[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2254682A2 - Structure de filtration d'un gaz a epaisseur de paroi variable - Google Patents

Structure de filtration d'un gaz a epaisseur de paroi variable

Info

Publication number
EP2254682A2
EP2254682A2 EP09721517A EP09721517A EP2254682A2 EP 2254682 A2 EP2254682 A2 EP 2254682A2 EP 09721517 A EP09721517 A EP 09721517A EP 09721517 A EP09721517 A EP 09721517A EP 2254682 A2 EP2254682 A2 EP 2254682A2
Authority
EP
European Patent Office
Prior art keywords
channels
walls
structure according
inlet
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09721517A
Other languages
German (de)
English (en)
Inventor
Adrien Vincent
Fabiano Rodrigues
Atanas Chapkov
David Lechevalier
Vignesh Rajamani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2254682A2 publication Critical patent/EP2254682A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of filter structures possibly comprising a catalytic component, for example used in an exhaust line of a diesel type internal combustion engine.
  • Filters for the treatment of gases and the removal of soot typically from a diesel engine are well known in the prior art.
  • These structures all most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels, most often of square section, axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • porous ceramic filters for example cordierite, alumina, in particular aluminum titanate, mullite silicon nitride, are used for the filtration of gases.
  • silicon / silicon carbide or silicon carbide mixture are used for the filtration of gases.
  • the particulate filter is subjected to a succession of filtration phases (accumulation of soot) and regeneration
  • soot particles emitted by the engine are retained and are deposited inside the filter.
  • soot particles are burned inside the filter, in order to restore its filtration properties.
  • the porous structure is then subjected to intense radial and tangential thermomechanical stresses, which can lead to micro-cracking likely over time to cause a severe loss of filtration capacity of the unit, or even its complete deactivation. This phenomenon is particularly observed on monolithic filters of large diameter.
  • the assembled filters currently marketed for light vehicles typically comprise approximately 10 to 20 unit elements having, in a cross section, a square or rectangular section and whose surface elemental section is between about 13 cm 2 and about 25 cm 2 . These elements consist of a plurality of channels of usually square section.
  • an obvious solution could be to reduce the number of unit elements in the assembly by increasing their individual size. Such an increase, however, is not currently possible, particularly with SiC filters, without unacceptably reducing the thermomechanical strength of the filter.
  • the larger section filters are made by assembling with a grouting cement of elements of a size similar to those constituting the filters intended for light vehicles.
  • the number of unit elements of truck filter type is then very high and can have up to 30 or even 80 elements.
  • Such filters then have an overall mass and a loss of charge that is too high.
  • the object of the present invention is a filter or a filter element having all at once:
  • a low pressure loss caused by the filtering structure in operation that is to say typically when it is in an exhaust line of an internal combustion engine, both when said structure is free of particles of soot (initial pressure drop) than when it is loaded with particles, - an increase in the pressure drop of the filter during said reasonable operation, ie an increase in the pressure drop measured as a function of time of use or, more exactly, depending on the level of soot loading of the filter, - a high specific filtration area, a mass of the monolithic element adapted to ensure a thermal mass sufficient to minimize the maximum regeneration temperature and the gradients caused by the filter, which can themselves cause cracks on the element,
  • thermomechanical resistance that is to say allowing a prolonged life of the filter
  • EP 1495791 discloses structures whose input channels have a generally octagonal cross-sectional cross-section, the outlet channels being of square section.
  • the tests carried out by the applicant have shown that such structures present a substantially deteriorated compromise between the thermomechanical resistance and the pressure drop generated by such a filter on the exhaust line.
  • the present invention relates to a filtration structure of particles-loaded gases of the honeycomb type and comprising a set of longitudinal adjacent channels of mutually parallel axes separated by porous filtering walls.
  • said channels being alternately plugged at one or other end of the structure so as to define inlet channels and outlet channels for the gas to be filtered, and to force said gas to pass through the walls porous separating the inlet and outlet channels,
  • said structure being characterized in that: the inlet and outlet channels share with each other at least one wall of constant average thickness over the entire length of the filtration structure, the inlet or outlet channels share with each other at least one wall of constant average thickness over the entire length of the filtration structure, the ratio e / d is strictly greater than ur to 1.
  • each outlet channel consists of at least three walls of substantially identical width, so as to form a channel whose section has a substantially regular shape
  • each output channel has a common wall with several input channels, each common wall constituting one side of said output channel, at least two input channels share a common wall of width b and of average thickness e.
  • the input and output channels are hexagonal.
  • the input channels are triangular and the output channels are hexagonal.
  • the input channels are octagonal and the output channels are square.
  • the channels have, in a cross section, a general shape that can be respectively in a polygon with 3, 4, 6 or 8 sides.
  • the ratio of the thicknesses e / d is greater than 1 and less than or equal to 10, preferably greater than or equal to 1.05 and less than or equal to 4, and very preferably greater than or equal to 1.1 and less than or equal to 2 and even more preferably greater than or equal to 1.1 and less than or equal to 1.5.
  • the walls constituting the input and output channels are planar.
  • the walls constituting the inlet and / or outlet channels are corrugated, that is to say that they have, in cross-section and with respect to the center of a channel, at least one concavity or a convexity.
  • the output channels have walls convex relative to the center of said output channels.
  • the output channels may have concave walls with respect to the center of said output channels.
  • the maximum distance, in a cross-section, between an end point of the concave or convex wall or walls and the line segment connecting the two ends of said wall, is typically greater than 0 and less than 0.5 a.
  • the thickness d is constant over the entire width at common walls between the inlet and outlet channels and / or the thickness e is constant over the entire width b of the common walls between the inlet channels.
  • These thicknesses d or / and e may also have, in cross-section, a variable thickness, it being understood that the ratio of the average thicknesses d and e remains strictly greater than 1. More precisely, it is possible, without departing from the scope of the According to the invention, the ratio e / d is not always greater than 1 in the entire volume of the filter, provided that said ratio e / d remains overall greater than 1 when it is integrated over the widths a and b of the corresponding walls.
  • the channels preferably those of exit, may have rounded corners so as to further reduce the pressure drop and improve the mechanical and thermomechanical strength of the structure according to the invention.
  • the density of channels is typically between about 1 and 280 cm 2 channels and preferably between 15 and 65 channels per cm 2 .
  • the average wall thickness is typically between 100 and 1000 microns, and preferably between 100 and 700 microns.
  • the width has output channels is between 0.05 and 4.00mm, and preferably between 0.10mm and 2.50mm, and very preferably between 0.20mm and 2.00mm.
  • the width b of the inlet channels is between 0.05 and about 4 mm, and preferably between 0.10 mm and 2.50 mm, and very preferably between 0.20 mm and 2.00 mm.
  • the walls are based on silicon carbide, and / or aluminum titanate and / or cordierite and / or mullite and / or silicon nitride and / or sintered metals.
  • the invention relates in particular to an assembled filter comprising a plurality of filtering structures as previously described, said structures being bonded together by a cement, preferably of ceramic and refractory nature.
  • the invention further relates to the use of a filter structure or an assembled filter as previously described as a device on an exhaust line of a Diesel engine or Gasoline preferably Diesel.
  • Figures 1 to 5 illustrate 5 non-limiting embodiments of a filter structure having a configuration of the channels according to the invention.
  • FIG. 1 is a front view in elevation of the front face of a filter according to a first embodiment according to the invention, comprising six-wall inlet and outlet channels and in which said walls are flat and of constant thickness.
  • FIG. 2 is a front view in elevation of the front face of a filter according to a second embodiment according to the invention, comprising six-wall inlet and outlet channels and in which said walls are corrugated, the channels of outlet being made of convex walls relative to the center of an exit channel.
  • Figure 2a illustrates a more detailed view of Figure 2.
  • FIG. 3 is a front view in elevation of the front face of a filter according to a third embodiment according to the invention, comprising three-walled inlet channels and six-wall outlet channels and in which said walls are corrugated, the outlet channels being concave walls relative to the center of an outlet channel.
  • Figure 3a illustrates a more detailed view of Figure 3.
  • FIG. 4 is a front view in elevation of the front face of a filter according to a fourth embodiment in which the walls common to the input channels have a variable thickness, in particular a maximum thickness e2 and a minimum thickness e1.
