[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2249964A1 - Verfahren zur herstellung eisendotierter kohlen - Google Patents

Verfahren zur herstellung eisendotierter kohlen

Info

Publication number
EP2249964A1
EP2249964A1 EP09715359A EP09715359A EP2249964A1 EP 2249964 A1 EP2249964 A1 EP 2249964A1 EP 09715359 A EP09715359 A EP 09715359A EP 09715359 A EP09715359 A EP 09715359A EP 2249964 A1 EP2249964 A1 EP 2249964A1
Authority
EP
European Patent Office
Prior art keywords
metal
carrier material
iron
doped
oxidation state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09715359A
Other languages
English (en)
French (fr)
Inventor
Ralf Boehling
Jörg PASTRE
Karin Freitag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09715359A priority Critical patent/EP2249964A1/de
Publication of EP2249964A1 publication Critical patent/EP2249964A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Definitions

  • the present invention relates to a method for producing a metal-doped carrier material containing at least one metal in elemental form on at least one carrier material which is based on carbon, by vapor deposition of at least one compound containing the at least one metal in the oxidation state 0 on the at least one carrier material and thermal decomposition of the at least one compound containing at least one metal in the oxidation state 0 in order to obtain the at least one metal in elemental form, during and after the deposition and the decomposition the support material is brought into contact with the reducing compounds during manufacture is a metal-doped carrier material produced by this method and the use of this metal-doped carrier material in the treatment of wastewater and contaminated groundwater.
  • Iron-doped coal can be used for soil or groundwater remediation. So far, so-called pump-and-treat methods have been used in which the contaminated groundwater is pumped to the surface, where it is cleaned and returned to the groundwater. An alternative to this are passive barriers in the aquifer, so-called reaction walls. The material usually used for this is iron granules. Metallic iron serves as a reducing agent for many organic and inorganic substances. For example, chlorinated hydrocarbons are dechlorinated by metallic iron. The main disadvantage compared to the pump-and-treat process is the high installation costs for the construction of the reaction walls.
  • iron granules instead of iron granules even the smallest iron particles can be used. These may have the ability to be mobile in the aquifer and have high reactivity due to their large specific surface area. Another advantage of these iron particles is that the construction of investment-intensive reaction walls is eliminated.
  • J. van Wonterghem and S. Morup, J. Phys. Chem. 1988, 92, 1013-1016 disclose a process for producing ultrafine iron particles on carbon by impregnating the carbon with liquid iron pentacarbonyl and then heating the impregnated support material to decompose the iron pentacarbonyl into metallic iron.
  • DE 33 30 621 A1 discloses a process for the preparation of supported catalysts with metals or metal compounds as the active component by depositing metal carbonyls from the gas phase onto support materials with a high surface area in which the metal carbonyls are cleaved oxidatively on the support materials. Characterized in that the deposition and decomposition of the metal carbonyls on the carrier material according to DE 33 30 621 A1 takes place in an oxidizing atmosphere, the corresponding metal oxides are obtained. A process for the production of metals in elemental form on a corresponding support material is not disclosed in the cited document.
  • GB 572,471 discloses a process for the purification of gases.
  • finely divided iron is used, which removes sulfur-containing organic compounds from exhaust gases.
  • the finely divided iron used is located on porcelain rings. These iron-plated porcelain rings are obtained by passing an iron carbonyl compound over the porcelain rings at a temperature of 400 to 450 ° C.
  • US 2004/0007524 A1 discloses a process for the removal of hydrocarbons and halogenated hydrocarbons from contaminated areas by using a support material containing iron in the oxidation state 0.
  • the carrier material containing metallic iron is prepared, for example, by dipping the carrier material in a melt of a hydrated iron salt. After cooling the support material to form iron oxide, this is converted by reductive treatment into elemental iron.
  • such a carrier material can also be produced by immersing the carrier material in an aqueous solution of an iron salt and, after drying, reducing the iron salt on the carrier material to elemental iron.
  • WO 03/006379 A1 discloses a method for the decontamination of waste waters, which are loaded with organic, halogenated compounds, by using granulated iron with a particle size of 1 to 20 mm.
  • a disadvantage of the mechanical process for the production of small iron particles is that they usually do not lead to the required small sizes of the iron particles and furthermore do not allow iron to penetrate into the pore structure of the activated carbon. Furthermore, although a process in which activated carbon is soaked in a solution of an iron salt and the elemental iron is subsequently obtained by reduction provides an iron loaded with activated carbon, targeted control of iron particle size and distribution is limited. Furthermore, the reduction of an iron salt inevitably produces a salt, which remains on the catalyst support, or must be removed in a further process step. Furthermore, larger amounts of raw materials, such as hydrogen, are consumed to produce the product, resulting in higher production costs.
  • the object of the present invention is therefore to provide a process with which metals in elemental form, d. H. in the oxidation state 0, on a carrier material which is based on carbon can be applied. If possible, this process should lead to the desired metal-doped carrier materials in one process step.
  • metal-doped carrier materials should be accessible by the method according to the invention, which are distinguished by a particularly homogeneous distribution of the metal on the carrier material and in which the metal is also present in the pores of the carrier material. Furthermore, it is desirable to have the highest possible surface area of the metal-doped carrier material and a high metal loading.
  • a method for producing a metal-doped carrier material comprising at least one metal in elemental form, wherein the carrier material based on carbon, by vapor deposition of at least one compound containing the at least one metal in the oxidation state 0 on the at least one carrier material and thermal decomposition of at least one compound containing the at least one metal in the oxidation state 0 to obtain the at least one metal in elemental form, wherein during and after the deposition and the decomposition, the support material is brought into contact with the reducing compounds not in the preparation.
  • the objects are achieved by a metal-doped carrier material, which can be produced by the process according to the invention, and by the use of this metal-doped carrier material for the treatment of wastewater or contaminated groundwater.
  • the carrier material used consists essentially, ie> 80% by weight, of carbon in its various modifications
  • the at least one carrier material is selected from the group consisting of Coals, for example, carbon black, activated carbon, carbon nanotubes and mixtures thereof
