EP2261397A1 - Method of producing a metal matrix compound material - Google Patents
Method of producing a metal matrix compound material Download PDFInfo
- Publication number
- EP2261397A1 EP2261397A1 EP20090173920 EP09173920A EP2261397A1 EP 2261397 A1 EP2261397 A1 EP 2261397A1 EP 20090173920 EP20090173920 EP 20090173920 EP 09173920 A EP09173920 A EP 09173920A EP 2261397 A1 EP2261397 A1 EP 2261397A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal matrix
- metal
- component
- spraying
- matrix composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 59
- 239000002184 metal Substances 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000011159 matrix material Substances 0.000 title claims abstract description 28
- 150000001875 compounds Chemical class 0.000 title 1
- 239000011156 metal matrix composite Substances 0.000 claims abstract description 50
- 239000002245 particle Substances 0.000 claims abstract description 40
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000005507 spraying Methods 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 239000000919 ceramic Substances 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 238000010285 flame spraying Methods 0.000 claims abstract description 6
- 238000007750 plasma spraying Methods 0.000 claims abstract description 5
- 239000010432 diamond Substances 0.000 claims abstract description 4
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 4
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 4
- 239000002121 nanofiber Substances 0.000 claims abstract description 4
- 239000002071 nanotube Substances 0.000 claims abstract description 4
- 239000011265 semifinished product Substances 0.000 claims abstract description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 27
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 23
- 239000010949 copper Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000011135 tin Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910003472 fullerene Inorganic materials 0.000 claims description 4
- 230000002787 reinforcement Effects 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910001374 Invar Inorganic materials 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910000833 kovar Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052580 B4C Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000005751 Copper oxide Substances 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910000431 copper oxide Inorganic materials 0.000 claims description 2
- OJLGWNFZMTVNCX-UHFFFAOYSA-N dioxido(dioxo)tungsten;zirconium(4+) Chemical compound [Zr+4].[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O OJLGWNFZMTVNCX-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910001923 silver oxide Inorganic materials 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 238000007751 thermal spraying Methods 0.000 abstract 2
- 238000000576 coating method Methods 0.000 description 30
- 239000007789 gas Substances 0.000 description 25
- 239000011248 coating agent Substances 0.000 description 23
- 239000000843 powder Substances 0.000 description 18
- 239000007921 spray Substances 0.000 description 18
- 239000012159 carrier gas Substances 0.000 description 13
- 239000004020 conductor Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000004663 powder metallurgy Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- -1 B 4 C Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910007637 SnAg Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- UDWPONKAYSRBTJ-UHFFFAOYSA-N [He].[N] Chemical compound [He].[N] UDWPONKAYSRBTJ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000626 liquid-phase infiltration Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/115—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/24997—Of metal-containing material
Definitions
- the invention relates to a method for producing a metal matrix composite material having a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix, a corresponding material, in particular in the form of a coating, and the use of such a material.
- MMC metal matrix composites or metal matrix composites
- the term MMC often refers exclusively to appropriately reinforced aluminum, in special cases also referred to as reinforced magnesium and copper materials.
- the metal component of the MMC is as elemental metal or in the form of an alloy.
- reinforcement phase or component are usually particles (reinforcing particles) (diameter 0.01-150 microns), short fibers (diameter 1-6 microns, length 50-200 microns), continuous fibers (diameter 5-150 microns) or foams with of open porosity, which are usually made of ceramic material (SiC, Al 2 O 3 , B 4 C, SiO 2 ) or carbon in the form of fibers or graphite (see also and in the following: "Metal matrix composites: properties, Applications and Editing "by Dr. O. Beffort, 6th International IWF Colloquium, 18/19 April 2002, Egerkingen, Switzerland).
- the reinforcing component is processed into a porous preform into which the molten metal is subsequently infiltrated with or without pressure.
- fibers and foams with very high amplification volume fractions up to about 80% can be used as reinforcement in addition to particles become.
- a local reinforcement in areas of highest stress is possible.
- corresponding methods are expensive.
- the powder metallurgy (PM) of MMC differs from commonly used PM processes only in that instead of a metal powder, a powder mixture of ceramic or Verstärkungskomponenten- and metal particles is used.
- the PM is only suitable for fine particles (particle size 0.5-20 ⁇ m).
- a subsequent formability of the MMC obtained by extruding, forging or rolling must be ensured, whereby the maximum volume content of the reinforcing particles is limited to about 40%.
- Carbon nanotubes have outstanding properties. These include, for example, their mechanical tensile strength of about 40 GPa and their stiffness of 1 TPa (20 or 5 times steel). Both CNTs with conductive and those with semiconducting properties exist. CNTs belong to the family of fullerenes and have a diameter of 1 nm to a few 100 nm. Their walls, like the fullerenes or, like the planes of graphite, consist only of carbon. In particular, a mixture of CNT with other components lets expect composite materials and coatings with significantly improved properties.
- Metal-based CNT composites such as those in the DE 10 2007 001 412 A1 include a metal matrix such as Fe, Al, Ni, Cu, or their alloys, and carbon nanotubes as a reinforcing component in the matrix. Due to the large density differences between metals and CNT and the resulting strong demixing tendencies as well as the lack of wettability of the CNT with metal, a melt metallurgical application for the production of corresponding metal-CNT composite materials is problematic.
- the DE 10 2007 001 412 A1 therefore proposes to deposit on a substrate an electroplated composite coating by using a plating solution containing metal cations of a metal matrix to be deposited and carbon nanotubes. The composite coating then comprises the metallic matrix and carbon nanotubes disposed in the matrix, thereby improving the mechanical and tribological properties of the coating.
- galvanic application is difficult or impossible to achieve in many areas.
- the invention has for its object to provide a method for producing a metal matrix composite material, in particular with CNT as a reinforcing component, which allows to distribute the components used in a technically simple manner as evenly as possible, wherein
- the reinforcing components should be as unchanged as possible in their physicochemical properties and contained in the metal matrix composite material to the highest possible percentage.
- the invention includes the technical teaching of injecting at least one of the components onto a substrate by means of a spraying process for producing a metal matrix composite material having a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix.
- metal powder which were previously mixed, for example, with carbon components such as CNT or ceramic reinforcing components, are used.
- the proportion of metallic particles in the carrier gas can be, for example, in a range of 0.1 to 50%.
- Spray processes such as flame, plasma and cold gas spraying are known from the prior art for the production of coatings.
- flame spraying a powder, cord, rod or wire coating material is heated in a fuel gas flame and while supplying additional carrier gas, for example compressed air, injected at high speed onto a base material.
- additional carrier gas for example compressed air
- plasma spraying powder is injected into a plasma jet, which is melted by the high plasma temperature. The plasma stream entrains the powder particles and throws them onto the workpiece to be coated.
- the spray particles are accelerated to high speeds in a comparatively cold carrier gas.
- the temperature of the carrier gas is a few hundred ° C and is below the melting temperature of the lowest-melting component sprayed.
- the coating is formed with the impact of the particles on the high kinetic energy metal tape or component, the particles which do not melt in the cold carrier gas forming a dense and adherent layer upon impact. The plastic deformation and the resulting local heat release thereby ensure a very good cohesion and adhesion of the sprayed layer on the workpiece.
- the spray particles are added as a powder, usually with a particle size of 1 to 100 microns.
- the high kinetic energy obtained the spray particles in the relaxation of the carrier gas in a Laval nozzle.
- At least one of the components is preferred by cold gas spraying, flame spraying, in particular high velocity flame spraying (HVOF), and / or plasma spraying.
- HVOF high velocity flame spraying
- a carrier gas whose temperature is at room temperature or below, whereby a thermal load of the sprayed components, in particular the reinforcing components, can be safely avoided.
- the temperature may range to, for example, 10% below the melting temperature of the lowest melting component.
- the carrier gas should simultaneously create an inert or even reducing atmosphere in order to prevent oxidation of the powder particles and thus not adversely affect the later layer or material properties such as electrical conductivity, among other things.
- a combination of two spraying methods can also be used. A use of two spray nozzles with a mixture of the corresponding components at the coating site is also possible.
- the corresponding products have an increased wear resistance, a better sliding behavior and a higher friction corrosion resistance, wherein the friction coefficient can be reduced to about one tenth of the value of the respective pure metal. Furthermore, the conductivity and the hardness of the materials are increased.
- the invention provides a particularly flexible and cost-effective method, since, for example, in the production of printed conductors, lead frames and lead frames no pre-fabrication steps such as rolling, punching or annealing are required by the intended spraying process.
- the substrate used in the process according to the invention may be a film or a substrate which is not wettable by the powder jet, which makes it possible to separate spray-applied metal matrix composite materials from the substrate.
- a component or a pure material for example in the form of a strip, can be obtained, which can then be further processed in a suitable manner.
- tape materials and components such as electromechanical components, heatsinks, bearings, and bushings may also be adhesively coated which have improved properties through the metal matrix composite.
- a metal strip or an electromechanical component is preferably used as the workpiece, which preferably consists of ceramic, titanium, copper, aluminum and / or iron and alloys thereof.
- Semifinished products or 3D structures such as Molded Interconnection Devices (MID) can also be used for coating.
- MID Molded Interconnection Devices
- the method includes at least one surface processing step.
- a surface processing step for example, on a metal strip or component made of a metallic material, an activation, a Budapestsvplis- and / or a diffusion barrier layer are applied to which then the MMC are sprayed. If no adhesive coating is desired, but should, as As shown above, a pure metal matrix composite can be obtained, instead of an adhesion-promoting layer also a non-stick coating can be applied.
- Corresponding MMC tapes or coatings can also be subsequently subjected to an additional treatment, such as leveling or a reflow / heat treatment, for the purpose of smoothing the surface.
- an additional treatment such as leveling or a reflow / heat treatment
- a soft annealing step for example at about 0.4 times the melting temperature of the matrix metal, can also be carried out subsequently.
- the material For compacting the material and / or for reducing the porosity at the surface, the material can be re-rolled, for example with a degree of deformation of 0.1 to 10%.
- At least one metal component and / or at least one reinforcing component in particle form is advantageously provided.
- the material properties of matrix materials can be positively influenced.
- the formation of whisker crystals can also be promoted or prevented by suitable boundary conditions.
- a first component can also be mixed with at least one further component before spraying.
- gentle mixing for example of cold spray particles, may be accomplished by coating the particles with a dispersion or suspension containing the reinforcing particles, followed by drying. Mixing in one Depending on the hardness of the particles, the ball mill or an attritor consisting of at least two different components under protective gas can cause the particle shape to be destroyed and thus adversely affect the flow behavior of the powder.
- At least one organic and / or at least one ceramic reinforcing component can be used. This can be present in the sprayed mixture or can also be injected or co-injected.
