet bei 3000 Umdrehungen/Minute und vier Zähnen auf dem inneren Rotorkranz einen Durchsatz von 288.000 cm3/Min oder 0,288 m3/Min oder 17,3 m3/h für jede Vormischkammer.It is believed that this volume is washed out by any rotor tooth passing through the premix chamber during operation of the rotor-stator system. This means a throughput of 288,000 cm 3 / min or 0.288 m 3 / min or 17.3 m 3 / h for each pre-mixing chamber at 3000 revolutions / minute and four teeth on the inner rotor ring.
Bei einem Konzentrationsverhältnis der über die Vormischkammern zugeführten (bei einer Emulsion beispielsweise inneren) Phase zu der im Dispergierraum vorgelegten (am Beispiel einer Emulsion äußeren) Phase von 40 Vol.-% können somit 7 m3/h innere Phase pro Vormischkammer verarbeitet werden. Dies ergibt bei vier Vormischkammern ein mögliches einzubringendes Volumen von 28 m3 in jeder Stunde. Damit ist die Dispergiermaschine herkömmlichen Apparaten weit überlegen.At a concentration ratio of the fed via the premixing chambers (in an emulsion, for example, internal) phase to that in the dispersion Thus, 7 m 3 / h of internal phase per premixing chamber can be processed in this way (40% by volume on the example of an emulsion). This results in four premix chambers a possible volume to be introduced of 28 m 3 in each hour. Thus, the dispersing machine is far superior to conventional apparatus.
Für das Verdünnen von Substanzen mit Wasser, wobei ein Übergangszustand durchlaufen wird, in welchem eine dispersionsartiges System aus der Substanz und Wasser vorliegt, bieten sich weitere Vorteile. Ein Beispiel für solche Substanzen sind waschaktive Substanzen (WAS) wie zum Beispiel AE3S 70%, LES 70% und ähnliche Substanzen. Diese Rohstoffe müssen in einem Durchgang durch die für das Verdünnen eingesetzte Maschine auf einen Volumenanteil von unter 30% in Wasser verdünnt werden, da sich sonst eine hexagonale Phase einstellen kann, welche eine Viskosität aufweisen kann, die um den Faktor 10 höher ist als die Viskosität des ursprünglichen Rohstoffes.For the dilution of substances with water, wherein a transition state is passed, in which a dispersion-like system of the substance and water is present, there are further advantages. An example of such substances are detergent-active substances (WAS) such as AE3S 70%, LES 70% and similar substances. These raw materials must be diluted in one pass through the machine used for dilution to a volume fraction of less than 30% in water, otherwise a hexagonal phase can occur, which may have a viscosity which is higher by a factor of 10 than the viscosity of the original raw material.
Herkömmliche Maschinen weisen oft das Problem auf, dass die zu verdünnende Substanz nicht genügend mit Wasser in Kontakt gebracht werden kann, so dass örtlich Überkonzentrationen in Bereichen entstehen, wo die beiden Phasen zusammengeführt werden. Diese örtlichen Überkonzentrationen führen beim Verdünnen von waschaktiven Substanzen mit Wasser zu so genannten Fischaugen (hexagonale Phase), die sich im weiteren Verlauf nur schwer wieder aufschließen lassen. Die Kapazitäten der herkömmlichen Dispergiermaschinen zum Verdünnen von waschaktiven Substanzen sind somit äußerst gering. Durch die Vormischkammer dagegen, kann den besonderen Anforderungen des Verdünnens von waschaktiven Substanzen mit Wasser Rechnung getragen werden und die gewünschte Kapazität flexibel angepaßt werden.Conventional machines often have the problem that the substance to be diluted can not be sufficiently brought into contact with water, so that local over-concentration occurs in areas where the two phases are brought together. These local excess concentrations lead to the dilution of washing-active substances with water to so-called fish eyes (hexagonal phase), which are difficult to re-open in the further course. The capacities of conventional dispersing machines for diluting washing-active substances are thus extremely low. By the premixing chamber, however, can the particular requirements of the dilution of detergent substances with water are taken into account and the desired capacity can be flexibly adapted.
Hochkonzentrierte waschaktive Substanzen mit einem Anteil von 70 Vol.-% der Substanz in Wasser gelöst (WAS 70%) wie AE3S, LES oder ähnliche, werden in einem Standardcontainer von etwa 23.000 kg angeliefert. Die Entladezeit liegt bei ca. 60 bis 90 Minuten und ist begrenzt durch die Rohranschlüsse der Container und die hohe Viskosität des Produkts. Die WAS wird in Lagertanks zwischengelagert und dann kontinuierlich auf eine Konzentration von 25 Vol.-% waschaktiver Substanz in Wasser verdünnt. Für die Produktion wird die derart verdünnte waschaktive Substanz in anderen Lagertanks bereitgehalten.Highly concentrated washing-active substances with a content of 70% by volume of the substance dissolved in water (WHAT 70%) such as AE3S, LES or similar, are delivered in a standard container of about 23,000 kg. The unloading time is about 60 to 90 minutes and is limited by the pipe connections of the containers and the high viscosity of the product. The WAS is stored in storage tanks and then continuously diluted to a concentration of 25% by volume of wash-active substance in water. For production, the detergent substance diluted in this way is stored in other storage tanks.