  • activated carbon is used as the carrier material in the process according to the invention.
  • the carrier material used according to the invention generally has the highest possible BET surface area.
  • the BET surface area of the support material used before metal doping is at least 300 m 2 / g, more preferably at least 700 m 2 / g, most preferably at least 1000 m 2 / g.
  • the BET surface area of the support material used does not exceed a value of 2500 m 2 / g before metal doping.
  • the preferably used carrier material has a metal content before the actual metal doping according to the invention of 0.01 to 2 wt .-%, preferably 0.02 to 1, 2 wt .-%, particularly preferably 0.03 to 1 wt .-%, wherein the present metal is preferably iron.
  • the carrier material preferably used in the process according to the invention is activated carbon, wherein in a particularly preferred embodiment the activated carbon is in the form of pellets having a particle size of 0.1 to 12 mm, more preferably 1 to 6 mm.
  • Such activated carbon is obtainable by methods known to the person skilled in the art, or commercially available.
  • these preferably used pellets are brought to a particle size of 0.1 to 10 microns by suitable methods, such as milling.
  • At least one compound containing the at least one metal in the oxidation state 0 is applied to the at least one support material by vapor deposition.
  • all known in the art compounds in the inventive method can be used that are vaporizable under technically feasible conditions, for example at a temperature of 30 to 400 0 C, preferably 50 to 250 0 C, particularly preferably 70 to 150 0 C.
  • the compounds used should be vaporizable at a pressure of 0.1 to 10 bar, preferably 0.5 to 5 bar, particularly preferably at atmospheric pressure.
  • the metal present in the compound used containing at least one metal in the oxidation state 0 is, in a preferred embodiment, a metal selected from the group of transition metals.
  • the at least one metal is selected from groups 3 to 12 (new IUPAC nomenclature), more preferably from groups 6 to 10.
  • the metal present in the at least one compound is selected from the group consisting of iron, nickel, cobalt, manganese, chromium, rhenium, molybdenum, tungsten and mixtures thereof.
  • the metal is iron.
  • the metal is present in the oxidation stage 0.
  • complexes of the corresponding metal are used in which the ligands are not charged, so that in total there is an uncharged complex.
  • Particular preference is given to using carbonyl complexes of the corresponding metal which contain at least one CO ligand.
  • the metal complexes used exclusively contain CO ligands, ie so-called metal carbonyls are used.
  • Examples of corresponding carbonyls are selected from the group consisting of iron pentacarbonyl Fe (CO) 5 , Cr (CO) 6 , Mo (CO) 6 , W (CO) 6 , Mn 2 (CO) i 0 , Re 2 (CO) i 0 , Fe (CO) 5 , Fe 2 (CO) 9 , Fe 3 (CO) i 2 , Co 2 (CO) 8 , Ni (CO) 4, and mixtures thereof, most preferably iron pentacarbonyl Fe (CO) 5 .
  • These metal carbonyls, especially iron pentacarbonyl can be prepared by processes known to those skilled in the art, for example as described in Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie or are commercially available.
  • the compound containing the at least one metal in the oxidation state 0 is iron pentacarbonyl Fe (CO) 5 .
  • Iron pentacarbonyl is preferably prepared from iron granules by the process known to those skilled in the art. For this purpose, iron granules are placed in a corresponding reactor, for example a tray reactor, and passed through with carbon monoxide CO. The resulting iron pentacarbonyl is made the CO-effluent stream deposited by methods known in the art and optionally purified by methods known in the art.
  • the process according to the invention is generally carried out such that the corresponding at least one compound containing at least one metal in the oxidation state 0 in the gaseous state is brought into contact with the at least one carrier material.
  • the used at least one compound containing a metal in the oxidation state 0 is deposited on the support material, preferably on the activated carbon from.
  • the process according to the invention is carried out in a fluidized bed.
  • pressure and temperature as well as the heat input into the activated carbon bed must be chosen so that the decomposition reaction of the iron pentacarbonyl is slow compared to the heat transport and mass transport into the interior of the carrier material. If the decomposition rate of the iron pentacarbonyl is too fast in relation to the heat and / or mass transport into the interior of the carrier material, the corresponding metal, for example iron, is deposited at least partially on the reactor inner wall, but not, as desired, on the carrier material or in the pores of the carrier material.
  • the settledeinkoppelung done in the activated carbon bed by external heat exchangers that heat a partial flow of the exhaust gas in the circulation.
  • the heated exhaust gas is returned to the activated carbon bed. Since the support materials used, especially activated carbon, act catalytically on the decomposition of the iron pentacarbonyl, the decomposition in the rolling gas heat exchanger is negligible with respect to the decomposition on the support material.
  • the gaseous compound containing at least one metal in the oxidation state 0 is passed in a preferred embodiment in combination with other gases, for example selected from the group consisting of carbon monoxide, carbon dioxide, nitrogen or noble gases and mixtures thereof via or through the carrier material.
  • concentration of the at least one compound containing the metal in the oxidation state 0, more preferably iron pentacarbonyl, in this gas is 1 to 100 wt .-%, preferably 10 to 95 wt .-%, each based on the total reaction gas.
  • the temperature inside the reactor in a preferred embodiment is so high that the at least one compound containing a metal in the oxidation stage 0 is in vapor form and decomposition takes place upon contact with the present carrier material.
  • the evaporation temperature of iron pentacarbonyl is 105 ° C. and the decomposition temperature of iron pentacarbonyl is 150 ° C.
  • the carrier material bed has, in the process of the invention preferably a temperature of 120 to 220 ° C, particularly preferably 130 to 200 0 C.
  • the pressure in the carrier material bed is preferably 0.1 to 10 bar, particularly preferably atmospheric pressure, ie 1 bar, before. Therefore, the deposition and decomposition are preferably carried out at a temperature of 120 to 220 ° C, more preferably 130 to 200 ° C.
  • the deposition and decomposition are preferably carried out at a pressure of 0.1 to 10 bar, more preferably at atmospheric pressure.
  • At least one compound containing a metal in the oxidation state 0 is deposited on the at least one support material at a temperature above the evaporation temperature and below the decomposition temperature, by passing these in the vapor state via the and / or is passed through the carrier material.
  • the supply of at least one vaporous compound containing a metal in the oxidation state 0 is stopped, i.
  • the decomposition of the compound containing the metal in the oxidation state 0 takes place after deposition on the support material.
  • the decomposition of the deposited compound into elemental metal, preferably in iron, takes place in a preferred embodiment by the action of the activated carbon surface in conjunction with a heat input.