  • FIG. 5 is a front elevational view of the front face of a filter according to a fifth embodiment according to the invention, comprising four-walled output channels on the one hand and eight-walled input channels.
  • FIG. 6 is a front view in elevation of the front face of a filter not according to the invention, in which, unlike the filter described in relation with FIG. 2, the thickness e of the walls common to the channels of FIG. The input is identical to the thickness of common walls between the input and output channels.
  • FIG. 6a illustrates a more detailed view of FIG. 6.
  • FIG. 1 shows an elevational view of the gas inlet face of a piece of the monolithic filtration unit 1.
  • the present unit input channels 3 and output channels 2.
  • the output channels are conventionally clogged on the gas inlet face by plugs.
  • the filtering structure is characterized by the presence of an outlet channel 2 whose cross section has a hexagonal and regular shape, that is to say that the six sides of the hexagon are of one substantially identical length and that two adjacent sides form an angle close to 120 °.
  • a regular outlet channel 2 thus formed by six walls of identical width arranged at 120 °, is in contact with 6 input channels 3 of a general shape also hexagonal but irregular, that is to say formed by adjacent walls of which at least two have a different width, in a cross section.
  • two adjacent inlet channels 3 also have a common wall of width b.
  • the thickness e of the walls 10 common to the input channels is greater than the thickness of the walls 5 common between the input and output channels. More particularly, the structures are characterized in that the ratio e / d is greater than 1 and preferably less than or equal to 10, or even less than or equal to 4.
  • the distances a and b are defined according to the invention as the distances connecting the two vertices S1 and S2. of the wall considered, said vertices S1 and S2 are inscribed on the central core 6 of said wall (see Figure 1 and following). In this way we obtain values of a and of b independent of the thickness of the walls.
  • FIG. 2 represents the arrangement of a set of outlet and inlet channels 2 of the gases in an elevational view of the inlet face of the gases to be purified in a honeycomb structure according to the invention whose walls are corrugated.
  • the maximum distance c in a cross section, is defined as the distance between the end point 7 on the central core 6 of a corrugated wall and the right segment. 8 connecting the two ends Sl and S2 of the wall.
  • the thickness e of the walls common to the input channels is greater than the thickness of common walls between the input and output channels.
  • FIG. 3 is a front view in elevation of the front face of a filter according to a third embodiment according to the invention, comprising three-walled inlet channels and six-wall outlet channels and in which the walls of the input and output channels are wavy, the output channels being concave walls with respect to the center of an output channel.
  • the thickness e of the walls common to the input channels is greater than the thickness of common walls between the input and output channels.
  • Figure 3a illustrates a more detailed view of Figure 3.
  • FIG. 4 is a front view in elevation of the front face of a filter according to a fourth embodiment according to an embodiment of the invention similar to that already described in relation to FIG. 2, but the walls common to the channels; input 3 present this variable thickness, in particular a maximum thickness e2 at the ends of said wall 10 and a minimum thickness el in the middle of said wall 10.
  • the average thickness e m of said wall 10 is, however, greater than the average thickness. d of the wall 5, even if the thickness el, taken in the middle of the wall 10, is locally smaller than the thickness d, as represented in FIG.
  • Figure 5 is a front elevational view of the front face of a filter according to a fifth embodiment of the invention, comprising four-walled output channels on the one hand and eight-walled input channels.
  • the input 3 and output 2 channels have four common walls which delimit said output channels, the walls of the input and output channels being flat.
  • the walls common to the inlet channels 10 form an angle close to 45 ° with the common walls 5 between the inlet and outlet channels.
  • the thickness e of the walls common to the input channels is greater than the thickness of common walls 5 between the input and output channels.
  • the green monoliths obtained are dried by microwave for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • the channels of each face of the monolith are alternately blocked according to well-known techniques, for example described in application WO 2004/065088.
  • the monoliths are then baked under Argon according to a rise in temperature of 20 ° C / hour until reaching a maximum temperature of 2200 ° C. which is maintained for 6 hours.
  • the porous material obtained has an open porosity of 47% and a median pore distribution diameter of about 15 microns.
  • Table 1 The dimensional characteristics of the elements thus obtained are given in Table 1 below, the structure having a periodicity, that is to say a distance between two adjacent channels, equal to 2.02 mm.
  • An assembled filter was then formed from the monoliths. Sixteen elements from the same mixture were assembled together according to conventional techniques by bonding using a cement of the following chemical composition: 72% by weight of SiC, 15% by weight of Al 2 O 3, 11% by weight of SiO 2 , the remainder consisting of impurities mainly Fe2O3 and alkali and alkaline earth metal oxides. The average thickness of the joint between two adjacent blocks is of the order of 1 to 2 mm. The assembly is then machined in order to form assembled filters of cylindrical shape of about 14.4 cm in diameter.
  • pressure loss is meant within the meaning of the present invention the differential pressure existing between the upstream and downstream of the filter.
  • the pressure drop was measured according to the techniques of the art, for a gas flow rate of 250 kg / h and a temperature of 250 ° C., on the new filters.
  • thermomechanical resistance B- Measurement of the thermomechanical resistance
  • the filters are mounted on an exhaust line of a direct injection diesel 2.0 L engine running at full power (4000 rpm) for 30 minutes and then disassembled and weighed to determine their initial mass.
  • the filters are then reassembled on the engine bench with a speed of 3000 rpm and a torque of 50 Nm for different times to obtain a soot loads of 8 g / liter (by volume of the filter).
  • the filters thus loaded are reassembled on the line to undergo a severe regeneration thus defined: after stabilization at an engine speed of 1700 revolutions / minute for a torque of 95 Nm for 2 minutes, a post-injection is performed with 70 ° phasing for a post-injection flow rate of 18mm 3 / stroke.
  • the engine speed is lowered to 1050 revolutions / minute for a torque of 40 Nm for 5 minutes to accelerate the combustion of soot .
  • the filter is then run at 4000 rpm for 30 minutes to remove the remaining soot.
  • the regenerated filters are inspected after cutting to reveal the possible presence of cracks visible to the naked eye.
  • the thermomechanical resistance of the filter is appreciated in view of the number of cracks, a small number of cracks reflecting a thermomechanical resistance acceptable for use as a particulate filter.
  • the storage volume was determined according to the usual techniques well known in the art.
  • the open front area is obtained by calculating the percentage ratio of the area covered by the sum of the cross sections of the input channels of the front face of the monolithic unitary elements (except the walls and plugs) on the total area of the corresponding cross section of said unitary elements.
  • the amount of storage of residues is greater the higher the percentage.
  • the WALL is the ratio, in cross-section and in percentage, between the area occupied by all the walls of a monolithic unitary element (except plugs) and the total area of said cross-section.
  • the specific filtering surface of the filter corresponds to the internal surface of all the walls of the filter inlet channels expressed in m 2 , relative to the volume in m 3 of filter, integrating if necessary its external coating.
  • the soot storage volume is all the higher as the specific surface thus defined is large.
  • the loading slope is even lower than the specific filtration surface is large.
  • results reported in Table 2 show that the filters according to Examples 3 and 6 according to the invention have the best compromise between the different properties sought in an application as a particulate filter in an automobile exhaust line. More particularly, the results show that the filters according to the invention have, for an identical WALL factor, a significantly lower pressure drop, while nevertheless maintaining a filtration surface and an OFA (representative of the soot storage volume) while acceptable.
  • the results in Table 2 also show that the filters according to the invention have improved thermomechanical resistance compared to comparative filters having an identical internal wall thickness.
  • the filter according to Example 6 additionally exhibits the lowest fresh state pressure drop at the same time as the highest filtration area of the examples provided.
  • the results reported in Table 2 indicate that the filter structures obtained according to the invention have the best compromise, in particular between the two essential characteristics necessary for an application as a particulate filter in an exhaust line. that is to say the thermomechanical resistance and the pressure drop.
  • Such an improvement results in greater potential lifetimes of the filters, in particular in an automotive application, where the residues resulting from the successive combustion of the soot, during the phases of regeneration, tend to accumulate until finally make the filter unusable.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L' invention se rapporte à une structure de f iltration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que les canaux d'entrée et de sortie partagent entre eux au moins une paroi d'épaisseur moyenne d constante sur toute la longueur de la structure de filtration, en ce que les canaux d'entrée ou de sortie partagent entre eux au moins une paroi d'épaisseur moyenne e constante sur toute la longueur de la structure de filtration et en ce le rapport e/d est strictement supérieur à 1.