Traditionelle kontinuierliche Verdünnungsanlagen sind teuer. Damit sich die Kosten in Grenzen halten, wird die Größe auf den Bedarf eingestellt. Bei Änderungen der Anwendungen ist der Nutzer somit durch die vorhandene Verdünnungsanlage limitiert.Traditional continuous dilution systems are expensive. To keep the costs within limits, the size is adjusted to the needs. When changing the applications, the user is thus limited by the existing dilution system.
Eine Anlage mit Vormischkammern dagegen ist in der Lage, die zuzuführende Menge von waschaktiver Substanz für die Verdünnung direkt aus dem Container, in welchem die Substanz angeliefert wird, in einem kontinuierlichen Prozess zu verdünnen. Nach Bedarf kann auch ein Batch-Verfahren angewendet werden, wozu dann eine entsprechend kleinere Maschine mit Vormischkammern eingesetzt wird. Zum Beispiel können mit einer Dispergiermaschine 455 kg/Min Wasser unter Kontrolle durch einen Durchflußmesser dem Stator zugeführt werden, so dass dieser Volumenstrom an Wasser in den Dispergierraum gelangt.By contrast, a system with premixing chambers is able to dilute the quantity of washing-active substance to be supplied for dilution directly from the container in which the substance is delivered, in a continuous process. If required, a batch process can also be used, for which purpose a correspondingly smaller machine with premixing chambers is used. For example, with a dispersing machine, 455 kg / min of water may be supplied to the stator under the control of a flow meter, so that this volume of water passes into the dispersing space.
Durch die Zuläufe zu Vormischkammern werden 255 kg/Min waschaktive Substanz zugepumpt. In einem Durchlauf ist die waschaktive Substanz dann auf einen Volumenanteil von 25% verdünnt. Für diese Anwendung kann die kommerziell erhältliche Dispergiermaschine des Anmelders LEXA-MIX LM30, mit einer Nennleistung von 30 kW eingesetzt werden. Die Verarbeitung solch hoher Rohstoffmengen, sowohl im kontinuierlichen als auch im Batch-Prozess ist mit herkömmlichen Dispergiermaschinen, welche einen Durchsatz von 25-80 kg/Min an zu dispergierender Substanz ermöglichen, nicht möglich.Through the feeds to Vormischkammern 255 kg / min detergent substance are pumped. In one run, the detergent-active substance is then diluted to a volume fraction of 25%. For this application, the commercially available dispersing machine of the applicant LEXA-MIX LM30, with a nominal power of 30 kW can be used. The processing of such high amounts of raw material, both in continuous and in batch process is not possible with conventional dispersing machines, which allow a throughput of 25-80 kg / min of substance to be dispersed.
Des Weiteren ergibt sich der Vorteil, die Investitionskosten deutlich senken zu können. Die Anschaffungskosten für eine typische kontinuierliche Anlage zum Verdünnen waschaktiver Substanzen kostet im Jahr 2008 ca. 180.000,- EUR. Die genannte LEXA-MIX Dispergiermaschine dagegen hat Anschaffungskosten von lediglich 50.000,- EUR im Jahr 2008.Furthermore, there is the advantage of being able to significantly reduce the investment costs. The acquisition cost of a typical continuous plant for diluting washing-active substances in 2008 will cost about 180,000, - EUR. The mentioned LEXA-MIX dispersing machine, on the other hand, has a purchase cost of only 50.000, - EUR in the year 2008.
Eine weitere Anwendungsmöglichkeit besteht im kontinuierlichen Herstellen von Emulsionen mit einem großen inneren Phasenanteil, sogenannten HIP-Emulsionen (High Internal Phase-Emulsion), wie zum Beispiel Mayonnaise. Im betrachteten Beispiel werden 10.000 kg/h Mayonnaise mit einer Wasserphase von 20 Vol.-% und einer Ölphase von 80 Vol.-% hergestellt. Die Ölphase bildet die disperse Phase einer Öl-in-Wasser-Emulsion. Wasserphase und Ölphase werden der Maschine im richtigen Mengenverhältnis kontrolliert über Durchflußmesser über die Zuläufe zur Vormischkammer (Ölphase) und durch den Stator in den Dispergierraum (Wasserphase) zugeführt.Another application is the continuous production of emulsions with a large internal phase fraction, so-called HIP emulsions (high internal phase emulsion), such as mayonnaise. In the example considered, 10,000 kg / h of mayonnaise with a water phase of 20% by volume and an oil phase of 80% by volume are produced. The oil phase forms the disperse phase of an oil-in-water emulsion. Water phase and oil phase are the machine in the correct proportion controlled via flow meter via the feeds to the premixing chamber (oil phase) and fed through the stator in the dispersion (water phase).
