EP2139809A1 - Adsorption process for removing inorganic components from a hydrochloric acid gas flow - Google Patents
Adsorption process for removing inorganic components from a hydrochloric acid gas flowInfo
- Publication number
- EP2139809A1 EP2139809A1 EP08735019A EP08735019A EP2139809A1 EP 2139809 A1 EP2139809 A1 EP 2139809A1 EP 08735019 A EP08735019 A EP 08735019A EP 08735019 A EP08735019 A EP 08735019A EP 2139809 A1 EP2139809 A1 EP 2139809A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrogen chloride
- gas
- bed
- hydrochloric acid
- hcl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
- C01B7/0718—Purification ; Separation of hydrogen chloride by adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/104—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/306—Surface area, e.g. BET-specific surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/26—Halogens or halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
Definitions
- the invention relates to a process for the treatment of hydrogen chloride-containing gas streams which are contaminated with inorganic compounds, by means of adsorption.
- the invention relates to the purification of hydrogen chloride-containing process gases of hydrogen chloride oxidation, in particular of the catalyzed hydrogen chloride oxidation.
- phosgene is removed by washing with dichloroethane (DE-A 11 07 18), which is not particularly attractive due to the use of organic halogenated solvents.
- ion exchangers are used to remove traces of chromium, molybdenum and tungsten.
- a disadvantage is the low long-term stability of the ion exchanger in comparison to inorganic oxides (Al, Si) and their relatively poor regenerability.
- the object of the invention is to provide an improved purification process for a crude gas stream containing hydrogen chloride.
- this is effected by the inorganic impurities are removed at high temperatures (> 120 ° C normal pressure), in particular at more than 190 0 C, by passing the raw gas through an adsorbent bed.
- Hydrochloric acid which can be obtained from the thus purified hydrogen chloride, contains only traces of inorganic impurities and can be used, for example, in electrolysis processes or as a neutralizing agent or as a catalyst in chemical processes.
- the present invention also has the particular aim of reducing the loss of valuable components such as ruthenium in the process gas purification of contaminated with inorganic compounds hydrogen chloride gas streams. This can be achieved by working up the adsorption bed.
- the invention relates to a process for removing inorganic components from a hot crude gas stream containing hydrogen chloride, comprising the steps of:
- Inorganic impurities in the context of the invention are understood to mean titanium compounds, in particular titanium chloride, titanium oxides, titanium oxide chlorides,
- Ruthenium compounds in particular ruthenium oxides, ruthenium chlorides, ruthenium oxide chlorides, chromium compounds, in particular chromium oxides, chromium chlorides or chromium oxide chlorides, tin compounds, in particular tin oxides, tin chlorides, tin oxide chlorides, copper compounds, in particular copper oxides, copper chlorides or copper oxide chlorides, zirconium compounds, zirconium oxides, zirconium chlorides, zirconium oxide chlorides, furthermore silicon, aluminum oxides , Gold, silver, bismuth, cobalt, iron, manganese, molybdenum, nickel, magnesium and vanadium compounds, in particular in the form of oxide, chlorides or oxide chlorides.
- Tin compounds, ruthenium compounds or titanium compounds of the aforementioned type are preferably removed by the process.
- Adso ⁇ tion B As an adsorbent for Adso ⁇ tion B) here are usually zeolites, alumina, (especially as organometallic complex), SiO 2 (especially in the form of silica gel), aluminum silicalites (in particular in the form of bentonite) and other metal oxides are used. Preferred is gamma-alumina.
- the BET surface area of the adsorbent, in particular of the aluminum oxide, is preferably in the range of 10-1000 rnVg, more preferably in the range of> 25 m 2 / g.
- the highly purified HCl is suitable for use in HCl electrolysis, in particular by means of an oxygen-consuming cathode, as a catalyst and as a neutralizing agent for chemical synthesis without further aftertreatment.
- tetravalent cations eg tin or titanium compounds
- the method is particularly preferably used when the hydrogen chloride-containing purified gas stream originates from a production process for the production of chlorine from hydrogen chloride and oxygen, in particular a catalyzed gas phase oxidation of hydrogen chloride with oxygen or a non-thermal reaction of hydrogen chloride and oxygen.
- the coupling with the catalyzed gas phase oxidation of hydrogen chloride with oxygen is particularly preferred.
- the catalytic process known as the Deacon process is particularly preferably used in combination with the process according to the invention.
- hydrogen chloride is oxidized with oxygen in an exothermic equilibrium reaction to chlorine, whereby water vapor is obtained.
- the reaction temperature is usually 150 to 500 0 C, the usual reaction pressure is 1 to 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity.