Description

STRUCTURE DE FILTRATION D'UN GAZ A EPAISSEUR DE PAROI VARIABLE
L' invention se rapporte au domaine des structures filtrantes comprenant éventuellement une composante catalytique, par exemple utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel . Les filtres permettant le traitement des gaz et l'élimination des suies typiquement issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents, le plus souvent de section carrée, d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
A l'heure actuelle, on utilise pour la filtration des gaz des filtres en matière céramique poreuse, par exemple en cordiérite, en alumine, notamment en titanate d'aluminium, en mullite en nitrure de silicium, en un mélange silicium/carbure de silicium ou en carbure de silicium.
De façon connue, durant sa mise en œuvre, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération
(élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration. La structure poreuse est alors soumise à des contraintes thermo-mécaniques radiales et tangentielles intenses, qui peuvent entraîner des micro-fissurations susceptibles sur la durée d'entraîner une perte sévère des capacités de filtration de l'unité, voire sa désactivation complète. Ce phénomène est particulièrement observé sur des filtres monolithiques de grand diamètre.
Pour résoudre ces problèmes et augmenter la durée de vie des filtres, il a été proposé plus récemment des structures de filtration associant plusieurs blocs ou éléments unitaires monolithiques en nid d'abeille. Les éléments sont le plus souvent assemblés entre eux par collage au moyen d'une colle ou d'un ciment de nature céramique, appelés dans la suite de la description ciment de joint. Des exemples de telles structures filtrantes sont par exemple décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923, WO 2004/090294 ou encore WO 2005/063462. Afin d'assurer une relaxation optimale des contraintes dans une telle structure assemblée, il est connu que les coefficients de dilatation thermique des différentes parties de la structure (éléments de filtration, ciment de revêtement, ciment de joint) doivent être sensiblement du même ordre. De ce fait, lesdites parties sont avantageusement synthétisées sur la base d'un même matériau, le plus souvent le carbure de silicium SiC ou la cordiérite. Ce choix permet en outre d'homogénéiser la répartition de la chaleur lors de la régénération du filtre. Afin d'obtenir les meilleurs performances de résistance thermo mécanique et de perte de charge, les filtres assemblés actuellement commercialisés pour les véhicules légers comportent typiquement environ 10 à 20 éléments unitaires présentant, selon une coupe transversale, une section carrée ou rectangulaire et dont la surface élémentaire en coupe est comprise entre environ 13 cm2 et environ 25 cm2. Ces éléments sont constitués d'une pluralité de canaux de section le plus souvent carrée. Pour réduire encore la masse du filtre sans réduire ses performances en termes de perte de charge et de stockage en suies, une solution évidente pourrait être de diminuer le nombre d'éléments unitaires dans l'assemblage en augmentant leur taille individuelle. Une telle augmentation n'est cependant pas possible actuellement, en particulier avec des filtres en SiC, sans diminuer de façon inacceptable la résistance thermomécanique du filtre.
Les filtres de plus grande section, actuellement utilisés notamment pour les applications de type «camion», sont réalisés par assemblage au moyen d'un ciment de jointoiement d'éléments de taille similaire à ceux constituant les filtres destinés aux véhicules légers. Le nombre d'éléments unitaires de type de filtre camions est alors très élevé et peut comporter jusqu'à 30 voire 80 éléments. De tels filtres présentent alors une masse globale et une perte de charge trop élevée.
De manière générale, il existe donc à l'heure actuelle un besoin visant à augmenter conjointement les performances globales de filtration et la durée de vie des filtres actuels . Plus précisément, l'amélioration des filtres peut être directement mesurée par la comparaison des propriétés qui suivent, le meilleur compromis possible entre ces propriétés étant recherché selon l'invention, pour des régimes moteurs équivalents. En particulier, l'objet de la présente invention est un filtre ou un élément de filtre présentant tout à la fois:
- une faible perte de charge occasionnée par la structure filtrante en fonctionnement, c'est-à-dire typiquement lorsque celle-ci est dans une ligne d'échappement d'un moteur à combustion interne, aussi bien lorsque que ladite structure est exempte de particules de suies (perte de charge initiale) que lorsqu'elle est chargée en particules, - une augmentation de la perte de charge du filtre au cours dudit fonctionnement raisonnable, c'est à dire un accroissement de la perte de charge mesuré en fonction du temps d'utilisation ou plus exactement en fonction du niveau de chargement en suies du filtre, - une surface spécifique de filtration élevée, une masse de l'élément monolithique adaptée pour assurer une masse thermique suffisante pour minimiser la température maximale de régénération et les gradients thermiques subis par le filtre, qui peuvent eux-mêmes entraîner des fissures sur l'élément,
- un volume de stockage de suies important, notamment à perte de charge constante, de manière à réduire la fréquence de régénération,
- une résistance thermomécanique forte, c'est-à-dire permettant une durée de vie prolongée du filtre,
- un volume de stockage des résidus plus important.
De manière à améliorer l'une ou l'autre des propriétés précédemment décrites, il a déjà été proposé dans l'art antérieur de modifier la forme des canaux de la structure filtrante de différentes manières : Par exemple, pour augmenter à volume de filtre constant, la surface de filtration dudit filtre, il a été proposé, dans la demande de brevet WO 05/016491, des éléments filtrants dont la forme et le volume interne des canaux d'entrée et de sortie sont différents. Dans de telles structures, les éléments de paroi se succèdent, en coupe transversale et en suivant un rang horizontal et/ou vertical de canaux, pour définir une forme sinusoïdale ou en vague (wavy en anglais) . Les éléments de paroi ondulent typiquement d'une demi période de sinusoïde sur la largeur d'un canal. De telles configurations de canaux permettent d' obtenir une perte de charge faible et un volume de stockage de suies important. Ce type de structure présente cependant une pente de chargement élevée en suie et les filtres réalisés avec ce type de configuration de canaux ne permettent donc pas de répondre à l'ensemble des besoins définis précédemment.
Selon une autre solution décrite pour obtenir des structures filtrantes améliorées, on connaît, de la demande EP 1495791, des structures dont les canaux d'entrée présentent une section de coupe transversale globalement octogonale, les canaux de sortie étant de section carrée. Les essais menés par le demandeur ont cependant montré que de telles structures présentaient un compromis sensiblement dégradé entre la résistance thermomécanique et la perte de charge engendrée par un tel filtre sur la ligne d' échappement .
Si chacune des configurations de l'art antérieur permet d'améliorer au moins une des propriétés recherchées, aucune des solutions décrites ne fournit donc un compromis acceptable entre l'ensemble des propriétés recherchées, telles que précédemment exposées. En général, on peut remarquer que, pour chacune des configurations de l'art antérieur, l'amélioration obtenue pour l'une des propriétés du filtre est accompagnée de la détérioration conjointe d'une autre, de telle sorte que l'amélioration finalement obtenue est généralement mineure au regard des inconvénients induits. La présente invention a ainsi pour but de fournir une structure filtrante présentant le meilleur compromis entre la perte de charge induite, la masse, la surface totale de filtration, le volume de stockage des suies et des résidus et la résistance thermomécanique, tel que précédemment décrit.