Soll eine große Menge Öl in eine im Verhältnis kleine Menge Wasser eingearbeitet werden, muss eine große Grenzfläche zwischen den beiden Phasen geschaffen werden. Das kontinuierliche Erzeugen einer solch großen Grenzfläche verbunden mit einer gewünschten homogenen Verteilung der Öltröpfchen in der Wasserphase wird durch die Dispergiermaschine mit Vormischkammer möglich. Falls erforderlich kann eine zweite Dispergiermaschine, welche mit einer ersten in Reihe geschaltet wird, dazu genutzt werden, weitere Zusatzstoffe wie zum Beispiel Zitronensaft kontinuierlich in die in der ersten Dispergiermaschine hergestellte Emulsion einzubringen.If a large amount of oil is to be incorporated into a relatively small amount of water, a large interface between the two phases must be created. The continuous production of such a large interface combined with a desired homogeneous distribution of the oil droplets in the water phase is made possible by the pre-mixing chamber dispersing machine. If necessary, a second dispersing machine, which is connected in series with a first, can be used to continuously introduce further additives, such as lemon juice, into the emulsion prepared in the first dispersing machine.
Die Dispergiermaschine kann insbesondere so ausgelegt werden, dass sie ein größeres Volumen, zum Beispiel das drei- bis fünffache des eigentlichen Produktionsvolumen, in einem Bypass umpumpt, um eine optimale Homogenität des Produktes zu erreichen.In particular, the dispersing machine can be designed such that it circulates a larger volume, for example three to five times the actual production volume, in a bypass in order to achieve optimum homogeneity of the product.
Sämtliche Rohrleitungen der Dispergiermaschine können kühlbar ausgestaltet sein. Eine Kühlung ist in der Regel jedoch nicht nötig, da sich die Wärmeentwicklung durch die großen Durchsätze und geringen Verweilzeiten für die meisten Produkte in Grenzen hält.All piping of the dispersing machine can be made coolable. However, cooling is usually not necessary because heat generation is limited by the large throughputs and low residence times for most products.
Beim Einbringen von größeren Wassertröpfchen als Tropfen mit geringer Viskosität in ein deutlich festeres Make-up auf Basis von Silikon sollen die Tröpfchen der Wasserphase einen mittleren Durchmesser von etwa 100 µm (Mikrometer) haben, damit beim Auftragen des Make-ups die Feuchte der Wasserphase als Frischegefühl spürbar ist. Die Silikonbasis des Make-ups führt jedoch dazu, dass mit zunehmender Scherung das Make-up eine immer höhere Viskosität erhält (Shear-Thickening). In Folge dessen würde beim Verteilen des Make-ups immer kleinere Wassertröpfchen erzeugt. Dies ist nicht erwünscht.When introducing larger water droplets as drops with low viscosity in a much firmer make-up based on silicone, the droplets of the water phase should have a mean diameter of about 100 microns (microns), so that when applying the make-up the moisture Water phase is perceived as a feeling of freshness. However, the silicone base of the make-up means that with increasing shear, the make-up always receives a higher viscosity (shear-thickening). As a result, smaller and smaller droplets of water would be created as you spread your make-up. This is not wanted.
Durch einen Einsatz einer Dispergiermaschine mit Vormischkammern kann bei mittleren Umfangsgeschwindigkeiten, welche im Bereich von etwa 10 m/s bis etwa 20 m/s liegen, die Silikonbasismasse über ein Übergangsstück mit der Gestalt B10 (vergleiche
Es ist dem Fachmann ersichtlich, dass die Erfindung nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt ist, sondern vielmehr in vielfältiger Weise variiert werden kann. Insbesondere können die Merkmale der einzelnen Ausführungsbeispiele auch miteinander kombiniert oder gegeneinander ausgetauscht werden.It will be apparent to those skilled in the art that the invention is not limited to the embodiments described above, but rather can be varied in many ways. In particular, the features of the individual embodiments can also be combined or replaced with each other.
