EP2247245B1 - Vorrichtung zur ablage und befestigung eines pflasters auf biologischem gewebe - Google Patents
Vorrichtung zur ablage und befestigung eines pflasters auf biologischem gewebe Download PDFInfo
- Publication number
- EP2247245B1 EP2247245B1 EP09713121.3A EP09713121A EP2247245B1 EP 2247245 B1 EP2247245 B1 EP 2247245B1 EP 09713121 A EP09713121 A EP 09713121A EP 2247245 B1 EP2247245 B1 EP 2247245B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- patch
- tissue
- clip
- deployment
- clips
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004913 activation Effects 0.000 claims description 64
- 230000000717 retained effect Effects 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 description 100
- 238000000034 method Methods 0.000 description 26
- 238000005520 cutting process Methods 0.000 description 22
- 238000001356 surgical procedure Methods 0.000 description 21
- 206010019909 Hernia Diseases 0.000 description 18
- 230000007246 mechanism Effects 0.000 description 17
- 230000033001 locomotion Effects 0.000 description 16
- 238000003780 insertion Methods 0.000 description 13
- 230000037431 insertion Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- -1 copper-zinc-aluminium-nickel Chemical compound 0.000 description 8
- 210000000683 abdominal cavity Anatomy 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910001000 nickel titanium Inorganic materials 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 239000012781 shape memory material Substances 0.000 description 6
- 230000005641 tunneling Effects 0.000 description 6
- 210000003815 abdominal wall Anatomy 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000002457 bidirectional effect Effects 0.000 description 5
- 229920006237 degradable polymer Polymers 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000001131 transforming effect Effects 0.000 description 5
- 229920000954 Polyglycolide Polymers 0.000 description 4
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 4
- 239000000560 biocompatible material Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000002224 dissection Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001610 polycaprolactone Polymers 0.000 description 4
- 239000004632 polycaprolactone Substances 0.000 description 4
- 239000004633 polyglycolic acid Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 206010002329 Aneurysm Diseases 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 3
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000000622 polydioxanone Substances 0.000 description 3
- 239000004626 polylactic acid Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 206010060954 Abdominal Hernia Diseases 0.000 description 2
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000002357 laparoscopic surgery Methods 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- 229920000117 poly(dioxanone) Polymers 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 241000131009 Copris Species 0.000 description 1
- 208000027536 Femoral Hernia Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000034991 Hiatal Hernia Diseases 0.000 description 1
- 206010020028 Hiatus hernia Diseases 0.000 description 1
- 206010021620 Incisional hernias Diseases 0.000 description 1
- 208000029836 Inguinal Hernia Diseases 0.000 description 1
- 208000035563 Postoperative hernia Diseases 0.000 description 1
- 241000711981 Sais Species 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 241000950638 Symphysodon discus Species 0.000 description 1
- 208000035091 Ventral Hernia Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 210000003489 abdominal muscle Anatomy 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009483 enzymatic pathway Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- HOQADATXFBOEGG-UHFFFAOYSA-N isofenphos Chemical compound CCOP(=S)(NC(C)C)OC1=CC=CC=C1C(=O)OC(C)C HOQADATXFBOEGG-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 206010045458 umbilical hernia Diseases 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0063—Implantable repair or support meshes, e.g. hernia meshes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/08—Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
- A61B17/083—Clips, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B2017/0647—Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B2017/0649—Coils or spirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0063—Implantable repair or support meshes, e.g. hernia meshes
- A61F2002/0072—Delivery tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0083—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using hook and loop-type fasteners
Definitions
- This invention generally relates to a device for repairing biological tissue aperture. More specifically, the present invention relates to a device for deploying and attaching a patch to a biological tissue.
- An object of the present invention is to provide apparatus and for performing corrective surgery on internal wounds such as hernia where invasion of the patient's body tissues is minimized and resultant trauma is reduced.
- a hernia is a protrusion of a tissue, structure, or part of an organ through the muscular tissue or the membrane by which it is normally contained.
- a hernia is a defect in the abdominal wall through which a portion of the intra-abdominal contents can protrude. This often causes discomfort and an unsightly, visible bulge in the abdomen.
- conventional corrective surgery has required opening the abdominal cavity by surgical incision through the major abdominal muscles. While this technique provides for effective corrective surgery of the hernia defect, it has the disadvantage of requiring a hospital stay of as much as a week, during which pain is frequently intense, and it requires an extended period of recuperation. After the conventional surgery patients frequently cannot return to a full range of activity and work schedule for a month or more. Accordingly, medical science has sought alternative techniques that are less traumatic to the patient and provide for more rapid recovery.
- Laparoscopy is the science of introducing a viewing instrument through a port into a patient's body, typically the abdominal cavity, to view its contents. This technique has been used for diagnostic purposes for more than 75 years. Operative laparoscopy is performed through tiny openings in the abdominal wall called ports. In most surgical techniques several ports, frequently three to six, are used. Through one port is inserted the viewing device, which conventionally comprises a fiber optic rod or bundle having a video camera affixed to the outer end to receive and display images from inside the body. The various surgical instruments are inserted through other ports to do the surgery that normally would be performed through an open incision through the abdominal wall. Because the laparoscopic surgical techniques require only very small holes through the abdominal wall or other portions of the body, a patient undergoing such surgery may frequently leave the hospital within one day after the surgery and resume a full range of normal activities within a few days thereafter.
- WO07/021834 describes an anchor having two curved legs that cross in a single turning direction to form a loop. Those two curved legs are adapted to penetrate tissue in a curved pathway.
- US patent 4,485,816 (refers hereinafter as 816' ) describes surgical staple made of shape memory alloy. The staple is placed in contact of the tissue and then heated. The heating causes the staple to change its shape thus, penetrating the tissue.
- US patent 6,893,452 (refers hereinafter as '452 ) describes a tissue attachment device that facilitates wound healing by holding soft tissue together under improved distribution of tension and with minimal disruption of the wound interface and its nutrient supplies.
- the device has multiple sites for grasping the tissue using tines or prongs or other generally sharp, projecting points, protruding from a single, supportive backing.
- tines or prongs or other generally sharp, projecting points protruding from a single, supportive backing.
- One of the embodiments described in '452 is the use of sharp projecting points protruding from the supportive backing in two different angles.
- US patent 6,517,584 (refers hereinafter as '584) describes a hernia patch which includes at least one anchoring device made of shape memory material.
- the anchoring devices are initially secured to the prosthesis by being interlaced through a web mesh constituting the prosthesis.
- the attachment is obtained by altering the attachment element's shape from rectilinear to a loop shape due to heat induced shape memory effect.
- US patent 5,836,961 (refers hereinafter as '961 ) which relates to an apparatus used for developing an anatomic space for laparoscopic hernia repair and a patch for use therewith.
- the apparatus of patent '961 comprises a tubular introducer member having a bore extending therethrough.
- a tunneling shaft is slidably mounted in the bore and has proximal and distal extremities including a bullet-shaped tip.
- a rounded tunneling member is mounted on the distal extremity of the tunneling shaft.
- the apparatus comprises an inflatable balloon. Means is provided on the balloon for removably securing the balloon to the tunneling shaft. Means is also provided for forming a balloon inflation lumen for inflating the balloon.
- the balloon is wrapped on the tunneling shaft.
- a sleeve substantially encloses the balloon and is carried by the tunneling shaft. The sleeve is provided with a weakened region extending longitudinally thereof, permitting the sleeve to be removed whereby the balloon can be unwrapped and inflated so that it lies generally in a plane.
- the balloon as it is being inflated creates forces generally perpendicular to the plane of the balloon to cause pulling apart of the tissue along a natural plane to provide the anatomic space.
- patent '961 relates to deploying means
- patent '961 teaches a device in which the patch is attached to a balloon which is introduced into the abdominal cavity. The deployment is performed by inflating the balloon. In other words, a totally different deploying means are disclosed.
- Patent ' 650 provides an apparatus for positioning surgical implants adjacent to body tissue, comprising an outer tube having a proximal end, a distal end and a longitudinal axis; an inner rod at least partially disposed within the outer tube and slidable along said longitudinal axis.
- the inner rod has a proximal and a distal end portions.
- the inner rod distal end portion further comprises articulating means for pivoting at an angle with respect to the longitudinal axis.
- a looped support member having first and second end portions fixedly secured to said distal end portion of the inner rod; and a surgical implant releasably secured to the looped support member (a preferred embodiment illustrating the teaching of patent ' 650 is illustrated in figure 17 ).
- the deployment of the patch in patent '650 is passive and unidirectional; i.e., once the patch is deployed by pulling tube 12, the patch can not be un-deployed and reinserted into tube 12. In order to reinsert the patch into tube 12, the patch must be refolded and such an action can not be performed while the patch is within the patient. Therefore, the surgeon has only one chance to unfold the patch. This is in sharp contrary to the present invention in which the deployment of the patch is bidirectional and actively controlled such that the patch can be deployed and un-deployed simply by the reconfiguration of the flexible arms (which a full description will be provided in the detail description).
- patent ' 650 Yet another major distinction between patent ' 650 and the proposed invention is the fact that in patent '650 the looped support member 14 is preferably in a deployed (i.e., open) configuration thereby insertion of the looped support member 14 into tube 12 will require the physician to apply a significant amount of force in order to maintain the looped support member 14 in a closed configuration.
- the flexible arms can be actively configured to be constantly closed without any additional force applied by the physician. Therefore, the insertion of the device through a trocar is facilitated.
- the present invention comprises a central shaft for providing the device mechanical stiffness for the backbone of the system which is needed for better positioning of the patch within the body. Further, by providing mechanical stiffness to the backbone of the system, it will enable the detachment of the patch from the deployment system. Such a mechanism is not disclosed nor claimed in patent '650.
- patent '650 describes no attachment mechanism for attaching the patch to the tissue. Further, some major, non obvious modification will have to be made in order to enable attachment between the patch and the tissue whilst using the device of patent '650 .
- WO08065653 refers hereinafter as ' 653 relates to a device especially adapted to deploy a patch within a body cavity.
- the device is an elongate open-bored applicator (EOBP) and comprises (a) at least one inflatable contour-balloon, (b) at least one inflatable dissection balloon.
- the inflatable contour-balloon and the inflatable dissection balloon are adjustable and located at the distal portion.
- the EOBP additionally comprises (c) at least one actuating means located at the proximal portion.
- the actuating means is in communication with the inflatable contour-balloon and the inflatable dissection balloon.
- the actuating means is adapted to provide the inflatable contour-balloon and the inflatable dissection balloon with independent activation and/or de-activation.
- PCT ' 653 does not disclose nor claim means adapted to anchor the patch to the biological tissue.
- WO2007/11510 A2 discloses a device for closing an aperture in a biological tissue according to the preamble of claim 1 where the flexible arms are not releasable retained to the patch. All those patent and patent application demonstrate attachment means for attaching the patch to the tissue or means for deploying the patch within the body. However none of the literature found relates to a device especially adapted to deploy and attached a patch to a biological tissue.
- a deployment system that will overcome the above mentioned drawbacks and will provide a deployment system that will enable the following (i) a reversible deployment of the patch (i.e., enable the folding and the unfolding of said patch); (ii) a controlled deployment of the patch (i.e., the surgeon applies force in order to deploy the patch and therefore the deployment is actively controlled); and, (iii) will provide mechanical stiffness for the backbone of the system.
- DAD integrated deployment and attachment device
- the present provides a deployment and attachment device (DAD) wherein the DAD is adapted to both deploy a patch within the body and to attach the patch to a biological tissue within the body.
- DAD deployment and attachment device
- the DAD is adapted to sequentially deploy said patch within said body and attach said patch to said biological tissue within said body, such that the deployment of said patch is (i) controlled so as a continuous deployment is obtained; and, (ii) bidirectional so as said deployment is fully reversible.
- the present disclosure also provides a method for deploying and attaching a patch to a biological tissue.
- the method comprises steps selected inter alia from:
- the present disclosure additionally provides a clip especially adapted to attach a patch to a biological tissue; the clip comprises (i) at least one hook adapted to at least partially penetrate through the patch to the biological tissue such that an attachment between the patch and the tissue is obtained; (ii) a portion adapted to reversibly connect activation means; the activation means are adapted to actuate the hooks such that the attachment is obtained.
- the clip is actuated and the attachment is obtained by a linear motion of the activation means.
- the present invention provides a deployment device (DD) adapted to deploy a patch within a body cavity; wherein the DD has a distal portion, adapted to be inserted into a body and a proximal portion, located adjacent to a user.
- the distal portion and the proximal portion are interconnected along a main longitudinal axis via a tube; the tube having a proximal end (TP) connected to the proximal portion, and a distal end (TD); the tube accommodates at least a portion of a central shaft; the central shaft has a proximal end (CSP) accommodated within the tube and a distal end (CSD) protruding from the TD end; the central shaft is adapted to reciprocally move parallel to the main longitudinal axis within the tube.
- CSP proximal end
- CSS distal end
- the distal portion comprises: (i) at least two flexible arm (FA) having a proximal end (FAP) connected via a joint to the TD, and a distal end (FAD) connected via a joint to the CSD; the FA have an initial stage (IS) at which the FA are straight and parallel to the longitudinal axis of the central shaft; and, a final stage (FS) at which the FA are laterally curved with respect to the longitudinal axis of the central shaft such that the patch is deployed; the FA are adapted to reversibly transform from the IS to the FS by the reciprocate movement of the central shaft towards and away from the proximal portion.
- the FA comprises (a) at least one dedicated loop and stretching means adapted to reversibly connect the patch to the FA.
- the proximal portion comprising at least one handle located outside the body; the handles adapted to (i) reversibly transform the FA from the IS to the FS; and, (ii) release the patch from the FA.
- the method comprises steps selected inter alia from:
- some of the major advantages of the present invention is to provide a deployment system or a deployment and attachment system that enables (a) an actively deployment - the deployment is actively controlled by the surgeon (as opposed to passive deployment); (b) the deployment is continuous (analogous and not binary such that several deployment levels can be obtained); and, (c) the deployment is bidirectional such that it can be fully reversible.
- the term 'close form' or 'initial stage' refers hereinafter to the state of the flexible side arms FA in their initial stage as can be seen from figure 2A .
- 'open form' or 'final stage' refers hereinafter to the state of the flexible side arms in their final stage as can be seen from figure 2C or 2D .
- 'bidirectional' or 'fully reversible deployment' refers hereinafter to the deployment of the patch, which according to the present disclosure, is fully reversible.
- the patch deployment is bidirectional, i.e., the patch can be fully folded (i.e., deployed within the body) and then, if the surgeon desires, the patch can be fully unfolded simply by the reconfiguration of the flexible arms from the initial stage to the final stage and vice versa.
- controlled deployment' refers hereinafter to a patch deployment which is continuous; i.e., the deployment is not binary but analogous - there are several deployment levels. This is in contrast so conventional deployment system is now days (see for example patent 5,370,650 , figure 17 ), in which the deployment of the patch relies upon the elasticity of a loop member surrounding the patch such that the patch can be either fully folded or fully unfolded. No intermediate are enabled. In the present disclosure there can be several deployment stages.
