EP2252678B1 - Laundry treatment compositions - Google Patents
Laundry treatment compositions Download PDFInfo
- Publication number
- EP2252678B1 EP2252678B1 EP09718739A EP09718739A EP2252678B1 EP 2252678 B1 EP2252678 B1 EP 2252678B1 EP 09718739 A EP09718739 A EP 09718739A EP 09718739 A EP09718739 A EP 09718739A EP 2252678 B1 EP2252678 B1 EP 2252678B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laundry treatment
- treatment composition
- sio
- spherical sio
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 0 Cc1cc(N[N+]c(c(*)c2)cc(*)c2N)ccc1 Chemical compound Cc1cc(N[N+]c(c(*)c2)cc(*)c2N)ccc1 0.000 description 4
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
Definitions
- the present invention relates to wash added, laundry detergent compositions and methods for using the same during the wash cycle of a consumer laundry process.
- WO 2007/111887 discloses liquid compositions comprising hueing dye and a pearlescent agent.
- the pearlescent agent is added to counteract the darkening effect of the hueing dye on the appearance of the liquid composition.
- the pearlescent agent may be organic or inorganic in nature, with glass or metal oxide coated glass being disclosed.
- SiO 2 particles provide improved colour care by reducing damage caused by fabric laundering.
- the present invention provides a granular laundry treatment composition containing less than 1 wt.% of phosphate comprising:
- the spherical SiO 2 particle is chosen from sand, and/or glass.
- a second aspect of the invention provides a domestic method of treating a textile, the method comprising the steps of:
- a third aspect of the invention provides the use of spherical SiO 2 particles having a size in the range of from 100 to 2000 microns to reduce damage to clothes being laundered during a domestic main wash process.
- the spherical SiO 2 particle is chosen from sand, and/or glass.
- the amount of components in the granular laundry treatment composition quoted herein are wt.% of total composition unless otherwise stated.
- the spherical SiO 2 particles should have a roundness (ratio of axes) of >80%, preferably >94%.
- the roundness (ratio of axes) is a measurement of the length/width relationship with values in the range 0 - 1.
- the length is the shortest axis and the width is the longest axis.
- a perfect circle has a roundness value of 1.0 and a thin rectangle values approaching 0.
- images of the particles should be taken, preferably with a suitable microscope, for example a PharmaVision 830 available from Malvern TM .
- the spherical SiO 2 particle is preferably chosen from sand, and/or glass.
- the size of the spherical SiO 2 particle is 100 to 2000 microns, preferably 100 to 1000 microns, more preferably 100 to 500 microns, for example 100 to 200 microns.
- the size of the spherical SiO 2 particle is measured using graded sieves and it is that which is retained or passes through such sieves.
- the spherical SiO 2 particle comprises SiO 2 at a level of from 50 to 100 wt.%, preferably from 55 to 100 wt.%, more preferably from 65 to 100 wt.%.
- the SiO 2 particles may contain other components, examples of such being Na 2 O, CaO and MgO. If present at all, the other components are preferably present at 45 wt.% or less, more preferably 35 wt.% or less based on wt.% of the SiO 2 particle.
- the composition comprises between 2 to 70 wt.% of a surfactant, most preferably 10 to 30 wt.%.
- a surfactant most preferably 10 to 30 wt.%.
- the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
- the surfactants used are saturated.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Specific nonionic detergent compounds are C 6 to C 22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C 8 to C 16 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
- Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- the preferred anionic detergent compounds are sodium C 11 to C 15 alkyl benzene sulphonates and sodium C 12 to C 13 alkyl sulphates.
- surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
- Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever).
- surfactant system is a mixture of an alkali metal salt of a C 15 to C 18 primary alcohol sulphate together with a C 12 to C 15 primary alcohol 3 to 7 EO ethoxylate.
- the nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt.% of the surfactant system.
- Anionic surfactants can be present for example in amounts in the range from about 5 wt.% to about 40 wt.% of the surfactant system.