- 11
- Statorstator
- 1111
- Statorkopfstator head
- 123123
- äußerer Zahnkranz des Statorsouter ring gear of the stator
- 124124
- innerer Zahnkranz des Statorsinner ring gear of the stator
- 1212
- StatorrumpfStatorrumpf
- 1414
- Längsachse des Stators = Rotationsachse des Rotors = Zentrumsachse des RotorsLongitudinal axis of the stator = axis of rotation of the rotor = center axis of the rotor
- 1515
- Einlaß, Zulauf aus einem Vorlagebehälter in den DispergierbereichInlet, feed from a feed tank into the dispersion area
- 1717
- Dispergierbereich des StatorsDispersion area of the stator
- 22
- Vormischkammerpremix
- 2525
- Zulauf, Einlauf in die VormischkammerInlet, inlet into the premixing chamber
- 2727
- Übergang der Vormischkammer zum DispergierbereichTransition of the premixing chamber to the dispersion area
- 2828
- Umfangslinie des Übergangs der Vormischkammer zum DispergierbereichCircumferential line of the transition of the premixing chamber to the dispersion area
- 33
- Übergangsstück, Ejektor, InjektorTransition piece, ejector, injector
- 3131
- Öffnungen, Schlitze, Löcher im ÜbergangsstückOpenings, slots, holes in the transition piece
- 3232
- Hauptausdehnungsrichtung des ÜbergangsstücksMain expansion direction of the transition piece
- 3333
- Lochachsehole axis
- 3434
- Senkrechte auf das ÜbergangsstückVertical to the transition piece
- 3535
- Mantelfläche der Öffnung im ÜbergangsstückLateral surface of the opening in the transition piece
- 3636
- erster Teilbereich der Mantelflächefirst portion of the lateral surface
- 3737
- weiterer Teilbereich der Mantelflächefurther subregion of the lateral surface
- 3838
- Schnittflächesection
- 3939
- Stegweb
- 44
- Rotorrotor
- 423423
- äußerer Zahnkranz des Rotorsouter ring gear of the rotor
- 424424
- innerer Zahnkranz des Rotorsinner sprocket of the rotor
- 4242
- Trägerscheibe des RotorsCarrier disk of the rotor
- 4545
- Parallele zur Hauptausdehnungsfläche der TrägerscheibeParallel to the main expansion surface of the carrier disk
- 55
- Rotorzahnrotor tooth
- 5151
- Innenseite des RotorzahnsInside of the rotor tooth
- 5252
- Außenseite des RotorzahnsOutside of the rotor tooth
- 5353
- Vorderseite des RotorzahnsFront of the rotor tooth
- 5454
- Rückseite des RotorzahnsRear of the rotor tooth
- 5555
- Oberseite des RotorzahnsTop of rotor tooth
- 5656
- Bereich der Vorderseite, welcher nach hinten geneigt istArea of the front, which is inclined backwards
- 5757
- Bezugsliniereference line
- 5858
- oberer Bereich der Vorderseiteupper area of the front
- 5959
- unterer Bereich der Vorderseitelower area of the front
- 66
- Rotor-Stator-SystemRotor-stator system
- 77
- Dispergierraumdispersion chamber
- 88th
- Einlaß für ein Fluid in eine Dispergiermaschine oder eine PumpeInlet for a fluid in a dispersing machine or a pump
- 8181
- Einlaß für ein weiteres Fluid in eine Dispergiermaschine oder eine PumpeInlet for another fluid in a dispersing machine or a pump
- 8282
- Einlaß für ein weiteres Fluid in eine Dispergiermaschine oder eine PumpeInlet for another fluid in a dispersing machine or a pump
- 99
- Auslaß eines Fluids aus einer Dispergiermaschine oder einer PumpeOutlet of a fluid from a dispersing machine or a pump
- 1010
- Dispergiermaschinedispersing
- 101101
- erster Vorlagebehälterfirst storage tank
- 102102
- zweiter Vorlagebehältersecond storage tank
- 109109
- Schnellverschluß zum Wechseln des StatorkopfesQuick release for changing the stator head
- 112112
- Ringkanal, Spalt zwischen äußerstem Zahnkranz des Stators und dem Gehäuse der DispergiermaschineAnnular channel, gap between the extreme toothed ring of the stator and the housing of the dispersing machine
- 113113
- Gehäusecasing
- 115115
- Antriebswelle für den RotorDrive shaft for the rotor
- 116116
- Motorengine
- 117117
- Dichtung, mechanische DichtungSeal, mechanical seal
- 118118
- Dichtung, O-Ring, statische DichtungSeal, O-ring, static seal
Claims (9)
- Rotor-stator system (6) for the production and/or treatment of dispersions having a stator (1)
with a dispersion zone (17), which, with a rotor (4) corresponding with the stator (1) defines a dispersion compartment (7) of the rotor-stator systems (6), and
with an inlet (15) for feeding a first component of a dispersion into the dispersion zone (17)
wherein the inside of the stator accommodates at least one premixing chamber (2) outside the dispersion zone (17), which opens into the dispersion zone (17),
the stator (1) having at lease one inlet (25) for feeding another component of the dispersion from outside the stator (1) into the premixing chamber (2), and
the stator (1) being designed so that during operation of the stator, components of the dispersion enter the premixing chamber (2) from the dispersion zone (17) and from the inlet (25), are mixed in said premixing chamber (2), and exit from the premixing chamber (2) into the dispersion zone (17)