- the reinforcing component used can be carbon in the form of nanotubes, fullerenes, graphenes, flakes, nanofibers, diamond or diamond-like structures.
- Composite particles such as single and multi-walled CNT (Single Walled / Multi Walled CNT, abbreviated SW / MW-CNT) with a length of 0.2 to 1000 ⁇ m, preferably of 0.5 to 500 ⁇ m and a bundle size of 5 to 1200 nm, preferably from 40 to 900 nm, have proven to be particularly advantageous.
- SW-CNT or MW-CNT cold spraying particles can also be previously coated or coated with metals such as Cu or Ni by means of chemical processes.
- Another advantageous variant involves mixing and drying the metal powder with a CNT dispersion / suspension so that the metal powder particles are coated with the CNT.
- the proportion of SW-CNT or MW-CNT in the carrier gas or in the powder stream for example, ranges from 0.1 to 30%, preferably from 0.2 to 10%.
- an MMC coating or corresponding MMC strip with at least 0.3% SW or MW CNT produced in this way exhibits exceptional wear behavior with coefficients of friction and contact resistance values which are far below the previously known values of comparable metal layers.
- An advantageous method involves using at least one reinforcing component selected from the group of tungsten, tungsten carbide, tungsten carbide cobalt, cobalt, boron, boron carbide, invar, kovar, niobium, molybdenum, chromium, nickel, titanium nitride, alumina, copper oxide, silver oxide , Silicon nitride, silicon carbide, silicon oxide, zirconium tungstate and zirconium oxide.
- at least one reinforcing component selected from the group of tungsten, tungsten carbide, tungsten carbide cobalt, cobalt, boron, boron carbide, invar, kovar, niobium, molybdenum, chromium, nickel, titanium nitride, alumina, copper oxide, silver oxide , Silicon nitride, silicon carbide, silicon oxide, zirconium tungstate and zirconium oxide.
- a reinforcing component together with at least one further reinforcing component and / or to mix or mix it accordingly.
- ceramic components whose advantageous properties, in addition to those of other reinforcing components, can be exploited.
- the thermal expansion coefficient of the composite can be positively influenced.
- a metal matrix composite or coating having a metal matrix comprising at least one metal and / or alloy of a metal selected from the group of tin, copper, silver, gold, nickel, zinc, platinum, palladium may be used , Iron, titanium and aluminum is selected.
- a metal matrix composite material produced by the method according to the invention with a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix is likewise provided by the invention.
- a metal matrix composite material which has a proportion of from 0.1 to 20%, preferably from 0.1 to 5%, preferably from 0.2 to 5%, of carbon nanotubes is regarded as being particularly advantageous.
- the abovementioned proportions have proven to be particularly advantageous in practice, as mentioned above.
- a corresponding metal matrix composite having advantageous properties has, for example, a residual porosity of 0.2 to 20% with respect to the reinforcing component and / or from 0.2 to 10% with respect to the metal component.
- MMC with such residual porosities can be used with advantage when a particularly good abrasion resistance, such as in bearings or sliding surfaces, or a high electrical conductivity, such as in tracks, is required.
- the metal matrix composite according to the invention is particularly suitable for a coating for a workpiece.
- the coating can, for example, on bearings and Sliding elements, heat sinks, connectors, punched grids and printed conductors, in particular on usable as heating elements printed conductors, are applied.
- Such MMC coatings can be made of, for example, Sn, Cu, Ag, Au, Ni, Zn, Pt, Pd, Fe, Ti, W and / or Al and their alloys such as solders, in particular with a content of SW-CNT or MW. CNT from 0.1 to 20%, preferably from 0.2 to 5%.
- the metal strip may be a coated tape for use in electromechanical components such as connectors, springs, e.g. for relays, switching contacts, to act conductor tracks in punched grids and heating elements or heat sinks and elements.
- the metal strip preferably has a thickness of 0.01 to 5 mm, particularly preferably 0.06 to 3.5 mm.
- the components for the production of strips consisting only of the metal matrix composite material, it is also possible, as mentioned, for the components to be sprayed onto a non-wettable substrate such as films made of PEEK, polyimide or Teflon.
- Correspondingly produced stamped grids, tracks, heating elements and strips may comprise Cu, Al, Ni and Fe and alloys thereof.
- Conductor tracks which have at least one metal matrix composite material produced as described above can be provided locally on a printed circuit board, MID structures (molded interconnection devices) made of, for example, LSDS or other thermoplastics, in particular via stencils, sprayed on or in the form of a laminar coating which, later, For example, by suitable photolithography process, further processed.
- MID structures molded interconnection devices
- LSDS LSDS
- stencils sprayed on or in the form of a laminar coating which, later, For example, by suitable photolithography process, further processed.
- An MMC tape or trace may advantageously be made of Cu, Ag, Al, Ni and / or Sn and their alloys with a content of SW-CNT or MW-CNT of 0.1 to 20%, preferably 0.1 to 5 % consist.
- a metal matrix composite material produced in accordance with the method of the invention is particularly suitable for use in the production of workpieces, in particular electromechanical components. Such a use may either involve making the workpiece completely out of the metal matrix composite or coating it with such material.
- FIG. 1 A suitable apparatus for carrying out the method according to a particularly preferred embodiment of the invention for cold gas spraying is in FIG. 1 shown.
- the device has a vacuum chamber 4 in which, for example, a substrate 5 to be coated can be placed in front of the nozzle of a cold gas spray gun 3. It should be understood, however, that such a spraying process could also be carried out at atmospheric pressure, for which a vacuum chamber is not required.
- the substrate 5 is movable, that is arranged displaceable and rotatable, so that a coating can be carried out at several positions, in particular band-shaped or flat.
- the cold gas spray gun 3 may be movably arranged.
- the vacuum chamber 4 is evacuated and generated by means of the cold gas spray gun 3, a gas jet, are fed into the particles for coating the workpiece 5.
- the main gas stream for example, a helium-nitrogen mixture with about 40 vol .-% helium passes through the gas supply line 1 in the vacuum chamber 4.
- the spray particles such as a metal powder mixed with CNT, arrive in the auxiliary gas flow via the feed line 2 into the vacuum chamber 4, in which a pressure of about 40 mbar, and there in the cold gas spray gun 3.
- the leads 1, 2 are for this purpose led into the vacuum chamber 4, in which both the cold gas spray gun 3 and the substrate 5 is located. It can also be provided to supply a plurality of components to be sprayed via a plurality of auxiliary gas streams.
- the entire cold gas spraying process thus takes place in the vacuum chamber 4.
- the particles are accelerated so much by the cold gas jet that adhesion of the particles on the surface of the workpiece 5 to be coated is achieved by converting the kinetic energy of the particles into thermal energy.
- the particles can additionally be heated up to the maximum temperature indicated above.
- the carrier gas which passes during the cold gas spraying together with the spray particles from the spray gun 3 and carries the spray particles to the workpiece 5, passes after the injection process in the vacuum chamber 4.
- the spent carrier gas is removed via the gas line 6 from the vacuum chamber 4 by means of the vacuum pump 8.
- a particle filter 7 is connected, which removes free spray particles from the spent carrier gas in order to prevent the spray particles from damaging the pump 8.
- FIG. 2A Figure 3 shows the microstructure of a layer 200 obtained by spraying 1.5% MW-CNT pure copper with a copper matrix 201 and CNT 202 discontinuously distributed therein at 1000X magnification. Furthermore, in the coating 200 so-called oxide skins 203 formed on the Cu grains by a not completely avoidable oxidation of the Cu powder during the mixing process with the MWCNT can be seen.
- the layers were injected at a nozzle exit temperature of 600 ° C and a pressure of 38 bar under N 2 gas.
- the density of the layer is 99.5%, its thickness is 280 microns, the layer hardness is 1200 N / mm 2 . Due to the good friction behavior, this layer is suitable as a running surface of bearings and bushes.
- After detachment of the 280 micron thick layer of the carrier material is a tape, which can be used as a conductor in stamped or electromechanical components use.
- FIG. 2B Figure 3 shows the surface of a layer 210 of a tin matrix obtained by spraying pure Sn with 2.1% MW-CNT and CNT discontinuously distributed therein at 300x magnification.
- Figure 2C shows a detailed view of FIG. 2B in 10,000 times magnification.
- the layer 210 has spherical Sn bodies 213 with CNTs 202 distributed therebetween.
- the density of the layer is 99.4%. It has a hardness of 368 N / mm 2 and a coefficient of friction of 0.5 in the wear test.
- N 2 gas When spraying this layer under N 2 gas at a pressure of 32 bar and a nozzle exit temperature of 350 ° C, a layer thickness of 5 microns was achieved.
- the coefficient of friction can be significantly changed (reduced).
- Such produced layers can be optimized by a post-treatment such as leveling or remelting (reflow treatment) in their surface structure specifically targeted to the particular application. Partially or fully applied to Cu alloy strips, these layers can be used to reduce plugging and drawing forces in electromechanical components such as connectors, or after appropriate leveling and reflow steps to improve the wear behavior of plain bearings and bushes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Coating By Spraying Or Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs mit einer zumindest eine Metallkomponente aufweisenden Metallmatrix und zumindest einer in der Metallmatrix angeordneten Verstärkungskomponente, einen entsprechenden Werkstoff, insbesondere in Form einer Beschichtung, sowie die Verwendung eines derartigen Werkstoffs.The invention relates to a method for producing a metal matrix composite material having a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix, a corresponding material, in particular in the form of a coating, and the use of such a material.
Der Trend zu zunehmender Miniaturisierung, der mit steigenden Materialkosten einhergehende Kostendruck sowie die immer anspruchsvolleren Anforderungen bei Applikationen in der Elektrik und Elektronik sowie bei der Herstellung von technischen Lagern erfordern neue Werkstoffe und Beschichtungen.The trend toward increasing miniaturization, the cost pressures associated with rising material costs, and the increasingly demanding requirements of applications in the electrical and electronic industries, as well as the manufacture of technical bearings, require new materials and coatings.
Metallmatrix-Verbundwerkstoffe bzw. Metallmatrix-Composite (Metal Matrix Composites, MMC) weisen gegenüber ausschließlich keramischen oder metallischen Werkstoffen herausragende Eigenschaftskombinationen auf. Aus diesem Grund besteht ein großes Interesse am Einsatz der ursprünglich für die Luft- und Raumfahrt sowie für die Wehrtechnik entwickelten MMC für eine Reihe von Anwendungen.Metal matrix composites or metal matrix composites (MMC) have outstanding combinations of properties compared to exclusively ceramic or metallic materials. For this reason, there is a great deal of interest in using the MMC, originally developed for the aerospace and defense industries, for a number of applications.