- the composition comprises from 1 to 50 wt.% of a builder.
- Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
- the size is in the range 0.1 to 10 microns (as measured by The Mastersizer 2000 particle size analyzer using laser diffraction ex Malvern TM ).
- calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetraacetic acid.
- precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
- Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
- zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
- the composition may also contain 0-50 wt.% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
- a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
- Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
- Zeolite and carbonate are preferred builders.
- the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%.
- Aluminosilicates are materials having the general formula: 0.8-1.5 M 2 O. Al 2 O 3 . 0.8-6 SiO 2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
- the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
- the ratio of surfactants to aluminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
- phosphate builders may be used.
- the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
- the composition comprises less than 1 wt.% of such phosphate builders.
- the laundry detergent formulation is a non-phosphate built laundry detergent formulation.
- builder examples include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
- silicates such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
- the granular laundry treatment composition preferably comprises a blue or violet shading agent in the range from 0.0001 to 0.01 wt.%.
- the shading agents reduce the perception of damage to many coloured garments and increase whiteness of white garments.
- the shading agents are preferably selected from blue and violet dyes of the solvent disperse basic, direct and acid type listed in the colour index ( Society of Dyers and Colourists and American Association of Textile Chemists and Colorists 2002 ).
- a direct violet or direct blue dyes is present.
- the dyes are bis -azo, tris -azo dyes or triphendioxazine dye.
- the carcinogenic benzidene based dyes are not preferred.
- Bis-azo copper containing dyes such as direct violet 66 may be used.
- the most preferred bis-azo dyes have the following structure: or wherein:
- Preferred bis-azo dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99.
- Preferred solvent and disperse dyes are selected from, mono-azo or anthraquinone dyes, most preferably, solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
- a preferred pigment is pigment violet 23.
- the granular laundry treatment composition preferably comprises one or more enzymes which provide cleaning performance and/or fabric care benefits.
- suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases,- lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof.
- a typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase.
- the aforementioned additional enzymes may be present at levels from about 0.00001 wt.% to about 2 wt.%, from about 0.0001 wt.% to about 1 wt.% or even from about 0.001 wt.% to about 0.5 wt.% enzyme protein by weight of the composition.
- Preferred enzymes are cellulases.
- the composition preferably comprises a fluorescent agent (optical brightener).
- fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g.
- Preferred fluorescers are: sodium 2-(4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]trazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfoslyryl)biphenyl.
- the composition comprises a perfume.
- the perfume is preferably in the range from 0.001 to 3 wt.%, most preferably 0.1 to 1 wt.%.
- CTFA Cosmetic, Toiletry and Fragrance Association
- Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
- compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
- top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
- Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
- Perfume and top note may be used to cue the fabric care benefit of the invention.
- the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
- a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
- the composition may comprise one or more polymers.
- polymers are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/ acrylic acid copolymers.
- Polymers present to prevent dye deposition for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole), are preferably absent from the formulation.
- the Silica-alumino ceramic microsphere examples are comparative, and show the advantage of the SiO 2 particles in comparison to other spherical inorganic particles.
- the SiO 2 particles maintain the cloth closer to the new, as indicated by smaller ⁇ R 430 values.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Silicon Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present invention relates to wash added, laundry detergent compositions and methods for using the same during the wash cycle of a consumer laundry process.
- Coloured clothes are extremely popular with consumers. To remove dirt on washing, the clothes are vigorously agitated in water with a washing formulation. This process leads to damage on the surface of the clothes, which reduces their aesthetic appeal. This damage is particularly a problem when granular laundry compositions are used.