  • An advantage of the method according to the invention is that during and after the deposition and the decomposition, the support material does not have to be brought into contact with reducing compounds, for example hydrogen, in order to obtain the metal in elemental form.
  • reducing compounds for example hydrogen
  • the metal in the oxidation state 0 contains the metal in elemental form and does not need to be further treated with a reducing agent, for example hydrogen. This makes it possible according to the invention to save a further process step and additional reducing agent.
  • the fact that the metal-doped carrier material produced according to the invention may come into contact with reducing compounds during subsequent use no longer falls under the production method according to the invention.
  • the reactor in which the at least one support material is reacted with the reaction gas can be operated continuously or discontinuously.
  • Suitable reactors are for example a tray reactor for discontinuous operation, or a moving or fluidized bed for continuous operation with continuous supply of carrier material and continuous discharge of the metal-doped carrier material.
  • Suitable heating media are the customary heat transfer media known to the person skilled in the art, for example marlotherm oil, molten salt or, preferably, heating steam.
  • the exhaust gas leaving the reactor which in a preferred embodiment substantially consists of carbon monoxide (CO), after compression, or enrichment with the corresponding gaseous compound containing the metal in the oxidation state 0 again the process of the invention be supplied, so that substantially no waste or by-products incurred in this preferred embodiment.
  • CO carbon monoxide
  • the process according to the invention makes it possible to obtain metal-doped carrier materials which are distinguished by a particularly large BET surface area. Furthermore, a metal-doped carrier material is obtained in which the metal is present not only superficially but also in the interior of the pores.
  • the method according to the invention furthermore makes it possible to achieve particularly high loadings of the carrier material with at least one metal.
  • the present invention also relates to a metal-doped carrier material producible by the process according to the invention.
  • the metal-doped carrier material comprises the at least one metal in elemental form in an amount of at least 1 wt .-%, preferably at least 5 wt .-%, particularly preferably at least 13 wt .-%, each based on the total metal-doped carrier material , on.
  • the metal-doped carrier material producible by the process according to the invention has a BET surface area of at least 500 m 2 / g, more preferably at least 1000 m 2 / g.
  • the metal-doped carrier material according to the invention is further distinguished by a particularly uniform distribution of the at least one metal on the carrier material.
  • the present invention also relates to the use of the metal-doped carrier material according to the invention for the treatment of contaminated groundwater and wastewater, in particular for the reduction of pollutants by reduction, especially of halogenated hydrocarbons, nitro and nitroso hydrocarbons and inorganic substances such as e.g. Mercury, cadmium, nickel, arsenate, arsenite, chromate, perchlorate, nitrate and mixtures thereof.
  • pollutants by reduction especially of halogenated hydrocarbons, nitro and nitroso hydrocarbons and inorganic substances such as e.g. Mercury, cadmium, nickel, arsenate, arsenite, chromate, perchlorate, nitrate and mixtures thereof.
  • FIG. 1 shows an SEM image of a particle of an iron-doped activated carbon obtained by the process according to the invention.
  • FIG. 2 shows an SEM image of the surface of an iron-doped activated carbon obtained by the process according to the invention.
  • the apparatus used consists of a double-tube evaporator for the evaporation of the continuously metered liquid iron pentacarbonyl Fe (CO) 5 .
  • the Fe (CO) 5 feed is 0.05 ml / min.
  • the evaporator is operated at 120 0 C.
  • a CO flow of about 0.4 l / h is impressed on the evaporator.
  • the Fe (CO) 5 vapor and CO become an 8 x 1 mm Teflon tube filled with activated carbon pellets fed.
  • the Teflon tube is heated via a double jacket with Marlothermöl.
  • the deposition rate is monitored via a CO exhaust gas measurement. After the temperature ramp reaches 200 0 C, the Fe (CO) 5 supply is stopped.
  • the activated carbon used is a standard activated carbon type 1 (AIR SLR-Ultra, Obermeier).
  • the exhaust gas quantity increases continuously from 160 ° C to 200 ° C up to 3 l / h.
  • the removed samples are analyzed for iron content and BET surface area before and after the experiment.
  • the iron content of the untreated activated carbon is 0.92 g / 100 g, corresponding to 0.92 wt .-%, and the BET surface area is 1405 m 2 / g.
  • the iron content of the treated treated activated carbon is determined to be 22.9 g / 100 g, corresponding to 22.9 g% by weight, and the BET surface area is determined to be 1 186 m 2 / g.
  • the apparatus used consists of a double-tube evaporator for the evaporation of the continuously metered liquid iron pentacarbonyl Fe (CO) 5.
  • the Fe (CO) 5 feed is 0.05 ml / min.
  • the evaporator is operated at 120 ° C.
  • a CO flow of about 0.7 l / h is impressed on the evaporator.
  • the Fe (CO) 5 vapor and the CO are conducted in 3 glass cartridges filled with activated charcoal pellets, each with 100 ml content.
  • a circulating gas flow with 800 l / h ensures a uniform distribution of the Fe (CO) 5 vapor over the activated carbon pellets.
  • the glass containers are heated with a double jacket.
  • the activated carbon used is a standard activated carbon type 1 (AIR SLR-Ultra, Fa Obermeier).
  • the exhaust gas quantity remains constant at 0.8l / h.
  • the amount of exhaust gas continuously increases to> 3 l / h.
  • the removed samples are analyzed for iron content before and after the experiment.
  • the iron content of the untreated activated carbon carries 0.92 g / 100 g, corresponding to 0.92 wt .-%.
  • the iron content of the treated treated activated carbon is determined to be 13 g / 100 g, corresponding to 13% by weight.
  • several strands are embedded, ground transverse to the strand axis and imaged in the SEM (Scanning Electrone Microscopy) by means of backscattered electrons (RE). In FIG. 2, regions of higher density appear lighter (higher concentration / higher atomic number of the elements / lower porosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Soil Sciences (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines metalldotierten Trägermaterials enthaltend wenigstens ein Metall in elementarer Form auf wenigstens einem Trägermaterial, welches auf Kohlenstoff basiert, durch Gasphasenabscheidung wenigstens einer Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0 auf dem wenigstens einen Trägermaterial und thermische Zersetzung der wenigstens einen Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0, um das wenigstens eine Metall in elementarer Form zu erhalten, wobei während und nach dem Abscheiden und dem Zersetzen das Trägermaterial bei der Herstellung nicht mit reduzierend wirkenden Verbindungen in Kontakt gebracht wird, ein metalldotiertes Trägermaterial, herstellbar nach diesem Verfahren und die Verwendung dieses metalldotierten Trägermaterials zur Behandlung von kontaminiertem Grundwasser oder Abwasser.