Die Bezeichnung MMC bezieht sich häufig ausschließlich auf entsprechend verstärktes Aluminium, in Sonderfällen werden damit auch verstärkte Magnesium- und Kupferwerkstoffe bezeichnet. Die Metallkomponente der MMC liegt als elementares Metall oder in Form einer Legierung vor. Als Verstärkungsphase bzw. -komponente kommen in der Regel Partikel (Verstärkungspartikel) (Durchmesser 0,01-150 µm), Kurzfasern (Durchmesser 1-6 µm, Länge 50-200 µm), Endlosfasern (Durchmesser 5-150 µm) oder Schäume mit offener Porosität zum Einsatz, die in der Regel aus Keramikmaterial (SiC, Al2O3, B4C, SiO2) oder Kohlenstoff in Form von Fasern oder Graphit bestehen (siehe hierzu und auch im folgenden: "Metallmatrix-Verbundwerkstoffe: Eigenschaften, Anwendungen und Bearbeitung" von Dr. O. Beffort, 6. Internationales IWF-Kolloquium, 18./19. April 2002, Egerkingen, Schweiz).The term MMC often refers exclusively to appropriately reinforced aluminum, in special cases also referred to as reinforced magnesium and copper materials. The metal component of the MMC is as elemental metal or in the form of an alloy. As reinforcement phase or component are usually particles (reinforcing particles) (diameter 0.01-150 microns), short fibers (diameter 1-6 microns, length 50-200 microns), continuous fibers (diameter 5-150 microns) or foams with of open porosity, which are usually made of ceramic material (SiC, Al 2 O 3 , B 4 C, SiO 2 ) or carbon in the form of fibers or graphite (see also and in the following: "Metal matrix composites: properties, Applications and Editing "by Dr. O. Beffort, 6th International IWF Colloquium, 18/19 April 2002, Egerkingen, Switzerland).
Zur Herstellung von MMC-Bulkmaterialien sind aus dem Stand der Technik im wesentlichen drei Verfahrensprozesse bekannt, nämlich das Einrühren von Keramikpartikeln in die Metallschmelze, die Schmelzinfiltration und die Pulvermetallurgie. Zur Herstellung von MMC-Beschichtungen ist aus dem Stand der Technik die galvanische Abscheidung bekannt.For the production of bulk MMC materials, three processes are known from the prior art, namely the stirring of ceramic particles into the molten metal, the melt infiltration and the powder metallurgy. For the production of MMC coatings, the prior art discloses the electrodeposition.
In entsprechenden Einrührverfahren muss häufig die mangelnde Benetzbarkeit zwischen Metallschmelze und Partikeln überwunden und eine Reaktion zwischen beiden Phasen begrenzt werden. Der Volumenanteil der Partikel ist aus Viskositätsgründen auf maximal 30% beschränkt.In corresponding stirring often the lack of wettability between molten metal and particles must be overcome and a reaction between the two phases are limited. The volume fraction of the particles is limited for viscosity reasons to a maximum of 30%.
Bei der Infiltration wird die Verstärkungskomponente zu einer porösen Vorform ("Preform") verarbeitet, in die anschließend mit oder ohne Druckeinsatz die Metallschmelze infiltriert wird. In diesem Fall können als Verstärkung neben Partikeln auch Fasern und Schäume mit sehr hohen Verstärkungsvolumenanteilen (bis ca. 80%) eingesetzt werden. Eine Lokalverstärkung in Bereichen höchster Beanspruchung ist möglich. Entsprechende Verfahren sind jedoch aufwendig.During infiltration, the reinforcing component is processed into a porous preform into which the molten metal is subsequently infiltrated with or without pressure. In this case, fibers and foams with very high amplification volume fractions (up to about 80%) can be used as reinforcement in addition to particles become. A local reinforcement in areas of highest stress is possible. However, corresponding methods are expensive.
Die Pulvermetallurgie (PM) von MMC unterscheidet sich von üblicherweise verwendeten PM-Verfahren nur dadurch, dass statt eines Metallpulvers ein Pulvergemisch aus Keramik- bzw. Verstärkungskomponenten- und Metallpartikeln verwendet wird. Die PM ist grundsätzlich nur für feine Partikel (Korngröße 0.5-20 µm) geeignet. Darüberhinaus muss eine nachträgliche Umformbarkeit der erhaltenen MMC durch Extrudieren, Schmieden oder Walzen gewährleistet bleiben, wodurch der maximale Volumengehalt der Verstärkungspartikel auf ca. 40% beschränkt ist.The powder metallurgy (PM) of MMC differs from commonly used PM processes only in that instead of a metal powder, a powder mixture of ceramic or Verstärkungskomponenten- and metal particles is used. The PM is only suitable for fine particles (particle size 0.5-20 μm). In addition, a subsequent formability of the MMC obtained by extruding, forging or rolling must be ensured, whereby the maximum volume content of the reinforcing particles is limited to about 40%.
Bei der galvanischen Abscheidung von Dispersionsschichten besteht das Problem, die Partikel feinverteilt im Elektrolyten in Schwebe zu halten und gleichzeitig mit der Matrix abzuscheiden, um homogene Schichten zu erhalten. Die gleichzeitige Abscheidung von Partikeln und Matrix ist in vielen Fällen unmöglich aufgrund ihrer unterschiedlichen Potentiale.In the case of the electrodeposition of dispersion layers, there is the problem of levitating the particles finely distributed in the electrolyte and at the same time depositing them with the matrix in order to obtain homogeneous layers. The simultaneous deposition of particles and matrix is in many cases impossible because of their different potentials.
Kohlenstoff-Nanoröhrchen (Carbon Nanotubes, CNT) weisen herausragende Eigenschaften auf. Hierzu zählen z.B. ihre mechanische Zugfestigkeit von etwa 40 GPa und ihre Steifheit von 1 TPa (dem 20- bzw. 5-fachen von Stahl). Es existieren sowohl CNT mit leitenden als auch solche mit halbleitenden Eigenschaften. CNT gehören zu der Familie der Fullerene und besitzen einen Durchmesser von 1 nm bis einigen 100 nm. Ihre Wände bestehen wie die der Fullerene oder wie die Ebenen des Graphits nur aus Kohlenstoff. Insbesondere eine Mischung von CNT mit weiteren Komponenten lässt Verbundwerkstoffe und Beschichtungen mit signifikant verbesserten Eigenschaften erwarten.Carbon nanotubes (CNT) have outstanding properties. These include, for example, their mechanical tensile strength of about 40 GPa and their stiffness of 1 TPa (20 or 5 times steel). Both CNTs with conductive and those with semiconducting properties exist. CNTs belong to the family of fullerenes and have a diameter of 1 nm to a few 100 nm. Their walls, like the fullerenes or, like the planes of graphite, consist only of carbon. In particular, a mixture of CNT with other components lets expect composite materials and coatings with significantly improved properties.
Es ist bekannt, CNT mit herkömmlichem Kunststoff zur Verbesserung seiner mechanischen und elektrischen Eigenschaften zu mischen. CNT-Verbundwerkstoffe auf Metallbasis, wie sie beispielsweise in der
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, insbesondere mit CNT als Verstärkungskomponente, anzugeben, das es erlaubt, die eingesetzten Komponenten in technisch einfacher Weise möglichst gleichmäßig zu verteilen, wobei insbesondere die Verstärkungskomponenten in ihren physikalisch-chemischen Eigenschaften möglichst unverändert und zu einem möglichst hohen Prozentanteil in dem Metallmatrix-Verbundwerkstoff enthalten sein sollen.The invention has for its object to provide a method for producing a metal matrix composite material, in particular with CNT as a reinforcing component, which allows to distribute the components used in a technically simple manner as evenly as possible, wherein In particular, the reinforcing components should be as unchanged as possible in their physicochemical properties and contained in the metal matrix composite material to the highest possible percentage.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs und durch einen solchen Metallmatrix-Verbundwerkstoff, der als solches als Werkstück oder als Beschichtung eines Werkstücks oder als Werkstoff zur Herstellung eines Werkstücks verwendet werden kann, mit den Merkmalen der unabhängigen Patentansprüche. Bevorzugte Ausgestaltungen sind in den jeweiligen abhängigen Ansprüchen angegeben.This object is achieved by a method for producing a metal matrix composite material and by such a metal matrix composite material, which can be used as such as a workpiece or as a coating of a workpiece or as a material for producing a workpiece, having the features of the independent claims. Preferred embodiments are given in the respective dependent claims.
Die Erfindung beinhaltet die technische Lehre, zur Herstellung eines Metallmatrix-Verbundwerkstoffs mit einer zumindest eine Metallkomponente aufweisenden Metallmatrix und zumindest einer in der Metallmatrix angeordneten Verstärkungskomponente zumindest eine der Komponenten durch ein Spritzverfahren auf ein Substrat zu spritzen.The invention includes the technical teaching of injecting at least one of the components onto a substrate by means of a spraying process for producing a metal matrix composite material having a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix.
Durch entsprechende Spritzverfahren können Metallpulver, welche zuvor beispielsweise mit Kohlenstoffkomponenten wie CNT oder keramischen Verstärkungskomponenten gemischt wurden, zum Einsatz kommen. Der Anteil metallischer Partikel im Trägergas kann beispielsweise in einem Bereich von 0,1 bis 50% liegen.By appropriate spraying method metal powder, which were previously mixed, for example, with carbon components such as CNT or ceramic reinforcing components, are used. The proportion of metallic particles in the carrier gas can be, for example, in a range of 0.1 to 50%.
Spritzverfahren, wie Flamm-, Plasma- und Kaltgasspritzen sind aus dem Stand der Technik zur Herstellung von Beschichtungen bekannt. Beim Flammspritzen wird ein pulver-, schnur-, stab- oder drahtförmiger Beschichtungswerkstoff in einer Brenngasflamme erhitzt und unter Zuführung zusätzlichen Trägergases, beispielsweise Druckluft, mit hoher Geschwindigkeit auf einen Grundwerkstoff gespritzt. Beim Plasmaspritzen wird in einen Plasmajet Pulver eingedüst, das durch die hohe Plasmatemperatur aufgeschmolzen wird. Der Plasmastrom reißt die Pulverteilchen mit und schleudert sie auf das zu beschichtende Werkstück.Spray processes, such as flame, plasma and cold gas spraying are known from the prior art for the production of coatings. In flame spraying, a powder, cord, rod or wire coating material is heated in a fuel gas flame and while supplying additional carrier gas, for example compressed air, injected at high speed onto a base material. In plasma spraying, powder is injected into a plasma jet, which is melted by the high plasma temperature. The plasma stream entrains the powder particles and throws them onto the workpiece to be coated.