Dans sa forme la plus générale, la présente invention se rapporte à une structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que : les canaux d'entrée et de sortie partagent entre eux au moins une paroi d'épaisseur moyenne d constante sur toute la longueur de la structure de filtration, - les canaux d'entrée ou de sortie partagent entre eux au moins une paroi d'épaisseur moyenne e constante sur toute la longueur de la structure de filtration, le rapport e/d est strictement supérieur à 1.
De préférence, la structure filtrante est telle que : - chaque canal de sortie est constitué d'au moins trois parois de largeur a sensiblement identique, de façon à former un canal dont la section présente une forme sensiblement régulière, - chaque canal de sortie présente une paroi commune avec plusieurs canaux d'entrée, chaque paroi commune constituant un coté dudit canal de sortie, au moins deux canaux d'entrée partagent une paroi commune de largeur b et d'épaisseur moyenne e.
Selon un mode possible, les canaux d'entrée et de sortie sont de forme hexagonale.
Selon un autre mode, les canaux d'entrée sont de forme triangulaire et les canaux de sortie sont de forme hexagonale.
Selon un troisième mode possible, les canaux d'entrée sont de forme octogonale et les canaux de sortie sont de forme carrée.
Par forme triangulaire, carrée, hexagonale ou octogonale, on entend au sens de la présente invention que les canaux présentent, selon une coupe transversale, une forme générale pouvant s'inscrire respectivement dans un polygone à 3, 4, 6 ou 8 cotés.
De préférence, le rapport des épaisseurs e/d est supérieur à 1 et inférieur ou égal à 10, de préférence supérieur ou égal à 1,05 et inférieur ou égal à 4, et de manière très préférée supérieur ou égal à 1,1 et inférieur ou égal à 2 et de manière encore plus préférée supérieur ou égal à 1,1 et inférieur ou égal à 1,5. Selon un mode possible les parois constituant les canaux d'entrée et de sortie sont planes.
Selon un mode alternatif, les parois constituant les canaux d'entrée et/ou de sortie sont ondulées, c'est-à-dire qu'elles présentent, en coupe transversale et par rapport au centre d'un canal, au moins une concavité ou une convexité .
Par exemple, les canaux de sortie présentent des parois convexes par rapport au centre desdits canaux de sortie.
Sans sortir de l'invention, les canaux de sortie peuvent présenter des parois concaves par rapport au centre desdits canaux de sortie. La distance maximale, selon une coupe transversale, entre un point extrême de la ou les parois concaves ou convexes et le segment de droite reliant les deux extrémités de ladite paroi, est typiquement supérieure à 0 et inférieur à 0,5a.
De préférence l'épaisseur d est constante sur toute la largeur a des parois communes entre les canaux d'entrée et de sortie et/ou l'épaisseur e est constante sur toute la largeur b des parois communes entre les canaux d'entrée. Ces épaisseurs d ou/et e peuvent également présenter, en coupe transversale, une épaisseur variable, étant entendu que le rapport des épaisseurs moyennes d et e reste strictement supérieur à 1. Plus précisément, il est possible, sans sortir du cadre de l'invention, que le rapport e/d ne soit pas toujours supérieur à 1 dans la totalité du volume du filtre, pourvu que ledit rapport e/d reste globalement supérieur à 1 lorsqu' il est intégré sur les largeurs a et b des parois correspondantes.
Avantageusement les canaux, de préférence ceux de sortie, peuvent présenter des coins arrondis de manière à réduire encore la perte de charge et améliorer la résistance mécanique et thermomécanique de la structure selon l'invention.
Dans les structures de filtration selon l'invention, la densité de canaux est typiquement comprise entre environ 1 et 280 canaux cm2 et de préférence comprise entre 15 et 65 canaux par cm2.
Dans les structures de filtration selon l'invention, l'épaisseur moyenne des parois est typiquement comprise entre 100 et 1000 microns, et de préférence comprise entre 100 et 700 microns.
En général la largeur a des canaux de sortie est comprise entre 0,05 et 4,00mm, et de préférence comprise entre 0,10mm et 2,50mm, et de manière très préférée comprise entre 0,20mm et 2,00mm. En général la largeur b des canaux d'entrée est comprise entre 0,05 et environ 4mm, et de préférence comprise entre 0,10mm et 2,50mm, et de manière très préférée comprise entre 0,20mm et 2,00mm. Selon un mode de réalisation, les parois sont à base de Carbure de Silicium, ou/et de titanate d'Aluminium ou/et de cordiérite ou/et de mullite et/ou de nitrure de Silicium et/ou de métaux frittes.
L' invention se rapporte en particulier à un filtre assemblé comprenant une pluralité de structures filtrantes telles que précédemment décrites, les dites structures étant liées entre elles par un ciment, de préférence de nature céramique et réfractaire.
L'invention se rapporte en outre à l'utilisation d'une structure de filtration ou d'un filtre assemblé tels que précédemment décrits comme dispositif sur une ligne d'échappement d'un moteur Diesel ou Essence de préférence Diesel .
Les figures 1 à 5 illustrent 5 modes non limitatifs de réalisation d'une structure filtrante présentant une configuration des canaux selon l'invention.
La figure 6 illustre un mode de réalisation non conforme à l'invention, dans lequel l'épaisseur de toutes les parois est constante. Plus précisément : La figure 1 est une vue de face en élévation de la face avant d'un filtre selon une première réalisation selon l'invention, comprenant des canaux d'entrée et de sortie à six parois et dans laquelle lesdites parois sont planes et d'épaisseur constante. La figure 2 est une vue de face en élévation de la face avant d'un filtre selon une seconde réalisation selon l'invention, comprenant des canaux d'entrée et de sortie à six parois et dans laquelle lesdites parois sont ondulées, les canaux de sortie étant constitués de parois convexes par rapport au centre d'un canal de sortie. La figure 2a illustre une vue plus détaillée de la figure 2.
La figure 3 est une vue de face en élévation de la face avant d'un filtre selon une troisième réalisation selon l'invention, comprenant des canaux d'entrée à trois parois et des canaux de sortie à six parois et dans laquelle lesdites parois sont ondulées, les canaux de sortie étant constitués de parois concaves par rapport au centre d'un canal de sortie. La figure 3a illustre une vue plus détaillée de la figure 3.
La figure 4 est une vue de face en élévation de la face avant d'un filtre selon une quatrième réalisation dans lequel les parois communes aux canaux d'entrée présentent une épaisseur variable, notamment une épaisseur maximale e2 et une épaisseur minimale el.
La figure 5 est une vue de face en élévation de la face avant d'un filtre selon une cinquième réalisation selon l'invention, comprenant des canaux de sortie à quatre parois d'une part et des canaux d'entrée à huit parois. La figure 6 est une vue de face en élévation de la face avant d'un filtre non conforme à l'invention, dans lequel, au contraire du filtre décrit en relation avec la figure 2, l'épaisseur e des parois communes aux canaux d'entrée est identique à l'épaisseur d des parois communes entre les canaux d'entrée et de sortie. La figure 6a illustre une vue plus détaillée de la figure 6. Sur la figure 1, on a représenté une vue en élévation de la face d'entrée des gaz d'un morceau de l'unité de filtration monolithique 1. L'unité présente des canaux d'entrée 3 et des canaux de sortie 2. Les canaux de sortie sont classiquement obstrués sur la face d'entrée des gaz par des bouchons. Les canaux d'entrée sont également bouchés mais sur la face opposée (arrière) du filtre, de manière à ce que les gaz à purifier soient forcés de traverser les parois poreuses 5 communes aux canaux d'entrée et de sortie. Selon ce premier mode, la structure filtrante est caractérisée par la présence d'un canal de sortie 2 dont la section transversale présente une forme hexagonale et régulière, c'est-à-dire que les 6 cotés de l'hexagone sont d'une longueur sensiblement identique a et que deux cotés adjacents forment un angle proche de 120°. Un canal de sortie régulier 2, ainsi formé par six parois de largeur identique a disposées à 120°, est en contact avec 6 canaux d'entrée 3 d'une forme générale également hexagonale mais irrégulière, c'est-à-dire formés par des parois adjacentes dont au moins deux présentent une largueur différente, selon une coupe transversale.