-
WO 2007/111887 (Proctor & Gamble) discloses liquid compositions comprising hueing dye and a pearlescent agent. The pearlescent agent is added to counteract the darkening effect of the hueing dye on the appearance of the liquid composition. The pearlescent agent may be organic or inorganic in nature, with glass or metal oxide coated glass being disclosed. -
US 4,051,046 (Procter & Gamble) discloses detergent compositions comprising surfactant and low concentrations of substantially water-insoluble particulate material with a range of 1 to 50 micrometers for providing fabric benefits. The document also discloses that the use of particulate water-insoluble materials having an average diameter of more than about 50 micrometers will not procure the mentioned fabric benefits. - We have found that SiO2 particles provide improved colour care by reducing damage caused by fabric laundering.
- In one aspect the present invention provides a granular laundry treatment composition containing less than 1 wt.% of phosphate comprising:
- (i) from 0.1 wt.% to 40 wt.%, preferably 0.5 to 5 wt.%, of a spherical SiO2 particle, the SiO2 particle having a size in the range from 100 to 2000 microns;
- (ii) from 2 to 70 wt.% of a surfactant; and,
- (iii) from 1 to 50 wt.% of a builder.
- Preferably the spherical SiO2 particle is chosen from sand, and/or glass.
- A second aspect of the invention provides a domestic method of treating a textile, the method comprising the steps of:
- (i) treating a textile with an aqueous solution of from 1 to 20 g/l of the composition of the first aspect; and,
- (ii) rinsing and drying the textile.
- A third aspect of the invention provides the use of spherical SiO2 particles having a size in the range of from 100 to 2000 microns to reduce damage to clothes being laundered during a domestic main wash process.
- Preferably in the aforementioned use, the spherical SiO2 particle is chosen from sand, and/or glass.
- The amount of components in the granular laundry treatment composition quoted herein are wt.% of total composition unless otherwise stated.
- The spherical SiO2 particles should have a roundness (ratio of axes) of >80%, preferably >94%. The roundness (ratio of axes) is a measurement of the length/width relationship with values in the range 0 - 1. The length is the shortest axis and the width is the longest axis. A perfect circle has a roundness value of 1.0 and a thin rectangle values approaching 0. To calculate the roundness, images of the particles should be taken, preferably with a suitable microscope, for example a PharmaVision 830 available from Malvern™.
- The spherical SiO2 particle is preferably chosen from sand, and/or glass.
- The size of the spherical SiO2 particle is 100 to 2000 microns, preferably 100 to 1000 microns, more preferably 100 to 500 microns, for example 100 to 200 microns.
- The size of the spherical SiO2 particle is measured using graded sieves and it is that which is retained or passes through such sieves.
- The spherical SiO2 particle comprises SiO2 at a level of from 50 to 100 wt.%, preferably from 55 to 100 wt.%, more preferably from 65 to 100 wt.%. Alternatively, the SiO2 particles may contain other components, examples of such being Na2O, CaO and MgO. If present at all, the other components are preferably present at 45 wt.% or less, more preferably 35 wt.% or less based on wt.% of the SiO2 particle.
- The composition comprises between 2 to 70 wt.% of a surfactant, most preferably 10 to 30 wt.%. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981. Preferably the surfactants used are saturated.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are C6 to C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8 to C16 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
- Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium C11 to C15 alkyl benzene sulphonates and sodium C12 to C13 alkyl sulphates. Also applicable are surfactants such as those described in
EP-A-328 177 EP-A-070 074 EP-A-346 995 - The nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt.% of the surfactant system. Anionic surfactants can be present for example in amounts in the range from about 5 wt.% to about 40 wt.% of the surfactant system.
- The composition comprises from 1 to 50 wt.% of a builder.
- Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
- It is preferred that when an insoluble inorganic builder, e.g., zeolite, is used the size is in the range 0.1 to 10 microns (as measured by The Mastersizer 2000 particle size analyzer using laser diffraction ex Malvern™).
- Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetraacetic acid.
- Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
- Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in
EP-A-0,384,070 . - The composition may also contain 0-50 wt.% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
- Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders.