characterized in that
a transition piece (3) is arranged between the premixing chamber (2) and the dispersion zone (17) which is designed like a perforated plate, and provides one or a plurality of circular and/or polygonous openings, and/or a slot or a plurality of slots as holes (31). - Rotor-stator-system (6) according to claim 1,
characterized in that
the stator (1) has at least two premixing chambers (2), each providing one inlet (25) for feeding a component of the dispersion from outside the stator (1) into the relevant premixing chamber (2),
and/or that
the premixing chamber (2) curves into the stator (1) from the transition to the dispersion zone (17),
and/or that
the premixing chamber (2) has the shape of a strip-like section of a circle segment at the transition to the dispersion zone (17), this section, in particular, having a continuously curved circumferential line (28),
and/or that
the transition of the premixing chamber (2) to the dispersion zone (17) is positioned at such a radial distance from the longitudinal axis (14) of the stator, which is identical with the axis of rotation of the rotor (4) corresponding with the stator (1), that the premixing chamber (2) is positioned above a dispersion tool, in particular a tooth ring (423, 424) of the rotor, when the stator (1) is combined with the corresponding rotor (4) to form the rotor-stator system (6),
and/or that
the transition of the premixing chamber (2) to the dispersion zone (17) is positioned at such a radial distance from the longitudinal axis (14) of the stator (1) which is identical with the axis of rotation of the rotor (4) corresponding with the stator (1), that the premixing chamber (2) is positioned at least above the inner dispersion tool, in particular the inner tooth ring (424), of a rotor with more than one dispersion tools, when the stator (1) is combined with the corresponding rotor (4) to form the rotor-stator system (6). - Rotor-stator-system (6) according to claim 1 or 2,
characterized in that
the stator (1) has at least two premixing chambers (2) that are positioned at different radial distances from the longitudinal axis (14) of the stator. - Rotor-stator-system (6) according to any of the claims 1 to 3,
characterized in that
the transition piece (3) takes up part of, or the complete area of the transition between the premixing chamber (2) and the dispersion zone (17),
and/or that
the transition piece (3) has the shape of a strip-like section of a circle segment. - Rotor-stator-system (6) according to any of the preceding claims, characterized in that
the transition piece (3) comprises a slot or a plurality of slots as holes (31) with
several slots being essentially arranged at right angles with the main direction of expansion (32) of the transition piece (3),
or that
the transition piece (3) comprises several slots as holes (31) with several slots preferably being essentially arranged at right angles with the main direction of expansion (32) of the transition piece (3), and with the holes (31) passing through the transition piece (3) are arranged along a hole axis (33), which together with the line perpendicular to the transition piece (3) forms and angle,
in particular an angle within the range between about 10° and about 80°, preferably within the range between about 30° and about 60°, and especially preferably an angle of about 45°,
and/or that
the transition piece (3) comprises several slots as holes (31) with several slots preferably being essentially arranged at right angles with the main direction of expansion (32) of the transition piece (3),
and with the holes (31) passing through the transition piece (3) are arranged along a hole axis (33), which together with the line perpendicular to the transition piece (3) forms and angle,
in particular an angle within the range between about 10° and about 80°, preferably within the range between about 30° and about 60°, and especially preferably an angle of about 45°,
and/or that
the holes (31) through the transition piece (3) are delimited by a lateral area (35) with a first partial area (36) and at least one additional partial area (37),
at least one partial area (36, 37) running along an intersecting plane which together with the line perpendicular to the transition piece (3) forms an angle,
in particular an angle within the range between about 10° and about 80°, preferably within the range between about 30° and about 60°, and especially preferably an angle of about 45°,
and/or that
at least one premixing chamber (2) is designed in the stator (1) in particular in the stator head (11), such that a transition piece (3) can be fitted to the stator head so that it delimits said cavity. - Rotor-stator-system according to one of the claims 1 to 5, characterized in that
the stator (1) is of the two-part type and comprises a stator head (11) and a stator body (12), at least one premixing chamber (2) being accommodated in the stator head (11), and