- aneurysm' refers hereinafter to an aneurysm (or aneurism) is a localized, blood-filled dilation (balloon-like bulge) of a blood vessel caused by disease or weakening of the vessel wall.
- Photolithography' or ' photochemical lithography' refers hereinafter to a process used in microfabrication to selectively remove parts of a thin film (or the bulk of a substrate). It uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical (photoresist, or simply "resist") on the substrate. A series of chemical treatments then engraves the exposure pattern into the material underneath the photoresist.
- photoresist or simply “resist”
- Biocompatible materials refers hereinafter to materials that have the ability to perform with an appropriate host response in a specific application. Biocompatible materials have the quality of not having toxic or injurious effects on biological systems.
- self-dissolving materials or “biodegradable materials” refers hereinafter to materials that are degraded by the body's enzymatic pathways through a reaction against "foreign" material. Some urologists may prefer self-dissolving materials in catheter simply because then they don't have to go necessarily through the procedure of removing them afterwards.
- self-dissolving polymers are Polydioxanone (PDO), Polycaprolactone (PCL), Polylactic acid (PLA), Polyglycolic acid (PGA), Adipic acid, PEG and glutamic acid
- shape memory materials refers hereinafter to materials which can "remember” there original geometry. After a sample of shape memory materials has been deformed from its original geometry, it regains its original geometry by itself during heating (one-way effect) or, at higher ambient temperatures, simply during unloading (pseudo-elasticity or superelasticity).
- polymers such as polyurethanes, poly(styrene-block-butadiene), Polydioxanone and polynorbornene, metallic alloys, such as copper-zinc-aluminium-nickel, copper-aluminium-nickel, and nickel-titanium (NiTi) alloys.
- Hernia refers hereinafter for umbilical hernia, hiatal hernia, ventral hernia, postoperative hernia, epigastric hernia, aptian hernia, inguinal hernia and femoral hernia, generally any abdominal wall related hernia.
- orientation of the patch refers hereinafter to the ability to laterally rotate the patch within the abdominal cavity. Since the shape of the patch is not symmetrical (i.e., rectangular or i.e., ellipse) -it has different directions. Therefore it is highly important to orient the patch (i.e., laterally rotate it) so as the right direction/orientation will face the tissue/hernia.
- minimally invasive surgery refers hereinafter to procedures that avoid open invasive surgery in favor of closed or local surgery with fewer traumas. Furthermore, the term refers to a procedure that is carried out by entering the body through the skin or through a body cavity or anatomical opening, but with the smallest damage possible.
- FIG la is a general view of the deployment and attachment device and figure 1b is a closer view of a portion of said deployment and attachment device.
- a device 100 which is adapted for deployment and attachment of prosthetic mesh during a minimal invasive (Laparoscopic) hernia repair surgery is provided.
- the deployment and attachment device (DAD) 100 comprises 2 main portions: distal portion 101, and a proximal portion 102.
- the distal portion is adapted to be inserted into a body during the surgery via a trocar.
- the distal portion is also adapted to deploy and attach a hernia patch to the patient's tissue surface.
- the proximal portion 102 comprises a handle 113 which provides the surgeon with the ability to control the deployment and attachment of the patch.
- the two portions are connected via a tube 103.
- the distal portion comprises of at least 2 flexible side arms (FA) 104 adapted to be bended laterally.
- the FA are connected at their distal end to the distal end of a central flexible shaft 105, and at their proximal end to the distal end of the tube 103, the connection is made using a flexible joint.
- the central flexible shaft 105 is adapted to reciprocally move within the tube 103 thereby spread and deploy the patch 106.
- a prosthetic hernia repair patch 106 is folded in between the flexible arms (FA) 104 and connected to them via stretching means or especially a wire 107 which passes through the patch and a plurality of dedicated loops 110 located on the FAs 104. The two ends of the wire are connected to the proximal portion 102.
- a plurality of dedicated hernia clips 108 are connected to the FA 104 at special connection points 111. Sais clips 108 are adapted to attach the patch 106 to the tissue. All the clips 108 are connected together by at least one wire (activation wire) 112 which will serve as their activation means. One end of the activation wire 112 is connected to the proximal portion 102.
- the patch 106 is initially coupled to the FAs by a stretching wire 107 and is folded in between the FAs 104 such that it can be inserted into the body within a trocar 114. Once the patch is inserted it is deployed by the central shaft 105 and the FAs 104. Next, the physician brings the patch into adjacent contact with the tissue. Then, the patch is attached to the tissue by clips 108 which are activated by the activation wire 112. Once the patch is attached to the tissue the activation wire 112 and the stretching wire 107 are cut via a dedicated cutting mechanism positioned in the distal end of tube 103. Next, the stretching wire is pulled towards the proximal portion and extracted. By doing so, the patch is no longer coupled to the FAs 104. Next, the FAs brought back into their initial stage, which enables their extraction from the body through the trocar 114.
- FIGS. 2A-2D illustrate the patch deployment process.
- the initial stage is described in figure 2A at which the two FAs are parallel and straight ('close form').
- the patch 106 is folded in between the two FAs ( FIG 2A ).
- the physician deploys the patch by pressing the handle 113 (see figure 1, 10A-10E ) at the proximal portion 102. Pressing handle 113 results in a movement of the central shaft 105 toward the proximal portion 102. As a result, the distance between the distal end of the central shaft 105 and the distal end of the tube 103 become shorter.
- the two FAs are in their final stage ('open form'). It should be pointed out that, whilst the FAs 104 are bended, a continues tension at the stretching wire 107 is maintained. The continues tension results in the deployment of the patch 106 together with the bending of the FAs 104. Once the FAs 104 reach their final stage, the patch 106 is completely unfolded and deployed ( FIG 2C ).
- the physician brings the patch to be in contact with the tissue and attaches the patch in a way which will be discus further on.
- the physician detaches it from the FAs 104 by releasing one end of the stretching wire 107 and pulling it toward the proximal portion 102 ( FIG 2D ).
- the FAs 104 are flexible in the lateral direction and very stiff on the perpendicular direction such that on applied pressure (by the central shaft) they buckle only laterally. Furthermore, due to the fact that the FAs are very stiff on the perpendicular direction, the applied pressure by the central shaft will be equally distributed along the FAs. If the pressure was not equally distributed and was concentrated only at the edges (close to the central shaft), the central portion of the FAs would not be able to apply sufficient pressure on the tissue to enable an attachment.
- FIGS 2E-2F illustrate a side view of the distal portion of device 100 once the patch is deployed.
- the device 100 will be able to adjust itself under pressure applied by the physician so as to bring the patch 106 into full contact with the tissue 501. This is due to the fact that the central shaft 105 is flexible.
- Another option for this capability of device 100 is to locate a joint 220 between the distal end of tube 103 and the proximal end of the FA's 104.
- FIG. 2G-2I illustrate the distal portion 101 of device 100 adapted to deploy and attach a patch onto a curved surface, i.e. 3D configuration.
- the 3D device additionally comprises at least one flexible arm 221 in a 3D configuration.
- the figure 2G represent the 3D device in which the FAs 221 and 104 are in a close configuration (initial stage) and figure 2H represent the FAs 221 and 104 in the open configuration (final stage).
- Figure 2I represents the 3D device with the patch 106. Deploying and attaching the patch will be done essentially the same as for the 2D device.
- FIG 3 describes a number of options for the folding of patch 106 prior to inserting the distal end 101 to the body.
- a front cross section is seen showing the patch 106, the FA 104, the clip 108 and the trocar 114.
- FIG 3A describes the most simple form of folding the patch 106.
- the patch 106 is folded between the two FA 104 in a zigzag form.
- the main advantage of this form is the fact that this fold is reversible. I.e. it is most likely that the patch will return to this form of folding from an unfolded state when FAs return to their close form. This enables a fast and easy extraction from the body in case the patch was not attached to the tissue.
- FIG 3B describes the most efficient fold. This folding enable to use largest patch since it exploits and utilizes almost the entire available space in the trocar 114. Another advantage of this folding it the fact the patch is located above the clips 108 when it is in the unfolded stage, reducing the risk of entanglement between the patch 106 and the clips 108.
- FIG 3C describes a variation of the previous patch folding. This folding is simpler to implement and it also have the advantage of reducing the entanglement risk as mentioned before.
- FIGS. 4A-4B describe a preferred clip 108.
- the clip comprises of a main portion 401 which is connected to at least 2 lateral curved hooks 402 adapted to penetrate the tissue.
- the main portion is reversibly connected to the FAs 104 by a central connection area 403.
- the clip 108 additionally comprises a connection point 404 to the activation wire 112.
- the connection point 404 is positioned laterally to the main portion 401.
- the activation wire 112 connects all the clips 108 together.
- the two hooks 402 are titled with regards to the main portion 401. This incline is of much importance. This incline is responsible for the fact that the hooks' edges 410 are constantly presses against the tissue prior to the clip's activation; such that once the clips are activated, the edges 410, will penetrate the tissue and not only slide along the patch 106 surface.
- the clip 108 can be made of any biocompatible metal (such as stainless steel, titanium), shape memory materials, super elastic metals (such as Nitinol i.e. NiTi), non-degradable polymer (such as polyurethane, PVC, PTFE (i.e. Teflon), PC (polycarbonate), degradable polymers (such as PLA, PGA, PLLA, PCL, PDS).
- biocompatible metal such as stainless steel, titanium
- shape memory materials such as Nitinol i.e. NiTi
- super elastic metals such as Nitinol i.e. NiTi
- non-degradable polymer such as polyurethane, PVC, PTFE (i.e. Teflon), PC (polycarbonate), degradable polymers (such as PLA, PGA, PLLA, PCL, PDS).
- the clips 108 can be produced by photochemical lithography methods, laser cutting method.
- the FA can be made of any biocompatible metal (such as stainless steel, titanium), shape memory materials, super elastic metals (such as Nitinol i.e. NiTi), non-degradable polymer (such as polyurethane, PVC, PTFE (i.e. Teflon), PC (polycarbonate).
- biocompatible metal such as stainless steel, titanium
- shape memory materials such as stainless steel, titanium
- super elastic metals such as Nitinol i.e. NiTi
- non-degradable polymer such as polyurethane, PVC, PTFE (i.e. Teflon), PC (polycarbonate).
- the activation wire 112 and the stretching wire 107 can be made of any biocompatible metal (such as stainless steel, titanium), shape memory materials, super elastic metals (such as Nitinol i.e. NiTi), non-degradable polymer (such as polyurethane, PVC, PTFE (i.e. Teflon), PC (polycarbonate), degradable polymers (such as PLA, PGA, PLLA, PCL, PDS).
- biocompatible metal such as stainless steel, titanium
- shape memory materials such as Nitinol i.e. NiTi
- super elastic metals such as Nitinol i.e. NiTi
- non-degradable polymer such as polyurethane, PVC, PTFE (i.e. Teflon), PC (polycarbonate), degradable polymers (such as PLA, PGA, PLLA, PCL, PDS).
- the activation wire 112 is then pulled, generating a rotational moment which rotates the clip with regards to the FAs 104.
- the rotational movement inserts the hooks 402 into the tissue 501 through the patch 106, thereby providing a strong attachment between the patch 106 and the tissue 501 ( Figure 5C ).
- the connection between the clip 108 and the FAs 104 is made in such a way that the clips 108 are secured to the FAs 104 prior to the attachment; and, the clips 108 detach from the FAs 104 once they are attached to the tissue 501 ( figure 5D ).
- FIGS. 6A-6C illustrate means adapted to reversibly connect clips 108 to the FAs 104.
- Clips 108 are connected to the FA's by hooks. As can be seen from the figure 6A the hooks 601 protrude from the FA's into portion 403 of the clip 108. The clips are secured to the FA's due to L shape of hook 601.
- Two niches 602 are located on two opposite side along portion 403 perimeter. Prior to activating the clips (i.e. pulling activation wire 112), the niches 602 are not aligned together with the hooks 601. Once the clips are activated, or in other words they rotate, the hooks 601 are aligned with the niches 602 (see figure 6B ) such that the attachment between the clips and the FA is cancelled and the clips 108 are released from the FA 104 (see figure 6C ).
- figures 6D-6F illustrate means adapted to reversibly connect clips 108 to the FAs 104.
- the clips 108 are connected to the FA's by a dedicated screw. As can be seen from figure 6D , screw 603 protrude from the FA's into portion 403 of the clip 108. The clips are screwed into screw 603 thereby secured to the FA's.
- the clips can be detached from the FAs by screwing out the clips from screw 603 (see figure 6E ). Once the clips 108 are screwed out from the screw 603 they are released from the FAs (see figure 6F ).
- the clips 108 can be attached to the tissue and detach from the FA simultaneously or it can be done in two different steps.
- the clip 108 includes at least one additional hook 701 located on the lateral hooks 402.
- This hook 701 is adapted to prevent the reverse rotation (hence the release) of the clip 108 from the tissue 501. It is acknowledged that the attachment between the patch 106 and the tissue 501 can be annulled if the clip 106 rotates in the reverse rotational motion when subjected to external loads. Therefore, the additional hook 701 prevents this reverse rotational motion with minimal interference to the forward rotation.
- Clip 108 may additionally comprise at least one hook 702 which is adapted to prevent any unwanted movement between the patch 106 and the clip 108.
- FIG. 7C illustrates an arrow-like clip 108.
- the Clip 108 has a plate 711 and an arrow-like shaped hook 712. Hook 712 is adapted to penetrate the patch 106 and the tissue 501. Plate 711 also comprises groove cut 713 and a dedicated aperture 714. As described before, clip 108 has a connection point 403 to the activation wire 112.
- Figures 7D-7G illustrate the steps needed for attaching the clip to the tissue 501.
- FIG 7D illustrates the clip 108 coupled to the FA 104 and being brought into adjacent contact with the tissue 501.
- Figure 7E illustrates the clip 108 being presets against the tissue 501.
- the next step is attaching the patch to the tissue via clips 108 ( figure 7F ).
- the attachment is obtained by pulling the activation wire 112. Once the clip 108 is attached to the tissue 501, it detaches from the FA 104 ( figure 7G ).
- Figures 7H-7J illustrate a closer view of the arrow-like clip 108 and how it detaches from the FAs 104.
- FIGH illustrate the clip 108 attached to the FAs 104.
- the attachment between the clip 108 and the FA is provided by a dedicated hook 715 which is inserted into the groove cut 713 in the plate 711.
- the clips 108 When the activation wire 112 is pulled (by the handle 1002) the clips 108 are pulled towards the proximal portion 102. By pulling the clips 108, the arrow like hook 712 penetrates the tissue 501. The result of this pulling is the movement of hook 715 within the groove cut 713 until said hook 715 reaches the dedicated aperture 714. Aperture 714 is adapted to fit the dimensions, shape and size of the hook 715. Once hook 715 reaches the aperture 714 ( figure 7I ) the clip 108 can be detach from the FA 104 ( figure 7J ).
- FIGS 7K-7N illustrate a clip 108 for use in an embodiment of the present invention.