Description

Verfahren zur Herstellung eisendotierter Kohlen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines metalldotierten Trägermaterials enthaltend wenigstens ein Metall in elementarer Form auf wenigstens einem Trägermaterial, welches auf Kohlenstoff basiert, durch Gasphasenabscheidung wenigstens einer Verbindung enthaltend das wenigstens eine Metall in der Oxidations- stufe 0 auf dem wenigstens einen Trägermaterial und thermische Zersetzung der we- nigstens einen Verbindung enthaltend wenigstens ein Metall in der Oxidationsstufe 0, um das wenigstens eine Metall in elementarer Form zu erhalten, wobei während und nach dem Abscheiden und dem Zersetzen das Trägermaterial bei der Herstellung nicht mit reduzierend wirkenden Verbindungen in Kontakt gebracht wird, ein metalldotiertes Trägermaterial herstellbar nach diesem Verfahren und die Verwendung dieses metall- dotierten Trägermaterials bei der Behandlung von Abwasser und kontaminiertem Grundwasser.
Eisendotierte Kohle kann zur Boden- bzw. Grundwassersanierung eingesetzt werden. Bislang wurden dazu so genannte Pump-and-Treat-Verfahren angewandt, bei denen das kontaminierte Grundwasser an die Oberfläche gepumpt wird, dort gereinigt wird und wieder dem Grundwasser zugeführt wird. Eine Alternative dazu sind passive Barrieren im Grundwasserleiter, so genannte Reaktionswände. Das dafür üblicherweise eingesetzte Material ist Eisengranulat. Metallisches Eisen dient als Reduktionsmittel für zahlreiche organische sowie anorganische Stoffe. So werden beispielsweise chlorierte Kohlenwasserstoffe durch metallisches Eisen dechloriert. Hauptnachteil gegenüber den Pump-and-Treat-Verfahren sind hohe Installationskosten für den Bau der Reaktionswände.
Anstelle von Eisengranulat sind auch kleinste Eisenpartikel einsetzbar. Diese können die Fähigkeit besitzen, im Grundwasserleiter mobil zu sein und weisen aufgrund ihrer großen spezifischen Oberfläche eine hohe Reaktivität auf. Ein weiterer Vorteil dieser Eisenpartikel ist, dass der Bau von investitionsintensiven Reaktionswänden entfällt.
Aus dem Stand der Technik ist es bekannt, die Reaktivität der eingesetzten Eisenparti- kel dadurch zu steigern, dass sie auf einem Aktivkohleträger aufgebracht sind, da Aktivkohle die abzutrennenden Schadstoffe effektiv adsorbiert.
Aus dem Stand der Technik sind verschiedene Verfahren bekannt, um metallisches Eisen auf Kohlenstoffpartikel aufzubringen. J. van Wonterghem und S. Morup, J. Phys. Chem. 1988, 92, 1013 - 1016, offenbaren ein Verfahren zur Herstellung von ultrafeinen Eisenpartikeln auf Kohlenstoff durch Imprägnieren des Kohlenstoffs mit flüssigem Eisenpentacarbonyl und anschließendes Erhitzen des imprägnierten Trägermaterials zur Zersetzung des Eisenpentacarbonyls in metallisches Eisen.
DE 33 30 621 A1 offenbart ein Verfahren zur Herstellung von Trägerkatalysatoren mit Metallen oder Metallverbindungen als Aktivkomponente durch Abscheidung von Me- tallcarbonylen aus der Gasphase an Trägermaterialien mit großer Oberfläche, in dem die Metallcarbonyle oxidativ an den Trägermaterialien gespalten werden. Dadurch, dass die Abscheidung und Zersetzung der Metallcarbonyle auf dem Trägermaterial gemäß DE 33 30 621 A1 in einer oxidierenden Atmosphäre erfolgt, werden die entsprechenden Metalloxide erhalten. Ein Verfahren zur Herstellung von Metallen in elementarer Form auf einem entsprechenden Trägermaterial wird in der genannten Schrift nicht offenbart.
GB 572,471 offenbart ein Verfahren zur Reinigung von Gasen. Dazu wird fein verteiltes Eisen eingesetzt, das Schwefel enthaltende organische Verbindungen aus Abgasen entfernt. Das eingesetzte fein verteilte Eisen befindet sich auf Porzellanringen. Diese mit Eisen versehenen Porzellanringe werden erhalten, indem eine Eisencarbonyl- Verbindung bei einer Temperatur von 400 bis 4500C über die Porzellanringe geleitet wird.
US 2004/0007524 A1 offenbart ein Verfahren zur Entfernung von Kohlenwasserstoffen und halogenierten Kohlenwasserstoffen aus kontaminierten Bereichen durch Verwendung eines Trägermaterials, das Eisen in der Oxidationsstufe 0 enthält. Das Trägermaterial enthaltend metallisches Eisen wird beispielsweise hergestellt, indem das Trägermaterial in eine Schmelze eines hydratisierten Eisen-Salzes getaucht wird. Nach Abkühlen des Trägermaterials unter Ausbildung von Eisenoxid wird dieses durch redukti- ve Behandlung in elementares Eisen überführt. Des Weiteren kann gemäß US 2004/0007524 A1 ein solches Trägermaterial auch hergestellt werden, indem das Trägermaterial in eine wässrige Lösung eines Eisensalzes getaucht wird, und nach Trocknen das Eisensalz auf dem Trägermaterial zu elementarem Eisen reduziert wird.
WO 03/006379 A1 offenbart ein Verfahren zur Dekontamination von Abwässern, die mit organischen, halogenierten Verbindungen belastet sind, durch Einsatz von granuliertem Eisen mit einer Teilchengröße von 1 bis 20 mm.
J. Schwär et al., J. Vac. Sei. Technol. A 9 (2), 1991 , 238 - 249 offenbart ein Verfahren zur Oberflächencharakterisierung von Kohlenstoff-geträgerten Eisenkatalysatoren. Diese werden unter anderem durch Gasphasenabscheidung von Eisenpentacarbonyl auf Kohlenstoff hergestellt. Nach Abscheidung des Eisenpentacarbonyls wird der so erhaltene Katalysator-Vorläufer mit Wasserstoff reduziert. Des Weiteren wird in diesem Dokument offenbart, dass entsprechende Katalysatoren erhalten werden können, indem eine wässrige Lösung von Eisen(lll)nitrat auf den Kohlenstoffträger aufgebracht wird, und die Eisen-Kationen mit Wasserstoff zu elementarem Eisen reduziert werden.
Nachteilig an den mechanischen Verfahren zur Herstellung kleiner Eisenpartikel ist, dass diese in der Regel nicht zu den erforderlichen geringen Größen der Eisenpartikel führen und es des Weiteren nicht ermöglichen, dass Eisen in das Porengefüge der Aktivkohle eindringt. Des Weiteren liefert ein Verfahren, bei dem Aktivkohle mit einer Lösung eines Eisensalzes getränkt wird und das elementare Eisen anschließend durch Reduktion erhalten wird, zwar eine mit Eisen beladene Aktivkohle, jedoch ist eine gezielte Steuerung der Eisenpartikelgröße und -Verteilung nur begrenzt möglich. Des Weiteren entsteht durch die Reduktion eines Eisensalzes zwangsläufig ein Salz, wel- ches auf dem Katalysatorträger verbleibt, bzw. in einem weiteren Verfahrensschritt entfernt werden muss. Weiterhin werden größere Mengen an Rohstoffen, beispielsweise Wasserstoff, verbraucht, um das Produkt herzustellen, was zu höheren Produktionskosten führt.
Aufgabe der vorliegenden Erfindung ist es somit, ein Verfahren bereitzustellen, mit dem Metalle in elementarer Form, d. h. in der Oxidationsstufe 0, auf ein Trägermaterial, welches auf Kohlenstoff basiert, aufgebracht werden können. Dieses Verfahren sollte möglichst in einem Verfahrensschritt zu den gewünschten metalldotierten Trägermaterialien führen. Zusätzlich sollten durch das erfindungsgemäße Verfahren metalldotierte Trägermaterialien zugänglich sein, die sich durch eine besonders homogene Verteilung des Metalls auf dem Trägermaterial auszeichnen und bei denen das Metall auch in den Poren des Trägermaterials vorliegt. Wünschenswert ist des Weiteren eine möglichst hohe Oberfläche des metalldotierten Trägermaterials sowie eine hohe Beladung mit Metall.