- The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%. Aluminosilicates are materials having the general formula:
0.8-1.5 M2O. Al2O3. 0.8-6 SiO2
where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to aluminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1. - Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. However, the composition comprises less than 1 wt.% of such phosphate builders. Preferably the laundry detergent formulation is a non-phosphate built laundry detergent formulation.
- Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
- We have also found that the presence of an inorganic builder, in particular a zeolite or other insoluble inorganic particulates, contributes to the abrasion of fabrics under wash conditions. The use of spherical SiO2 particles ameliorates this problem.
- The granular laundry treatment composition preferably comprises a blue or violet shading agent in the range from 0.0001 to 0.01 wt.%. The shading agents reduce the perception of damage to many coloured garments and increase whiteness of white garments.
- The shading agents are preferably selected from blue and violet dyes of the solvent disperse basic, direct and acid type listed in the colour index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists 2002).
- Preferably a direct violet or direct blue dyes is present. Preferably the dyes are bis-azo, tris-azo dyes or triphendioxazine dye. The carcinogenic benzidene based dyes are not preferred.
- Bis-azo copper containing dyes such as direct violet 66 may be used.
-
- ring D and E may be independently naphthyl or phenyl as shown;
- R1 is selected from: hydrogen and C1-C4-alkyl, preferably hydrogen;
- R2 is selected from: hydrogen, C1-C4-alkyl, substituted or unsubstituted phenyl and substituted or unsubstituted naphthyl, preferably phenyl;
- R3 and R4 are independently selected from: hydrogen and C1-C4-alkyl, preferably hydrogen or methyl;
- X and Y are independently selected from: hydrogen, C1-C4-alkyl and C1-C4-alkoxy; preferably the dye has X= methyl; and, Y = methoxy and n is 0, 1 or 2, preferably 1 or 2.
- Preferred bis-azo dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99.
- Preferred solvent and disperse dyes, are selected from, mono-azo or anthraquinone dyes, most preferably, solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
- A preferred pigment is pigment violet 23.
- The granular laundry treatment composition preferably comprises one or more enzymes which provide cleaning performance and/or fabric care benefits. Examples of suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases,- lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof. A typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase. When present in a cleaning composition, the aforementioned additional enzymes may be present at levels from about 0.00001 wt.% to about 2 wt.%, from about 0.0001 wt.% to about 1 wt.% or even from about 0.001 wt.% to about 0.5 wt.% enzyme protein by weight of the composition.
- Preferred enzymes are cellulases.
- The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2-(4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]trazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino}stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino} stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfoslyryl)biphenyl.
- Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt.%, most preferably 0.1 to 1 wt.%. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
- It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
- In perfume mixtures preferably 15 to 25 wt.% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
- Perfume and top note may be used to cue the fabric care benefit of the invention.
- It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
- The composition may comprise one or more polymers. Examples are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/ acrylic acid copolymers.
- Polymers present to prevent dye deposition, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole), are preferably absent from the formulation.
- Three knitted cotton fabric swatches (20 by 20 cm) dyed with Vat Blue 4 were washed in a compartment of a Quickwash Plus ™ fabric testing system (SDL international). In a separate compartment equivalent knitted cotton swatches were placed, but these were dyes with Reactive Orange 16. The machine was filled with 3.5 litres of 26° French Hard water and 24.5 g of Persil Colour Powder (ex UK) a Las/Non-ionic surfactant powder built with zeolite and carbonate. To this was added 0.5 g of antifoam. The wash took 15 minutes, and following this the machine was drained, spun, and then three 90 second rinses performed, draining and spinning after each. Following the wash the fabric was tumble dried. The procedure was repeated 5 times. The whole experiment was then repeated but with the addition of 1g/L of various additives.
- Following the washes the reflectances of the VAT Blue cloths at 430nm and the Reactive Orange cloths at 650nm were measured on a Murakami Goniospectrophotometer with an incident angle of 65° and a measurement angle of 55°. The reflectance of the new cloths was 27.20 for the Vat Blue and 65.13 for the reactive Orange. The reflectance was compared to the reflectance of new unwashed fabric, and expressed as ΔR = |R(new) - R(washed)|. The ΔR(powder control) for Vat Blue was 6.06 and for Reactive Orange was 5.36. In the results shown in table 1 the average ΔR for the blue and orange cloths is given to 1 decimal place.