- This clip 108 coprises a plate 711 and a sharp curved edge 720.
- Plate 711 is attached to the FAs 104 by a screw or by a pin 721 (see figure 7N ).
- Pin 721 is adapted to be reversibly connected to a dedicated conection area 730 within clip 108.
- clip 108 has a connection point 403 which is adapted to be connected to the activation wire 112.
- Figures 7L-7 illustrate the steps needed for attaching the clip to the tissue 501.
- FIG 7L illustrate the clip 108 attached to the FAs 104 and being brought into adjacent contact with the tissue 501.
- the activation wire 112 is pulled (by the handle 1002)
- clips 108 are rotated and thus, their sharp edge 720 penetrates the tissue 501 ( figure 7M ).
- the clip 108 can be detached from the FA 104 ( figure 7N ).
- the detachment can be obtained by extracting the pin 721 from the clip 108.
- Another option for the detachment is by the rotational motion of the clip 108 itself. In this case the clip 108 is attached to the FA 104 by a screw. The rotational motion needed for the attachment of the clip to the tissue will also be used for detaching (by unscrewing) the clip from the FA 104.
- FIGS 8A-8F illustrate several alternative connection between the activation wire 112 and the clip 108.
- One option to connect the activation wire 112 and the clip 108 is as described in figure 8A .
- the activation wire can enter the connection point 404 (which can be an aperture) and glued or tied to it.
- Another option is demonstrated in figure 8B in which the activation wire is glued parallel to the connection point which has a rectangular profile providing sufficient attachment surface.
- Figure 8C represents another alternative in which a number of apertures are provided.
- the activation wire 112 can enter the apertures in a zig-zag form or back and forth look thereby providing a glue-less attachment.
- Figures 8D - 8F represent another possible connection between the activation wire 112 and the connection point 404.
- a fork like portion 404 encapsulates the wire 112.
- the stretching wire 107 and the activation wire 112 are cut.
- FIGS 9A-9D represent one possible embodiment implementing a mechanism 901 for cutting the activation wire 112 and the stretching wire 107.
- Those figures illustrate a cross section view of the cutting mechanism 901.
- the cutting mechanism 901 is located at the distal end of tube 103. This location was chosen for two reasons: (i) the fact that the edge of the activation wire 112 should be as shorter as possible once the wire has been cut (this leftover from the wire remain in the body, therefore it is preferable that the leftover would be as short as possible); and, (ii) the fact that the stretching wire 107 is pulled out of the body. In order to extract the wire 107, it has to pass towards the patch and through the perimeter of the patch. To enable an easy extraction of wire 107 it is preferred to cut the wire as close as possible to the patch - i.e. in the distal end of tube 103.
- Figures 9A-9B illustrate a 3D cross section of the cutting mechanism 901 and figures 9C-9D illustrate a 2D cross section of the cutting mechanism 901.
- the cutting mechanism 901 comprises a dedicated cutting pin 902 is placed inside tube 103 near the distal end.
- the cutting pin 902 is connected to the distal end of a cutting activation wire 903.
- the proximal end of the cutting activation wire 903 is connected to the proximal portion 102 of device 100. Pulling the cutting activation wire 903 will result in a reciprocate movement of the cutting pin 902 (which is parallel to tube 103 longitudinal axis).
- Both the cutting pin 902 and the tube 103 have lateral holes (904 and 905 respectfully) through which the activation wire 112 and ⁇ or the stretching wire 107 are passing through. Furthermore the activation wire 112 and the stretching wire 107 can move freely inside the holes (904 and 905).
- At least a portion of the activation wire remains within the body, thereby providing additional fixation to the clips. This additional fixation is needed in case one of the clips detaches from the patch and may wander inside the body, causing complications.
- the proximal end 102 can comprises numerous handles.
- a dedicated handle 113 is adapted to reversibly transform the FAs 104 from their close stage (initial stage) to their open stage (final stage).
- a second handle 1001 is adapted to activate clips 108 such that the patch 106 is at least partially attached to the tissue 501 by pulling the activation wire 112.
- Handle 1002 is adapted to release the patch 106 from the FAs by cutting the stretching wire 107.
- Handle 1002 is also adapted to cut the activation wire 112.
- Button 1003 is adapted to release handle 113 such that the FAs 104 return to their close stage.
- Figure 10A illustrates the initial stage at which none of the handles are pressed.
- handle 113 is presses thereby transforming the FAs 104 from the close stage to the open stage thereby deploying the patch 106.
- the physician can move and rotate the deployed patch 106. This is preformed in order to bring said patch adjacent to the tissue. The physician can apply pressure needed for the attachment process.
- handle 1001 When the patch is located adjacent to the tissue, handle 1001 is presses ( figure 10C ) thereby activating the clips (by pulling the activation wire 112) and the patch is now attached to the tissue.
- handle 115 After the patch is securably attached to the tissue, handle 115 is presses, thereby the cutting the stretching wire 107 and the activation wire 112 ( figure 10D ). Now the patch is released from the FAs 104 and the FAs can return to the close stage and be extracted from the body (by pressing on button 1002, figure 10E ).
- the device 100 which is adapted to deploy and attach a patch is useful in minimal invasive heart surgeries for attaching a patch to the heart, for preventing heart failure due to aneurysm.
- the device 100 which is adapted to deploy and attach a patch is useful in endoscopic colon surgeries.
- the clips 108 are initially coupled to the patch and not to the FAs.
- the role of the FAs is to deploy the patch and to press it against the tissue.
- FIGs 11 and 12A-12G describe different coupling means between the patch 106 and the FAs 104.
- One of the advantages of the coupling means is the fact that no wires are used. Thus, enabling fast and simple mounting of the patch 106 on top of the FAs 104 during surgery.
- the coupling is based on dedicated patch-FA clips 1201 which are connected to the FAs 104.
- FIG 12A presents a closer view of the clip 1201.
- the clip 1201 has a main portion 1202 and at least one flexible branches 1203 extruding (or protruding) out from the main portion 1202. When the branches 1203 are not subjected to external load, they buckle laterally, therefore, provide attachment between the FA 104 and the patch 106.
- FIG. 12A-12C describe the method of de-activating the clip 1201 (i.e., disconnecting the clip 1201 from the patch 106).
- the user could disconnect the patch by pulling the FA 104 away from the tissue.
- the branches 1203 are deformed (from a position being parallel to the tissue to a potion being perpendicular to the same).
- the branches 1203 pass through their entrance hole at the patch 106 ( Fig 12A ) and are disconnected from the patch.
- Figs 12D-12G describe the process of mounting the patch 106 on the deployment system.
- the clips 1201 are delivered to the user together with a sharp cap (i.e., envelope covering) 1204 as can be seen from Fig 12D .
- a sharp cap i.e., envelope covering
- the cap will accommodate the branches 1203 in a vertically alignment (in relation to the FA 104).
- the user a surgeon or a nurse
- the cap 1204 will insert the cap 1204 whilst accommodating the clip 1201 through the patch during the surgery (see Fig 12E ).
- the caps 1204 are removed from each individual clip 1201 (see Fig 12F ).
- the branches 1203 buckle laterally (i.e., into a parallel position in relation to the tissue).
- Fig 12G providing attachment between FA 104 and the patch 106 (see Fig 12G ).
- Figs 12H-12J illustrate an alternative approach of mounting the patch 106 on the deployment system.
- the clip 1201 comprises two separate portions: (a) a main portion 1205 which is connected the FA 104; and, (b) a second portion 1206.
- Portion 1206 have at least one branch 1208 connected to a pressing area 1207.
- the branches 1208 are partially inserted into a channel within the main portion 1205, such that they are vertically aligned, and their distal end protrudes out from the top end of the main portion 1205 (see Fig 12I ).
- the main role of portion 1205 is to retain the branches 1208 from buckling laterally.
- Said attachment between patch 106 and FAs 104 is obtained by inserting the patch 106 through the branches 1208 (see Fig 12I ) and then portion 1206 is pressed upward, toward the patch.
- the branches which is no longer confined by the main portion 1205, buckle laterally, thus provide the said attachment between patch 106 and FA 104 (see Fig 12J ).
- Figs 12K-12Q describe another alternative approach of mounting the patch 106 on the deployment system.
- the branches 1208 of each clip are bended radially, toward or away the center of the patch (see Fig 12K ).
- the FAs 104 are closed. As a result the branches 1208 move radially, therefore, disconnecting form the patch 106, as can be seen at Figs 12M-12Q .
- the mounting process of patch 106 on top FAs 104 is similar to the previously described approach as can be seen in Figs 12N- 12P
- Figs 13A-13F describes an alternative embodiment for attaching patch 106 to the tissue 501 by several clips 108.
- the clip 108 is connected to a wire 1301 which is incorporated within the patch 106.
- the connection between clip 108 and wire 1301 is at a wire connection area 1306 and will enable free rotation of the clip 108 around the wire 1301.
- the clip 108 will have a central plate 1305 and at least two sharp arms 1304 connected to each side of the plate. In a preferred embodiment, the arms 1304 are curved.
- An activation wire 1302 will be coupled to the plate 1305. Once the wire 1302 is pulled, during surgery, the entire clip 108 is rotated around wire 1301.
- the activation wires 1302 from each clip 108 will be connected to a central activation area 1303 (see figure 13B ) which will pull all the activation wires 1302 toward the center of the patch 106 once the attachment between patch 106 and tissue 501 is needed.
- the central activation area 1303 will be activated by pulling the clip activation wire 112, or by rotating the central shaft 105.
- each activation wire 1302 is pulled toward the center, therefore inducing rotational movement of each of the clips 108 around wire 1301.
- the arms 1304 (of each clip 108), are inserted through the patch 106 and the tissue 501.
- the wire 1302 is disconnected from the central activation area 1303 in order to enable proper detachment between the connected patch 106 and the rest of the deployment system.
- connection between clip 108 and the activation wire 1302 is considerably weaker than the rest of the wire 1302 but strong enough to rotate the clip 108.
- the activation wire will be pulled using sufficient force for disconnecting it for the clip 108 ( Fig 13C, 13F ).
- pulling the activation wire 1302 in F amount of force enables the insertion of the clip 108 into the tissue; and, pull the activation wire 1302 in F1 amount of force (F1 is sufficiently greater than F) enables the disconnection of the activation wire 1302 from clip 108.
- Figs 14A-14D describe an alternative detachment mechanism between the patch 106 and the FAs 104.
- the central shaft 105 is extended from the proximal side of handle 102 ( Fig 14A ), therefore the unfolding process can be achieved be pulling the central shaft proximally.
- the distal end of shaft 105 is inserted to a sleeve 1401 located at the distal end on the FAs 104.
- the sleeve 1401 have two lateral holes 1402 initially concentric to a hole 1403 at the distal end of the central shaft. When hole 1402 and hole 1403 are aligned, the stretching wire 107 can pass through them (see Fig 14C ).
- the stretching wire is kept constantly in tension, therefore keeps a sufficient tension applied on the patch 106 during the unfolding process, and prevents wrinkles.
- figs. 15A-15D illustrate an embodiment in which the patch can be laterally rotate with respect to the tissue such that the right orientation of the patch is facing the tissue or the hernia.
- Figs 15A-15B describes an embodiment in which at least a part of tube 103 is a controllable and flexible joint 1502.
- This joint is especially adapted to allow fine adjustment of the lateral angle between distal portion 101 and the proximal portion 102 during the procedure.
- controllable and flexible joint is provided in order to adjust the right orientation of the patch with regards to the tissue or the hernia.
- controllable and flexible joint 1502 is made of flexible material (e.g. polymer) and can be curved according to predetermined angle in its distal end.
- the controllable and flexible joint 1502 is housed by a rigid alignment tube 1501. Said rigid alignment tube 1501 can be reciprocally moved along it longitudinal axis.
- controllable and flexible joint 1502 has an intrinsic springlike properties; i.e., the controllable and flexible joint 1502, when is unloaded, returns to its original curved/bent shape.
- controllable and flexible joint 1502 is completely encapsulated within the rigid alignment tube 1501 such that controllable and flexible joint 1502 it forced to be straight and linear, once the distal portion 101 is inserted into the patient body and lateral angle adjustment is required, the rigid alignment tube 1501 is pulled toward the proximal portion 102; as a result, the controllable and flexible joint 1502, which is no longer supported by the rigid alignment tube 1501 , is bent/curved into its original form, thus providing the desire angle between the proximal portion 102 and the distal portion 101 ( Fig 15B ).
- the control over the rigid alignment tube's 1501 location is provided by the amount of pulling or pushing of said rigid alignment tube 1501 towards and away from the proximal portion 102.
- the movement (and thus the angle between the distal portion 101 and proximal portion 102) is adjusted by the angle control means 1502 which is located at the proximal portion 102.
- FIGS 15C-15D illustrate a top view of the system.
- the rigid alignment tube 1501 is fully housing/encapsulating the controllable and flexible joint 1502 and thus the angle between the distal portion 101 and proximal portion 102 is 0 degrees.
- Figure 15D also illustrates a top view of the system.
- the rigid alignment tube 1501 is not fully housing/encapsulating the controllable and flexible joint 1502, thus the controllable and flexible joint 1502 is curved/bent according to the location of the rigid alignment tube's 1501 with respect to the controllable and flexible joint 1502. Therefore, an angle A is obtained between the distal portion 101 and proximal portion 102.
- Figs 16A-16C describe a patch insertion sleeve for use with an embodiment of the invention. Such a sleeve/cover is needed in order to facilitate, to ease and to catalyze the insertion of the distal end 101 and the patch 106 in to the patient's body.
- the insertion sleeve 1601 is an elongated rigid tube with a cone shaped expansion 1602 at its proximal end and a stopper 1603 near its distal end.
- the overall complex is then inserted to the patient's body through a trocar 114.
- the outside diameter of the insertion sleeve 1601 at the portion between its distal end and the stopper 1603 is smaller or equal to the inside diameter of the trocar 114, such that this portion can be inserted into the trocar 114.
- the stopper 1603 reaches the trocar 114 proximal end, the distal portion 101 and the patch 106 slide out of the insertion sleeve and into the trocar 114 and the patent body, while the insertion sleeve is slide backward along the rigid alignment tube 1501 or the tube 103.
- the distal portion 101 and the patch 106 is completely inserted into the patient's body.
- FIGS. 18A-18D illustrate an additional deployment mechanism.
- This system provides larger patches deployment using the same initial length of the distal portion 101; in addition, it will allow a simpler reversible attachment between patch 106 and the distal FA 104.
- each FA 104 additionally comprises a long rod 1801 which is aligned parallel to the central shaft.
- the rods 1801 are connected to the FA 104 via at least one joint or flexible portion.
- the patch 106 is reversibly connected to the rods 1801 rather than the FAs 104.
- the patch 106 is deployed by a reciprocal movement of the central shaft 105 toward the proximal portion. As a result, the rods 1801 are laterally moved away from each other, providing patch deployment.