Tel que représenté sur la figure 1, deux canaux d'entrée 3 adjacents présentent également une paroi 10 commune de largeur b.
Selon l'invention, l'épaisseur e des parois 10 communes aux canaux d'entrée est plus grande que l'épaisseur d des parois 5 communes entre les canaux d'entrée et de sortie. Plus particulièrement, les structures sont caractérisées en ce que le rapport e/d est supérieur à 1 et de préférence inférieur ou égal à 10, voire inférieure ou égal à 4.
Tel que représenté sur les figures 1 à 6 ci-jointes, selon une vue de face (ou une coupe transversale) de la structure filtrante, les distances a et b sont définies selon l'invention comme les distances reliant les deux sommets Sl et S2 de la paroi considérée, lesdits sommets Sl et S2 s' inscrivant sur l'âme centrale 6 de ladite paroi (cf. figure 1 et suivantes) . On obtient ainsi des valeurs de a et de b indépendantes de l'épaisseur des parois.
La figure 2 représente l'agencement d'un ensemble de canaux de sortie 2 et d'entrée 3 des gaz selon une vue en élévation de la face d'entrée des gaz à purifier dans une structure en nid d'abeille selon l'invention dont les parois sont ondulées. Au sein de cette structure et tel que représenté sur la figure 2a, on définit la distance maximale c, selon une coupe transversale, comme la distance entre le point extrême 7 sur l'âme centrale 6 d'une paroi ondulée et le segment de droite 8 reliant les deux extrémités Sl et S2 de la paroi. Selon l'invention, l'épaisseur e des parois communes aux canaux d'entrée est plus grande que l'épaisseur d des parois communes entre les canaux d'entrée et de sortie.
La figure 3 est une vue de face en élévation de la face avant d'un filtre selon une troisième réalisation selon l'invention, comprenant des canaux d'entrée à trois parois et des canaux de sortie à six parois et dans laquelle les parois des canaux d'entré et de sortie sont ondulées, les canaux de sortie étant constitués de parois concaves par rapport au centre d'un canal de sortie. La encore et selon l'invention, l'épaisseur e des parois communes aux canaux d'entrée est plus grande que l'épaisseur d des parois communes entre les canaux d'entrée et de sortie. La figure 3a illustre une vue plus détaillée de la figure 3.
Sur les figures 3 et 3a et les suivantes, les mêmes numéros ont été utilisés pour désigner des éléments identiques ou semblables à ceux déjà décrits dans les figures 1, 2 et 2a. Les définitions des paramètres a, b et c sont également les mêmes que précédemment expliqués, en relation avec les figures 1, 2 et 2a.
La figure 4 est une vue de face en élévation de la face avant d'un filtre selon une quatrième réalisation selon un mode de réalisation de l'invention semblable à celui déjà décrit en relation avec la figure 2, mais les parois communes 10 aux canaux d'entrée 3 présentent cette fois une épaisseur variable, notamment une épaisseur maximale e2 aux extrémités de ladite paroi 10 et une épaisseur minimale el au milieu de ladite paroi 10. Selon l'invention l'épaisseur moyenne em de ladite paroi 10 est cependant supérieure à l'épaisseur moyenne d de la paroi 5, même si l'épaisseur el, prise au milieu de la paroi 10, est localement inférieur à l'épaisseur d, comme représenté sur la figure 4.
La figure 5 est une vue de face en élévation de la face avant d'un filtre selon une cinquième réalisation de l'invention, comprenant des canaux de sortie à quatre parois d'une part et des canaux d'entrée à huit parois. Les canaux d'entrée 3 et de sortie 2 présentent quatre parois communes qui délimitent lesdits canaux de sortie, les parois des canaux d'entrée et de sortie étant planes. Les parois communes aux canaux d'entrée 10 forment un angle proche de 45° avec les parois communes 5 entre les canaux d'entrée et de sortie. Comme pour les exemples précédents, l'épaisseur e des parois communes 10 aux canaux d'entrée est plus grande que l'épaisseur d des parois communes 5 entre les canaux d'entrée et de sortie.
L' invention et ses avantages par rapport aux structures déjà connues seront mieux compris à la lecture des exemples non limitatifs qui suivent.
Exemple 1 (comparatif) :
On a synthétisé selon les techniques de l'art, par exemple décrites dans les brevets EP 816065, EP 1 142 619, EP 1 455
923 ou encore WO 2004/090294, une première population d'éléments monolithiques ou monolithes en forme de nid d'abeille et en carbure de silicium.
Pour ce faire, selon les techniques notamment décrites dans EP 1 142 619, on mélange dans un premier temps 70% poids d'une poudre de SiC dont les grains présentent un diamètre médian d5o de 10 microns, avec une deuxième poudre de SiC dont les grains présentent un diamètre médian d5o de 0,5 micron. Au sens de la présente description, on désigne par diamètre médian de pore d5o le diamètre des particules tel que respectivement 50% de la population totale des grains présente une taille inférieure à ce diamètre. A ce mélange est ajouté un porogène du type polyéthylène dans une proportion égale à 5% poids du poids total des grains de SiC et un additif de mise en forme du type methylcellulose dans une proportion égale à 10% poids du poids total des grains de SiC.
On ajoute de l'eau et on malaxe jusqu'à obtenir une pâte homogène dont la plasticité permet l'extrusion, la filière étant configurée pour l'obtention de blocs monolithes par une disposition octogonale des canaux internes d'entrée
(souvent appelée structure octosquare dans le domaine) telle qu' illustrée par la figure 6b de la demande EP
1 495 791. Les monolithes crus obtenus sont séchés par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1% en masse.
Les canaux de chaque face du monolithe sont alternativement bouchés selon des techniques bien connues, par exemple décrites dans la demande WO 2004/065088.
Les monolithes (éléments) sont ensuite cuits sous Argon selon une montée en température de 20°C/heure jusqu'à atteindre une température maximale de 22000C qui est maintenue pendant 6 heures. Le matériau poreux obtenu, présente une porosité ouverte de 47% et un diamètre médian de distribution de pores de l'ordre de 15 micromètres. Les caractéristiques dimensionnelles des éléments ainsi obtenus sont données dans le tableau 1 ci-après, la structure présentant une périodicité, c'est à dire une distance entre 2 canaux adjacents, égale à 2,02mm. La disposition des canaux est caractérisée par les valeurs suivantes selon la description précédente : a = 1,66mm b = 0,52mm d = e = 0 , 39mm
On a ensuite formé un filtre assemblé à partir des monolithes. Seize éléments issus d'un même mélange ont été assemblés entre eux selon les techniques classiques par collage au moyen d'un ciment de composition chimique suivante : 72% poids de SiC, 15% poids d'Al2θ3, 11% poids de SiO2, le reste étant constitué par des impuretés majoritairement de Fe2Û3 et d'oxydes de métaux alcalins et alcalino-terreux . L'épaisseur moyenne du joint entre deux blocs voisins est de l'ordre de 1 à 2 mm. L'ensemble est ensuite usiné, afin de constituer des filtres assemblés de forme cylindrique d'environ 14,4 cm de diamètre.