Table 1 Product ΔRaverage Powder Control 5.7 Glass bead diameter 100-200µm 4.5 Glass bead diameter 400-800µm 4.6 Sand, average diameter 180µm 4.5 Grey Silica-alumino ceramic microsphere diameter 1-40µm* 5.2 White Silica-alumino ceramic microsphere Mean diameter 1-40µm* 5.1 * Denotes comparative examples
Glass beads were obtained from Sigmund Lindner and had a SiO2 content of 72.5%
Sand was obtained from Schlingmeier Quartz sand and had a SiO2 content of 98.9%
Silica-alumino ceramic microsphere particles were obtained from 3M. - The Silica-alumino ceramic microsphere examples are comparative, and show the advantage of the SiO2 particles in comparison to other spherical inorganic particles.
- The SiO2 particles maintain the cloth closer to the new, as indicated by smaller ΔR430 values.
Claims (11)
- A granular laundry treatment composition containing less than 1 wt.% of phosphate, comprising:(i) from 0.1 wt.% to 40 wt.% of a spherical SiO2 particle, the SiO2 particle having a size in the range from 100 to 2000 microns;(ii) from 2 to 70 wt.% of a surfactant; and,(iii) from 1 to 50 wt.% of a builder.
- A granular laundry treatment composition according to claim 1, wherein the spherical SiO2 particles have a roundness of >80%.
- A granular laundry treatment composition according to claim 2, wherein the spherical SiO2 particles have a roundness of >94%.
- A granular laundry treatment composition according to any one of claims 1 to 3, wherein the spherical SiO2 particle is present at a level of from 0.5 to 5 wt.%.
- A granular laundry treatment composition according to any one of claims 1 to 4, wherein the spherical SiO2 particle comprises from 50 to 100 wt.%, preferably 55 to 100 wt.%, more preferably 65 to 100 wt.% of SiO2.
- A granular laundry treatment composition according to any one of claims 1 to 5, wherein the builder comprises zeolite, the zeolite having a size in the range from 0.1 to 10 microns.
- A granular laundry treatment composition according to any one of claims 1 to 6, wherein the laundry treatment composition comprises a blue or violet shading agent in the range from 0.0001 to 0.01 wt.%.
- A granular laundry treatment composition according to any one of claims 1 to 7, wherein the laundry treatment composition comprises one or more enzymes, at a level of from about 0.00001 wt.% to about 2 wt.%, preferably the enzyme is a cellulase.
- A domestic method of treating a textile, comprising the steps of:(i) treating a textile with an aqueous solution of from 1 to 20 g/l of the composition of any one of claims 1 to 8; and,(ii) rinsing and drying the textile.
- Use of spherical SiO2 particles having a size in the range of from 100 to 2000 microns, to reduce damage to clothes laundered during a domestic main wash process.