Diese Aufgaben werden gelöst durch ein Verfahren zur Herstellung eines metalldotierten Trägermaterials enthaltend wenigstens ein Metall in elementarer Form, wobei das Trägermaterial auf Kohlenstoff basiert, durch Gasphasenabscheidung wenigstens einer Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0 auf dem wenigstens einen Trägermaterial und thermische Zersetzung der wenigstens einen Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0, um das wenigstens eine Metall in elementarer Form zu erhalten, wobei während und nach dem Abscheiden und dem Zersetzen das Trägermaterial bei der Herstellung nicht mit reduzierend wirkenden Verbindungen in den Kontakt gebracht wird. Des Weiteren werden die Aufgaben gelöst durch ein metalldotiertes Trägermaterial, herstellbar nach dem erfindungsgemäßen Verfahren, sowie durch die Verwendung dieses metalldotierten Trägermaterials zur Behandlung von Abwasser oder kontaminiertem Grundwasser.
In dem erfindungsgemäßen Verfahren können im Allgemeinen alle dem Fachmann bekannten Trägermaterialien, die auf Kohlenstoff basieren, eingesetzt werden, die sich zur Dotierung mit wenigstens einem Metall eignen.
Im Rahmen der vorliegenden Erfindung bedeutet „basierend auf Kohlenstoff", dass das eingesetzte Trägermaterial im Wesentlichen, d. h. > 80 Gew.-%, aus Kohlenstoff in seinen verschiedenen Modifikationen besteht. In einer bevorzugten Ausführungsform ist das wenigstens ein Trägermaterial ausgewählt aus der Gruppe bestehend aus Kohlen z.B. Ruß, Aktivkohle, carbon nano tubes und Mischungen davon. In einer beson- ders bevorzugten Ausführungsform wird Aktivkohle als Trägermaterial in dem erfindungsgemäßen Verfahren eingesetzt.
Das erfindungsgemäß eingesetzte Trägermaterial weist im Allgemeinen eine möglichst hohe BET-Oberfläche auf. In einer bevorzugten Ausführungsform ist die BET- Oberfläche des eingesetzten Trägermaterials vor der Metalldotierung wenigstens 300 m2/g, besonders bevorzugt wenigstens 700 m2/g, ganz besonders bevorzugt wenigstens 1000 m2/g. Im Allgemeinen übersteigt die BET-Oberfläche des eingesetzten Trägermaterials vor der Metalldotierung einen Wert von 2500 m2/g nicht.
Das bevorzugt eingesetzte Trägermaterial weist einen Metallgehalt vor der eigentlichen erfindungsgemäßen Metalldotierung von 0,01 bis 2 Gew.-%, bevorzugt 0,02 bis 1 ,2 Gew.-%, besonders bevorzugt 0,03 bis 1 Gew.-% auf, wobei das vorliegende Metall bevorzugt Eisen ist.
Das in dem erfindungsgemäßen Verfahren bevorzugt eingesetzte Trägermaterial ist Aktivkohle, wobei in einer besonders bevorzugten Ausführungsform die Aktivkohle in Form von Pellets vorliegt, die eine Partikelgröße von 0,1 bis 12 mm aufweisen, besonders bevorzugt 1 bis 6 mm. Derartige Aktivkohle ist durch dem Fachmann bekannte Verfahren erhältlich, bzw. kommerziell verfügbar. Vor der eigentlichen Anwendung in der Behandlung von Abwasser werden diese bevorzugt eingesetzten Pellets durch geeignete Verfahren, beispielsweise Mahlen, auf eine Partikelgröße von 0,1 bis 10 μm gebracht.
In dem erfindungsgemäßen Verfahren wird wenigstens eine Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0 auf das wenigstens eine Trägermaterial durch Gasphasenabscheidung aufgebracht. Im Allgemeinen sind alle dem Fachmann bekannten Verbindungen in dem erfindungsgemäßen Verfahren einsetzbar, die unter technisch realisierbaren Bedingungen verdampfbar sind, beispielsweise bei einer Temperatur von 30 bis 4000C, bevorzugt 50 bis 2500C, besonders bevorzugt 70 bis 1500C. Des Weiteren sollten die eingesetzten Verbindungen bei einem Druck von 0,1 bis 10 bar, bevorzugt 0,5 bis 5 bar, besonders bevorzugt bei Normaldruck verdampfbar sein.
Das in der eingesetzten Verbindung enthaltend wenigstens ein Metall in der Oxidati- onsstufe 0 vorliegende Metall ist in einer bevorzugten Ausführungsform ein Metall ausgewählt aus der Gruppe der Übergangsmetalle. In einer besonders bevorzugten Ausführungsform ist das wenigstens eine Metall ausgewählt aus den Gruppen 3 bis 12 (neue lUPAC-Nomenklatur), besonders bevorzugt aus den Gruppen 6 bis 10. Ganz besonders bevorzugt ist das Metall, welches in der wenigstens einen Verbindung vor- liegt ausgewählt aus der Gruppe bestehend aus Eisen, Nickel, Kobalt, Mangan, Chrom, Rhenium, Molybdän, Wolfram und Mischungen davon. Insbesondere bevorzugt ist das Metall Eisen.
In der erfindungsgemäß eingesetzten Verbindung liegt das Metall in der Oxidationsstu- fe 0 vor. Bevorzugt werden Komplexe des entsprechenden Metalls eingesetzt, in denen die Liganden nicht geladen sind, so dass in Summe ein nicht geladener Komplex vorliegt. Geeignete Liganden, die an das wenigstens eine Metall gebunden sind, sind beispielsweise ausgewählt aus der Gruppe bestehend aus CO, NO, PR3 (R = Alkyl mit CrC6 oder Aryl) und Mischungen davon. Besonders bevorzugt werden Carbonyl- Komplexe des entsprechenden Metalls eingesetzt, die wenigstens einen CO-Liganden enthalten. In einer besonders bevorzugten Ausführungsform enthalten die eingesetzten Metallkomplexe ausschließlich CO-Liganden, d. h. es werden so genannte Metallcar- bonyle eingesetzt.
Beispiele für entsprechende Carbonyle sind ausgewählt aus der Gruppe bestehend aus Eisenpentacarbonyl Fe(CO)5, Cr(CO)6, Mo(CO)6, W(CO)6, Mn2(CO)i0, Re2(CO)i0, Fe(CO)5, Fe2(CO)9, Fe3(CO)i2, Co2(CO)8, Ni(CO)4 und Mischungen davon, insbesondere bevorzugt Eisenpentacarbonyl Fe(CO)5. Diese Metallcarbonyle, besonders Eisenpentacarbonyl, können nach dem Fachmann bekannten Verfahren hergestellt werden, beispielsweise beschrieben in Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie oder sind kommerziell erhältlich. In dem erfindungsgemäßen Verfahren ist die Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0 Eisenpentacarbonyl Fe(CO)5. Eisenpentacarbonyl wird bevorzugt durch das dem Fachmann bekannte Verfahren aus Eisengranalien hergestellt. Dazu werden Eisengranalien in einem entsprechenden Reaktor, beispielsweise einem Hordenreaktor, vorgelegt und mit Kohlenmonoxid CO durchströmt. Das entstehende Eisenpentacarbonyl wird aus dem CO-Austrittsstrom nach dem Fachmann bekannten Verfahren abgeschieden und gegebenenfalls durch dem Fachmann bekannte Verfahren gereinigt.
Das erfindungsgemäße Verfahren wird im Allgemeinen so durchgeführt, dass die ent- sprechende wenigstens eine Verbindung enthaltend wenigstens ein Metall in der Oxi- dationsstufe 0 in gasförmigem Zustand mit dem wenigstens einen Trägermaterial in Kontakt gebracht wird.
In einer bevorzugten Ausführungsform wird das Gas, welches die wenigstens eine Verbindung enthaltend ein Metall in der Oxidationsstufe 0 enthält, über Aktivkohle, bevorzugt im Festbett, geleitet. Dabei scheidet sich die eingesetzte wenigstens eine Verbindung enthaltend ein Metall in der Oxidationsstufe 0 auf dem Trägermaterial, bevorzugt auf der Aktivkohle, ab. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird das erfindungsgemäße Verfahren in einer Wirbelschicht durchge- führt.