- oxygen in superstoichiometric Use quantities of hydrogen chloride. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, longer residence time than normal pressure.
- Suitable preferred catalysts for the Deacon process include ruthenium oxide, ruthenium chloride or other ruthenium compounds on tin oxide, silica, alumina, titania or zirconia as a carrier.
- Suitable catalysts can be obtained, for example, by applying ruthenium chloride to the support and then drying or drying and calcining.
- Suitable catalysts may, in addition to or instead of a ruthenium compound, also contain compounds of other noble metals, for example gold, palladium, platinum, osmium, iridium, silver, copper or rhenium.
- Suitable catalysts may further contain chromium oxide.
- the catalytic hydrogen chloride oxidation may be adiabatic or preferably isothermal or approximately isothermal, batchwise, but preferably continuously or as a fixed bed process, preferably as a fixed bed process, more preferably in tube bundle reactors to heterogeneous catalysts at a reactor temperature of 180 to 500 0 C, preferably 200 to 400 0th C, more preferably 220 to 350 0 C and a pressure of 1 to 25 bar (1000 to 25000 hPa), preferably 1.2 to 20 bar, more preferably 1.5 to 17 bar and in particular 2.0 to 15 bar are performed ,
- Typical reactors in which the catalytic hydrogen chloride oxidation is carried out are fixed bed or fluidized bed reactors.
- the catalytic hydrogen chloride oxidation can preferably also be carried out in several stages.
- a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
- Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
- an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof, Alumina, steatite, ceramic, glass, graphite, stainless steel or nickel alloys can be used.
- the inert material should preferably have similar external dimensions.
- Suitable shaped catalyst bodies are shaped bodies with any desired shapes, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, particular preference being given to rings, cylinders or star strands as molds.
- Ruthenium compounds or copper compounds on support materials are particularly suitable as heterogeneous catalysts, preference being given to optionally doped ruthenium catalysts.
- Suitable support materials are, for example, silicon dioxide, graphite, rutile or anatase titanium dioxide, tin dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide, tin dioxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide, tin dioxide or their mixtures.
- the copper or ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of CuCl 2 or RuCl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
- the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
- the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
- the moldings can then be dried at a temperature of 100 to 400 0 C, preferably 100 to 300 0 C, for example, under a nitrogen, argon or air atmosphere and optionally calcined.
- the moldings are first dried at 100 to 150 0 C and then calcined at 200 to 400 0 C.
- the conversion of hydrogen chloride in a single pass can preferably be limited to 15 to 95%, preferably 40 to 90%, particularly preferably 50 to 90%.
- unreacted hydrogen chloride can be partly or completely recycled to the catalytic hydrogen chloride oxidation.
- the volume ratio of hydrogen chloride to oxygen at the reactor inlet is preferably 1: 1 to 20: 1, preferably 1: 1 to 8: 1, particularly preferably 1: 1 to 5: 1.
- the heat of reaction of the catalytic hydrogen chloride oxidation can be used advantageously for the production of high-pressure steam. This can be used to operate a Phosgeniemngsreaktors and or distillation columns, in particular of isocyanate distillation columns.
- the chlorine formed is separated off.
- the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
- the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
- the loaded with inorganic impurities adsorbent material is replaced at appropriate intervals by fresh adsorbent.
- the valuable metal compounds present in the asorption agent in particular ruthenium or other noble metal compounds
- suitable basically known digestion processes and fed to reuse are removed from the adsorbent by suitable basically known digestion processes and fed to reuse.
- Example 2 hi a fixed bed reactor 50 g of catalyst are diluted with 150 g of glass body and at 4 bar and 350 0 C with 40.5 l / h of hydrogen chloride, 315 l / h of oxygen and 252 l / h of nitrogen flowed through.
- the conversion of hydrogen chloride is> 95%.
- the hot product gas stream (195 0 C) is passed through an adsorber ( ⁇ - Al 2 O 3 , manufacturer Saint-Gobain, type SA3177, 3 mm pellets) to a condenser. From the product stream, which consists in addition to unreacted educts and nitrogen in equal parts of chlorine and water, the water and the unreacted hydrogen chloride are separated in a condenser.
- the condensate is then analyzed by ICP-OES.
- the result is a tin content of on average ⁇ 1 mg Sn per kg of condensate.
- the ruthenium content is below the detection limit.
- the measured values are shown under A to C in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The invention relates to a method for removing inorganic components from a crude gas flow containing hot hydrochloric acid. Said method comprises the steps: A) introducing the hot crude gas that contains HCl and impurities to an adsorption bed, B) adsorbing the inorganic components from the HCl-containing crude gas onto an absorber, C) withdrawing the purified HCl gas from the adsorption bed.