- Figure 18D illustrate the above system incorporated with the patch 106.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Claims (11)
- System zum Schließen einer Öffnung in einem biologischen Gewebe, wobei das System folgendes umfasst:einen Griff (113);einen länglichen Schaft (103), der mit dem Griff verbunden ist;einen mittig liegenden flexiblen Schaft (105), der angepasst ist, um sich wechselseitig innerhalb des länglichen Schaftes (103) zu bewegen;eine Auslösungsvorrichtung (100), die mit dem Schaft verbunden ist, wobei die Vorrichtung dafür konfiguriert ist, ein Pflaster (106) wiederversiegelbar aufzunehmen, und die Vorrichtung dafür konfiguriert ist, das Pflaster zu auszulösen und an dem biologischen Gewebe zu befestigen; und wobei die Vorrichtung mindestens zwei flexible Schenkel (104) umfasst, die dafür konfiguriert sind, sich von einer zurückgehaltenen Position zu mindestens einer ausgelösten Position zu bewege; und mehrere Befestigungsclips (108), die wiederversiegelbar mit den flexiblen Schenkeln verbunden sind, wobei die Befestigungsclips dafür angepasst sind, das Pflaster an dem biologischen Gewebe zu befestigen,dadurch gekennzeichnet, dass die flexiblen Schenkel an ihrem distalen Ende mit einem distalen Ende des zentralen flexiblen Schaftes und an ihrem proximalen Ende an dem länglichen Schaft verbunden sind.
- System nach Anspruch 1, wobei die Vorrichtung einen distalen Abschnitt (101) und einen proximalen Abschnitt (102) umfasst, die durch den länglichen Schaft verbunden sind.
- System nach Anspruch 1 oder 2, wobei die Befestigungsclips gut durch mindestens einen Aktivierungsdraht (112) miteinander verbunden sind.
- System nach Anspruch 3, wobei ein Ende des Aktivierungsdrahtes mit dem proximalen Abschnitt verbunden ist.
- System nach Anspruch 1, wobei die Befestigungsclips an besonderen Verbindungspunkten (111) mit den flexiblen Schenkeln verbunden sind.
- System nach Anspruch 1, wobei die Befestigungsclips ferner Haken und/oder Widerhaken umfassen können.
- System nach Anspruch 1, wobei die Auslösevorrichtung derart konfiguriert ist, dass sie die Auslösung des Pflasterns und das Zurückziehen des Pflasters erlaubt während sich das Pflaster in dem Körper eines Patienten befindet.
- System nach Anspruch 1, wobei die Auslösevorrichtung derart konfiguriert ist, dass sie mehrere Auslösepositionen erlaubt.
- System nach Anspruch 1, wobei die Auslösevorrichtung ein Gelenkelement (1502) umfasst, das die Anpassung der Position und die Ausrichtung des Pflasters bezüglich der Öffnung in dem Gewebe ermöglicht.
- System nach Anspruch 1, ferner umfassend das Pflaster (106).
- System nach Anspruch 10, wobei das Pflaster zwischen den flexiblen Schenkeln gefaltet ist und über einen Dehnungsmechanismus (107) mit ihnen verbunden ist, der durch mehrere Schleifen (110), die auf den flexiblen Schenkeln angeordnet sind, passiert.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2938608P | 2008-02-18 | 2008-02-18 | |
PCT/IL2009/000188 WO2009104182A2 (en) | 2008-02-18 | 2009-02-18 | A device and method for deploying and attaching a patch to a biological tissue |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2247245A2 EP2247245A2 (de) | 2010-11-10 |
EP2247245A4 EP2247245A4 (de) | 2013-08-28 |
EP2247245B1 true EP2247245B1 (de) | 2017-06-28 |
Family
ID=40986008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09713121.3A Active EP2247245B1 (de) | 2008-02-18 | 2009-02-18 | Vorrichtung zur ablage und befestigung eines pflasters auf biologischem gewebe |
Country Status (6)
Country | Link |
---|---|
US (4) | US8753359B2 (de) |
EP (1) | EP2247245B1 (de) |
AU (1) | AU2009215269B2 (de) |
CA (1) | CA2715740C (de) |
IL (1) | IL207666A (de) |
WO (1) | WO2009104182A2 (de) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8100822B2 (en) | 2004-03-16 | 2012-01-24 | Macroplata Systems, Llc | Anoscope for treating hemorrhoids without the trauma of cutting or the use of an endoscope |
US8617188B2 (en) | 2005-02-03 | 2013-12-31 | Moshe Dudai | Surgical mesh, mesh introducing and placing devices and methods |
EP2247245B1 (de) * | 2008-02-18 | 2017-06-28 | Covidien LP | Vorrichtung zur ablage und befestigung eines pflasters auf biologischem gewebe |
US8753361B2 (en) | 2008-02-18 | 2014-06-17 | Covidien Lp | Biocompatible sleeve for mesh insertion instrument |
US9301826B2 (en) * | 2008-02-18 | 2016-04-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US9393093B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9393002B2 (en) | 2008-02-18 | 2016-07-19 | Covidien Lp | Clip for implant deployment device |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
EP2792307B1 (de) | 2008-10-20 | 2017-10-04 | Covidien LP | Vorrichtung zur Anbringung eines Pflasters auf einem biologischen Gewebe |
WO2010096824A1 (en) * | 2009-02-23 | 2010-08-26 | Bartee Barry K | Reinforced ptfe medical barrier |
FR2948010B1 (fr) | 2009-07-17 | 2011-06-24 | Jean Claude Sgro | Dispositif chirurgical pour deployer et positionner une prothese herniaire |
EP2467066B1 (de) | 2009-08-17 | 2019-03-27 | Covidien LP | Mittel zur aufhebbaren verbindung eines implantats mit einer einsatzvorrichtung |
WO2011021083A1 (en) | 2009-08-17 | 2011-02-24 | PolyTouch Medical, Inc. | Articulating patch deployment device and method of use |
US20130018395A1 (en) * | 2009-10-07 | 2013-01-17 | Evolap, LLC | Surgical implant deployment device |
US20110082479A1 (en) * | 2009-10-07 | 2011-04-07 | Jack Friedlander | Apparatus, method and system for the deployment of surgical mesh |
US11344285B2 (en) | 2009-12-16 | 2022-05-31 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US10758116B2 (en) | 2009-12-16 | 2020-09-01 | Boston Scientific Scimed, Inc. | System for a minimally-invasive, operative gastrointestinal treatment |
US8932211B2 (en) | 2012-06-22 | 2015-01-13 | Macroplata, Inc. | Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US8506479B2 (en) | 2009-12-16 | 2013-08-13 | Macroplata, Inc. | Substantially rigid and stable endoluminal surgical suite for treating a gastrointestinal lesion |
US9565998B2 (en) | 2009-12-16 | 2017-02-14 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
USRE48850E1 (en) | 2009-12-16 | 2021-12-14 | Boston Scientific Scimed, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US9186131B2 (en) | 2009-12-16 | 2015-11-17 | Macroplata, Inc. | Multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
US10595711B2 (en) | 2009-12-16 | 2020-03-24 | Boston Scientific Scimed, Inc. | System for a minimally-invasive, operative gastrointestinal treatment |
US10966701B2 (en) | 2009-12-16 | 2021-04-06 | Boston Scientific Scimed, Inc. | Tissue retractor for minimally invasive surgery |
US10531869B2 (en) | 2009-12-16 | 2020-01-14 | Boston Scientific Scimed, Inc. | Tissue retractor for minimally invasive surgery |
US10028814B2 (en) | 2010-02-03 | 2018-07-24 | Covidien Lp | X-shaped device and method for deployment and placement of a patch |
EP2558023A2 (de) | 2010-04-14 | 2013-02-20 | Moshe Dudai | System und verfahren zur bereitstellung und positionierung eines entfaltbaren op-tuches |
US10278801B2 (en) | 2010-04-15 | 2019-05-07 | Cannuflow, Inc. | Method and devices for implantation of biologic constructs |
CA2825918C (en) * | 2011-02-15 | 2018-08-07 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
US20140249573A1 (en) * | 2011-09-20 | 2014-09-04 | A.A. Cash Technology Ltd. | Methods and devices for occluding blood flow to an organ |
US9522057B2 (en) * | 2013-03-14 | 2016-12-20 | Ethicon, Inc. | Delivery systems for the placement of surgical implants and methods of use |
JP6654623B2 (ja) | 2014-04-08 | 2020-02-26 | アキュイティバイオ コーポレーション | 切除縁を覆う外科用メッシュ又は外科用バットレスを配置しはり付けるための送達システム |
AU2015255758B2 (en) | 2014-05-09 | 2017-06-15 | Rotation Medical, Inc. | Medical implant delivery system for sheet-like implant |
US20170189159A1 (en) | 2014-06-24 | 2017-07-06 | Osteogenics Biomedical, Inc. | Perforated membrane for guided bone and tissue regeneration |
WO2016141183A1 (en) | 2015-03-03 | 2016-09-09 | The Trustees Of The University Of Pennsylvania | Systems and methods for mesh augmentation and prevention of incisional hernia |
ITUB20150783A1 (it) * | 2015-05-21 | 2016-11-21 | Antonio Longo | Dispositivo chirurgico |
DE102016201022A1 (de) * | 2016-01-25 | 2017-07-27 | Igor IGOV | Hernien-reparaturvorrichtung, -system und -verfahren |
AU2016344019B2 (en) | 2015-10-30 | 2021-07-15 | New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery | Suture sleeve patch and methods of delivery within an existing arthroscopic workflow |
US11877743B2 (en) | 2016-10-11 | 2024-01-23 | The Trustees Of The University Of Pennsylvania | Systems and methods for mesh delivery and prevention of port-site hernia |
WO2018126158A1 (en) | 2016-12-30 | 2018-07-05 | Boston Scientific Scimed, Inc. | System for a minimally-invasive treatment within a body lumen |
FR3062792A1 (fr) * | 2017-02-14 | 2018-08-17 | Alexandre Llory | Dispositif pour la pose d'une prothese souple et prothese correspondante |
CN110913773B (zh) | 2017-03-18 | 2023-03-28 | 波士顿科学国际有限公司 | 用于体腔内的微创治疗的系统 |
US11096610B2 (en) | 2017-03-28 | 2021-08-24 | Covidien Lp | Surgical implants including sensing fibers |
US11648001B2 (en) | 2017-08-31 | 2023-05-16 | The Trustees Of The University Of Pennsylvania | Mechanical mesh fixation device and curvilinear tack system |
SG11202104566RA (en) * | 2018-12-26 | 2021-07-29 | Univ Nagasaki | Sheet-shaped object attaching device |
WO2021118958A1 (en) | 2019-12-13 | 2021-06-17 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for minimally invasive surgery in a body lumen |
WO2021163317A1 (en) | 2020-02-11 | 2021-08-19 | Embody, Inc. | Surgical cannula with removable pressure seal |
EP4103106A4 (de) * | 2020-02-11 | 2024-03-13 | Embody Inc. | Vorrichtung für implantateinsatz |
CN115484875A (zh) | 2020-02-11 | 2022-12-16 | 恩博迪股份有限公司 | 外科锚固装置、部署装置及使用方法 |
US11896473B2 (en) | 2020-07-13 | 2024-02-13 | Covidien Lp | Surgical mesh deployment device |
WO2023235294A1 (en) * | 2022-06-01 | 2023-12-07 | Smith & Nephew, Inc. | Medical implant and implantation frame |
US20240138869A1 (en) * | 2022-10-28 | 2024-05-02 | Expand Medical Ltd. | Implant delivery device |
US20240138868A1 (en) | 2022-10-28 | 2024-05-02 | Expand Medical Ltd. | Implant delivery device |
Family Cites Families (407)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4452245A (en) * | 1980-06-06 | 1984-06-05 | Usher Francis C | Surgical mesh and method |
US4347847A (en) * | 1980-06-06 | 1982-09-07 | Usher Francis C | Method of hernia repair |
US4400833A (en) | 1981-06-10 | 1983-08-30 | Kurland Kenneth Z | Means and method of implanting bioprosthetics |
US4585458A (en) * | 1981-06-10 | 1986-04-29 | Kurland Kenneth Z | Means and method of implanting bioprosthetics |
US4485816A (en) * | 1981-06-25 | 1984-12-04 | Alchemia | Shape-memory surgical staple apparatus and method for use in surgical suturing |
US5125553A (en) * | 1987-03-02 | 1992-06-30 | Stryker Sales Corporation | Surgical suturing instrument and method |
US4633873A (en) * | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
US5863531A (en) * | 1986-04-18 | 1999-01-26 | Advanced Tissue Sciences, Inc. | In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework |
US4854316A (en) * | 1986-10-03 | 1989-08-08 | Davis Emsley A | Apparatus and method for repairing and preventing para-stomal hernias |
US5019096A (en) * | 1988-02-11 | 1991-05-28 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
US5116357A (en) * | 1990-10-11 | 1992-05-26 | Eberbach Mark A | Hernia plug and introducer apparatus |
US5122155A (en) * | 1990-10-11 | 1992-06-16 | Eberbach Mark A | Hernia repair apparatus and method of use |
US5141515A (en) * | 1990-10-11 | 1992-08-25 | Eberbach Mark A | Apparatus and methods for repairing hernias |
DK0565542T3 (da) | 1991-01-04 | 1996-09-09 | American Med Syst | Resektabel selvudvidende stent |
CA2060040A1 (en) * | 1991-02-08 | 1992-08-10 | Miguel A. Velez | Surgical staple and endoscopic stapler |
US5749895A (en) * | 1991-02-13 | 1998-05-12 | Fusion Medical Technologies, Inc. | Method for bonding or fusion of biological tissue and material |
US5203864A (en) * | 1991-04-05 | 1993-04-20 | Phillips Edward H | Surgical fastener system |
US5254133A (en) * | 1991-04-24 | 1993-10-19 | Seid Arnold S | Surgical implantation device and related method of use |
US5361752A (en) | 1991-05-29 | 1994-11-08 | Origin Medsystems, Inc. | Retraction apparatus and methods for endoscopic surgery |
US5779728A (en) * | 1991-05-29 | 1998-07-14 | Origin Medsystems, Inc. | Method and inflatable chamber apparatus for separating layers of tissue |