Beim Kaltgasspritzen, wie es beispielsweise in der
Bevorzugt wird bei vorliegender Erfindung zumindest eine der Komponenten durch Kaltgasspritzen, Flammspritzen, insbesondere Hochgeschwindigkeitsflammspritzen (HVOF), und/oder Plasmaspritzen gespritzt. Es wird auch erwogen, insbesondere beim Kaltgasspritzen, ein Trägergas zu verwenden, dessen Temperatur bei Raumtemperatur oder auch darunter liegt, wodurch eine thermische Belastung der gepritzen Komponenten, insbesondere der Verstärkungskomponenten, sicher vermieden werden kann. Die Temperatur kann bis auf beispielsweise 10% unterhalb der Schmelztemperatur der niedrigstschmelzenden Komponente reichen. Das Trägergas soll gleichzeitig eine inerte oder sogar reduzierende Atmosphäre schaffen, um eine Oxidation der Pulverteilchen zu verhindern und so die späteren Schicht- oder Werkstoffeigenschaften wie elektrische Leitfähigkeit u.a. nicht negativ zu beeinflussen. Insbesondere kann auch eine Kombination zweier Spritzverfahren verwendet werden. Eine Verwendung zweier Spritzdüsen mit einer Mischung der entsprechenden Komponenten an der Beschichtungsstelle ist ebenfalls möglich.In the present invention, at least one of the components is preferred by cold gas spraying, flame spraying, in particular high velocity flame spraying (HVOF), and / or plasma spraying. It is also contemplated, especially in cold gas spraying, to use a carrier gas whose temperature is at room temperature or below, whereby a thermal load of the sprayed components, in particular the reinforcing components, can be safely avoided. The temperature may range to, for example, 10% below the melting temperature of the lowest melting component. The carrier gas should simultaneously create an inert or even reducing atmosphere in order to prevent oxidation of the powder particles and thus not adversely affect the later layer or material properties such as electrical conductivity, among other things. In particular, a combination of two spraying methods can also be used. A use of two spray nozzles with a mixture of the corresponding components at the coating site is also possible.
Durch die genannten Maßnahmen lassen sich signifikant verbesserte Eigenschaften der hierdurch hergestellten Beschichtungen und Werkstoffe erzielen. Die entsprechenden Produkte weisen eine erhöhte Verschleißbeständigkeit, ein besseres Gleitverhalten und eine höhere Reibkorrosionsbeständigkeit auf, wobei der Reibkoeffizient bis auf etwa ein Zehntel des Wertes des jeweiligen Reinmetalls reduziert werden kann. Ferner wird die Leitfähigkeit und die Härte der Materialien erhöht.As a result of the measures mentioned, significantly improved properties of the coatings and materials produced thereby can be achieved. The corresponding products have an increased wear resistance, a better sliding behavior and a higher friction corrosion resistance, wherein the friction coefficient can be reduced to about one tenth of the value of the respective pure metal. Furthermore, the conductivity and the hardness of the materials are increased.
Die Erfindung liefert ein besonders flexibles und kostengünstiges Verfahren, da beispielsweise bei der Herstellung von Leiterbahnen, Leadframes und Stanzgittern durch die vorgesehenen Spritzverfahren keine Vorfertigungsschritte wie Walzen, Stanzen oder Glühen erforderlich sind.The invention provides a particularly flexible and cost-effective method, since, for example, in the production of printed conductors, lead frames and lead frames no pre-fabrication steps such as rolling, punching or annealing are required by the intended spraying process.
Als Substrat kann beim erfindungsgemäßen Verfahren eine Folie oder ein durch den Pulverstrahl nicht benetzbarer Untergrund dienen, was es ermöglicht, aufgespritzte Metallmatrix-Verbundwerkstoffe von dem Substrat abzutrennen. Hierdurch kann ein Bauteil oder ein reiner Werkstoff, beispielsweise in Form eines Bandes, erhalten werden, der dann in geeigneter Weise weiterverarbeitet werden kann.The substrate used in the process according to the invention may be a film or a substrate which is not wettable by the powder jet, which makes it possible to separate spray-applied metal matrix composite materials from the substrate. In this way, a component or a pure material, for example in the form of a strip, can be obtained, which can then be further processed in a suitable manner.
Es können jedoch auch gezielt Bandwerkstoffe und Bauteile wie elektromechanische Komponenten, Kühlkörper, Lager und Buchsen haftend beschichtet werden, die durch den Metallmatrix-Verbundwerkstoff verbesserte Eigenschaften aufweisen. Zur Beschichtung im Sinne dieser Erfindung wird vorzugsweise ein Metallband oder ein elektromechanisches Bauteil als Werkstück verwendet, das vorzugsweise aus Keramik, Titan, Kupfer, Aluminium und/oder Eisen sowie Legierungen hiervon besteht. Auch Halbzeuge oder 3D-Strukturen wie Molded Interconnection Devices (MID) können zur Beschichtung verwendet werden.However, tape materials and components such as electromechanical components, heatsinks, bearings, and bushings may also be adhesively coated which have improved properties through the metal matrix composite. For the purposes of this invention, a metal strip or an electromechanical component is preferably used as the workpiece, which preferably consists of ceramic, titanium, copper, aluminum and / or iron and alloys thereof. Semifinished products or 3D structures such as Molded Interconnection Devices (MID) can also be used for coating.
Entsprechend einer besonders bevorzugten Ausführungsform beinhaltet das Verfahren wenigstens einen Oberflächenbearbeitungsschritt. Hierbei kann beispielsweise auf ein Metallband oder Bauteil aus einem metallischen Werkstoff eine Aktivierung, eine Haftungsvermittlungs- und/oder eine Diffusionssperrschicht aufgetragen werden, auf die anschließend die MMC aufgespritzt werden. Wird keine haftende Beschichtung angestrebt, sondern soll, wie oben dargestellt, ein reiner Metallmatrix-Verbundwerkstoff erhalten werden, kann anstelle einer Haftvermittlungsschicht auch eine Antihaftbeschichtung aufgebracht werden.According to a particularly preferred embodiment, the method includes at least one surface processing step. Here, for example, on a metal strip or component made of a metallic material, an activation, a Haftungsvermittlungs- and / or a diffusion barrier layer are applied to which then the MMC are sprayed. If no adhesive coating is desired, but should, as As shown above, a pure metal matrix composite can be obtained, instead of an adhesion-promoting layer also a non-stick coating can be applied.
Entsprechende MMC-Bänder oder Beschichtungen können auch zur Einglättung der Oberfläche nachträglich einer Zusatzbehandlung wie Egalisieren oder einer Reflow-/Wärmebehandlung unterworfen werden. Zur Umformung kann nachträglich etwa auch ein Weichglühschritt, beispielsweise beim ca. 0,4-fachen der Schmelztemperatur des Matrixmetalles, erfolgen. Zur Verdichtung des Materials und/oder zur Reduzierung der Porosität an der Oberfläche kann das Material, beispielsweise mit einem Umformgrad von 0,1 bis 10%, nachgewalzt werden.Corresponding MMC tapes or coatings can also be subsequently subjected to an additional treatment, such as leveling or a reflow / heat treatment, for the purpose of smoothing the surface. For forming, for example, a soft annealing step, for example at about 0.4 times the melting temperature of the matrix metal, can also be carried out subsequently. For compacting the material and / or for reducing the porosity at the surface, the material can be re-rolled, for example with a degree of deformation of 0.1 to 10%.
In entsprechenden Verfahren wird vorteilhafterweise zumindest eine Metallkomponente und/oder zumindest eine Verstärkungskomponente in Partikelform bereitgestellt. Durch eine entsprechende Auswahl von Struktur, Ausrichtung, Größe und Form der Partikel sowie deren Menge können die Werkstoffeigenschaften von Matrixwerkstoffen positiv beeinflusst werden. Durch geeignete Randbedingungen kann gegebenenfalls auch die Ausbildung von Whisker-Kristallen begünstigt oder verhindert werden.In corresponding methods, at least one metal component and / or at least one reinforcing component in particle form is advantageously provided. By a suitable selection of the structure, orientation, size and shape of the particles and their quantity, the material properties of matrix materials can be positively influenced. If appropriate, the formation of whisker crystals can also be promoted or prevented by suitable boundary conditions.
In besonders vorteilhafter Weise kann auch eine erste Komponente vor dem Spritzen mit zumindest einer weiteren Komponente gemischt werden. Ein schonendes Mischen, beispielsweise von Kaltgasspritzpartikeln, kann durch Ummantelung der Partikel mit einer Dispersion oder Suspension, welche die Verstärkungspartikel enthält, und anschließendem Trocknen erfolgen. Das Mischen in einer Kugelmühle oder in einem Attritor aus mindestens zwei verschiedenen Komponenten unter Schutzgas kann je nach Härte der Partikel dazu führen, dass die Partikelform zerstört und damit das Fließverhalten des Pulvers negativ beeinflusst wird.In a particularly advantageous manner, a first component can also be mixed with at least one further component before spraying. Gentle mixing, for example of cold spray particles, may be accomplished by coating the particles with a dispersion or suspension containing the reinforcing particles, followed by drying. Mixing in one Depending on the hardness of the particles, the ball mill or an attritor consisting of at least two different components under protective gas can cause the particle shape to be destroyed and thus adversely affect the flow behavior of the powder.
In einem derartigen Verfahren kann im Rahmen einer vorteilhaften Ausgestaltung zumindest eine organische und/oder zumindest eine keramische Verstärkungskomponente verwendet werden. Diese kann in dem gespritzen Gemisch vorliegen oder auch zugespritzt bzw. co-gespritzt werden.In such a method, within the scope of an advantageous embodiment, at least one organic and / or at least one ceramic reinforcing component can be used. This can be present in the sprayed mixture or can also be injected or co-injected.
Mit besonderem Vorteil kann als Verstärkungskomponente Kohlenstoff in Form von Nanoröhrchen, Fullerenen,Graphenen, Flakes, Nanofasern, Diamant oder diamantähnlichen Strukturen verwendet werden. Composit-Partikel wie ein- und mehrwandige CNT (Single Walled/Multi Walled CNT, abgekürzt SW-/MW-CNT) mit einer Länge von 0,2 bis 1000 µm, vorzugsweise von 0,5 bis 500 µm und einer Bundlegröße von 5 bis 1200 nm, vorzugsweise von 40 bis 900 nm, haben sich hierbei als besonders vorteilhaft erwiesen. SW-CNT- oder MW-CNT- Kaltgasspritzpartikel können zur Verbesserung ihrer Eigenschaften auch zuvor über chemische Verfahren mit Metallen wie Cu oder Ni ummantelt bzw. beschichtet werden. Eine weitere vorteilhafte Variante beinhaltet, das Metallpulver mit einer CNT-Dispersion/_Suspension zu mischen und zu trocknen, so dass die Metallpulverpartikel mit den CNT ummantelt sind. Der Anteil der SW-CNT oder MW-CNT im Trägergas bzw. im Pulverstrom reicht beispielsweise von 0,1 bis 30%, vorzugsweise von 0,2 bis 10%.With particular advantage, the reinforcing component used can be carbon in the form of nanotubes, fullerenes, graphenes, flakes, nanofibers, diamond or diamond-like structures. Composite particles such as single and multi-walled CNT (Single Walled / Multi Walled CNT, abbreviated SW / MW-CNT) with a length of 0.2 to 1000 μm, preferably of 0.5 to 500 μm and a bundle size of 5 to 1200 nm, preferably from 40 to 900 nm, have proven to be particularly advantageous. In order to improve their properties, SW-CNT or MW-CNT cold spraying particles can also be previously coated or coated with metals such as Cu or Ni by means of chemical processes. Another advantageous variant involves mixing and drying the metal powder with a CNT dispersion / suspension so that the metal powder particles are coated with the CNT. The proportion of SW-CNT or MW-CNT in the carrier gas or in the powder stream, for example, ranges from 0.1 to 30%, preferably from 0.2 to 10%.