Exemple 2 (comparatif) : La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes présentant une épaisseur de paroi plus grande telle que : d = e = 0,41 mm
Exemple 3 (selon l'invention):
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition octogonale des canaux internes d'entrée comme précédemment mais dans laquelle l'épaisseur des parois communes aux canaux d'entrée est plus grande que l'épaisseur d des parois communes entre les canaux d'entrée et de sortie telle qu'illustrée par la figure 5. Les caractéristiques dimensionnelles des éléments ainsi obtenus sont données dans le tableau 1 ci-après la structure présentant une périodicité c'est à dire une distance entre 2 canaux adjacents de 2.02mm.
La disposition des canaux est caractérisée par les valeurs suivantes selon la description précédente : a = 1 , 66mm b = 0 , 52mm d=0, 390mm e=0, 544mm
Exemple 4 (comparatif) :
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition des canaux internes selon l'invention et conforme à la représentation donnée sur la figure 6, c'est-à-dire avec des parois ondulées et convexes par rapport au centre d'un canal de sortie régulier. La disposition des canaux est caractérisée par les valeurs suivantes : a = 1,40 mm b = 0,84 mm c = 0 , 23 mm d = e = 0, 330 mm
Exemple 5 (comparatif) :
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes présentant une épaisseur de paroi plus grande telle que : d = e = 0, 348 mm Exemple 6 (selon l'invention) :
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition des canaux internes selon l'invention et conforme à la représentation donnée sur la figure 2, c'est-à-dire avec des parois ondulées et convexes par rapport au centre d'un canal de sortie régulier. La disposition des canaux est caractérisée par les valeurs suivantes : a = 1,40 mm b = 0,84 mm c = 0,23 mm d = 0, 330 mm e = 0,397 mm
Les principales caractéristiques structurelles des éléments obtenus selon les exemples 1 à 4 sont reportées dans le tableau 1 ci-dessous. La technique d'assemblage et d'obtention des filtres est la même pour tous les exemples et telle que décrite dans l'exemple 1.
NA = non applicable
Tableau 1
Les échantillons obtenus ont été évalués et caractérisés selon les modes opératoires suivants:
A- Mesure de perte de charge à l'état non chargé en suies:
Par perte de charge, on entend au sens de la présente invention la pression différentielle existant entre l'amont et l'aval du filtre. La perte de charge a été mesurée selon les techniques de l'art, pour un débit de gaz de 250 kg/h et une température de 2500C, sur les filtres neufs.
B- Mesure de la résistance thermomécanique :
Les filtres sont montés sur une ligne d'échappement d'un moteur 2.0 L diesel à injection directe mis en marche à pleine puissance (4000 tr/minutes) pendant 30 minutes puis démontés et pesés afin de déterminer leur masse initiale. Les filtres sont ensuite remontés sur banc moteur avec un régime à 3000 tr/min et un couple de 50 Nm pendant des durées différentes afin d'obtenir une charges en suies de 8 g/litre (en volume du filtre) . Les filtres ainsi chargés sont remontés sur la ligne pour subir une régénération sévère ainsi définie : après une stabilisation à un régime moteur de 1700 tours/minute pour un couple de 95 Nm pendant 2 minutes, une post-injection est réalisée avec 70° de phasage pour un débit de post injection de 18mm3/coup. Une fois la combustion des suies initiée, plus précisément lorsque la perte de charge diminue pendant au moins 4 secondes, le régime du moteur est abaissé à 1050 tours/minute pour un couple de 40 Nm pendant 5 minutes afin d'accélérer la combustion des suies. Le filtre est ensuite soumis à un régime moteur de 4000 tours/minute pendant 30 minutes afin d'éliminer les suies restantes. Les filtres régénérés sont inspectés après découpe pour révéler la présence éventuelle de fissures visibles à l'œil nu. La résistance thermomécanique du filtre est appréciée au vu du nombre de fissures, un nombre faible de fissures traduisant une résistance thermomécanique acceptable pour une utilisation comme filtre à particules.
Tel que reporté dans le tableau 2, on a attribué les notes suivantes à chacun des filtres :
+++ : présence de très nombreuses fissures, ++ : présence de nombreuses fissures, + : présence de quelques fissures,
: pas de fissures ou rares fissures.
Le volume de stockage a été déterminé selon les techniques habituelles bien connues dans le domaine.
C- évaluation des propriétés géométriques:
L' OFA (« open front area » en anglais) ou surface de front ouverte est obtenue en calculant le rapport en pourcentage de l'aire couverte par la somme des sections transversales des canaux d'entrée de la face avant des éléments monolithiques unitaires (hormis les parois et bouchons) sur l'aire totale de la section transversale correspondante desdits éléments unitaires. Le volume de stockage des résidus est d'autant plus grand que ce pourcentage sera élevé .
Le WALL est le rapport, selon une coupe transversale et en pourcentage, entre la surface occupée par l'ensemble des parois d'un élément monolithique unitaire (hormis les bouchons) et l'aire totale de ladite section transversale.
La surface spécifique de filtration du filtre (monolithique ou assemblé) correspond à la surface interne de l'ensemble des parois des canaux d'entrée filtrants exprimée en m2, rapportée au volume en m3 de filtre, en intégrant le cas échéant son revêtement externe. Le volume de stockage des suies est d'autant plus élevé que la surface spécifique ainsi définie est grande. La pente de chargement est d'autant plus faible que la surface spécifique de filtration est grande.
Les résultats obtenus aux tests pour l'ensemble des exemples 1 à 6 sont regroupés dans le tableau 2 qui suit :
NA = non applicable
Tableau 2
Analyse des résultats:
Les résultats reportés dans le tableau 2 montrent que les filtres selon les exemples 3 et 6 selon l'invention présentent le meilleur compromis entre les différentes propriétés recherchées dans une application comme filtre à particules dans une ligne d'échappement automobile. Plus particulièrement, les résultats montrent que les filtres selon l'invention présentent, pour un facteur WALL identique, une perte de charge significativement plus faible, tout en maintenant cependant une surface de filtration et une OFA (représentative du volume de stockage des suies) tout à fait acceptable. Les résultats du tableau 2 montrent également que les filtres selon l'invention présentent une résistance thermomécanique améliorée par rapport aux filtres comparatifs présentant une épaisseur de paroi interne d identique . Le filtre selon l'exemple 6 présente en outre la perte de charge à l'état neuf la plus faible en même temps que la surface de filtration la plus élevée parmi les exemples fournis .
En d'autres termes, les résultats reportés dans le tableau 2 indique que les structures filtrantes obtenues selon l'invention présentent le meilleur compromis, en particulier entre les deux caractéristiques essentielles nécessaires pour une application comme filtre à particules dans une ligne d'échappement, c'est-à-dire la résistance thermomécanique et la perte de charge. Une telle amélioration se traduit par des durées de vie potentielles plus importantes des filtres, en particulier dans une application automobile, où les résidus issus des combustions successives des suies, lors des phases de régénération, ont tendance à s'accumuler jusqu'à rendre finalement le filtre inutilisable.
Plus particulièrement, du fait de ce meilleur compromis, il devient possible selon l'invention de synthétiser des structures assemblées à partir d'éléments monolithiques de plus grande taille qu'auparavant, tout en garantissant une durée de vie supérieure.