- Use of spherical SiO2 particles according to claim 10, wherein the spherical SiO2 particle is chosen from sand and/or glass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09718739.7A EP2252678B2 (en) | 2008-03-14 | 2009-01-22 | Laundry treatment compositions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08152742 | 2008-03-14 | ||
PCT/EP2009/050698 WO2009112296A1 (en) | 2008-03-14 | 2009-01-22 | Laundry treatment compositions |
EP09718739.7A EP2252678B2 (en) | 2008-03-14 | 2009-01-22 | Laundry treatment compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2252678A1 EP2252678A1 (en) | 2010-11-24 |
EP2252678B1 true EP2252678B1 (en) | 2011-12-28 |
EP2252678B2 EP2252678B2 (en) | 2016-10-26 |
Family
ID=39708831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09718739.7A Not-in-force EP2252678B2 (en) | 2008-03-14 | 2009-01-22 | Laundry treatment compositions |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2252678B2 (en) |
CN (1) | CN101970631B (en) |
AT (1) | ATE539140T1 (en) |
BR (1) | BRPI0908060A2 (en) |
ES (1) | ES2379979T5 (en) |
WO (1) | WO2009112296A1 (en) |
ZA (1) | ZA201005763B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9828569B2 (en) | 2013-06-13 | 2017-11-28 | The Procter & Gamble Company | Granular laundry detergent |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201006076D0 (en) | 2010-04-12 | 2010-05-26 | Xeros Ltd | Novel cleaning apparatus and method |
WO2011134809A1 (en) | 2010-04-26 | 2011-11-03 | Novozymes A/S | Enzyme granules |
GB201015277D0 (en) | 2010-09-14 | 2010-10-27 | Xeros Ltd | Novel cleaning method |
GB201018318D0 (en) | 2010-10-29 | 2010-12-15 | Xeros Ltd | Improved cleaning method |
GB201100627D0 (en) | 2011-01-14 | 2011-03-02 | Xeros Ltd | Improved cleaning method |
GB201100918D0 (en) | 2011-01-19 | 2011-03-02 | Xeros Ltd | Improved drying method |
CN104204179A (en) | 2011-06-20 | 2014-12-10 | 诺维信公司 | Particulate composition |
MX349517B (en) | 2011-06-24 | 2017-08-02 | Novozymes As | Polypeptides having protease activity and polynucleotides encoding same. |
JP6339499B2 (en) | 2011-06-30 | 2018-06-06 | ノボザイムス アクティーゼルスカブ | Screening method for α-amylase |
US10711262B2 (en) | 2011-07-12 | 2020-07-14 | Novozymes A/S | Storage-stable enzyme granules |
CN103748219A (en) | 2011-08-15 | 2014-04-23 | 诺维信公司 | Polypeptides having cellulase activity and polynucleotides encoding same |
ES2628190T3 (en) | 2011-09-22 | 2017-08-02 | Novozymes A/S | Polypeptides with protease activity and polynucleotides encoding them |
CN103958657A (en) | 2011-11-25 | 2014-07-30 | 诺维信公司 | Subtilase variants and polynucleotides encoding same |
US20140335596A1 (en) | 2011-12-20 | 2014-11-13 | Novozymes A/S | Subtilase Variants and Polynucleotides Encoding Same |
MX2014008764A (en) | 2012-01-26 | 2014-08-27 | Novozymes As | Use of polypeptides having protease activity in animal feed and detergents. |
WO2013120948A1 (en) | 2012-02-17 | 2013-08-22 | Novozymes A/S | Subtilisin variants and polynucleotides encoding same |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
AR090971A1 (en) | 2012-05-07 | 2014-12-17 | Novozymes As | POLYPEPTIDES THAT HAVE XANTANE DEGRADATION ACTIVITY AND POLYCINOCYLODES THAT CODE THEM |
EP2674475A1 (en) * | 2012-06-11 | 2013-12-18 | The Procter & Gamble Company | Detergent composition |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
GB201212098D0 (en) | 2012-07-06 | 2012-08-22 | Xeros Ltd | New cleaning material |
US9551042B2 (en) | 2012-12-21 | 2017-01-24 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
CN112458069A (en) | 2013-01-03 | 2021-03-09 | 诺维信公司 | Alpha-amylase variants and polynucleotides encoding same |
US20160083703A1 (en) | 2013-05-17 | 2016-03-24 | Novozymes A/S | Polypeptides having alpha amylase activity |
CN114634921B (en) | 2013-06-06 | 2024-09-10 | 诺维信公司 | Alpha-amylase variants and polynucleotides encoding same |
US10378001B2 (en) | 2013-06-27 | 2019-08-13 | Novozymes A/S | Subtilase variants and compositions comprising same |