Mit Hilfe eines der genannten Spritzverfahren ist es möglich, ein- und mehrwandige CNT in eine Metallmatrix einzubinden. Eine derart hergestellte MMC-Beschichtung oder entsprechendes MMC-Band mit mindestens 0,3% SW- oder MW-CNT zeigt nach Untersuchungen der Anmelderin ein außergewöhnliches Verschleißverhalten mit Reibkoeffizienten und Kontaktwiderstandswerten, welche weit unter den bisher bekannten Werten von vergleichbaren Metallschichten liegen.With the aid of one of the spraying methods mentioned, it is possible to produce monovalent and multi-walled CNTs in a metal matrix integrate. According to the Applicant's investigations, an MMC coating or corresponding MMC strip with at least 0.3% SW or MW CNT produced in this way exhibits exceptional wear behavior with coefficients of friction and contact resistance values which are far below the previously known values of comparable metal layers.
Ein vorteilhaftes Verfahren beinhaltet, dass wenigstens eine Verstärkungskomponente verwendet wird, die aus der Gruppe von Wolfram, Wolframcarbid, Wolframcarbid-Kobalt, Kobalt, Bor, Borcarbid, Invar, Kovar, Niob, Molybdän, Chrom, Nickel, Titannitrid, Aluminiumoxid, Kupferoxid, Silberoxid, Siliziumnitrid, Siliziumcarbid, Siliziumoxid, Zirkonwolframat und Zirkonoxid ausgewählt ist.An advantageous method involves using at least one reinforcing component selected from the group of tungsten, tungsten carbide, tungsten carbide cobalt, cobalt, boron, boron carbide, invar, kovar, niobium, molybdenum, chromium, nickel, titanium nitride, alumina, copper oxide, silver oxide , Silicon nitride, silicon carbide, silicon oxide, zirconium tungstate and zirconium oxide.
Hierbei kann auch eine Verstärkungskomponente mit wenigstens einer weiteren Verstärkungskomponente zusammen verwendet und/oder entsprechend zugespritzt oder beigemischt werden. Durch die Verwendung von bekannten Keramikkomponenten können deren vorteilhafte Eigenschaften, auch zusätzlich zu denen anderer Verstärkungskomponenten, ausgenutzt werden. Durch Verwendung von Bor, Kobalt, Wolfram, Niob, Molybdän und seinen Legierungen und Invar oder Kovar kann der Wärmeausdehnungskoeffizient des Verbundwerkstoffs positiv beeinflusst werden.In this case, it is also possible to use a reinforcing component together with at least one further reinforcing component and / or to mix or mix it accordingly. Through the use of known ceramic components whose advantageous properties, in addition to those of other reinforcing components, can be exploited. By using boron, cobalt, tungsten, niobium, molybdenum and its alloys and Invar or Kovar, the thermal expansion coefficient of the composite can be positively influenced.
In vorteilhafter Weise kann ein Metallmatrix-Verbundwerkstoff oder eine Beschichtung mit einer Metallmatrix verwendet werden, die wenigstens ein Metall und/oder eine Legierung eines Metalls aufweist, das aus der Gruppe von Zinn, Kupfer, Silber, Gold, Nickel, Zink, Platin, Palladium, Eisen, Titan und Aluminium ausgewählt ist. Hierdurch kann beispielsweise eine besonders vorteilhafte Verschleißbeständigkeit, Korrosionsbeständigkeit und/oder eine spezifische elektrische oder thermische Leitfähigkeit sowie ein angepasster Ausdehnungskoeffizient bereitgestellt werden.Advantageously, a metal matrix composite or coating having a metal matrix comprising at least one metal and / or alloy of a metal selected from the group of tin, copper, silver, gold, nickel, zinc, platinum, palladium may be used , Iron, titanium and aluminum is selected. As a result, for example, a special advantageous wear resistance, corrosion resistance and / or a specific electrical or thermal conductivity and an adapted coefficient of expansion can be provided.
Ein durch das erfindungsgemäße Verfahren hergestellter Metallmatrix-Verbundwerkstoff mit einer zumindest eine Metallkomponente aufweisenden Metallmatrix und zumindest einer in der Metallmatrix angeordneten Verstärkungskomponente ist ebenfalls Gegenstand der Erfindung.A metal matrix composite material produced by the method according to the invention with a metal matrix having at least one metal component and at least one reinforcing component arranged in the metal matrix is likewise provided by the invention.
Als besonders vorteilhaft wird dabei ein Metallmatrix-Verbundwerkstoff angesehen, der einen Anteil von 0,1 bis 20%, vorzugsweise von 0,1 bis 5%, vorzugsweise von 0,2 bis 5% Kohlenstoff-Nanoröhrchen aufweist. Die genannten Anteile haben sich, wie oben erwähnt, in der Praxis als besonders vorteilhaft erwiesen.A metal matrix composite material which has a proportion of from 0.1 to 20%, preferably from 0.1 to 5%, preferably from 0.2 to 5%, of carbon nanotubes is regarded as being particularly advantageous. The abovementioned proportions have proven to be particularly advantageous in practice, as mentioned above.
Ein entsprechender Metallmatrix-Verbundwerkstoff mit vorteilhaften Eigenschaften weist beispielsweise eine Restporosität von 0,2 bis 20% in Bezug auf die Verstärkungskomponente und/oder von 0,2 bis 10% in Bezug auf die Metallkomponente auf. MMC mit derartigen Restporositäten können mit Vorteil dann verwendet werden, wenn eine besonders gute Abriebfestigkeit, wie beispielsweise in Lagern oder an Gleitflächen, oder eine hohe elektrische Leitfähigkeit, wie beispielsweise in Leiterbahnen, erforderlich ist.A corresponding metal matrix composite having advantageous properties has, for example, a residual porosity of 0.2 to 20% with respect to the reinforcing component and / or from 0.2 to 10% with respect to the metal component. MMC with such residual porosities can be used with advantage when a particularly good abrasion resistance, such as in bearings or sliding surfaces, or a high electrical conductivity, such as in tracks, is required.
Der erfindungsgemäße Metallmatrix-Verbundwerkstoff eignet sich besonders für eine Beschichtung für ein Werkstück. Die Beschichtung kann beispielsweise auf Lagern und Gleitelementen, Kühlkörpern, Steckverbindern, Stanzgittern und Leiterbahnen, insbesondere auf als Heizelemente verwendbaren Leiterbahnen, aufgebracht werden. Derartige MMC-Beschichtungen können etwa aus Sn, Cu, Ag, Au, Ni, Zn, Pt, Pd, Fe, Ti, W und/oder Al und ihren Legierungen wie etwa Loten, insbesondere mit einem Anteil von SW-CNT oder MW-CNT von 0,1 bis 20%, vorzugsweise von 0,2 bis 5% bestehen.The metal matrix composite according to the invention is particularly suitable for a coating for a workpiece. The coating can, for example, on bearings and Sliding elements, heat sinks, connectors, punched grids and printed conductors, in particular on usable as heating elements printed conductors, are applied. Such MMC coatings can be made of, for example, Sn, Cu, Ag, Au, Ni, Zn, Pt, Pd, Fe, Ti, W and / or Al and their alloys such as solders, in particular with a content of SW-CNT or MW. CNT from 0.1 to 20%, preferably from 0.2 to 5%.
Insbesondere kann es um ein beschichtetes Band zur Verwendung in elektromechanischen Bauelementen wie Steckverbindern, Federn, z.B. für Relais, schaltenden Kontakten, um Leiterbahnen in Stanzgittern und Heizelementen oder Kühlkörpern und -elementen handeln. Das Metallband besitzt vorzugsweise eine Dicke von 0,01 bis 5 mm, besonders bevorzugt von 0,06 bis 3,5 mm. Zur Herstellung von lediglich aus dem Metallmatrix-Verbundwerkstoff bestehenden Bändern können auch, wie erwähnt, die Komponenten beispielsweise auf einen nicht benetzbaren Untergrund wie Folien aus PEEK, Polyimid oder Teflon aufgespritzt werden. Entsprechend hergestellte Stanzgitter, Leiterbahnen, Heizelemente und Bänder können Cu, Al, Ni und Fe sowie Legierungen hiervon aufweisen.In particular, it may be a coated tape for use in electromechanical components such as connectors, springs, e.g. for relays, switching contacts, to act conductor tracks in punched grids and heating elements or heat sinks and elements. The metal strip preferably has a thickness of 0.01 to 5 mm, particularly preferably 0.06 to 3.5 mm. For the production of strips consisting only of the metal matrix composite material, it is also possible, as mentioned, for the components to be sprayed onto a non-wettable substrate such as films made of PEEK, polyimide or Teflon. Correspondingly produced stamped grids, tracks, heating elements and strips may comprise Cu, Al, Ni and Fe and alloys thereof.
Leiterbahnen, die zumindest einen wie oben hergestellten Metallmatrix-Verbundwerkstoff aufweisen, können lokal auf eine Platine, MID-Strukturen (Moulded Interconnection Devices) aus z.B. LSDS oder anderen Thermoplasten insbesondere über Schablonen, aufgespritzt oder in Form einer flächigen Beschichtung vorgesehen werden, die später, etwa durch geeignete Photolithographieverfahren, weiterverarbeitet wird.Conductor tracks which have at least one metal matrix composite material produced as described above can be provided locally on a printed circuit board, MID structures (molded interconnection devices) made of, for example, LSDS or other thermoplastics, in particular via stencils, sprayed on or in the form of a laminar coating which, later, For example, by suitable photolithography process, further processed.
Ein MMC-Band oder eine Leiterbahn kann vorteilhafterweise aus Cu, Ag, Al, Ni und/oder Sn und ihren Legierungen mit einem Anteil an SW-CNT oder MW-CNT von 0,1 bis 20%, vorzugsweise von 0,1 bis 5% bestehen.An MMC tape or trace may advantageously be made of Cu, Ag, Al, Ni and / or Sn and their alloys with a content of SW-CNT or MW-CNT of 0.1 to 20%, preferably 0.1 to 5 % consist.