the stator body (12) comprising a dispersion tool of the stator, in particular at least one tooth ring (123, 124)
and/or
several stator heads (11), which differ in the number and/or geometry of the premixing chambers (2), can be mounted on a stator body (12) in order to form a stator (1) with replaceable stator head. - Method for the production and/or treatment of dispersions, using a rotor-stator system (6) according to any of the claims 1 to 6, with the following stepsa) provision of a first phase of the dispersion in a first receiving tank (101), which communicates with the dispersion compartment (7), and
provision of at least one second phase of the dispersion in at least one second receiving tank (102), which communicates with a premixing chamber (2) wherein a translation piece (3) is arranged between the premixing chamber (2) and the dispersion zone (17) which is designed like a perforated plate, and provides one or a plurality of circular and/or polygonous openings, and/or a slot or a plurality of slots as holes (31),b) feeding the first phase of the dispersion into the dispersion compartment (7),c) feeding the second phase of the dispersion into the premixing chamber (2),d) driving the rotor (4),so that, with the rotor-stator system (6) in operation,
the first phase passes the dispersion compartment (7) and enters the premixing chamber (2), thus getting into contact with the second phase, and thus forming a mixture and/or a dispersion from the first and the second phase, and
the second phase and/or the mixture formed from the first and the second phase and/or the dispersion formed in the premixing chamber (2) from the first and the second phase, is conveyed through the premixing chamber into the dispersion compartment (7). - Method according to claim 7,
characterized in that
a stator (1) is used with at least one additional premixing chamber (2), and
in step a) at least one additional phase of the dispersion is made available in at least one additional receiving tank, which communicates with the additional premixing chamber (2),
the additional phase of the dispersion being fed, in step c) into the additional premixing chamber (2) of the rotor-stator system (6),
so that, with the rotor-stator system in operation,
the first phase passes the dispersion compartment (7) and enters the premixing chambers (2), thus getting into contact with the second phase or additional phase in the respective premixing chamber (2), and thus forming a mixture and/or a dispersion from the phases, and
the second phase or at least one additional phase and/or the mixture and/or the dispersion formed in a premixing chamber (2) from at least two phases is conveyed through the respective premixing chamber (2) into the dispersion compartment (7). - Method according to one of the claims 7 or 8,
characterized in that
steps b), c) and d) are performed simultaneously,
and/or that
the process is performed as a continuous process,
and/or
in which the first phase added in step b) will form the disperse phase of the dispersion and the second phase added in step c) will form the continuous phase or an element of the continuous phase of the dispersion, and
phase inversion occurs in the production of the dispersion and/or that
the retention time in a premixing chamber (2) is within a range of between about 0.005 seconds and about 0.02 seconds.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008022355A DE102008022355A1 (en) | 2008-05-06 | 2008-05-06 | Rotor-stator system for producing dispersions |
PCT/EP2009/003157 WO2009135624A2 (en) | 2008-05-06 | 2009-04-30 | Rotor/stator system for producing dispersions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2285476A2 EP2285476A2 (en) | 2011-02-23 |
EP2285476B1 true EP2285476B1 (en) | 2013-04-10 |
Family
ID=40973126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09741843.8A Not-in-force EP2285476B1 (en) | 2008-05-06 | 2009-04-30 | Rotor/stator system and process for producing dispersions |
Country Status (5)
Country | Link |
---|---|
US (1) | US9527048B2 (en) |
EP (1) | EP2285476B1 (en) |
BR (1) | BRPI0912523B1 (en) |
DE (2) | DE102008022355A1 (en) |
WO (1) | WO2009135624A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2008012883A (en) * | 2006-04-11 | 2008-10-13 | Basf Se | Continuous process for performing a chemical reaction in which a gaseous phase is added to a charge stream comprising one or more solid phases which have been dissolved or dispersed in water. |
DE102008045820A1 (en) | 2008-09-05 | 2010-04-08 | Axel Wittek | Transition elements for passing a dispersion in the treatment in a rotor-stator dispersing machine |
US20110275738A1 (en) * | 2010-05-05 | 2011-11-10 | Basf Se | Process for producing finely divided suspensions by melt emulsification |
DE102011082536A1 (en) | 2010-09-11 | 2012-03-15 | Patricia Frielingsdorf | JET STREAM WINDOW CLEANING SYSTEM |