Claims

REVENDICATIONS
1. Structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure se caractérisant en ce que : les canaux d'entrée et de sortie partagent entre eux au moins une paroi d'épaisseur moyenne d constante sur toute la longueur de la structure de filtration, les canaux d'entrée ou de sortie partagent entre eux au moins une paroi d'épaisseur moyenne e constante sur toute la longueur de la structure de filtration, - le rapport e/d est strictement supérieur à 1.
2. Structure de filtration de gaz selon la revendication 1, dans laquelle :
- chaque canal de sortie est constitué d'au moins trois parois de largeur a sensiblement identique, de façon à former un canal dont la section présente une forme sensiblement régulière, chaque canal de sortie présente une paroi commune avec plusieurs canaux d'entrée, chaque paroi commune constituant un coté dudit canal de sortie, au moins deux canaux d'entrée partagent une paroi commune de largeur b et d'épaisseur moyenne e.
3. Structure de filtration de gaz selon la revendication 1 ou 2, dans laquelle les canaux d'entrée et de sortie sont de forme hexagonale.
4. Structure de filtration de gaz selon l'une des revendications 1 ou 2, dans laquelle les canaux d'entrée sont de forme triangulaire et les canaux de sortie sont de forme hexagonale.
5. Structure de filtration de gaz selon l'une des revendications 1 ou 2, dans laquelle les canaux d'entrée sont de forme octogonale et les canaux de sortie sont de forme carrée.
6. Structure de filtration selon l'une des revendications précédentes, dans laquelle le rapport des épaisseurs moyennes de paroi e/d est supérieur à 1 et inférieur ou égal à 10, de préférence supérieur ou égal à 1,05 et inférieur ou égal à 5, et de manière très préférée supérieur ou égal à 1,1 et inférieur ou égal à 2 et de manière encore plus préférée supérieur ou égal à 1,1 et inférieur ou égal à 1,5.
7. Structure de filtration selon l'une des revendications précédentes, dans laquelle les parois constituant les canaux d'entrée et de sortie sont planes.
8. Structure de filtration selon l'une des revendications précédentes dans laquelle les parois constituant les canaux d'entrée et de sortie sont ondulées, c'est-à-dire qu'elles présentent, en coupe transversale et par rapport au centre d'un canal, au moins une concavité ou au moins une convexité.
9. Structure de filtration selon la revendication précédente, dans laquelle les canaux de sortie présentent des parois convexes par rapport au centre desdits canaux.
10. Structure de filtration selon la revendication 8, dans laquelle les canaux de sortie présentent des parois concaves par rapport au centre desdits canaux.
11. Structure de filtration selon l'une des revendications 8 à 10, dans laquelle la distance maximale, selon une coupe transversale, entre un point de la ou les paroi concave ou convexe et le segment de droite reliant les deux extrémités de ladite paroi est supérieur à 0 et inférieur à 0,5 a.
12. Structure de filtration selon l'une des revendications précédentes, dans laquelle la densité des canaux est comprise entre environ 1 et environ 280 canaux par cm2 et de préférence compris entre 15 et 65 canaux par cm2.
13. Structure de filtration selon l'une des revendications précédentes, dans laquelle l'épaisseur moyenne des parois est comprise de préférence entre 100 et 1000 microns, de préférence de 100 à 700 microns.
14. Structure de filtration selon l'une des revendications précédentes, dans laquelle la largeur a des canaux de sortie est comprise entre environ 0,05mm et environ 4,00mm, et de préférence comprise entre environ 0,20mm et environ 2,00mm.
15. Structure de filtration selon l'une des revendications précédentes, dans laquelle la largeur b de la paroi commune entre deux canaux d'entrée est comprise entre environ 0,05mm et environ 4,00mm, et de préférence comprise entre environ 0,20mm et environ 2,00mm.
16. Structure selon l'une des revendications précédentes, dans laquelle les parois sont à base de Carbure de Silicium SiC et/ou de Titanate d'Aluminium et/ou de Cordiérite et/ou de Mullite et/ou de Nitrure de Silicium et/ou de métaux frittes
17. Filtre assemblé comprenant une pluralité de structures filtrantes selon l'une des revendications précédentes, lesdites structures étant liées entre elles par un ciment de nature céramique et de préférence réfractaire.
18. Utilisation d'une structure de filtration ou d'un filtre assemblé selon l'une des revendications précédentes comme dispositif de dépollution sur une ligne d'échappement d'un moteur Diesel ou Essence de préférence Diesel.
EP09721517A 2008-03-11 2009-03-10 Structure de filtration d'un gaz a epaisseur de paroi variable Withdrawn EP2254682A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0851580A FR2928562B1 (fr) 2008-03-11 2008-03-11 Structure de filtration d'un gaz a epaisseur de paroi variable
PCT/FR2009/050383 WO2009115753A2 (fr) 2008-03-11 2009-03-10 Structure de filtration d'un gaz a epaisseur de paroi variable