Bezüglich weiterer Merkmale und Vorteile sei ausdrücklich auf die Ausführungen bezüglich des erfindungsgemäßen Herstellungsverfahrens verwiesen.
Ein entsprechend des erfindungsgemäßen Verfahrens hergestellter Metallmatrix-Verbundwerkstoff eignet sich in besonderer Weise zur Verwendung bei der Herstellung von Werkstücken, insbesondere von elektromechanischen Komponenten. Eine derartige Verwendung kann entweder umfassen, das Werkstück vollständig aus dem Metallmatrix-Verbundwerkstoff herzustellen, oder eine Beschichtung mit einem solchen Werkstoff vorzunehmen.With regard to further features and advantages, reference is expressly made to the statements relating to the production method according to the invention.
A metal matrix composite material produced in accordance with the method of the invention is particularly suitable for use in the production of workpieces, in particular electromechanical components. Such a use may either involve making the workpiece completely out of the metal matrix composite or coating it with such material.
Die Erfindung und ihre Vorteile sowie weitere Ausgestaltungen der Erfindung werden im Folgenden anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert. Im Einzelnen zeigt:
Figur 1- in schematischer Darstellung eine Vorrichtung zum Kaltgasspritzen, die zur Durchführung eines Verfahrens gemäß einer besonders bevorzugten Ausführungsform der Erfindung geeignet ist, und
Figur 2- mikroskopische Schliff-Aufnahmen der Gefüge und rasterelektronenmikroskopische Aufnahmen der Oberflächen von Metallmatrix-Verbundwerkstoffen, die mittels Verfahren gemäß besonders bevorzugter Ausführungsformen der vorliegenden Erfindung hergestellt sind.
- FIG. 1
- a schematic representation of a device for cold gas spraying, which is suitable for carrying out a method according to a particularly preferred embodiment of the invention, and
- FIG. 2
- Microscopic micrographs of the microstructures and scanning electron micrographs of the surfaces of metal matrix composites, which are particularly preferred by methods according to Embodiments of the present invention are made.
Eine zur Durchführung des Verfahrens gemäß einer besonders bevorzugten Ausführungsform der Erfindung geeignete Vorrichtung zum Kaltgasspritzen ist in
Zum Durchführen der Beschichtung des Substrats 5 wird die Vakuumkammer 4 evakuiert und mittels der Kaltgasspritzpistole 3 ein Gasstrahl erzeugt, in den Partikel zur Beschichtung des Werkstücks 5 eingespeist werden.For carrying out the coating of the
Hierbei gelangt der Hauptgasstrom, beispielsweise eine Helium-Stickstoff-Mischung mit etwa 40 Vol.-% Helium, über die Gaszuleitung 1 in die Vakuumkammer 4. Die Spritzpartikel, beispielsweise ein Metallpulver mit beigemischten CNT, gelangen im Hilfsgasstrom über die Zuleitung 2 in die Vakuumkammer 4, in der ein Druck von etwa 40 mbar herrscht, und dort in die Kaltgasspritzpistole 3. Die Zuleitungen 1, 2 sind hierzu in die Vakuumkammer 4 hineingeführt, in der sich sowohl die Kaltgasspritzpistole 3 als auch das Substrat 5 befindet. Es kann auch vorgesehen sein, mehrere zu spritzende Komponenten über mehrere Hilfsgasströme zuzuführen. Der gesamte Kaltgasspritzprozess findet somit in der Vakuumkammer 4 statt. Die Partikel werden durch den Kaltgasstrahl so stark beschleunigt, dass ein Anhaften der Partikel auf der Oberfläche des zu beschichtenden Werkstücks 5 durch Umwandlung der kinetischen Energie der Partikel in Wärmeenergie erreicht wird. Die Partikel können zusätzlich bis zu der oben angegebenen Maximaltemperatur erwärmt werden.Here, the main gas stream, for example, a helium-nitrogen mixture with about 40 vol .-% helium passes through the
Das Trägergas, das beim Kaltgasspritzen zusammen mit den Spritzpartikeln aus der Spritzpistole 3 tritt und die Spritzpartikel zum Werkstück 5 trägt, gelangt nach dem Spritzprozess in die Vakuumkammer 4. Das verbrauchte Trägergas wird über die Gasleitung 6 aus der Vakuumkammer 4 mittels der Vakuumpumpe 8 entfernt. Zwischen die Vakuumkammer 4 und die Vakuumpumpe 8 ist beispielsweise ein Partikelfilter 7 geschaltet, der freie Spritzpartikel aus dem verbrauchten Trägergas entfernt, um zu verhindern, dass die Spritzpartikel die Pumpe 8 beschädigen.The carrier gas, which passes during the cold gas spraying together with the spray particles from the
In den Teilfiguren 2A bis 2C der
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009026655A DE102009026655B3 (en) | 2009-06-03 | 2009-06-03 | Method of making a metal matrix composite, metal matrix composite and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2261397A1 true EP2261397A1 (en) | 2010-12-15 |
Family
ID=41352054
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090173920 Withdrawn EP2261397A1 (en) | 2009-06-03 | 2009-10-23 | Method of producing a metal matrix compound material |
EP10724291A Withdrawn EP2437904A1 (en) | 2009-06-03 | 2010-05-27 | Process for producing a metal matrix composite material |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10724291A Withdrawn EP2437904A1 (en) | 2009-06-03 | 2010-05-27 | Process for producing a metal matrix composite material |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120077017A1 (en) |
EP (2) | EP2261397A1 (en) |
JP (1) | JP2012528934A (en) |
KR (1) | KR20120027350A (en) |
CN (1) | CN102458719A (en) |
DE (1) | DE102009026655B3 (en) |
RU (1) | RU2536847C2 (en) |
WO (1) | WO2010139423A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2504398A1 (en) * | 2009-11-25 | 2012-10-03 | KME Germany AG & Co. KG | Method for applying carbon/tin mixtures to metal or alloy layers |
EP2871257A1 (en) * | 2013-11-11 | 2015-05-13 | Siemens Aktiengesellschaft | Method of coating with subsequent remelting method |
CN105506621A (en) * | 2015-11-26 | 2016-04-20 | 常州二维碳素科技股份有限公司 | Graphene composite material and production process thereof |
EP3339474A1 (en) * | 2016-12-22 | 2018-06-27 | United Technologies Corporation | Method for forming a metal matrix composite reinforced structure |
US10363634B2 (en) | 2016-12-22 | 2019-07-30 | United Technologies Corporation | Deposited structure with integral cooling enhancement features |
US10519552B2 (en) | 2016-12-22 | 2019-12-31 | United Technologies Corporation | Deposited material structure with integrated component |
US10563310B2 (en) | 2016-12-22 | 2020-02-18 | United Technologies Corporation | Multi-wall deposited thin sheet structure |
US10648084B2 (en) | 2016-12-22 | 2020-05-12 | United Technologies Corporation | Material deposition to form a sheet structure |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101625311B1 (en) | 2011-10-27 | 2016-05-27 | 갈모어, 인코포레이티드 | Composite graphene structures |
US20150368535A1 (en) * | 2013-01-28 | 2015-12-24 | United Technologies Corporation | Graphene composites and methods of fabrication |
US9253823B2 (en) | 2013-02-10 | 2016-02-02 | The Boeing Company | Metal matrix composite used as a heating element |
KR101910924B1 (en) | 2013-03-08 | 2018-10-23 | 유니버시티 오브 센트럴 플로리다 리서치 파운데이션, 인코포레이티드 | Large scale oxidized graphene production for industrial applications |
WO2014138587A1 (en) | 2013-03-08 | 2014-09-12 | Garmor, Inc. | Graphene entrainment in a host |
GB2513867A (en) * | 2013-05-07 | 2014-11-12 | Mahle Int Gmbh | Sliding engine component |
US10006141B2 (en) | 2013-06-20 | 2018-06-26 | Baker Hughes, A Ge Company, Llc | Method to produce metal matrix nanocomposite |
DE102013014915A1 (en) * | 2013-09-11 | 2015-03-12 | Airbus Defence and Space GmbH | Contact materials for high-voltage DC systems |
CN103614583B (en) * | 2013-09-29 | 2016-04-13 | 魏玲 | A kind of Novel high-conductivity, high-strength graphene/copper material and preparation method thereof |
DE202014101175U1 (en) * | 2014-03-14 | 2014-03-24 | Axyn TeC Dünnschichttechnik GmbH | Material composite of metal / DLC / fiber reinforced plastic |
US9932226B2 (en) * | 2014-05-02 | 2018-04-03 | The Boeing Company | Composite material containing graphene |
KR101627208B1 (en) * | 2014-06-17 | 2016-06-03 | 연세대학교 산학협력단 | Functional coating structure using negative thermal expansion material, manufacture method thereof, and micro gearing device using the same |
WO2016028756A1 (en) | 2014-08-18 | 2016-02-25 | Garmor, Inc. | Graphite oxide entrainment in cement and asphalt composite |
CN104264093A (en) * | 2014-09-11 | 2015-01-07 | 芜湖鼎瀚再制造技术有限公司 | Fe-Gr-Ni nanometer coating and preparation method thereof |
CN104233084B (en) * | 2014-09-11 | 2016-09-28 | 芜湖鼎瀚再制造技术有限公司 | A kind of Fe-Gr-B-Si nano coating and preparation method thereof |
CN104264099B (en) * | 2014-09-17 | 2016-06-15 | 芜湖鼎瀚再制造技术有限公司 | A kind of Fe-Gr-Si nano coating and preparation method thereof |
US10669635B2 (en) | 2014-09-18 | 2020-06-02 | Baker Hughes, A Ge Company, Llc | Methods of coating substrates with composite coatings of diamond nanoparticles and metal |
EP3006605A1 (en) * | 2014-10-08 | 2016-04-13 | The Swatch Group Research and Development Ltd. | Self-lubricating composite coating |
US9873827B2 (en) | 2014-10-21 | 2018-01-23 | Baker Hughes Incorporated | Methods of recovering hydrocarbons using suspensions for enhanced hydrocarbon recovery |
CN104451523A (en) * | 2014-10-30 | 2015-03-25 | 程敬卿 | Remanufacturing process of tire mold |
US10167392B2 (en) | 2014-10-31 | 2019-01-01 | Baker Hughes Incorporated | Compositions of coated diamond nanoparticles, methods of forming coated diamond nanoparticles, and methods of forming coatings |
CN105665695B (en) * | 2014-11-18 | 2017-10-17 | 中国科学院兰州化学物理研究所 | A kind of copper-based wear and shock-resistant double metallic composite material and preparation method thereof |
EP3053968B1 (en) | 2015-02-06 | 2017-05-17 | Schaeffler Baltic, SIA | A nanocomposite solid lubricant coating |