EP2868369B1 (en) * | 2013-11-01 | 2016-05-25 | Umicore AG & Co. KG | In-line rotor-stator disperser and method |
TWI693638B (en) | 2014-04-07 | 2020-05-11 | 美商蘭姆研究公司 | Configuration independent gas delivery system |
US10557197B2 (en) | 2014-10-17 | 2020-02-11 | Lam Research Corporation | Monolithic gas distribution manifold and various construction techniques and use cases therefor |
EP3075441B1 (en) * | 2015-04-02 | 2022-10-05 | Spcm Sa | Improved apparatus for dispersing a water-soluble polymer |
US10022689B2 (en) * | 2015-07-24 | 2018-07-17 | Lam Research Corporation | Fluid mixing hub for semiconductor processing tool |
US10215317B2 (en) | 2016-01-15 | 2019-02-26 | Lam Research Corporation | Additively manufactured gas distribution manifold |
IT201700015144A1 (en) * | 2017-02-10 | 2018-08-10 | BOB SERVICE Srl | Equipment and method for intensifying phase contact and chemical reactions |
CN109939577B (en) * | 2019-04-26 | 2023-12-08 | 安徽博尚化工设备有限公司 | Fine emulsifying belt premixing system for high-viscosity materials |
RU2729826C1 (en) * | 2020-02-26 | 2020-08-12 | Общество с ограниченной ответственностью "БиоВи" (ООО "БиоВи") | Brewer grains grinding device and a production line for production of a product with high protein content |
CN111249989A (en) * | 2020-03-23 | 2020-06-09 | 上海弗鲁克科技发展有限公司 | High viscosity material flash mixed device |
CN111272618A (en) * | 2020-03-24 | 2020-06-12 | 珠海欧美克仪器有限公司 | Sample introduction device and particle size analyzer |
RU2757743C1 (en) * | 2021-01-18 | 2021-10-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" (КемГУ) | Dispersant |
CN116740087B (en) * | 2023-05-31 | 2024-05-24 | 湖北工业大学 | Efficient search method and system for area segmentation for multi-phase system connectivity judgment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502980B1 (en) * | 2001-04-13 | 2003-01-07 | Bematek Systems Inc | In-line homogenizer using rotors and stators in a housing for creating emulsions, suspensions and blends |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1711154A (en) * | 1926-12-30 | 1929-04-30 | Turbinator Company Inc | Mixing and grinding device |
DE1105851B (en) * | 1955-09-21 | 1961-05-04 | Erich Karl Todtenhaupt | Method and device for the physical processing of liquids among themselves or in connection with solids and / or gases |
US3806050A (en) * | 1971-05-12 | 1974-04-23 | E Cumpston | Mixer-refiner |
US4092738A (en) * | 1975-08-12 | 1978-05-30 | Doom Lewis G | Continuous mixer |
GB1566753A (en) * | 1976-10-22 | 1980-05-08 | Doom L | Continuous mixer |
DE3202915C2 (en) * | 1982-01-29 | 1985-05-15 | Hermann Waldner Gmbh & Co, 7988 Wangen | Device for mixing and / or homogenizing a flowable material |
JPS59152936A (en) | 1983-02-21 | 1984-08-31 | Kuraray Co Ltd | Hybrid resin composition having excellent electromagnetic shielding property and rigidity |
CH671524A5 (en) * | 1986-09-04 | 1989-09-15 | Maurer Sa Ing A | Homogenising lumpy solids in liq. medium - in which rotary arms homogenise solids with liq, forced outwards though fixed ring sieves with decreasing hole size |
CH675702A5 (en) * | 1988-03-18 | 1990-10-31 | Suter & Co | |
JPH02144136A (en) | 1988-11-25 | 1990-06-01 | Ebara Corp | Emulsifying disperser |
DK150692A (en) | 1992-12-16 | 1994-06-17 | Niro Holding As | Automatic manure sprinkler |
US5467931A (en) * | 1994-02-22 | 1995-11-21 | Beloit Technologies, Inc. | Long life refiner disc |
EP0805714B1 (en) * | 1995-01-24 | 1999-09-15 | Niro Holding A/S | A method for injecting a product into a fluid |
DE19545852A1 (en) * | 1995-12-08 | 1997-06-12 | Voith Sulzer Stoffaufbereitung | Process for adding reducing bleach to a high consistency paper pulp |
DE19638567A1 (en) * | 1996-09-20 | 1998-03-26 | Bayer Ag | Mixer reactor and process for carrying out reactions, in particular the phosgenation of primary amines |
US6386751B1 (en) * | 1997-10-24 | 2002-05-14 | Diffusion Dynamics, Inc. | Diffuser/emulsifier |
DE19829647A1 (en) | 1998-07-02 | 2000-01-13 | Wella Ag | Process for the preparation of aqueous emulsions or suspensions |
US20010021372A1 (en) * | 1998-08-18 | 2001-09-13 | Tore Omtveit | Apparatus having partially gold-plated surface |
EP1121974B1 (en) | 2000-01-31 | 2013-06-12 | Tetra Laval Holdings & Finance S.A. | Mixing apparatus and use |
DE20009105U1 (en) * | 2000-05-22 | 2000-08-10 | Schröder & Boos Misch- und Anlagentechnik GmbH & Co. KG, 27578 Bremerhaven | Device for homogenizing and / or dispersing a flowable material |
DE102007061688A1 (en) * | 2007-12-19 | 2009-06-25 | Bayer Materialscience Ag | Process and mixing unit for the production of isocyanates by phosgenation of primary amines |
-
2008
- 2008-05-06 DE DE102008022355A patent/DE102008022355A1/en not_active Withdrawn
-
2009
- 2009-04-30 EP EP09741843.8A patent/EP2285476B1/en not_active Not-in-force