EP3013955A1 (en) | 2013-06-27 | 2016-05-04 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
JP2016523098A (en) | 2013-07-04 | 2016-08-08 | ノボザイムス アクティーゼルスカブ | Polypeptide having anti-reattachment effect and polynucleotide encoding the same |
WO2015014790A2 (en) | 2013-07-29 | 2015-02-05 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP2832853A1 (en) | 2013-07-29 | 2015-02-04 | Henkel AG&Co. KGAA | Detergent composition comprising protease variants |
WO2015014803A1 (en) | 2013-07-29 | 2015-02-05 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
GB201319782D0 (en) | 2013-11-08 | 2013-12-25 | Xeros Ltd | Cleaning method and apparatus |
GB201320784D0 (en) | 2013-11-25 | 2014-01-08 | Xeros Ltd | Improved cleaning Apparatus and method |
WO2015091989A1 (en) | 2013-12-20 | 2015-06-25 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
CN106062271A (en) | 2014-03-05 | 2016-10-26 | 诺维信公司 | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
EP3114219A1 (en) | 2014-03-05 | 2017-01-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
CN106103708A (en) | 2014-04-01 | 2016-11-09 | 诺维信公司 | There is the polypeptide of alpha amylase activity |
US20170121695A1 (en) | 2014-06-12 | 2017-05-04 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
BR112017000102B1 (en) | 2014-07-04 | 2023-11-07 | Novozymes A/S | SUBTYLASE VARIANTS OF A PROGENITOR SUBTYLASE, DETERGENT COMPOSITION, USE THEREOF AND METHOD FOR PRODUCING A SUBTYLASE VARIANT THAT HAS PROTEASE ACTIVITY |
WO2016001450A2 (en) | 2014-07-04 | 2016-01-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US10287562B2 (en) | 2014-11-20 | 2019-05-14 | Novoszymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
CN107075493B (en) | 2014-12-04 | 2020-09-01 | 诺维信公司 | Subtilase variants and polynucleotides encoding same |
EP3608403A3 (en) | 2014-12-15 | 2020-03-25 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
EP3106508B1 (en) | 2015-06-18 | 2019-11-20 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
EP3310912B1 (en) | 2015-06-18 | 2021-01-27 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
CN105087197A (en) * | 2015-09-06 | 2015-11-25 | 北京洛娃日化有限公司 | Abrasive containing stain-removing gel used during clothes hand washing |
EP3362558A1 (en) | 2015-10-14 | 2018-08-22 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
CN109715792A (en) | 2016-06-03 | 2019-05-03 | 诺维信公司 | Subtilase variants and the polynucleotides that it is encoded |
EP3485010B1 (en) | 2016-07-13 | 2024-11-06 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
EP3476936B1 (en) | 2017-10-27 | 2022-02-09 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
US20230416706A1 (en) | 2017-10-27 | 2023-12-28 | Novozymes A/S | Dnase Variants |
CN108251236A (en) * | 2018-02-26 | 2018-07-06 | 合肥远科服装设计有限公司 | A kind of high-performance environmentally-friendly type liquid detergent and preparation method thereof |
CN112262207B (en) | 2018-04-17 | 2024-01-23 | 诺维信公司 | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use for reducing wrinkles in textiles or fabrics |
CN109234031A (en) * | 2018-09-25 | 2019-01-18 | 安顺市永烁科技有限公司 | A kind of washing cloth grass washing powder |
MX2021011287A (en) | 2019-03-21 | 2021-10-13 | Novozymes As | Alpha-amylase variants and polynucleotides encoding same. |
EP3953462A1 (en) | 2019-04-10 | 2022-02-16 | Novozymes A/S | Polypeptide variants |
EP4022019A1 (en) | 2019-08-27 | 2022-07-06 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
EP4038170A1 (en) | 2019-10-03 | 2022-08-10 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
CN116507725A (en) | 2020-10-07 | 2023-07-28 | 诺维信公司 | Alpha-amylase variants |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051046A (en) * | 1973-02-16 | 1977-09-27 | The Procter & Gamble Company | Detergent compositions containing insoluble particulate materials having fabric conditioning properties |
EP0820762A1 (en) † | 1996-07-15 | 1998-01-28 | Unilever Plc | Perfume compositions |