In einer besonders bevorzugten Ausführungsform müssen Druck und Temperatur sowie die Wärmeeinkoppelung in das Aktivkohlebett so gewählt werden, dass die Zersetzungsreaktion des Eisenpentacarbonyls langsam im Vergleich zum Wärmetransport und Stofftransport in das Innere des Trägermaterials ist. Ist die Zersetzungsgeschwindigkeit des Eisenpentacarbonyls gegenüber dem Wärme- und/oder Stofftransport in das Innere des Trägermaterials zu schnell, so wird das entsprechende Metall, beispielsweise Eisen, zumindest teilweise auf der Reaktorinnenwand abgeschieden, nicht jedoch, wie gewünscht, auf dem Trägermaterial, bzw. in den Poren des Trägermateri- als.
In einer bevorzugten Ausführungsform kann die Wärmeeinkoppelung in das Aktivkohlebett durch externe Wärmetauscher erfolgen, die einen Teilstrom des Abgases im Umwälzkreislauf erhitzen. Das erhitze Abgas wird wieder dem Aktivkohlebett zugeführt. Da die verwendeten Trägermaterialien, besonders Aktivkohle, auf die Zersetzung des Eisenpentacarbonyls katalytisch wirken, ist die Zersetzung im Wälzgaswärmetauscher vernachlässigbar gegenüber der Zersetzung auf dem Trägermaterial.
Die gasförmige Verbindung, die wenigstens ein Metall in der Oxidationsstufe 0 enthält, wird in einer bevorzugten Ausführungsform in Kombination mit weiteren Gasen, beispielsweise ausgewählt aus der Gruppe bestehend aus Kohlenmonoxid, Kohlendioxid, Stickstoff oder Edelgasen und Mischungen davon über bzw. durch das Trägermaterial geleitet. Die Konzentration der wenigstens einen Verbindung enthaltend das Metall in der Oxidationsstufe 0, besonders bevorzugt Eisenpentacarbonyl, beträgt in diesem Gas 1 bis 100 Gew.-%, bevorzugt 10 bis 95 Gew.-%, jeweils bezogen auf das gesamte Reaktionsgas. Die Temperatur im Inneren des Reaktors ist in einer bevorzugten Ausführungsform so hoch, dass die wenigstens eine Verbindung enthaltend ein Metall in der Oxidationsstu- fe 0 in dampfförmiger Form vorliegt und bei Kontakt mit dem vorliegenden Trägermate- rial eine Zersetzung stattfindet. Die Verdampfungstemperatur von Eisenpentacarbonyl liegt bei 1050C und die Zersetzungstemperatur von Eisenpentacarbonyl liegt bei 1500C.
Das Trägermaterialbett weist in dem erfindungsgemäßen Verfahren bevorzugt eine Temperatur von 120 bis 220°C, besonders bevorzugt 130 bis 2000C auf. Der Druck im Trägermaterialbett beträgt bevorzugt 0,1 bis 10 bar, besonders bevorzugt liegt Normaldruck, d. h. 1 bar, vor. Daher wird das Abscheiden und das Zersetzen bevorzugt bei einer Temperatur von 120 bis 220°C, besonders bevorzugt 130 bis 200°C durchgeführt. Das Abscheiden und das Zersetzen werden bevorzugt bei einem Druck von 0,1 bis 10 bar, besonders bevorzugt bei Normaldruck, durchgeführt.
In einer besonders bevorzugten Ausführungsform des erfindunsgemäßen Verfahrens wird in einem ersten Schritt wenigstens eine Verbindung enthaltend ein Metall in der Oxidationsstufe 0 bei einer Temperatur oberhalb der Verdampfungstemperatur und unterhalb der Zersetzungstemperatur auf dem wenigstens einen Trägermaterial abgeschieden, indem diese in dampfförmigem Zustand über das und/oder durch das Trägermaterial geleitet wird. In einem zweiten Schritt dieser bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Zufuhr an wenigstens einer dampfförmigen Verbindung enthaltend ein Metall in der Oxidationsstufe 0 gestoppt, d.h. es wird bevorzugt keine dampfförmige Verbindung enthaltend ein Metall in der Oxidationsstufe 0 mehr auf dem Trägermaterial abgeschieden, und die Temperatur wird so erhöht, dass sie oberhalb der Zersetzungstemperatur liegt, so dass die wenigstens eine Verbindung enthaltend ein Metall in der Oxidationsstufe 0, die auf dem Trägermaterial abgeschieden ist, in das entsprechende Metall, beispielsweise Eisen, zersetzt wird.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Zersetzung der Verbindung enthaltend das Metall in der Oxidationsstufe 0 nach dem Abscheiden auf dem Trägermaterial. Die Zersetzung der abgeschiedenen Verbindung in elementares Metall, bevorzugt in Eisen, erfolgt in einer bevorzugten Ausführungs- form durch die Wirkung der Aktivkohlen-Oberfläche in Verbindung mit einer Wärmezufuhr.
Ein Vorteil des erfindungsgemäßen Verfahrens ist, dass während und nach dem Abscheiden und dem Zersetzen das Trägermaterial bei der Herstellung nicht mit reduzie- rend wirkenden Verbindungen, beispielsweise Wasserstoff in Kontakt gebracht werden muss, um das Metall in elementarer Form zu erhalten. Nach Zersetzung der Verbin- dung enthaltend das Metall in der Oxidationsstufe 0 liegt das Metall in elementarer Form vor, und muss nicht weiter mit einem Reduktionsmittel, beispielsweise Wasserstoff, behandelt werden. Dadurch ist es erfindungsgemäß möglich, einen weiteren Verfahrensschritt und zusätzliche Reduktionsmittel einzusparen.
Dass das erfindungsgemäß hergestellte metalldotierte Trägermaterial bei der späteren Anwendung gegebenenfalls mit reduzierend wirkenden Verbindungen in Kontakt kommt, fällt erfindungsgemäß nicht mehr unter das erfindungsgemäße Herstellungsverfahren.
Der Reaktor, in dem das wenigstens eine Trägermaterial mit dem Reaktionsgas umgesetzt wird, kann kontinuierlich oder diskontinuierlich betrieben werden. Geeignete Reaktoren sind beispielsweise ein Hordenreaktor für diskontinuierlichen Betrieb, bzw. ein Wander- oder Wirbelbett für den kontinuierlichen Betrieb mit kontinuierlicher Zufuhr von Trägermaterial und kontinuierlicher Ausschleusung des metalldotierten Trägermaterials.
Neben der bevorzugten Wälzgas-Wärmeeinkoppelung ist auch eine indirekte Wärmeeinkoppelung über beispielsweise im Reaktor befindliche Rohrbündel möglich. Des Weiteren ist es möglich, dass mittels eines Doppelmantels beheizte Rohre, die mit Trägermaterial gefüllt sind, verwendet werden. Als Heizmedien eignen sich die üblichen, dem Fachmann bekannten Wärmeträgermedien, beispielsweise Marlothermöl, Salzschmelzen oder bevorzugt Heizdampf.
In einer bevorzugten Ausführungsform kann das aus dem Reaktor austretendes Abgas, welches in einer bevorzugten Ausführungsform im Wesentlichen aus Kohlenmo- noxid (CO) besteht, nach Verdichtung, bzw. Anreicherung mit der entsprechenden gasförmigen Verbindung enthaltend das Metall in der Oxidationsstufe 0 wieder dem erfindungsgemäßen Verfahren zugeführt werden, so dass in dieser bevorzugten Ausfüh- rungsform im Wesentlichen keine Abfall- bzw. Nebenprodukte anfallen.
Das erfindungsgemäße Verfahren erlaubt es, metalldotierte Trägermaterialien zu erhalten, die sich durch eine besonders große BET-Oberfläche auszeichnen. Des Weiteren wird ein metalldotiertes Trägermaterial erhalten, bei dem das Metall nicht nur ober- flächlich, sondern auch im Inneren der Poren vorliegt. Das erfindungsgemäße Verfahren erlaubt es des Weiteren, besonders hohe Beladungen des Trägermaterials mit wenigstens einem Metall zu erzielen.
Daher betrifft die vorliegende Erfindung auch ein metalldotiertes Trägermaterial, her- stellbar nach dem erfindungsgemäßen Verfahren. In einer bevorzugten Ausführungsform weist das metalldotierte Trägermaterial das wenigstens eine Metall in elementarer Form in einer Menge von wenigstens 1 Gew.-%, bevorzugt mindestens 5 Gew.-%, besonders bevorzugt mindestens 13 Gew.-%, jeweils bezogen auf das gesamte metalldotierte Trägermaterial, auf.