- 2009-04-30 US US12/990,963 patent/US9527048B2/en not_active Expired - Fee Related
- 2009-04-30 BR BRPI0912523-0A patent/BRPI0912523B1/en active IP Right Grant
- 2009-04-30 DE DE202009017944U patent/DE202009017944U1/en not_active Expired - Lifetime
- 2009-04-30 WO PCT/EP2009/003157 patent/WO2009135624A2/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502980B1 (en) * | 2001-04-13 | 2003-01-07 | Bematek Systems Inc | In-line homogenizer using rotors and stators in a housing for creating emulsions, suspensions and blends |
Also Published As
Publication number | Publication date |
---|---|
WO2009135624A2 (en) | 2009-11-12 |
WO2009135624A3 (en) | 2010-04-15 |
WO2009135624A4 (en) | 2010-06-24 |
BRPI0912523B1 (en) | 2019-11-05 |
US9527048B2 (en) | 2016-12-27 |
DE202009017944U1 (en) | 2010-10-28 |
DE102008022355A1 (en) | 2009-11-19 |
BRPI0912523A2 (en) | 2015-10-13 |
EP2285476A2 (en) | 2011-02-23 |
US20110158931A1 (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2285476B1 (en) | Rotor/stator system and process for producing dispersions | |
AT414101B (en) | METHOD AND DEVICE FOR MIXING FLUIDABLE SUBSTANCES | |
DE1457182C3 (en) | Device for continuous mixing | |
DE69124571T2 (en) | Emulsification process and device | |
EP2566609B1 (en) | Emulsification device for continuously producing emulsions and/or dispersions | |
DE2556885C2 (en) | Apparatus for producing silver halide grains | |
EP2572777B1 (en) | Outlet means of a rotor-stator-dispersion machine | |
EP0852906B1 (en) | Method and device for homogenization of milk | |
EP0570335B1 (en) | Device and process for mixing a pulverulent solid component to a liquid material | |
WO2019197198A1 (en) | Method for producing an oil-in-water emulsion, oil-in-water emulsion, and installation for producing an oil-in-water emulsion | |
EP3283204B1 (en) | Method and device for mixing, in particular for dispersion | |
WO2006066421A1 (en) | Device for dispersing a solid, liquid or gaseous substance in a liquid | |
EP1121974B1 (en) | Mixing apparatus and use | |
DE2432860A1 (en) | Continuous mixer for dispersing matls. in liqs. - is fed by non-clogging premixer for mixt. components | |
DE3590432T1 (en) | Continuous dispersing device with multi-stage dispersing chambers | |
DE10354888B4 (en) | Colloidal mixer and process for the colloidal treatment of a mixture | |
EP1792643B1 (en) | High volume reactor and/or thin film evaporator employing a premixing device | |
DE10127075C2 (en) | Device and method for producing emulsions by means of membrane bodies | |
EP3334519B1 (en) | Device and method for dispersing at least one substance in a fluid | |
EP1964604A2 (en) | Method and device for continuous production of a mixture composed of at least two different flow-capable phases | |
EP0759322B1 (en) | Method and installation for dissolving solid materials of a bulbous form in a liquid | |
EP2578306A1 (en) | Mixer with grinding and dispersion device | |
DE3627428C2 (en) | ||
DE2105823A1 (en) | Device for homogenizing media | |
DE2510613C2 (en) | Method and device for mixing two liquids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101201 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110722 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG, CH Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 605675 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009006819 Country of ref document: DE Effective date: 20130606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: VDEP Effective date: 20130410 |
|
BERE | Be: lapsed |
Owner name: WITTEK, AXEL Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130721 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130812 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130711 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130810 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
26N | No opposition filed |
Effective date: 20140113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009006819 Country of ref document: DE Effective date: 20140113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20150423 Year of fee payment: 7 Ref country code: GB Payment date: 20150423 Year of fee payment: 7 Ref country code: CH Payment date: 20150422 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150422 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170420 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 605675 Country of ref document: AT Kind code of ref document: T Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009006819 Country of ref document: DE Representative=s name: AUGSPURGER - TESCH - FRIDERICHS PATENT- UND RE, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200423 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009006819 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502009006819 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0003080000 Ipc: B01F0023400000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 |