KR101727931B1 (en) * | 2015-02-06 | 2017-05-02 | 나코 테크놀로지스, 에스아이에이 | A nanocomposite solid lubricant coating |
EP3274295A4 (en) | 2015-03-23 | 2018-04-04 | Garmor Inc. | Engineered composite structure using graphene oxide |
WO2016160400A1 (en) * | 2015-03-27 | 2016-10-06 | University Of Central Florida Research Foundation, Inc. | Thermal spray of repair and protective coatings |
JP6563029B2 (en) | 2015-04-13 | 2019-08-21 | ガーマー インク.Garmor, Inc. | Graphite oxide reinforcing fiber in host such as concrete or asphalt |
CN104827023A (en) * | 2015-05-09 | 2015-08-12 | 安徽鼎恒再制造产业技术研究院有限公司 | High-strength Fe-SiC-Mo coating material and preparation method thereof |
CN104964608B (en) * | 2015-05-15 | 2016-08-17 | 中国航空工业集团公司北京航空材料研究院 | A kind of band continuous gradient strengthens armour plate of phase and preparation method thereof |
CN104964607B (en) * | 2015-05-15 | 2016-08-17 | 中国航空工业集团公司北京航空材料研究院 | A kind of band strengthens armour plate of phase gradient layer and preparation method thereof |
WO2016200469A1 (en) | 2015-06-09 | 2016-12-15 | Garmor Inc. | Graphite oxide and polyacrylonitrile based composite |
US10155899B2 (en) | 2015-06-19 | 2018-12-18 | Baker Hughes Incorporated | Methods of forming suspensions and methods for recovery of hydrocarbon material from subterranean formations |
CN105154711A (en) * | 2015-08-31 | 2015-12-16 | 苏州莱特复合材料有限公司 | Carbon nano tube reinforcement aluminum-bronze-based composite material and preparation method thereof |
EP4234204A3 (en) | 2015-09-21 | 2024-01-03 | Asbury Graphite of North Carolina, Inc. | Low-cost, high-performance composite bipolar plate |
RU2610189C1 (en) * | 2015-10-07 | 2017-02-08 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Method for semifinished products manufacture for metal composite material production |
CN105385877A (en) * | 2015-11-09 | 2016-03-09 | 昆明贵金属研究所 | Novel silver-based electrical contact composite material and preparing method thereof |
CN105441854A (en) * | 2015-12-18 | 2016-03-30 | 合肥中澜新材料科技有限公司 | Thermal oxidization resistant engine cylinder inner wall abrasion resistant coating and preparation method thereof |
CN106048285B (en) * | 2016-06-20 | 2017-10-13 | 山东建筑大学 | A kind of method for preparing CNT graphene powder composite strengthening leypewter |
KR101876988B1 (en) * | 2016-07-29 | 2018-07-11 | 주식회사 엠에스 오토텍 | Mold for hot stamping |
CN106255323B (en) * | 2016-08-18 | 2018-04-17 | 武汉华尚绿能科技股份有限公司 | A kind of method that 3D printing prepares glass base circuit board |
CN106378512A (en) * | 2016-09-18 | 2017-02-08 | 安徽克里斯特新材料有限公司 | Compression roller surface gas shield surfacing method based on iron base graphene composite welding material |
CN106271227A (en) * | 2016-09-18 | 2017-01-04 | 安徽克里斯特新材料有限公司 | A kind of Modified Iron base Graphene thermal spraying combined wire and preparation method thereof |
CN106244976A (en) * | 2016-09-18 | 2016-12-21 | 安徽克里斯特新材料有限公司 | Heat spraying method is used to prepare the method that Metal Substrate Graphene strengthens composite |
CN106312368A (en) * | 2016-09-18 | 2017-01-11 | 安徽克里斯特新材料有限公司 | Fe-based graphene thermal spraying composite welding wire and preparation method thereof |
CN106378545A (en) * | 2016-09-18 | 2017-02-08 | 安徽克里斯特新材料有限公司 | Graphene composite powder welding material and preparing method thereof |
CN106350758A (en) * | 2016-09-18 | 2017-01-25 | 安徽克里斯特新材料有限公司 | Method for preparing graphene enhanced iron-based composite material by thermal spraying |
CN106244971A (en) * | 2016-09-18 | 2016-12-21 | 安徽克里斯特新材料有限公司 | Heat spraying method is used to prepare the method that Graphene strengthens composite |
CN106238963A (en) * | 2016-09-18 | 2016-12-21 | 安徽克里斯特新材料有限公司 | A kind of Modified Iron base Graphene composite solder and preparation method thereof |
CN106378550A (en) * | 2016-09-18 | 2017-02-08 | 安徽克里斯特新材料有限公司 | Metal base graphene surfacing composite welding material and preparing method thereof |
CN106378544A (en) * | 2016-09-18 | 2017-02-08 | 安徽克里斯特新材料有限公司 | Metal base graphene hot spraying composite welding wire and preparing method thereof |
CN106350757A (en) * | 2016-09-18 | 2017-01-25 | 安徽克里斯特新材料有限公司 | Method for preparing modified iron-based graphene enhanced composite material by thermal spraying |
CN106378551A (en) * | 2016-09-18 | 2017-02-08 | 安徽克里斯特新材料有限公司 | Graphene composite powder thermal spraying composite welding wire and preparation method thereof |
CN106271210A (en) * | 2016-09-18 | 2017-01-04 | 安徽克里斯特新材料有限公司 | A kind of iron-based Graphene built-up welding composite solder and preparation method thereof |
RU2632345C1 (en) * | 2016-09-30 | 2017-10-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" | Method for producing sheet composite materials with dispersed-reinforced particles |
CA3041315C (en) | 2016-10-26 | 2021-06-01 | Garmor Inc. | Additive coated particles for low cost high performance materials |
RU2634099C1 (en) * | 2016-11-22 | 2017-10-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Method for obtaining wear-resistant multilayer composite on metallic surface |
EP3388168B1 (en) * | 2017-04-12 | 2022-02-16 | Hitachi Energy Switzerland AG | Graphene composite material for sliding contact |
CN107326358B (en) * | 2017-06-26 | 2020-06-19 | 华南理工大学 | High-conductivity corrosion-resistant silver-carbon nanotube/nano-diamond composite film layer and preparation and application thereof |
DE102017218592A1 (en) * | 2017-10-18 | 2019-04-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing a sliding bearing and a plain bearing produced by the method |
CN107779809B (en) * | 2017-10-23 | 2019-05-14 | 宁国市正兴耐磨材料有限公司 | A kind of preparation method of composite coating wear-resistant ball |
FR3077287B1 (en) * | 2018-01-31 | 2023-09-22 | Saint Gobain Ct Recherches | POWDER FOR ENGRAVING CHAMBER COATING |
US11629420B2 (en) | 2018-03-26 | 2023-04-18 | Global Graphene Group, Inc. | Production process for metal matrix nanocomposite containing oriented graphene sheets |
US10685760B2 (en) * | 2018-05-25 | 2020-06-16 | General Cable Technologies Corporation | Ultra-conductive wires and methods of forming thereof |
CN108754492A (en) * | 2018-06-25 | 2018-11-06 | 阜南县奋进机械制造有限公司 | A kind of PDC steel body bits surface enhanced method |
DE102018005363A1 (en) | 2018-07-02 | 2020-01-02 | Technische Universität Chemnitz | Process for the production of a metallic semi-finished or finished part as a composite with a functionalized surface and such a semi-finished or finished part |
US10861616B2 (en) * | 2018-07-23 | 2020-12-08 | General Cable Technologies Corporation | Cables exhibiting increased ampacity due to lower temperature coefficient of resistance |
CN109108297B (en) * | 2018-09-14 | 2021-10-08 | 宁波瑞丰汽车零部件有限公司 | Piston of power cylinder for automobile steering |
CN111172421A (en) * | 2018-12-02 | 2020-05-19 | 苏州大德碳纳米科技有限公司 | Copper-aluminum-fullerene/fullerene carbon powder-containing composite material prepared by powder metallurgy and preparation method thereof |
CN109943755B (en) * | 2019-04-19 | 2021-03-23 | 中国兵器科学研究院宁波分院 | Preparation method of aluminum-based composite material for electronic packaging |
CN110318017B (en) * | 2019-06-13 | 2021-06-11 | 东南大学 | Toughening and reinforcing in-situ reaction type micro-texture self-lubricating bearing and preparation method thereof |
CN110257822B (en) * | 2019-06-13 | 2021-06-01 | 东南大学 | Toughening and reinforcing in-situ reaction type microtextured self-lubricating coating cutter and preparation method thereof |
US11791061B2 (en) | 2019-09-12 | 2023-10-17 | Asbury Graphite North Carolina, Inc. | Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite |
CN110802225B (en) * | 2019-10-11 | 2021-12-17 | 广州盛门新材料科技有限公司 | Preparation method of copper-coated graphene |
CN110846597B (en) * | 2019-11-27 | 2021-07-13 | 哈尔滨工业大学 | Silicon carbide nanowire hybrid reinforced zirconium tungstate/aluminum composite material and preparation method thereof |
CN112408380B (en) * | 2020-10-30 | 2022-04-01 | 燕山大学 | Preparation method for laser in-situ synthesis of submicron spherical graphite |
WO2022094359A1 (en) * | 2020-10-30 | 2022-05-05 | Allied Feather & Down Corp. | Insulation fill material, and related articles, systems and methods |
CN113981336B (en) * | 2021-09-30 | 2022-11-22 | 深圳市联域光电股份有限公司 | Aluminum alloy composite heat dissipation material containing carbide/graphene sandwich structure for LED lamp and preparation method thereof |
CN113628780B (en) * | 2021-10-12 | 2021-12-21 | 西安宏星电子浆料科技股份有限公司 | Low-cost low-resistance thick film resistor paste |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484533B1 (en) | 1990-05-19 | 1995-01-25 | Anatoly Nikiforovich Papyrin | Method and device for coating |
DE102007001412A1 (en) | 2006-01-12 | 2007-09-13 | GM Global Technology Operations, Inc., Detroit | Galvanically applied composite coating |
EP1942209A1 (en) * | 2006-12-20 | 2008-07-09 | United Technologies Corporation | Cold sprayed metal matrix composites |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8713449D0 (en) * | 1987-06-09 | 1987-07-15 | Alcan Int Ltd | Aluminium alloy composites |
CA2015213C (en) * | 1990-04-23 | 1998-04-14 | Gilles Cliche | Tic based materials and process for producing same |
RU2049151C1 (en) * | 1992-06-01 | 1995-11-27 | Владимир Анатольевич Иванов | Method and apparatus for producing composite material reinforced with filament-type structures |
AU6350896A (en) * | 1995-07-17 | 1997-02-18 | Westaim Technologies Inc. | Composite powders |
US6245442B1 (en) * | 1997-05-28 | 2001-06-12 | Kabushiki Kaisha Toyota Chuo | Metal matrix composite casting and manufacturing method thereof |
DE10046956C2 (en) * | 2000-09-21 | 2002-07-25 | Federal Mogul Burscheid Gmbh | Thermally applied coating for piston rings made of mechanically alloyed powders |