Publications (1)

Publication Number Publication Date
EP2254682A2 true EP2254682A2 (fr) 2010-12-01

Family

ID=39876807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09721517A Withdrawn EP2254682A2 (fr) 2008-03-11 2009-03-10 Structure de filtration d'un gaz a epaisseur de paroi variable

Country Status (6)

Country Link
US (1) US20110030357A1 (fr)
EP (1) EP2254682A2 (fr)
JP (1) JP2011513059A (fr)
KR (1) KR20100138913A (fr)
FR (1) FR2928562B1 (fr)
WO (1) WO2009115753A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965489B1 (fr) 2010-09-30 2013-03-29 Saint Gobain Ct Recherches Structure en nid d'abeille microfissuree.
JP2012254440A (ja) * 2011-05-17 2012-12-27 Sumitomo Chemical Co Ltd ハニカムフィルタ
WO2012157422A1 (fr) * 2011-05-17 2012-11-22 住友化学株式会社 Filtre en nid d'abeilles
JP2012254441A (ja) * 2011-05-17 2012-12-27 Sumitomo Chemical Co Ltd ハニカムフィルタ
WO2013150974A1 (fr) * 2012-04-05 2013-10-10 住友化学株式会社 Structure en nid d'abeilles
MX2014011907A (es) * 2012-04-05 2014-11-12 Sumitomo Chemical Co Estructura de panal de miel.
US20150376072A1 (en) * 2012-12-27 2015-12-31 Sumitomo Chemical Company, Limited Method for manufacturing honeycomb structure
JP6802102B2 (ja) * 2016-03-30 2020-12-16 日本碍子株式会社 目封止ハニカム構造体
JP6247343B2 (ja) * 2016-06-10 2017-12-13 日本碍子株式会社 ハニカム構造体
JP7193963B2 (ja) * 2018-09-27 2022-12-21 日本碍子株式会社 ハニカムフィルタ
WO2020101911A1 (fr) 2018-11-15 2020-05-22 Corning Incorporated Corps en nid d'abeilles à cellules inclinées, matrice d'extrusion et son procédé de fabrication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416676A (en) * 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
FR2789327B1 (fr) * 1999-02-09 2001-04-20 Ecia Equip Composants Ind Auto Structure de filtration poreuse et dispositif de depollution la comportant
US7655195B1 (en) * 1999-08-30 2010-02-02 Ngk Insulators, Ltd. Undulated-wall honeycomb structure and manufacturing method thereof
ES2321331T3 (es) * 1999-09-29 2009-06-04 Ibiden Co., Ltd. Filtro de nido de abeja y conjunto de filtros ceramicos.
FR2857696B1 (fr) * 2003-07-18 2005-10-21 Saint Gobain Ct Recherches Bloc filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne.
JP4238858B2 (ja) * 2005-09-20 2009-03-18 株式会社デンソー 六角ハニカム構造体及びその製造方法
DE102006026161A1 (de) * 2006-05-23 2007-11-29 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
FR2925353B1 (fr) * 2007-12-20 2009-12-11 Saint Gobain Ct Recherches Structure de filtration d'un gaz a canaux hexagonaux asymetriques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009115753A2 *

Also Published As

Publication number Publication date
FR2928562A1 (fr) 2009-09-18
WO2009115753A2 (fr) 2009-09-24
KR20100138913A (ko) 2010-12-31
FR2928562B1 (fr) 2010-08-13
JP2011513059A (ja) 2011-04-28
WO2009115753A3 (fr) 2009-12-03
US20110030357A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
EP2234693B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP2244804B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP2254682A2 (fr) Structure de filtration d'un gaz a epaisseur de paroi variable
FR2946892A1 (fr) Structure de filtration d'un gaz a canaux hexagonaux irreguliers.
EP2069617B1 (fr) Element monolithique a coins renforces pour la filtration de particules
FR2896823A1 (fr) Filtre catalytique presentant un temps d'amorcage reduit
WO2009115762A2 (fr) Structure de filtration de gaz
EP1954374B1 (fr) Structure a base de carbure de silicium de porosite de surface de paroi controlee pour filtration d'un gaz
WO2005016491A1 (fr) Bloc filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne.
WO2010112781A1 (fr) STRUCTURE DE FILTRATION D'UN GAZ ET DE REDUCTION DES NOx
EP2111281A1 (fr) Structure de filtration d'un gaz a paroi ondulee
EP2244805B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux concaves ou convexes
WO2009156638A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
EP2043757B1 (fr) Filtre comprenant une pluralite d'elements en nid d'abeille reunis dans un assemblage decentre
EP2468382A1 (fr) Filtre a particules du type assemble
WO2011138552A1 (fr) Structure de filtration de gaz
WO2011138555A1 (fr) Structure de filtration de gaz
FR2979837A1 (fr) Element en nid d'abeille a coins renforces
FR2903918A1 (fr) Filtre comprenant une pluralite d'elements en nid d'abeille reunis dans un assemblage decentre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101011

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHAPKOV, ATANAS

Inventor name: VINCENT, ADRIEN

Inventor name: RODRIGUES, FABIANO

Inventor name: LECHEVALIER, DAVID

Inventor name: RAJAMANI, VIGNESH

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Name of requester: SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH, DE

Effective date: 20110418

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003