US5865728A (en) * | 1991-05-29 | 1999-02-02 | Origin Medsystems, Inc. | Method of using an endoscopic inflatable lifting apparatus to create an anatomic working space |
US5728119A (en) * | 1991-05-29 | 1998-03-17 | Origin Medsystems, Inc. | Method and inflatable chamber apparatus for separating layers of tissue |
CA2075080A1 (en) * | 1991-08-02 | 1993-02-03 | Ralph A. Dematteis | Method and apparatus for laparoscopic repair of hernias |
US5290217A (en) * | 1991-10-10 | 1994-03-01 | Earl K. Sipes | Method and apparatus for hernia repair |
US5497933A (en) * | 1991-10-18 | 1996-03-12 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US5289963A (en) | 1991-10-18 | 1994-03-01 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US5292328A (en) * | 1991-10-18 | 1994-03-08 | United States Surgical Corporation | Polypropylene multifilament warp knitted mesh and its use in surgery |
US5356064A (en) * | 1991-10-18 | 1994-10-18 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US7198046B1 (en) | 1991-11-14 | 2007-04-03 | Wake Forest University Health Sciences | Wound treatment employing reduced pressure |
JPH07501959A (ja) | 1991-11-19 | 1995-03-02 | オリジン・メドシステムズ・インク | 組織層を分離するための内視鏡的膨脹式開創装置および使用方法 |
EP0544485B1 (de) | 1991-11-25 | 1995-03-08 | Cook Incorporated | Vorrichtung zum Wiederherstellen einer Gewebeöffnung |
DK168419B1 (da) * | 1991-11-25 | 1994-03-28 | Cook Inc A Cook Group Company | Støtteindretning for bugvæg og apparat til indføring heraf |
US5258000A (en) * | 1991-11-25 | 1993-11-02 | Cook Incorporated | Tissue aperture repair device |
US5147374A (en) * | 1991-12-05 | 1992-09-15 | Alfredo Fernandez | Prosthetic mesh patch for hernia repair |
US5176692A (en) * | 1991-12-09 | 1993-01-05 | Wilk Peter J | Method and surgical instrument for repairing hernia |
US5249682A (en) * | 1992-02-10 | 1993-10-05 | Ethicon, Inc. | Package for mesh onlay and attached mesh plug |
US5219077A (en) * | 1992-02-10 | 1993-06-15 | Ethicon, Inc. | Package for mesh onlay and attached mesh plug technical field |
CA2090000A1 (en) | 1992-02-24 | 1993-08-25 | H. Jonathan Tovey | Articulating mesh deployment apparatus |
US5333624A (en) * | 1992-02-24 | 1994-08-02 | United States Surgical Corporation | Surgical attaching apparatus |
CA2089999A1 (en) | 1992-02-24 | 1993-08-25 | H. Jonathan Tovey | Resilient arm mesh deployer |
US5263969A (en) * | 1992-04-17 | 1993-11-23 | Phillips Edward H | Tool for the laparoscopic introduction of a mesh prosthesis |
US5766246A (en) * | 1992-05-20 | 1998-06-16 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis |
WO1994027535A1 (en) | 1992-05-20 | 1994-12-08 | C.R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prosthesis |
US6312442B1 (en) | 1992-06-02 | 2001-11-06 | General Surgical Innovations, Inc. | Method for developing an anatomic space for laparoscopic hernia repair |
US5540711A (en) | 1992-06-02 | 1996-07-30 | General Surgical Innovations, Inc. | Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization |
US5304187A (en) * | 1992-06-30 | 1994-04-19 | United States Surgical Corporation | Surgical element deployment apparatus |
US5662662A (en) * | 1992-10-09 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument and method |
US5626587A (en) * | 1992-10-09 | 1997-05-06 | Ethicon Endo-Surgery, Inc. | Method for operating a surgical instrument |
US5601224A (en) * | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5464403A (en) * | 1992-10-29 | 1995-11-07 | General Surgical Innovations, Inc. | Placement tool and method for laparoscopic hernia repair |
US5725577A (en) * | 1993-01-13 | 1998-03-10 | Saxon; Allen | Prosthesis for the repair of soft tissue defects |
US5356432B1 (en) * | 1993-02-05 | 1997-02-04 | Bard Inc C R | Implantable mesh prosthesis and method for repairing muscle or tissue wall defects |
US5368602A (en) | 1993-02-11 | 1994-11-29 | De La Torre; Roger A. | Surgical mesh with semi-rigid border members |
US5433996A (en) * | 1993-02-18 | 1995-07-18 | W. L. Gore & Associates, Inc. | Laminated patch tissue repair sheet material |
US5354292A (en) * | 1993-03-02 | 1994-10-11 | Braeuer Harry L | Surgical mesh introduce with bone screw applicator for the repair of an inguinal hernia |
US5814058A (en) * | 1993-03-05 | 1998-09-29 | Innerdyne, Inc. | Method and apparatus employing conformable sleeve for providing percutaneous access |
US5364004A (en) * | 1993-05-10 | 1994-11-15 | Hughes Aircraft Company | Wedge bump bonding apparatus and method |
ATE182453T1 (de) | 1993-05-21 | 1999-08-15 | Ethicon Inc | Endoskopische befestigungseinrichtung für prothese aus weichgewebe |
US5397332A (en) * | 1993-09-02 | 1995-03-14 | Ethicon, Inc. | Surgical mesh applicator |
FR2709947B1 (fr) | 1993-09-13 | 1995-11-10 | Bard Sa Laboratoires | Filet prothétique galbé et son procédé de fabrication. |
US5560532A (en) * | 1993-10-08 | 1996-10-01 | United States Surgical Corporation | Apparatus and method for applying surgical staples to body tissue |
US5618290A (en) * | 1993-10-19 | 1997-04-08 | W.L. Gore & Associates, Inc. | Endoscopic suture passer and method |
US5531759A (en) * | 1994-04-29 | 1996-07-02 | Kensey Nash Corporation | System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating |
WO1995030374A1 (en) | 1994-05-06 | 1995-11-16 | Origin Medsystems, Inc. | Apparatus and method for delivering a patch |
US5425740A (en) | 1994-05-17 | 1995-06-20 | Hutchinson, Jr.; William B. | Endoscopic hernia repair clip and method |
GB9414746D0 (en) | 1994-07-21 | 1994-09-07 | Vascutek Ltd | Prosthetic material |
AUPM771894A0 (en) | 1994-08-29 | 1994-09-22 | Royal Children's Hospital Research Foundation | Method for the treatment of indirect inguinal hernias and related conditions |
US6015429A (en) | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
JPH08196538A (ja) | 1994-09-26 | 1996-08-06 | Ethicon Inc | エラストマー部材を有する外科用の組織付着器具および該組織へ外科用のメッシュを張り付ける方法 |
US6171318B1 (en) | 1994-09-29 | 2001-01-09 | Bard Asdi Inc. | Hernia mesh patch with stiffening layer |
US5769864A (en) * | 1994-09-29 | 1998-06-23 | Surgical Sense, Inc. | Hernia mesh patch |
US5634931A (en) | 1994-09-29 | 1997-06-03 | Surgical Sense, Inc. | Hernia mesh patches and methods of their use |
US5916225A (en) | 1994-09-29 | 1999-06-29 | Surgical Sense, Inc. | Hernia mesh patch |
US6174320B1 (en) | 1994-09-29 | 2001-01-16 | Bard Asdi Inc. | Hernia mesh patch with slit |
US6176863B1 (en) | 1994-09-29 | 2001-01-23 | Bard Asdi Inc. | Hernia mesh patch with I-shaped filament |
US6290708B1 (en) | 1994-09-29 | 2001-09-18 | Bard Asdi Inc. | Hernia mesh patch with seal stiffener |
US6280453B1 (en) | 1994-09-29 | 2001-08-28 | Bard Asdi Inc. | Hernia mesh patch with stiffener line segment |
US5803902A (en) * | 1994-10-06 | 1998-09-08 | United States Surgical Corporation | Surgical retractor |
US5560224A (en) * | 1994-12-21 | 1996-10-01 | Tessler; Mark | Jewelry mounting relatively large stones higher than relatively small stones and method of manufacture |
GB9510624D0 (en) | 1995-05-25 | 1995-07-19 | Ellis Dev Ltd | Textile surgical implants |
US5569273A (en) * | 1995-07-13 | 1996-10-29 | C. R. Bard, Inc. | Surgical mesh fabric |
US6113624A (en) | 1995-10-02 | 2000-09-05 | Ethicon, Inc. | Absorbable elastomeric polymer |
US5874500A (en) | 1995-12-18 | 1999-02-23 | Cohesion Technologies, Inc. | Crosslinked polymer compositions and methods for their use |
US6833408B2 (en) | 1995-12-18 | 2004-12-21 | Cohesion Technologies, Inc. | Methods for tissue repair using adhesive materials |
US5810851A (en) | 1996-03-05 | 1998-09-22 | Yoon; Inbae | Suture spring device |
WO1997035533A1 (en) | 1996-03-25 | 1997-10-02 | Enrico Nicolo | Surgical mesh prosthetic material and methods of use |
US6028018A (en) | 1996-07-24 | 2000-02-22 | Kimberly-Clark Worldwide, Inc. | Wet wipes with improved softness |
EP0934024B1 (de) | 1996-09-20 | 2006-08-30 | United States Surgical Corporation | Chirurgische vorrichtung zum anbringen von spiralklammern |
WO1998014134A2 (en) | 1996-10-04 | 1998-04-09 | Ethicon, Inc. | Knitted surgical mesh |
US5716409A (en) * | 1996-10-16 | 1998-02-10 | Debbas; Elie | Reinforcement sheet for use in surgical repair |
FR2754705B1 (fr) | 1996-10-18 | 1998-12-18 | Cogent Sarl | Prothese anatomique pour la reparation de hernies par voie laparoscopique ou ouverte |
US20030157187A1 (en) | 1996-12-02 | 2003-08-21 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for treating or preventing inflammatory diseases |
EP1014895B1 (de) | 1996-12-10 | 2006-03-08 | Purdue Research Foundation | Künstliche herzklappen |
WO1998037813A1 (en) | 1997-02-28 | 1998-09-03 | Tyco Group S.A.R.L. | Fabric prosthesis and process for preparing the same |
US5951997A (en) * | 1997-06-30 | 1999-09-14 | Ethicon, Inc. | Aliphatic polyesters of ε-caprolactone, p-dioxanone and gycolide |
US5824082A (en) * | 1997-07-14 | 1998-10-20 | Brown; Roderick B. | Patch for endoscopic repair of hernias |
US6066776A (en) | 1997-07-16 | 2000-05-23 | Atrium Medical Corporation | Self-forming prosthesis for repair of soft tissue defects |
US5957939A (en) | 1997-07-31 | 1999-09-28 | Imagyn Medical Technologies, Inc. | Medical device for deploying surgical fabrics |
US6042592A (en) | 1997-08-04 | 2000-03-28 | Meadox Medicals, Inc. | Thin soft tissue support mesh |
US6241768B1 (en) | 1997-08-27 | 2001-06-05 | Ethicon, Inc. | Prosthetic device for the repair of a hernia |
EP1018980B9 (de) | 1997-10-01 | 2004-01-07 | Boston Scientific Limited | Rekonstruktion der bodenbeckenmuskulatur |
US6090116A (en) | 1997-10-03 | 2000-07-18 | D'aversa; Margaret M. | Knitted surgical mesh |
US5854383A (en) * | 1997-10-06 | 1998-12-29 | Ethicon, Inc. | Aliphatic polyesters of trimethylene carbonate epsilon-caprolactone and glycolide |
FR2769825B1 (fr) | 1997-10-22 | 1999-12-03 | Cogent Sarl | Implant prothetique obturateur de canal anatomique, et ensemble d'obturation le comportant |
US6004333A (en) | 1997-10-31 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Prosthetic with collagen for tissue repair |
US5972007A (en) * | 1997-10-31 | 1999-10-26 | Ethicon Endo-Surgery, Inc. | Energy-base method applied to prosthetics for repairing tissue defects |
US5911726A (en) * | 1998-01-22 | 1999-06-15 | Belknap; John C. | Surgical mesh stabilizer |
US7491232B2 (en) | 1998-09-18 | 2009-02-17 | Aptus Endosystems, Inc. | Catheter-based fastener implantation apparatus and methods with implantation force resolution |
US6960217B2 (en) | 2001-11-28 | 2005-11-01 | Aptus Endosystems, Inc. | Endovascular aneurysm repair system |
US6319264B1 (en) | 1998-04-03 | 2001-11-20 | Bionx Implants Oy | Hernia mesh |
US5972008A (en) * | 1998-04-29 | 1999-10-26 | Kalinski; Robert J. | Method and apparatus for retaining a surgical mesh |
US6113609A (en) | 1998-05-26 | 2000-09-05 | Scimed Life Systems, Inc. | Implantable tissue fastener and system for treating gastroesophageal reflux disease |
US6113611A (en) | 1998-05-28 | 2000-09-05 | Advanced Vascular Technologies, Llc | Surgical fastener and delivery system |
US6607541B1 (en) | 1998-06-03 | 2003-08-19 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
ATE482655T1 (de) | 1998-06-03 | 2010-10-15 | Medtronic Inc | Vorrichtungen zur verbindung von gewebe |
US6613059B2 (en) | 1999-03-01 | 2003-09-02 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6945980B2 (en) | 1998-06-03 | 2005-09-20 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
WO1999063051A2 (en) | 1998-06-05 | 1999-12-09 | Organogenesis Inc. | Bioengineered flat sheet graft prostheses |
FR2779937B1 (fr) | 1998-06-23 | 2000-08-11 | Sofradim Production | Tissu prothetique isoelastique ajoure |
US6669735B1 (en) | 1998-07-31 | 2003-12-30 | Davol, Inc. | Prosthesis for surgical treatment of hernia |
US6638208B1 (en) | 1998-09-15 | 2003-10-28 | Infinite Biomedical Technologies, Llc | Intraurethral continent prothesis |
US20010049538A1 (en) | 1999-07-16 | 2001-12-06 | Ermanno E. Trabucco | Mesh plug kit for the inguinal box surgical technique for hernioplasty |
US6166286A (en) | 1998-09-16 | 2000-12-26 | Arcilius Consultadoria E Servicos Lda | Mesh plug kit for the inguinal box surgical technique for hernioplasty |
JP2002526193A (ja) | 1998-09-18 | 2002-08-20 | ユナイテッド ステイツ サージカル コーポレーション | 脈管内ファスナーアプリケータ |
US20030225355A1 (en) | 1998-10-01 | 2003-12-04 | Butler Charles E. | Composite material for wound repair |
US6099518A (en) | 1998-10-20 | 2000-08-08 | Boston Scientific Corporation | Needle herniorrhaphy devices |
CA2351531C (en) | 1998-11-18 | 2007-04-24 | General Surgical Innovations, Inc. | Helical fastener and applicator for surgical procedures |