In einer weiteren bevorzugten Ausführungsform weist das metalldotierte Trägermaterial, herstellbar durch das erfindungsgemäße Verfahren, eine BET-Oberfläche von wenigstens 500 m2/g, besonders bevorzugt wenigstens 1000 m2/g auf. Das erfindungsgemäße, metalldotierte Trägermaterial zeichnet sich des Weiteren durch eine beson- ders gleichmäßige Verteilung des wenigstens einen Metalls auf dem Trägermaterial aus.
Die vorliegende Erfindung betrifft auch die Verwendung des erfindungsgemäßen, metalldotierten Trägermaterials zur Behandlung von kontaminiertem Grundwasser und Abwasser, insbesondere zum Abbau von Schadstoffen durch Reduktion, ganz besonders von halogenierten Kohlenwasserstoffen, Nitro- und Nitrosokohlenwasserstoffen und anorganischen Substanzen wie z.B. Quecksilber, Cadmium, Nickel, Arsenat, Ar- senit, Chromat, Perchlorat, Nitrat und Mischungen davon.
Verfahren zur Dekontamination von kontaminierten Grund- oder Abwässern mittels metalldotierter Trägermaterialien sind dem Fachmann bekannt und beispielsweise beschrieben in TerraTech 6, 2007, 17-20.
Figuren
Figur 1 zeigt eine SEM-Aufnahme eines Partikels einer durch das erfindungsgemäße Verfahren erhaltenen mit Eisen dotierten Aktivkohle.
Figur 2 zeigt eine SEM-Aufnahme der Oberfläche einer durch das erfindungsgemäße Verfahren erhaltenen mit Eisen dotierten Aktivkohle.
Beispiele
Beispiel 1
Die verwendete Vorrichtung besteht aus einem Doppelrohr-Verdampfer zur Verdampfung des kontinuierlich dosierten, flüssigen Eisenpentacarbonyls Fe(CO)5. D ie Fe(CO)5-Zufuhr beträgt 0,05 ml/min. Der Verdampfer wird bei 1200C betrieben. Zusätz- lieh wird dem Verdampfer ein CO-Strom von ca. 0,4 l/h aufgeprägt. Der Fe(CO)5- Dampf und das CO werden einem mit Aktivkohlepellets gefüllten 8 x 1 mm-Teflonrohr zugeführt. Das Teflonrohr wird über einen Doppelmantel mit Marlothermöl beheizt. Während der Abscheidung wird die Temperatur von 1500C auf 2000C mit einer Heizrate von 3 K/min, angehoben. Die Abscheidegeschwindigkeit wird über eine CO- Abgasmessung verfolgt. Nachdem die Temperaturrampe 2000C erreicht hat, wird die Fe(CO)5-Zufuhr gestoppt. Als Aktivkohle wird eine Standard-Aktivkohle Typ 1 (AIR SLR- Ultra, Fa. Obermeier) verwendet.
Ergebnis:
Während des Versuches steigt ab 160°C bis 200°C die Abgasmenge kontinuierlich bis auf 3 l/h an. Die ausgebauten Proben werden auf Eisengehalt und BET-Oberfläche vor und nach dem Versuch untersucht. Der Eisengehalt der unbehandelten Aktivkohle beträgt 0,92 g/100 g, entsprechend 0,92 Gew.-%, und die BET-Oberfläche beträgt 1405 m2/g. Der Eisengehalt der ausgebauten, behandelten Aktivkohle wird zu 22,9 g/100 g, entsprechend 22,9 g Gew.-% bestimmt und die BET-Oberfläche wird zu 1 186 m2/g bestimmt. Zusätzlich werden mehrere Stränge eingebettet, quer zur Strangachse angeschliffen und im SEM (Scanning Electrone Microscopy) mittels Rückstreuelektronen (RE) abgebildet. In Figur 1 erscheinen Bereiche höherer Dichte heller (höhere Konzentration/höhere Ordnungszahl der Elemente/geringere Porosität.
Beispiel 2
Die verwendete Vorrichtung besteht aus einem Doppelrohr-Verdampfer zur Verdampfung des kontinuierlich dosierten, flüssigen Eisenpentacarbonyls Fe(CO)5. Die Fe(CO)5-Zufuhr beträgt 0,05 ml/min. Der Verdampfer wird bei 120°C betrieben. Zusätzlich wird dem Verdampfer ein CO-Strom von ca. 0,7 l/h aufgeprägt. Der Fe(CO)5- Dampf und das CO werden in 3, mit Aktivkohlepellets gefüllte, Glasbehälter mit je 100 ml Inhalt geführt. Ein Kreisgasstrom mit 800l/h sorgt für eine gleichmäßige Verteilung des Fe(CO)5-Dampfs über die Aktivkohlepellets. Die Glasbehälter werden mit über einen Doppelmantel beheizt. Während der der Beladung der Aktivkohlepellets bleibt die Temperatur bei 150 0C konstant. Nach der Dosierung von 21 ml Fe(CO)5 wird die Zufuhr von Eisenpentacarbonyl gestoppt und die Temperatur der Glasgefäße auf 1800C erhöht. Als Aktivkohle wird eine Standard-Aktivkohle Typ 1 (AIR SLR- Ultra, Fa Obermeier) verwendet.
Ergebnis:
Während des Beiadens der Aktivkohlepellets bei 150°C bleibt die Abgasmenge konstant bei 0,8l/h. Während der Temperaturerhöhung auf 1800C steigt die Abgasmenge kontinuierlich bis auf > 3 l/h an. Die ausgebauten Proben werden auf Eisengehalt vor und nach dem Versuch untersucht. Der Eisengehalt der unbehandelten Aktivkohle be- trägt 0,92 g/100 g, entsprechend 0,92 Gew.-%. Der Eisengehalt der ausgebauten, behandelten Aktivkohle wird zu 13 g/100 g, entsprechend 13 Gew.-% bestimmt. Zusätzlich werden mehrere Stränge eingebettet, quer zur Strangachse angeschliffen und im SEM (Scanning Electrone Microscopy) mittels Rückstreuelektronen (RE) abgebildet. In Figur 2 erscheinen Bereiche höherer Dichte heller (höhere Konzentration/höhere Ordnungszahl der Elemente/geringere Porosität.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines metalldotierten Trägermaterials enthaltend wenigstens ein Metall in elementarer Form auf wenigstens einem Trägermaterial, welches auf Kohlenstoff basiert, durch Gasphasenabscheidung wenigstens einer
Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0 auf dem wenigstens einen Trägermaterial und thermische Zersetzung der wenigstens einen Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0, um das wenigstens eine Metall in elementarer Form zu erhalten, dadurch ge- kennzeichnet, dass während und nach dem Abscheiden und dem Zersetzen das
Trägermaterial bei der Herstellung nicht mit reduzierend wirkenden Verbindungen in Kontakt gebracht wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Metall Eisen ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Trägermaterial Aktivkohle ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verbindung enthaltend das wenigstens eine Metall in der Oxidationsstufe 0 Eisen- pentacarbonyl Fe(CO)5 ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Abscheiden und das Zersetzen bei einer Temperatur von 120 bis 220 0C durchge- führt werden.
6. Metalldotiertes Trägermaterial, herstellbar nach dem Verfahren gemäß einem der Ansprüche 1 bis 5.
7. Metalldotiertes Trägermaterial nach Anspruch 6, dadurch gekennzeichnet, dass das wenigstens eine Metall in elementarer Form in einer Menge von wenigstens 1 Gew.-%, bezogen auf das gesamte metalldotierte Trägermaterial, vorliegt.
8. Metalldotiertes Trägermaterial nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass es eine BET-Oberfläche von wenigstens 500 m2/g aufweist.
9. Verwendung eines metalldotierten Trägermaterials nach einem der Ansprüche 6 bis 8 zur Behandlung von kontaminiertem Grundwasser oder Abwasser.
EP09715359A 2008-02-27 2009-02-26 Verfahren zur herstellung eisendotierter kohlen Withdrawn EP2249964A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09715359A EP2249964A1 (de) 2008-02-27 2009-02-26 Verfahren zur herstellung eisendotierter kohlen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08151974 2008-02-27
EP09715359A EP2249964A1 (de) 2008-02-27 2009-02-26 Verfahren zur herstellung eisendotierter kohlen
PCT/EP2009/052284 WO2009106567A1 (de) 2008-02-27 2009-02-26 Verfahren zur herstellung eisendotierter kohlen