AU2002318144A1 (en) * | 2001-05-24 | 2003-01-29 | Fry's Metals, Inc. | Thermal interface material and heat sink configuration |
US7528413B2 (en) * | 2001-11-09 | 2009-05-05 | Sumitomo Electric Industries, Ltd. | Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it |
US6808817B2 (en) * | 2002-03-15 | 2004-10-26 | Delphi Technologies, Inc. | Kinetically sprayed aluminum metal matrix composites for thermal management |
EP1358943B1 (en) * | 2002-04-29 | 2008-07-30 | Sulzer Metco AG | Method and apparatus for electric arc spraying |
RU2244036C2 (en) * | 2003-03-05 | 2005-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Metalomatrix composite |
JP2005029873A (en) * | 2003-07-11 | 2005-02-03 | National Institute Of Advanced Industrial & Technology | Method of depositing nanocarbon-dispersed film, and nanocarbon-dispersed film |
DE10334704A1 (en) * | 2003-07-30 | 2005-02-24 | Daimlerchrysler Ag | Self-supporting, three-dimensional components deposited by a thermal spraying process |
JP4409872B2 (en) * | 2003-07-30 | 2010-02-03 | 株式会社東芝 | High strength and high electrical conductivity aluminum alloy matrix composite and its manufacturing method |
DE10335470A1 (en) * | 2003-08-02 | 2005-02-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for coating or modifying surfaces |
DE102005020611A1 (en) * | 2005-05-03 | 2006-11-16 | Bouaifi, Belkacem, Priv.-Doz. Dr.-Ing. habil. | Workpiece system for thermal coating, e.g. thermal spraying or built-up welding (sic) for deposition of protective layer of high wear and corrosion resistance on metal components useful for production of filler wires |
EP1973689A1 (en) * | 2006-01-09 | 2008-10-01 | Alcoa Inc. | High velocity metallic powder spray fastening |
JP2007291432A (en) * | 2006-04-24 | 2007-11-08 | Nissan Motor Co Ltd | Metal matrix composite material, and metal matrix composite structure |
JP5013364B2 (en) * | 2006-09-12 | 2012-08-29 | 独立行政法人物質・材料研究機構 | Cermet film forming method and cermet coating member obtained thereby |
US7758916B2 (en) * | 2006-11-13 | 2010-07-20 | Sulzer Metco (Us), Inc. | Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity |
CN101285187B (en) * | 2008-05-15 | 2010-08-18 | 西北工业大学 | Method for preparing particulate reinforced metal-based composite material |
DE102009054427B4 (en) * | 2009-11-25 | 2014-02-13 | Kme Germany Ag & Co. Kg | Method for applying mixtures of carbon and metal particles to a substrate, substrate obtainable by the method and its use |
-
2009
- 2009-06-03 DE DE102009026655A patent/DE102009026655B3/en not_active Expired - Fee Related
- 2009-10-23 EP EP20090173920 patent/EP2261397A1/en not_active Withdrawn
-
2010
- 2010-05-27 KR KR20117029941A patent/KR20120027350A/en not_active Application Discontinuation
- 2010-05-27 CN CN2010800249353A patent/CN102458719A/en active Pending
- 2010-05-27 RU RU2011154031/02A patent/RU2536847C2/en not_active IP Right Cessation
- 2010-05-27 US US13/375,685 patent/US20120077017A1/en not_active Abandoned
- 2010-05-27 WO PCT/EP2010/003242 patent/WO2010139423A1/en active Application Filing
- 2010-05-27 EP EP10724291A patent/EP2437904A1/en not_active Withdrawn
- 2010-05-27 JP JP2012513495A patent/JP2012528934A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484533B1 (en) | 1990-05-19 | 1995-01-25 | Anatoly Nikiforovich Papyrin | Method and device for coating |
DE102007001412A1 (en) | 2006-01-12 | 2007-09-13 | GM Global Technology Operations, Inc., Detroit | Galvanically applied composite coating |
EP1942209A1 (en) * | 2006-12-20 | 2008-07-09 | United Technologies Corporation | Cold sprayed metal matrix composites |
Non-Patent Citations (4)
Title |
---|
DR. O. BEFFORT: "Metallmatrix-Verbundwerkstoffe: Eigenschaften, Anwendungen und Bearbeitung", INTERNATIONALES IWF-KOLLOQUIUM, vol. 6, 18 April 2002 (2002-04-18) |
LAHA T ET AL: "Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, AMERICAN SCIENTIFIC PUBLISHERS, US, vol. 7, no. 2, 1 January 2007 (2007-01-01), pages 515 - 524, XP009108259, ISSN: 1533-4880 * |
LAHA T ET AL: "Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, vol. 40, no. 5, 1 May 2009 (2009-05-01), pages 589 - 594, XP026022006, ISSN: 1359-835X, [retrieved on 20090422] * |
T. LAHA, A. AGARWAL, T. MCKECHNIE, S. SEAL: "Synthesis and characterisation of plasma spray formed carbon nanotube reinforced aluminium composite", MATERIALS SCIENCE AND ENGINEERING, vol. A381, 2004, pages 249 - 258, XP002571680 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2504398A1 (en) * | 2009-11-25 | 2012-10-03 | KME Germany AG & Co. KG | Method for applying carbon/tin mixtures to metal or alloy layers |
EP2871257A1 (en) * | 2013-11-11 | 2015-05-13 | Siemens Aktiengesellschaft | Method of coating with subsequent remelting method |
CN105506621A (en) * | 2015-11-26 | 2016-04-20 | 常州二维碳素科技股份有限公司 | Graphene composite material and production process thereof |
EP3339474A1 (en) * | 2016-12-22 | 2018-06-27 | United Technologies Corporation | Method for forming a metal matrix composite reinforced structure |
US10363634B2 (en) | 2016-12-22 | 2019-07-30 | United Technologies Corporation | Deposited structure with integral cooling enhancement features |
US10519552B2 (en) | 2016-12-22 | 2019-12-31 | United Technologies Corporation | Deposited material structure with integrated component |
US10563310B2 (en) | 2016-12-22 | 2020-02-18 | United Technologies Corporation | Multi-wall deposited thin sheet structure |
US10648084B2 (en) | 2016-12-22 | 2020-05-12 | United Technologies Corporation | Material deposition to form a sheet structure |
US10907256B2 (en) | 2016-12-22 | 2021-02-02 | Raytheon Technologies Corporation | Reinforcement of a deposited structure forming a metal matrix composite |
EP3789517A1 (en) * | 2016-12-22 | 2021-03-10 | Raytheon Technologies Corporation | Reinforcement of a deposited structure forming a metal matrix composite |
US11441227B2 (en) | 2016-12-22 | 2022-09-13 | Raytheon Technologies Corporation | Multi-wall deposited thin sheet structure |
US11479861B2 (en) | 2016-12-22 | 2022-10-25 | Raytheon Technologies Corporation | Deposited material structure with integrated component |
US11584996B2 (en) | 2016-12-22 | 2023-02-21 | Raytheon Technologies Corporation | Reinforcement of a deposited structure forming a metal matrix composite |
US11840753B2 (en) | 2016-12-22 | 2023-12-12 | Rtx Corporation | Reinforcement of a deposited structure forming a metal matrix composite |
Also Published As
Publication number | Publication date |
---|---|
EP2437904A1 (en) | 2012-04-11 |
CN102458719A (en) | 2012-05-16 |
RU2011154031A (en) | 2013-07-20 |
DE102009026655B3 (en) | 2011-06-30 |
JP2012528934A (en) | 2012-11-15 |
US20120077017A1 (en) | 2012-03-29 |
RU2536847C2 (en) | 2014-12-27 |
KR20120027350A (en) | 2012-03-21 |
WO2010139423A1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009026655B3 (en) | Method of making a metal matrix composite, metal matrix composite and its use | |
DE3785427T2 (en) | WEAR-RESISTANT SILICON CARBIDE POWDER WITH MULTILAYER SURFACE. | |
EP1433867B1 (en) | Composite material for manufacturing electrical contacts and process for its preparation | |
DE69535062T2 (en) | PRODUCT MANUFACTURE BY METAL SEPARATION | |
EP1926841B1 (en) | Cold gas spraying method | |
WO2005033353A2 (en) | Alloy in particular for a bearing coating | |
EP1992015A2 (en) | Composite material and method for production thereof | |
DE102007020891A1 (en) | Lined brake disc for rail- or commercial road vehicles, is formed as spray-compacted metal coating containing embedded ceramic particles | |
EP3189243B1 (en) | Plain bearing or part thereof, method for producing same and use of a cucrzr alloy as a plain bearing material | |
EP2411349B1 (en) | Method for making a joint between graphite and a metallic substrate, and the joined component | |
DE102013005008A1 (en) | Process for the production of components from a material containing carbon nanotubes | |
DE2830376C2 (en) | Process for the production of spherical particles for the spray application of protective coatings | |
DE2448738A1 (en) | Production of a composite - by coating a metal powder with another metal applying onto a carrier with a binder and sintering | |
DE102016114533A1 (en) | Iron-based alloy for the production of thermally sprayed wear-resistant coatings | |
WO2019076677A1 (en) | Method for producing a sliding bearing and a sliding bearing produced by the method | |
EP1685263B1 (en) | Method for producing a component provided with a metal matrix and a fibre or particle reinforcement | |
EP0911423B1 (en) | Method for joining workpieces | |
DE102010055791A1 (en) | Process for the manufacture of components made of refractory metals | |
DE3342593A1 (en) | Heavy-duty heat-resistant laminated composite material, in particular a composite material for sliding bearings, and process for the production thereof | |
EP3083108B1 (en) | Method of making a chromium containing coating | |
DE102004040460A1 (en) | Thermal spraying and thermally sprayed materials | |
DE10143015A1 (en) | Method of making composite from porous fiber-reinforced carbon preform and metal alloy forming carbides involves forming silicon carbide layer on the capillaries, holding metal alloy above melting point and detaching silicon carbide layers | |
EP1652608B2 (en) | Method for manufacturing a cermet layer and coated product | |
WO2005014208A1 (en) | Self-supporting three-dimensional components deposited by means of a thermal spraying method | |
DE102006045531B3 (en) | Method for producing a layer on a support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20110118 |
|
17Q | First examination report despatched |
Effective date: 20110210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20110331 |