US20040267349A1 (en) | 2003-06-27 | 2004-12-30 | Kobi Richter | Amorphous metal alloy medical devices |
US6551241B1 (en) | 1999-12-17 | 2003-04-22 | Leonard S. Schultz | Instruments and methods for performing percutaneous surgery |
EP1025821A1 (de) | 1999-02-04 | 2000-08-09 | Flawa Schweizer Verbandstoff- und Wattefabriken AG | Medizinalprodukt mit textilem Bestandteil |
FR2789888B3 (fr) | 1999-02-22 | 2001-08-10 | Francis Lefebvre | Instrument chirurgical coelioscopique de pose de protheses pour hernies inguinales ou ombilicales |
US8118822B2 (en) | 1999-03-01 | 2012-02-21 | Medtronic, Inc. | Bridge clip tissue connector apparatus and methods |
EP1867348B1 (de) | 1999-03-25 | 2012-05-16 | Metabolix, Inc. | Medizinische Geräte und Anwendungen aus Polyhydroxyalkanoat-Polymeren |
US6287316B1 (en) | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
US20050283189A1 (en) | 1999-03-31 | 2005-12-22 | Rosenblatt Peter L | Systems and methods for soft tissue reconstruction |
WO2000057796A1 (en) | 1999-03-31 | 2000-10-05 | Rosenblatt Peter L | Systems and methods for soft tissue reconstruction |
US6416486B1 (en) | 1999-03-31 | 2002-07-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical device having an embedding surface and a coagulating surface |
FR2791883B1 (fr) | 1999-04-08 | 2001-08-10 | Ethicon Inc | Prothese souple notamment pour la cure des hernies par voie coelioscopique |
US6258124B1 (en) | 1999-05-10 | 2001-07-10 | C. R. Bard, Inc. | Prosthetic repair fabric |
US6383201B1 (en) | 1999-05-14 | 2002-05-07 | Tennison S. Dong | Surgical prosthesis for repairing a hernia |
GB9911881D0 (en) | 1999-05-21 | 1999-07-21 | Knoll Ag | Therapeutic agents |
GB9911863D0 (en) | 1999-05-21 | 1999-07-21 | Knoll Ag | Therapeutic agents |
EP1060714B1 (de) | 1999-06-08 | 2006-08-02 | Ethicon, Inc. | Chirurgische Strickgewebe |
JP4233254B2 (ja) | 1999-07-28 | 2009-03-04 | シー・アール・バード・インコーポレーテッド | ヘルニア用人工補装具 |
US6527785B2 (en) | 1999-08-03 | 2003-03-04 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
US7094258B2 (en) | 1999-08-18 | 2006-08-22 | Intrinsic Therapeutics, Inc. | Methods of reinforcing an annulus fibrosis |
US20040044412A1 (en) | 1999-08-18 | 2004-03-04 | Gregory Lambrecht | Devices and method for augmenting a vertebral disc |
CA2425951C (en) | 1999-08-18 | 2008-09-16 | Intrinsic Therapeutics, Inc. | Devices and method for nucleus pulposus augmentation and retention |
US7507243B2 (en) | 1999-08-18 | 2009-03-24 | Gregory Lambrecht | Devices and method for augmenting a vertebral disc |
WO2004100841A1 (en) | 1999-08-18 | 2004-11-25 | Intrinsic Therapeutics, Inc. | Devices and method for augmenting a vertebral disc nucleus |
US7553329B2 (en) | 1999-08-18 | 2009-06-30 | Intrinsic Therapeutics, Inc. | Stabilized intervertebral disc barrier |
AU5598300A (en) | 1999-10-13 | 2001-04-23 | Jeffrey E. Yeung | Non-invasive and minimally invasive methods and devices for treating urinary incontinence or obstruction |
US7615076B2 (en) | 1999-10-20 | 2009-11-10 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US6293906B1 (en) * | 2000-01-14 | 2001-09-25 | Acorn Cardiovascular, Inc. | Delivery of cardiac constraint jacket |
US6436030B2 (en) | 2000-01-31 | 2002-08-20 | Om P. Rehil | Hiatal hernia repair patch and method for using the same |
US7101366B2 (en) | 2000-02-15 | 2006-09-05 | Eva Corporation | Apparatus and method for performing a surgical procedure |
GB0005789D0 (en) | 2000-03-11 | 2000-05-03 | Knoll Ag | Therapeutic agents |
WO2001070322A1 (en) | 2000-03-24 | 2001-09-27 | Stephen Brushey | Anesthesia conduction catheter |
US6425924B1 (en) | 2000-03-31 | 2002-07-30 | Ethicon, Inc. | Hernia repair prosthesis |
US6719987B2 (en) | 2000-04-17 | 2004-04-13 | Nucryst Pharmaceuticals Corp. | Antimicrobial bioabsorbable materials |
FR2807937B1 (fr) | 2000-04-20 | 2002-08-02 | Sofradim Production | Tricot prothetique agrippant, son procede de fabrication et implant de renfort pour le traitement des deficits parietaux |
US6708056B2 (en) | 2000-04-25 | 2004-03-16 | Impres Medical, Inc. | Method and apparatus for creating intrauterine adhesions |
FR2808437B1 (fr) | 2000-05-05 | 2002-10-25 | Cousin Biotech | Prothese de reparation herniaire |
IT1318499B1 (it) | 2000-05-05 | 2003-08-25 | Angiologica B M S R L | Rete anatomica a doppio strato per chirurgia. |
US6478803B1 (en) * | 2000-05-19 | 2002-11-12 | Genzyme Corporation | Device for delivery of surgical materials |
US6485503B2 (en) | 2000-05-19 | 2002-11-26 | Coapt Systems, Inc. | Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device |
US6645226B1 (en) | 2000-05-19 | 2003-11-11 | Coapt Systems, Inc. | Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing |
ATE420599T1 (de) | 2000-05-19 | 2009-01-15 | Coapt Systems Inc | Angleichvorrichtung für gewebe |
US6694192B2 (en) | 2000-07-06 | 2004-02-17 | Impulse Dynamics N.V. | Uterus muscle controller |
US6610006B1 (en) | 2000-07-25 | 2003-08-26 | C. R. Bard, Inc. | Implantable prosthesis |
DE10041347A1 (de) | 2000-08-23 | 2002-03-07 | Ethicon Gmbh | Flächiges Implantat |
AU2001288599A1 (en) | 2000-09-01 | 2002-03-13 | Advanced Vascular Technologies, Llc | Vascular bypass grafting instrument and method |
WO2002017797A1 (en) | 2000-09-01 | 2002-03-07 | Advanced Vascular Technologies, Llc | Endovascular fastener and grafting apparatus and method |
WO2002017771A2 (en) | 2000-09-01 | 2002-03-07 | Advanced Vascular Technologies, Llc | Multi-fastener surgical apparatus and method |
US6746458B1 (en) | 2000-09-07 | 2004-06-08 | William G. Cloud | Mesh material to repair hernias |
US7404819B1 (en) | 2000-09-14 | 2008-07-29 | C.R. Bard, Inc. | Implantable prosthesis |
US20020082621A1 (en) | 2000-09-22 | 2002-06-27 | Schurr Marc O. | Methods and devices for folding and securing tissue |
GB0023610D0 (en) | 2000-09-27 | 2000-11-08 | Knoll Ag | Therapeutic agents |
US6296607B1 (en) | 2000-10-20 | 2001-10-02 | Praxis, Llc. | In situ bulking device |
US20020042658A1 (en) | 2000-10-10 | 2002-04-11 | Tyagi Narendra S. | Hernia repair mesh prosthesis, and method of using same |
CA2323252C (en) | 2000-10-12 | 2007-12-11 | Biorthex Inc. | Artificial disc |
US6773438B1 (en) | 2000-10-19 | 2004-08-10 | Ethicon Endo-Surgery | Surgical instrument having a rotary lockout mechanism |
US6447524B1 (en) | 2000-10-19 | 2002-09-10 | Ethicon Endo-Surgery, Inc. | Fastener for hernia mesh fixation |
US6425900B1 (en) | 2000-10-19 | 2002-07-30 | Ethicon Endo-Surgery | Method for attaching hernia mesh |
US6551333B2 (en) | 2000-10-19 | 2003-04-22 | Ethicon Endo-Surgery, Inc. | Method for attaching hernia mesh |
WO2002034140A2 (en) | 2000-10-23 | 2002-05-02 | Tyco Healthcare Group Lp | Absorbable fastener and applying apparatus |
AU2002230941A1 (en) | 2000-10-31 | 2002-05-15 | Prodesco, Inc. | Supported lattice for cell cultivation |
WO2002039914A1 (en) | 2000-11-15 | 2002-05-23 | Scimed Life Systems, Inc. | Device and method for treating female urinary incontinence |
US6712853B2 (en) | 2000-12-15 | 2004-03-30 | Spineology, Inc. | Annulus-reinforcing band |
US6805669B2 (en) | 2001-01-25 | 2004-10-19 | Rebecca L. Swanbom | Method and device for marking skin during an ultrasound examination |
US20020103494A1 (en) | 2001-01-31 | 2002-08-01 | Pacey John Allen | Percutaneous cannula delvery system for hernia patch |
US20040030217A1 (en) | 2001-02-02 | 2004-02-12 | Yeung Jeffrey E | Urethral muscle controlled micro-invasive sphincteric closure device |
US6783554B2 (en) | 2001-02-20 | 2004-08-31 | Atrium Medical Corporation | Pile mesh prosthesis |
US7119062B1 (en) | 2001-02-23 | 2006-10-10 | Neucoll, Inc. | Methods and compositions for improved articular surgery using collagen |
US7364541B2 (en) * | 2001-03-09 | 2008-04-29 | Boston Scientific Scimed, Inc. | Systems, methods and devices relating to delivery of medical implants |
US7235043B2 (en) | 2001-03-09 | 2007-06-26 | Boston Scientific Scimed Inc. | System for implanting an implant and method thereof |
DE60239188D1 (de) | 2001-03-09 | 2011-03-31 | Boston Scient Ltd | System zum einsetzen einer schlinge |
US6551356B2 (en) | 2001-03-19 | 2003-04-22 | Ethicon, Inc. | Pocketed hernia repair |
GB0108088D0 (en) | 2001-03-30 | 2001-05-23 | Browning Healthcare Ltd | Surgical implant |
WO2002087425A2 (en) | 2001-05-01 | 2002-11-07 | Coalescent Surgical, Inc. | Self-closing surgical clip for tissue |
US20020173803A1 (en) | 2001-05-01 | 2002-11-21 | Stephen Ainsworth | Self-closing surgical clip for tissue |
US20020169452A1 (en) | 2001-05-14 | 2002-11-14 | Pertti Tormala | Minimally traumatic surgical device for tissue treatment |
US6575988B2 (en) * | 2001-05-15 | 2003-06-10 | Ethicon, Inc. | Deployment apparatus for supple surgical materials |
US6558400B2 (en) | 2001-05-30 | 2003-05-06 | Satiety, Inc. | Obesity treatment tools and methods |
US7083629B2 (en) | 2001-05-30 | 2006-08-01 | Satiety, Inc. | Overtube apparatus for insertion into a body |
US6616685B2 (en) | 2001-06-06 | 2003-09-09 | Ethicon, Inc. | Hernia repair device |
US20030004581A1 (en) | 2001-06-27 | 2003-01-02 | Rousseau Robert A. | Implantable prosthetic mesh system |
US7049345B2 (en) | 2001-06-29 | 2006-05-23 | Genzyme Corporation | Fat-binding polymers |
US7407480B2 (en) | 2001-07-27 | 2008-08-05 | Ams Research Corporation | Method and apparatus for correction of urinary and gynecological pathologies, including treatment of incontinence cystocele |
ES2272807T3 (es) | 2001-08-17 | 2007-05-01 | Polyzenix Gmbh | Dispositivo a base de nitinol con un recubrimiento de polifosfaceno. |
FR2829922B1 (fr) | 2001-09-21 | 2004-06-18 | Sofradim Production | Implant complet et universel pour la reparation des hernies par voie anterieure |
US6666817B2 (en) | 2001-10-05 | 2003-12-23 | Scimed Life Systems, Inc. | Expandable surgical implants and methods of using them |
WO2003032867A1 (en) | 2001-10-12 | 2003-04-24 | Gyne Ideas Limited | Biomaterial comprising microfeatures |
US6800082B2 (en) | 2001-10-19 | 2004-10-05 | Ethicon, Inc. | Absorbable mesh device |
DE10155842A1 (de) | 2001-11-14 | 2003-05-28 | Ethicon Gmbh | Flächiges Implantat |
US7381715B2 (en) | 2001-12-21 | 2008-06-03 | E.I. Du Pont De Nemours And Company | Antimicrobial solid surface materials containing chitosan-metal complexes |
US20030171812A1 (en) | 2001-12-31 | 2003-09-11 | Ilan Grunberg | Minimally invasive modular support implant device and method |
US6790213B2 (en) | 2002-01-07 | 2004-09-14 | C.R. Bard, Inc. | Implantable prosthesis |
DK175054B1 (da) | 2002-01-15 | 2004-05-10 | Coloplast As | Stomiindretning |
WO2003077730A2 (en) | 2002-03-11 | 2003-09-25 | Wardle John L | Surgical coils and methods of deploying |
JP2005521463A (ja) | 2002-03-25 | 2005-07-21 | オーナックス・メディカル・インコーポレーテッド | 外科用縫合器具および使用方法係属中の先行出願の参照本願は、(1)2003年1月28日にフレデリック・P・フィールド(FredericP.Field)他により「外科用縫合器具および使用方法(SURGICALSUTURINGINSTRUMENTANDMETHODOFUSE)」という名称で出願された係属中の先の米国特許出願第10/352,600号明細書(代理人整理番号ONUX−22CON)と、(2)2003年3月4日にグレゴリー・E・サンコフ(GregoryE.Sancoff)他により「外科用縫合器具および使用方法(SURGICALSUTURINGINSTRUMENTANDMETHODOFUSE)という名称で出願された係属中の先の米国特許出願第10/378,805号(代理人整理番号ONUX−15CON)と、の一部係属出願である。本出願はまた、2002年3月25日にフレデリック・P・フィールド(FredericP.Field)他により「外科用縫合器具および使用方法(SURGICALSUTURINGINSTRUMENTANDMETHODOFUSE)」として出願された係属中の先の米国仮特許出願第60/367,395号明細書(代理人整理番号ONUX−31PROV)の利益を主張する。この特許出願はまた、の利益を主張する。3つの上に特定した特許出願は、引用をもってその開示内容が本明細書内に包含されるものとする。 |
CA2480875A1 (en) | 2002-04-01 | 2003-10-16 | Board Of Regents, The University Of Texas System | Composite material for wound repair |
EP1499263A2 (de) | 2002-04-11 | 2005-01-26 | Eva Corporation | Gerät und verfahren zur durchführung eines chirurgischen eingriffs |
US7229452B2 (en) | 2002-04-22 | 2007-06-12 | Tyco Healthcare Group Lp | Tack and tack applier |
US8241308B2 (en) | 2002-04-24 | 2012-08-14 | Boston Scientific Scimed, Inc. | Tissue fastening devices and processes that promote tissue adhesion |
US6960233B1 (en) | 2002-12-10 | 2005-11-01 | Torax Medical, Inc. | Methods and apparatus for improving the function of biological passages |
US7077850B2 (en) | 2002-05-01 | 2006-07-18 | Scimed Life Systems, Inc. | Tissue fastening devices and related insertion tools and methods |
DE10221320A1 (de) | 2002-05-07 | 2003-11-27 | Gfe Medizintechnik Gmbh | Flächiges Implantat aus textilem Fadenmaterial, insbesondere Herniennetz |
US6736823B2 (en) | 2002-05-10 | 2004-05-18 | C.R. Bard, Inc. | Prosthetic repair fabric |
US6736854B2 (en) | 2002-05-10 | 2004-05-18 | C. R. Bard, Inc. | Prosthetic repair fabric with erosion resistant edge |
US7011688B2 (en) | 2002-05-10 | 2006-03-14 | C.R. Bard, Inc. | Prosthetic repair fabric |