GB9825558D0 (en) * | 1998-11-20 | 1999-01-13 | Unilever Plc | Granular detergent components and particulate detergent compositions containing them |
-
2009
- 2009-01-22 EP EP09718739.7A patent/EP2252678B2/en not_active Not-in-force
- 2009-01-22 WO PCT/EP2009/050698 patent/WO2009112296A1/en active Application Filing
- 2009-01-22 BR BRPI0908060A patent/BRPI0908060A2/en not_active IP Right Cessation
- 2009-01-22 AT AT09718739T patent/ATE539140T1/en active
- 2009-01-22 CN CN2009801087457A patent/CN101970631B/en not_active Expired - Fee Related
- 2009-01-22 ES ES09718739.7T patent/ES2379979T5/en active Active
-
2010
- 2010-08-12 ZA ZA2010/05763A patent/ZA201005763B/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9828569B2 (en) | 2013-06-13 | 2017-11-28 | The Procter & Gamble Company | Granular laundry detergent |
Also Published As
Publication number | Publication date |
---|---|
CN101970631A (en) | 2011-02-09 |
EP2252678A1 (en) | 2010-11-24 |
WO2009112296A1 (en) | 2009-09-17 |
BRPI0908060A2 (en) | 2019-09-24 |
ES2379979T3 (en) | 2012-05-07 |
CN101970631B (en) | 2012-10-10 |
ES2379979T5 (en) | 2017-02-17 |
EP2252678B2 (en) | 2016-10-26 |
ZA201005763B (en) | 2011-10-26 |
ATE539140T1 (en) | 2012-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2252678B1 (en) | Laundry treatment compositions | |
EP2252680B1 (en) | Laundry treatment composition comprising polymeric lubricants | |
EP2300589B1 (en) | Shading composition | |
EP2354214B2 (en) | Surfactant ratio in dye formulations | |
EP2297288B1 (en) | Laundry compositions | |
EP2118256B1 (en) | Shading composition | |
EP2227533B1 (en) | Shading composition | |
EP2534237B1 (en) | Laundry treatment composition comprising bis-azo shading dyes | |
US8158570B2 (en) | Stain removal | |
EP2488622B1 (en) | Dye polymers | |
EP2103677A1 (en) | Laundry treatment compositions | |
EP2331669B1 (en) | Cationic pyridine and pyridazine dyes | |
EP2360232A1 (en) | Surfactant ratio in laundry detergents comprising a dye | |
EP2252681B1 (en) | Laundry treatment compositions | |
EP2427540B1 (en) | Shading composition | |
EP2519624B1 (en) | Shading composition | |
EP2521764B1 (en) | Detergent formulation containing spray dried granule | |
EP2331670B1 (en) | Cationic isothiazolium dyes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100728 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 539140 Country of ref document: AT Kind code of ref document: T Effective date: 20120115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009004393 Country of ref document: DE Effective date: 20120308 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2379979 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120507 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120428 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120430 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 539140 Country of ref document: AT Kind code of ref document: T Effective date: 20111228 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: HENKEL AG & CO. KGAA Effective date: 20120925 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602009004393 Country of ref document: DE Effective date: 20120925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090122 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20161026 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602009004393 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2379979 Country of ref document: ES Kind code of ref document: T5 Effective date: 20170217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170120 Year of fee payment: 9 Ref country code: DE Payment date: 20170120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170119 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170124 Year of fee payment: 9 Ref country code: TR Payment date: 20170111 Year of fee payment: 9 Ref country code: ES Payment date: 20170113 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009004393 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180122 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180122 |