Publications (1)

Publication Number Publication Date
EP2249964A1 true EP2249964A1 (de) 2010-11-17

Family

ID=40588461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09715359A Withdrawn EP2249964A1 (de) 2008-02-27 2009-02-26 Verfahren zur herstellung eisendotierter kohlen

Country Status (6)

Country Link
US (1) US20110003074A1 (de)
EP (1) EP2249964A1 (de)
JP (1) JP2011513046A (de)
KR (1) KR20100117140A (de)
CN (1) CN101983101A (de)
WO (1) WO2009106567A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2587078C2 (ru) * 2009-12-18 2016-06-10 Басф Се Железосодержащий цеолит, способ получения железосодержащих цеолитов и способ каталитического восстановления оксидов азота
CN102602920B (zh) * 2012-03-29 2013-08-28 南京大学 铁包覆石墨烯纳米复合材料的制备方法
CN102887506A (zh) * 2012-09-28 2013-01-23 南京大学 气相分解五羰基铁制备铁包覆多层石墨烯纳米复合材料的方法
US10370613B2 (en) 2014-10-24 2019-08-06 Parag Gupta Grey cast iron-doped diamond-like carbon coatings and methods for depositing same
CN108607561B (zh) * 2018-04-28 2020-11-24 山东海益化工科技有限公司 1,2-二氯丙烷催化氧化制3-氯丙烯用催化剂的制备方法
CN109128138B (zh) * 2018-09-13 2020-08-25 浙江师范大学 一种核壳异质结构磁性纤维及其制备与应用方法
CN109301266B (zh) * 2018-09-27 2020-11-13 德州新动能铁塔发电有限公司 氧还原催化剂及其制备方法和用途
EP3988207A1 (de) * 2020-10-22 2022-04-27 Bestrong International Limited Geträgerte metallstruktur

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533071A (en) * 1947-10-01 1950-12-05 Standard Oil Dev Co Synthesis of hydrocarbons in the presence of an iron type catalyst
US3013987A (en) * 1958-09-24 1961-12-19 Union Carbide Corp Metal loading of molecular sieves
FR2826596B1 (fr) * 2001-06-28 2004-08-13 Toulouse Inst Nat Polytech Compositon catalytique pour la fabrication selective de nanotubes de carbone ordonne en lit fluidise, et son procede de fabrication
DE10133609A1 (de) * 2001-07-13 2003-02-13 Ufz Leipzighalle Gmbh Verfahren und Vorrichtung zur Dekontamination von Wässern, insbesondere von Grundwässern, die stark und komplex mit organischen Halogenverbindungen (HKW) belastet sind
US6787034B2 (en) * 2002-07-12 2004-09-07 Remediation Products, Inc. Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
US8097559B2 (en) * 2002-07-12 2012-01-17 Remediation Products, Inc. Compositions for removing halogenated hydrocarbons from contaminated environments
CN101099932B (zh) * 2007-05-23 2010-04-21 江苏天一超细金属粉末有限公司 一种高效铁系催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009106567A1 *

Also Published As

Publication number Publication date
KR20100117140A (ko) 2010-11-02
CN101983101A (zh) 2011-03-02
JP2011513046A (ja) 2011-04-28
WO2009106567A1 (de) 2009-09-03
US20110003074A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2009106567A1 (de) Verfahren zur herstellung eisendotierter kohlen
CN109305917B (zh) 一种卤代苯胺的合成方法
Cai et al. Removal of co-contaminants Cu (II) and nitrate from aqueous solution using kaolin-Fe/Ni nanoparticles
Manyar et al. Selective Hydrogenation of α, β‐Unsaturated Aldehydes and Ketones using Novel Manganese Oxide and Platinum Supported on Manganese Oxide Octahedral Molecular Sieves as Catalysts
AT398912B (de) Poröses kohlenstoffmaterial
Saleh et al. Evaluation of AC/ZnO composite for sorption of dichloromethane, trichloromethane and carbon tetrachloride: kinetics and isotherms
WO2015086109A1 (de) Katalysatorsystem basierend auf kugelförmiger aktivkohle als träger und dessen verwendung
Danish et al. Surface characterization and comparative adsorption properties of Cr (VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon
EP2932513B1 (de) Ferromagnetische kohlenstoffkörper
Liu et al. The adsorption and reduction of anionic Cr (VI) in groundwater by novel iron carbide loaded on N-doped carbon nanotubes: effects of Fe-confinement
DE69707033T2 (de) Verfahren zur Behandlung von Gasen die Organohalogenzusammensetzungen enthalten
EP2766112B1 (de) Verfahren zur selbstdetoxifizierung von adsorptionsmaterial sowie filter und filtermaterialien aufweisend ein solches adsorptionsmaterial
DE112013000754T5 (de) Behandlung eines Katalysatorträgers
EP3130399A1 (de) Verfahren zur hydroformylierung von olefinen und/oder alkinen in der gasphase mit einem gemisch aus wasserstoff und kohlenmonoxid in gegenwart von heterogenem katalysator
Qiu et al. Development of MoS2/cellulose aerogels nanocomposite with superior application capability for selective lead (II) capture
Kumar et al. Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr (VI) in wet air
WO2014195415A1 (de) Verfahren zur herstellung mehrwandiger kohlenstoffnanoröhrchen, mehrwandiges kohlenstoffnanoröhrchen und kohlenstoffnanoröhrchenpulver
DE19827385A1 (de) Tränkverfahren zur Aufbringung von Aktivmasse auf strukturierte Träger oder Monolithe
Ramirez et al. Metal oxide-biochar supported recyclable catalysts: A feasible solution for the reduction of 4-nitrophenol in water
WO2007009904A1 (de) Katalysator mit bimodaler verteilung der partikel des katalytisch aktiven materials, verfahren zu dessen herstellung und zu dessen regenerierung und verwendung des katalysators
Mustafa et al. Nanoscale zero-valent iron (NZVI) intercalated MXene (Ti3C2Tx) for removal of polycyclic aromatic hydrocarbons in wastewater
DE60101461T2 (de) Verfahren zur katalytischen Zersetzung von Distickstoffmonoxid (N2O)
WO2006082018A1 (de) Verfahren zur herstellung eines katalysators für die entschwefelung von kohlenwasserstoffströmen
DE202021100461U1 (de) Geträgerte Katalysatoren
Xiao et al. Activation of persulfate by g-C3N4/nZVI@ SBC for degradation of total petroleum hydrocarbon in groundwater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110901