AU2003241464A1 (en) | 2002-05-17 | 2003-12-02 | Eisai Co., Ltd. | Compositions and methods using proton pump inhibitors |
AU2003241524A1 (en) | 2002-05-17 | 2003-12-02 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
DE10222872B4 (de) | 2002-05-23 | 2018-08-16 | Johnson & Johnson Medical Gmbh | Medizinisches Implantat und Verfahren zum Herstellen eines medizinischen Implantats |
US6638297B1 (en) | 2002-05-30 | 2003-10-28 | Ethicon Endo-Surgery, Inc. | Surgical staple |
AU2003253106A1 (en) | 2002-07-04 | 2004-01-23 | Gyne Ideas Ltd | Medical implant |
WO2004006808A2 (en) | 2002-07-17 | 2004-01-22 | Proxy Biomedical Limited | Soft tissue implants and methods for making same |
US20040019360A1 (en) | 2002-07-25 | 2004-01-29 | Farnsworth Ted R. | Tissue repair device with a removable support member |
DK174649B1 (da) | 2002-07-25 | 2003-08-04 | Nortec Holding S A | Implantat |
US7101381B2 (en) | 2002-08-02 | 2006-09-05 | C.R. Bard, Inc. | Implantable prosthesis |
DE60334919D1 (de) | 2002-08-02 | 2010-12-23 | Bard Inc C R | Selbstverankerndes schlingen- und einführsystem |
US7083630B2 (en) | 2002-08-29 | 2006-08-01 | Scimed Life Systems, Inc. | Devices and methods for fastening tissue layers |
US20040044364A1 (en) | 2002-08-29 | 2004-03-04 | Devries Robert | Tissue fasteners and related deployment systems and methods |
TR200202198A2 (tr) | 2002-09-13 | 2004-04-21 | Zafer Malazgirt | Laparoskopik ameliyatlardan sonra büyük trokar deliklerinin onariminda kullanilan yama-tikaç |
US6966916B2 (en) | 2002-09-26 | 2005-11-22 | Kumar Sarbjeet S | Device and method for surgical repair of abdominal wall hernias |
US20040073237A1 (en) | 2002-10-08 | 2004-04-15 | Leinsing Karl R. | Surgical fastener and delivery system |
US20040073257A1 (en) | 2002-10-09 | 2004-04-15 | Spitz Gregory A. | Methods and apparatus for the repair of hernias |
IL152278A0 (en) | 2002-10-14 | 2003-05-29 | Expandis Ltd | Minimally invasive support implant device and method |
US20040092970A1 (en) | 2002-10-18 | 2004-05-13 | Xavier Alfredo F. | Prosthetic mesh anchor device |
US7148315B2 (en) | 2002-10-23 | 2006-12-12 | Ethicon, Inc. | Monomer addition techniques to control manufacturing of bioabsorbable copolymers |
DE10249927B3 (de) | 2002-10-26 | 2004-03-04 | Karl Storz Gmbh & Co. Kg | Vorrichtung zum Komprimieren rohrförmiger Endoprothesen sowie zum Einführen einer komprimierten Endoprothese in ein Applikationsrohr |
FR2847155B1 (fr) | 2002-11-20 | 2005-08-05 | Younes Boudjemline | Procede de fabrication d'un implant medical a structure ajouree et implant obtenu par ce procede |
US20040156931A1 (en) | 2002-12-18 | 2004-08-12 | Algorx | Administration of capsaicinoids |
NZ540769A (en) | 2002-12-18 | 2009-03-31 | Algorx Pharmaceuticals Inc | Administration of capsaicinoids for the treatment of pain |
GB0300786D0 (en) | 2003-01-14 | 2003-02-12 | Barker Stephen G E | Laparoscopic port hernia device |
CA2514071A1 (en) | 2003-02-10 | 2004-08-19 | Autogen Research Pty Ltd | Therapeutic molecules |
US20050010239A1 (en) | 2003-02-21 | 2005-01-13 | Chefitz Allen B. | Hernia mesh-device with tissue adhesive |
US20050015102A1 (en) | 2003-02-21 | 2005-01-20 | Chefitz Allen B. | Hernia mesh-device with incorporated local anesthetic |
IL154918A0 (en) | 2003-03-13 | 2003-10-31 | Samuel Eldar | Device and method for deploying and placing a surgical prosthesis mesh |
KR20060003872A (ko) | 2003-04-04 | 2006-01-11 | 티슈메드 리미티드 | 조직-부착성 제형물 |
DE10318801A1 (de) | 2003-04-17 | 2004-11-04 | Aesculap Ag & Co. Kg | Flächiges Implantat und seine Verwendung in der Chirurgie |
DE20306635U1 (de) | 2003-04-28 | 2003-06-26 | GfE Medizintechnik GmbH, 90431 Nürnberg | Chirurgische Flächeneinlage |
EP2860292B1 (de) | 2003-05-08 | 2020-07-22 | Tepha, Inc. | Medizinische Polyhydroxyalkanoattextilien und -fasern |
US20040230208A1 (en) | 2003-05-13 | 2004-11-18 | Vafa Shayani | Article for positioning mesh over tissue |
US7105001B2 (en) | 2003-05-21 | 2006-09-12 | Mandelbaum Jon A | Surgical method and composition utilizing submucosal tissue to prevent incisional hernias |
US6974862B2 (en) | 2003-06-20 | 2005-12-13 | Kensey Nash Corporation | High density fibrous polymers suitable for implant |
US20060228775A1 (en) | 2003-07-08 | 2006-10-12 | Chemgenex Pharmaceuticals Llimited | Differential expression of nucleic acid molecules |
CA2532882A1 (en) | 2003-07-11 | 2005-01-20 | Endogun Medical Systems Ltd. | Surgical fasteners and devices for surgical fastening |
DE602004024069D1 (de) | 2003-07-17 | 2009-12-24 | Bioretec Oy | Synthetische, bioabsorbierbare polymer-materialien und implantate |
FR2857578B1 (fr) | 2003-07-18 | 2007-02-09 | Cie Eu Etude Rech Dispositifs | Kit d'introduction d'un implant de chirurgie plastique, etui d'introduction d'un tel implant et procede de fabrication correspondant |
WO2005016389A2 (en) * | 2003-08-04 | 2005-02-24 | Kelly Jackson | Medical instruments and methods for using the same |
WO2005014634A1 (en) | 2003-08-12 | 2005-02-17 | Agt Biosciences Limited | A gene and uses therefor |
CA2535328A1 (en) | 2003-08-14 | 2005-03-03 | Boston Scientific Limited | Medical slings |
US20050038452A1 (en) | 2003-08-14 | 2005-02-17 | Scimed Life Systems, Inc. | Medical slings |
US8043632B2 (en) | 2003-08-18 | 2011-10-25 | E. I. Du Pont De Nemours And Company | Process for making antimicrobial articles by reacting chitosan with amino-reactive polymer surfaces |
US7550430B2 (en) | 2003-08-18 | 2009-06-23 | E.I. Du Pont De Nemours And Company | Cationic antimicrobial peptides and compositions |
WO2005025630A1 (en) | 2003-09-10 | 2005-03-24 | Cato T Laurencin | Polymeric nanofibers for tissue engineering and drug delivery |
US7556647B2 (en) | 2003-10-08 | 2009-07-07 | Arbor Surgical Technologies, Inc. | Attachment device and methods of using the same |
CA2541438C (en) | 2003-10-10 | 2013-11-26 | Meditech Research Limited | The modulation of hyaluronan synthesis and degradation in the treatment of disease |
US20050202067A1 (en) | 2003-10-28 | 2005-09-15 | Gkss Forschungszentrum | Matrix structure and hybrid matrix system for inducing a neofacia, their use and method for generating a neofacia |
GB0325442D0 (en) | 2003-10-31 | 2003-12-03 | Mpathy Medical Devices Ltd | Plug |
CA2536042A1 (en) | 2003-11-10 | 2005-06-02 | Angiotech International Ag | Medical implants and anti-scarring agents |
CA2536041A1 (en) | 2003-11-10 | 2005-05-26 | Angiotech International Ag | Medical implants and fibrosis-inducing agents |
ATE432731T1 (de) | 2003-11-20 | 2009-06-15 | Catheter Exchange Inc | Vorrichtung für die obliteration eines hohlraums |
US20050113849A1 (en) | 2003-11-26 | 2005-05-26 | Nicholas Popadiuk | Prosthetic repair device |
US20050129733A1 (en) | 2003-12-09 | 2005-06-16 | Milbocker Michael T. | Surgical adhesive and uses therefore |
ITMI20032448A1 (it) | 2003-12-12 | 2005-06-13 | Angiologica B M S R L | Protesi parietale di rinforzo e metodo di realizzazione della stessa. |
US20050273138A1 (en) | 2003-12-19 | 2005-12-08 | Guided Delivery Systems, Inc. | Devices and methods for anchoring tissue |
US20050271794A1 (en) | 2003-12-24 | 2005-12-08 | Synecor, Llc | Liquid perfluoropolymers and medical and cosmetic applications incorporating same |
US20050142315A1 (en) | 2003-12-24 | 2005-06-30 | Desimone Joseph M. | Liquid perfluoropolymers and medical applications incorporating same |
US20050273146A1 (en) | 2003-12-24 | 2005-12-08 | Synecor, Llc | Liquid perfluoropolymers and medical applications incorporating same |
US20050149072A1 (en) | 2003-12-31 | 2005-07-07 | Devries Robert B. | Devices and methods for tissue invagination |
US8751003B2 (en) | 2004-02-11 | 2014-06-10 | Ethicon, Inc. | Conductive mesh for neurostimulation |
US8057841B2 (en) | 2004-02-12 | 2011-11-15 | University Of Akron | Mechanically attached medical device coatings |
US20050192600A1 (en) | 2004-02-24 | 2005-09-01 | Enrico Nicolo | Inguinal hernia repair prosthetic |
DE102004009892A1 (de) | 2004-02-26 | 2005-09-15 | Gfe Medizintechnik Gmbh | Implantierbare Prothese zur Reparatur von Herniendefekten |
DE102004009894A1 (de) | 2004-02-26 | 2005-09-15 | Gfe Medizintechnik Gmbh | Herniennetz zur Versorgung von Leisten- und Hiatushernien |
US7255675B2 (en) | 2004-03-23 | 2007-08-14 | Michael Gertner | Devices and methods to treat a patient |
WO2005094721A1 (en) | 2004-03-30 | 2005-10-13 | Proxy Biomedical Limited | A medical device |
WO2005099628A2 (en) | 2004-04-13 | 2005-10-27 | Cook Incorporated | Implantable frame with variable compliance |
DE102004020469A1 (de) | 2004-04-26 | 2005-11-10 | Gfe Medizintechnik Gmbh | Flächiges Netzimplantat zur Hernienversorgung |
US20060129152A1 (en) | 2004-12-10 | 2006-06-15 | Shipp John I | Absorbable Anchor for Hernia Mesh Fixation |
US10478179B2 (en) | 2004-04-27 | 2019-11-19 | Covidien Lp | Absorbable fastener for hernia mesh fixation |
US8114099B2 (en) | 2004-04-27 | 2012-02-14 | Tyco Healthcare Group Lp | Absorbable anchor for hernia mesh fixation |
US7500945B2 (en) | 2004-04-30 | 2009-03-10 | Ams Research Corporation | Method and apparatus for treating pelvic organ prolapse |
BRPI0510550A (pt) | 2004-05-03 | 2007-11-20 | Ams Res Corp | implante cirúrgico, kit cirúrgico, método para formar ou montar um implante cirúrgico, molde de inserção, aparelho, e, método para produzir um implante cirúrgico |
US20050256532A1 (en) * | 2004-05-12 | 2005-11-17 | Asha Nayak | Cardiovascular defect patch device and method |
US20050283190A1 (en) | 2004-06-16 | 2005-12-22 | Huitema Thomas W | Surgical fastener |
US20050288775A1 (en) | 2004-06-24 | 2005-12-29 | Scimed Life Systems, Inc. | Metallic fibers reinforced textile prosthesis |
US20050288691A1 (en) | 2004-06-28 | 2005-12-29 | Leiboff Arnold R | Hernia patch |
US7678133B2 (en) * | 2004-07-10 | 2010-03-16 | Arstasis, Inc. | Biological tissue closure device and method |
US8512730B2 (en) | 2004-07-12 | 2013-08-20 | Isto Technologies, Inc. | Methods of tissue repair and compositions therefor |
US8795383B2 (en) | 2004-07-19 | 2014-08-05 | Alfredo Alvarado | Laparoscopic inguinal hernia prosthesis |
EP1773238A1 (de) | 2004-07-20 | 2007-04-18 | Stephen G. E. Barker | Prothese zur reparatur einer umbilikalen oder paraumbilikalen hernie |
WO2006015042A1 (en) | 2004-07-28 | 2006-02-09 | Ethicon, Inc. | Minimally invasive medical implant and insertion device and method for using the same |
BRPI0514106A (pt) | 2004-08-03 | 2008-05-27 | Tissuemed Ltd | materiais adesivos a tecidos |
WO2006023444A2 (en) | 2004-08-17 | 2006-03-02 | Tyco Healthcare Group, Lp | Anti-adhesion barrier |
WO2006026509A2 (en) | 2004-08-25 | 2006-03-09 | Pavad Medical, Inc. | Artificial sphincter |
US8298290B2 (en) | 2004-09-20 | 2012-10-30 | Davol, Inc. | Implantable prosthesis for soft tissue repair |
IL164591A0 (en) * | 2004-10-14 | 2005-12-18 | Hernia repair device | |
WO2006044785A1 (en) | 2004-10-18 | 2006-04-27 | E.I. Dupont De Nemours And Company | Process for making antimicrobial polymer articles |
DE102004051487A1 (de) | 2004-10-21 | 2006-04-27 | Ethicon Gmbh | Chirurgisches Implantat |
WO2006047645A2 (en) | 2004-10-25 | 2006-05-04 | Heneveld Scott H Sr | Expandable implant for repairing a defective intervertebral nucleus |
US20080125869A1 (en) | 2004-11-08 | 2008-05-29 | Adrian Paz | Surgical Grafts |
US8172745B2 (en) | 2004-12-20 | 2012-05-08 | Ams Research Corporation | Treatment of anal incontinence and defecatory dysfunction |
US8617188B2 (en) | 2005-02-03 | 2013-12-31 | Moshe Dudai | Surgical mesh, mesh introducing and placing devices and methods |
EP1846051A2 (de) | 2005-02-07 | 2007-10-24 | E.I.Du pont de nemours and company | Anbringung von chitosan auf oberflächen mit rehydratisierungsverfahren |
US7789888B2 (en) | 2005-02-14 | 2010-09-07 | Bartee Chad M | PTFE composite multi-layer material |
WO2006089359A1 (en) | 2005-02-25 | 2006-08-31 | Eugene Sherry | Replacement bone tissue |
DE102005009356A1 (de) | 2005-03-01 | 2006-09-07 | Ethicon Gmbh | Chirurgisches Implantat |
AU2006226961A1 (en) | 2005-03-22 | 2006-09-28 | Tyco Healthcare Group, Lp | Mesh implant |
JP2008534064A (ja) | 2005-03-24 | 2008-08-28 | ワイス | ヘルニア修復のための線維組織誘導タンパク質の使用 |
US20060253203A1 (en) | 2005-05-03 | 2006-11-09 | Alfredo Alvarado | Hernial prosthesis for intraprosthetic fixation |
US20070162135A1 (en) | 2005-06-15 | 2007-07-12 | Jerome Segal | Mechanical apparatus and method for artificial disc replacement |
US7601172B2 (en) | 2005-06-15 | 2009-10-13 | Ouroboros Medical, Inc. | Mechanical apparatus and method for artificial disc replacement |
US9241710B2 (en) | 2005-07-06 | 2016-01-26 | I.B.I Israel Biomedical Innovations Ltd. | Surgical fasteners and fastening devices |
WO2007011689A2 (en) | 2005-07-15 | 2007-01-25 | The Brigham And Women's Hospital, Inc. | Sterile access conduit |
US7500993B2 (en) | 2005-07-15 | 2009-03-10 | Towertech Research Group, Inc. | Ventral hernia repair method |
WO2007017872A2 (en) | 2005-08-11 | 2007-02-15 | Endogun Medical Systems Ltd. | Surgical fasteners and devices for surgical fastening |
US20070203507A1 (en) | 2005-08-26 | 2007-08-30 | G-Surge Medical Solutions, Inc. | Suturing apparatus and methods |
WO2007030676A2 (en) * | 2005-09-09 | 2007-03-15 | University Of South Florida | Laparoscopic hernia mesh spreader |
US20090216264A1 (en) * | 2005-09-19 | 2009-08-27 | Friedman Paul A | Implantable closure apparatus and methods |
GB2430372B (en) | 2005-09-19 | 2010-09-29 | Stephen George Edward Barker | Reinforcement device |
WO2009136399A2 (en) | 2008-05-07 | 2009-11-12 | Surgical Structure Ltd. | Method and apparatus for repairing a hernia |
US20070110786A1 (en) | 2005-11-15 | 2007-05-17 | Boston Scientific Scimed, Inc. | Medical articles having enhanced therapeutic agent binding |
US7579005B2 (en) | 2005-11-28 | 2009-08-25 | E. I. Du Pont De Nemours And Company | Process for recombinant expression and purification of antimicrobial peptides using periplasmic targeting signals as precipitable hydrophobic tags |
KR20080108410A (ko) | 2006-01-10 | 2008-12-15 | 앨튼 브이. 홀럼 | 회음부 탈출증 회복용 리베이터 |
JP2009523056A (ja) | 2006-01-12 | 2009-06-18 | ミネソタ メディカル ディベロップメント、インコーポレイテッド | ヘルニア・パッチ・フレーム |
US9144483B2 (en) | 2006-01-13 | 2015-09-29 | Boston Scientific Scimed, Inc. | Placing fixation devices |
US8252333B2 (en) | 2006-01-26 | 2012-08-28 | Jorge Cueto-Garcia | Biodegradable, non-toxic biological adhesive for use in abdominal surgery |
WO2009113972A2 (en) | 2006-02-08 | 2009-09-17 | Tyrx Pharma, Inc. | Temporarily stiffened mesh prostheses |
FR2898804B1 (fr) | 2006-03-21 | 2009-02-13 | Cousin Biotech Soc Par Actions | Dispositif chirurgical pour la formation par le praticien d'au moins un implant |
WO2007115110A2 (en) * | 2006-03-29 | 2007-10-11 | The Catheter Exchange, Inc. | Method and device for cavity obliteration |
US20090281563A1 (en) | 2006-04-19 | 2009-11-12 | Newell Matthew B | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
EP1849440A1 (de) | 2006-04-28 | 2007-10-31 | Younes Boudjemline | Vaskuläre Stents mit verschiedenen Durchmessern |
US20070265710A1 (en) | 2006-05-10 | 2007-11-15 | Minnesota Medical Development | Method of making hernia patch and resulting product |
US20070293717A1 (en) | 2006-05-12 | 2007-12-20 | Ams Research Corporation | Tube mesh for abdominal sacral colpopexy |
CN101541263B (zh) | 2006-05-22 | 2013-04-24 | 塔伦·约翰·埃德温 | 组织合成-生物材料混合医疗装置 |
EP2926765A3 (de) | 2006-06-08 | 2015-12-23 | AMS Research Corporation | Vorrichtung zur levatordistensionsreparatur |
WO2008006097A2 (en) | 2006-07-07 | 2008-01-10 | Intezyne Technologies Llc | Covalent modification of metal surfaces |
WO2008030939A2 (en) | 2006-09-06 | 2008-03-13 | Innovia, Llc | Porous polymeric material particularly suited for medical implant applications |
US7544213B2 (en) | 2006-09-12 | 2009-06-09 | Adams Jason P | Inflatable hernia patch |
WO2008045635A2 (en) * | 2006-10-12 | 2008-04-17 | The Catheter Exchange, Inc. | Method and device for attaching a patch |
EP2099385B1 (de) | 2006-11-27 | 2021-02-24 | Davol Inc. | Besonders nützliche vorrichtung für operationen zur reparatur von hernien |
US8192760B2 (en) | 2006-12-04 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating tissue using silk proteins |
JP2010514538A (ja) | 2007-01-03 | 2010-05-06 | エーエムエス リサーチ コーポレイション | 便失禁処置用スリングの取り付け方法、およびその関連装置 |
US7678144B2 (en) | 2007-01-29 | 2010-03-16 | Cook Incorporated | Prosthetic valve with slanted leaflet design |
WO2008097999A2 (en) * | 2007-02-05 | 2008-08-14 | Mitralsolutions, Inc. | Minimally invasive system for delivering and securing an annular implant |
US7947054B2 (en) * | 2007-02-14 | 2011-05-24 | EasyLab Ltd. | Mesh deployment apparatus |
US8556988B2 (en) | 2007-03-15 | 2013-10-15 | Insightra Medical, Inc. | Apparatus and repair of defect in inguinal canal and other muscular structures |
AU2008236731B2 (en) | 2007-04-04 | 2013-09-19 | Ajay Rane | Kit for levator avulsion repair |
US7931660B2 (en) | 2007-05-10 | 2011-04-26 | Tyco Healthcare Group Lp | Powered tacker instrument |
US8163034B2 (en) | 2007-05-11 | 2012-04-24 | Portaero, Inc. | Methods and devices to create a chemically and/or mechanically localized pleurodesis |
EP2146653A2 (de) | 2007-05-11 | 2010-01-27 | Portaero, Inc. | Medizinische vorrichtungen und verfahren zur beurteilung einer lunge und behandlung chronisch obstruktiver lungenerkrankung |
CA3062443C (en) | 2007-06-15 | 2022-03-15 | Warsaw Orthopedic, Inc. | Method of treating tissue |
US8932619B2 (en) | 2007-06-27 | 2015-01-13 | Sofradim Production | Dural repair material |
WO2009005625A1 (en) | 2007-07-03 | 2009-01-08 | Synecor, Llc | Satiation devices and methods for controlling obesity |
WO2009005634A1 (en) | 2007-07-03 | 2009-01-08 | Synecor, Llc | Devices for treating gastroesophageal reflux disease and hiatal hernia, and methods of treating gastroesophageal reflux disease and hiatal hernia using same |
WO2009011824A1 (en) | 2007-07-13 | 2009-01-22 | The Brigham And Women's Hospital, Inc. | System and method for hernia mesh fixation |
US20090024147A1 (en) | 2007-07-18 | 2009-01-22 | Ralph James D | Implantable mesh for musculoskeletal trauma, orthopedic reconstruction and soft tissue repair |
EP2185083A1 (de) | 2007-08-16 | 2010-05-19 | I.B.I Israel Biomedical Innovations Ltd. | Chirurgische befestigungselemente und vorrichtungen zur chirurgischen befestigung |
WO2009036094A2 (en) | 2007-09-12 | 2009-03-19 | The Brigham And Women's Hospital, Inc. | Magnetic prosthetic materials for implantation using natural orifice transluminal endoscopic methods |
EP2214641A1 (de) | 2007-10-08 | 2010-08-11 | Sureshan Sivanthan | Skalierbare matrix zur züchtung von knochen und knorpel in vivo |
US20090099579A1 (en) | 2007-10-16 | 2009-04-16 | Tyco Healthcare Group Lp | Self-adherent implants and methods of preparation |
EP2214589B1 (de) | 2007-10-17 | 2014-04-23 | Davol, Inc. | Befestigungsmittel zwischen einem netz und einem netzablagemittel, insbesondere für operationen zur reparatur von hernien |
ITMI20072011A1 (it) | 2007-10-17 | 2009-04-18 | Pipo Llc | Procedimento chirurgico per la correzione del cistocele e del rettocele. |
WO2009064845A2 (en) | 2007-11-16 | 2009-05-22 | Bernstein Eric F | Sterilizing compositions comprising phosphors for converting electromagnetic radiation to uvc radiation and methods for using the same |
US8603112B2 (en) | 2007-11-30 | 2013-12-10 | Easylap Ltd. | Suturing assembly and method |
JP2011505904A (ja) | 2007-12-07 | 2011-03-03 | シー・アール・バード・インコーポレーテッド | 植込み型補綴 |
WO2009075932A1 (en) | 2007-12-13 | 2009-06-18 | Insightra Medical | Methods and apparatus for treating pelvic floor prolapse |
US9439746B2 (en) | 2007-12-13 | 2016-09-13 | Insightra Medical, Inc. | Methods and apparatus for treating ventral wall hernia |
DE102007062273A1 (de) | 2007-12-14 | 2009-06-18 | Aesculap Ag | Fluoriertes Implantat |
US20090182190A1 (en) | 2008-01-11 | 2009-07-16 | Ams Research Corporation | Surgical Tools and Methods for Treating Incontinence and Related Pelvic Conditions |
US8172908B2 (en) | 2008-01-17 | 2012-05-08 | The University Of Hong Kong | Implant for tissue engineering |
CN101917928B (zh) | 2008-01-22 | 2013-11-27 | 克劳德·吉洪 | 部分套囊 |
US7959640B2 (en) | 2008-02-13 | 2011-06-14 | Apollo Endosurgery, Inc. | Method of performing transgastric ventral hernia repair and tissue anchors and deployment devices therefor |
WO2009102967A2 (en) | 2008-02-13 | 2009-08-20 | The Cleveland Clinic Foundation | Molecular enhancement of extracellular matrix and methods of use |
US8758373B2 (en) * | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
EP2247245B1 (de) * | 2008-02-18 | 2017-06-28 | Covidien LP | Vorrichtung zur ablage und befestigung eines pflasters auf biologischem gewebe |
US20090234379A1 (en) | 2008-03-14 | 2009-09-17 | Rehnke Robert D | Apparatuses for the performance of a minimally invasive ventral hernia repair |
US20110202074A1 (en) | 2008-04-09 | 2011-08-18 | Talmo Paul A | Devices and methods for deploying medical sutures |
EP2344045A1 (de) * | 2008-09-16 | 2011-07-20 | Ventralfix, Inc. | Verfahren und gerät für die minimalinvasive abgabe, gespannte ablage und fixierung von sekundärmaterial-prothesenvorrichtungen in körpergewebe von patienten, einschliesslich hernienreparatur in der bruchstelle des patienten |
EP2792307B1 (de) | 2008-10-20 | 2017-10-04 | Covidien LP | Vorrichtung zur Anbringung eines Pflasters auf einem biologischen Gewebe |
AU2010256414C1 (en) * | 2009-06-04 | 2016-01-21 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
WO2011021083A1 (en) * | 2009-08-17 | 2011-02-24 | PolyTouch Medical, Inc. | Articulating patch deployment device and method of use |
EP2467066B1 (de) * | 2009-08-17 | 2019-03-27 | Covidien LP | Mittel zur aufhebbaren verbindung eines implantats mit einer einsatzvorrichtung |
CA2825918C (en) | 2011-02-15 | 2018-08-07 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
-
2009
- 2009-02-18 EP EP09713121.3A patent/EP2247245B1/de active Active
- 2009-02-18 CA CA2715740A patent/CA2715740C/en not_active Expired - Fee Related
- 2009-02-18 WO PCT/IL2009/000188 patent/WO2009104182A2/en active Application Filing
- 2009-02-18 AU AU2009215269A patent/AU2009215269B2/en not_active Ceased
-
2010
- 2010-07-12 US US12/834,456 patent/US8753359B2/en active Active
- 2010-08-17 IL IL207666A patent/IL207666A/en not_active IP Right Cessation
-
2014
- 2014-05-08 US US14/272,612 patent/US9107726B2/en active Active
-
2015
- 2015-08-10 US US14/822,298 patent/US10695155B2/en not_active Expired - Fee Related
-
2020
- 2020-06-19 US US16/906,245 patent/US20200315768A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US9107726B2 (en) | 2015-08-18 |
IL207666A0 (en) | 2010-12-30 |
CA2715740A1 (en) | 2009-08-27 |
US20200315768A1 (en) | 2020-10-08 |
US20140296886A1 (en) | 2014-10-02 |
US20100312357A1 (en) | 2010-12-09 |
US20150351890A1 (en) | 2015-12-10 |
CA2715740C (en) | 2014-05-27 |
US10695155B2 (en) | 2020-06-30 |
AU2009215269A1 (en) | 2009-08-27 |
AU2009215269B2 (en) | 2013-01-31 |
IL207666A (en) | 2014-06-30 |
WO2009104182A2 (en) | 2009-08-27 |
WO2009104182A3 (en) | 2010-03-11 |
EP2247245A4 (de) | 2013-08-28 |
EP2247245A2 (de) | 2010-11-10 |
US8753359B2 (en) | 2014-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200315768A1 (en) | Device and method for deploying and attaching an implant to a biological tissue | |
US8808314B2 (en) | Device and method for deploying and attaching an implant to a biological tissue | |
US20240090991A1 (en) | Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof | |
EP2467066B1 (de) | Mittel zur aufhebbaren verbindung eines implantats mit einer einsatzvorrichtung | |
JP5854724B2 (ja) | パッチをパッチ展開デバイスに可逆的に接続するための手段および方法 | |
EP2700380B1 (de) | Treibstangenfeder und -klammer zur Entfaltung einer Implantatvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100914 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TYCO HEALTHCARE GROUP LP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVIDIEN LP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20130729 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61B 17/08 20060101AFI20130723BHEP Ipc: A61B 17/064 20060101ALI20130723BHEP Ipc: A61F 2/00 20060101ALI20130723BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 904144 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009046844 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170928 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170929 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 904144 Country of ref document: AT Kind code of ref document: T Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170928 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171028 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009046844 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180218 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090218 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170628 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20230120 Year of fee payment: 15 Ref country code: FR Payment date: 20230119 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230120 Year of fee payment: 15 Ref country code: DE Payment date: 20230119 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009046844 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240218 |