Description
Adsorptionsprozess zur Entfernung anorganischer Komponenten aus einem Chlorwasserstoff enthaltenden Gasstrom Adsorption process for removing inorganic components from a gas stream containing hydrogen chloride
Die Erfindung betrifft ein Verfahren zur Aufarbeitung von Chlorwasserstoff enthaltenden Gasströmen, die mit anorganischen Verbindungen verunreinigt sind, mittels Adsorption.The invention relates to a process for the treatment of hydrogen chloride-containing gas streams which are contaminated with inorganic compounds, by means of adsorption.
Speziell betrifft die Erfindung die Reinigung von Chlorwasserstoff enthaltenden Prozessgasen der Chlorwasserstoffoxidation, insbesondere der katalysierten Chlorwasserstoffoxidation.Specifically, the invention relates to the purification of hydrogen chloride-containing process gases of hydrogen chloride oxidation, in particular of the catalyzed hydrogen chloride oxidation.
Es existieren verschiedene Methoden zur Entfernung von organischen Verunreinigungen aus HCl enthaltenden Gasströmen, z. B. von Benzol aus HCl durch Auswaschen mit einer Mischung aus H2SO4 / HOAc / H2O (DE 24 13 043 Al) oder durch Adsorption an Aluminiumoxid (GB 1 090 521).There are various methods for removing organic contaminants from HCl-containing gas streams, eg. B. of benzene from HCl by washing with a mixture of H 2 SO 4 / HOAc / H 2 O (DE 24 13 043 Al) or by adsorption on alumina (GB 1 090 521).
Zur Reinigung von HCl-Gas, das Phosgen enthält, wird Phosgen durch Auswaschen mit Dichlorethan entfernt (DE-A 11 07 18), was aufgrund des Einsatzes von organischen halogenierten Lösungsmittel nicht besonders attraktiv ist.To purify HCl gas containing phosgene, phosgene is removed by washing with dichloroethane (DE-A 11 07 18), which is not particularly attractive due to the use of organic halogenated solvents.
Für die Entfernung anorganischer Verunreinigungen aus Chlorwasserstoff sind nur wenige Methoden beschrieben, die meist über die Reinigung der Salzsäure, aber nicht des gasförmigen Chlorwasserstoffs ablaufen.For the removal of inorganic impurities from hydrogen chloride, only a few methods are described, which usually take place on the purification of hydrochloric acid, but not the gaseous hydrogen chloride.
Zur Reinigung von Salzsäure werden z. B. wie in Hydrometallurgy (2005), 77(1-2), 81-88 beschrieben Ionentauscher zur Entfernung von Spuren von Chrom, Molybdän und Wolfram eingesetzt. Nachteilig ist die geringe Langzeitstabilität der Ionentauscher im Vergleich zu anorganischen Oxiden (Al, Si) und deren relativ schlechte Regenerierfähigkeit.For the purification of hydrochloric acid z. For example, as described in Hydrometallurgy (2005), 77 (1-2), 81-88, ion exchangers are used to remove traces of chromium, molybdenum and tungsten. A disadvantage is the low long-term stability of the ion exchanger in comparison to inorganic oxides (Al, Si) and their relatively poor regenerability.
Die Entfernung von Arsen aus gasförmigem Chlorwasserstoff durch ein Aktivkohlebett wird in US-A- 1 936 078 beschrieben. Die dabei eingesetzten Temperaturen sind in allgemeinen sehr gering (< 100 0C), so dass es nicht offensichtlich ist, ob eine Anwendung bei hohen Temperaturen überhaupt möglich ist. Zusätzlich ist aufgrund der Oxidationsempfmdlichkeit der Aktivkohle ein Einsatz für die Reinigung von O2 enthaltenden HCl-Gasströmen bei > 250 0C nicht möglich.The removal of arsenic from gaseous hydrogen chloride by an activated carbon bed is described in US-A-1,936,078. The temperatures used are generally very low (<100 0 C), so it is not obvious whether an application at high temperatures is even possible. In addition, due to the Oxidationsempfmdlichkeit the activated carbon use for the purification of O 2 -containing HCl gas streams at> 250 0 C is not possible.
Zusätzlich führt bei Deacon-Produktgasen die Anwesenheit von Reaktionswasser zur Bildung von Salzsäure bei einer Temperatur unterhalb von 100 0C.
Die dargestellten Reinigungsverfahren des Standes der Technik besitzen den Nachteil, dass sie für eine Reinigung von HCl-Gasströmen bei Temperatur insbesondere oberhalb von 250 0C, wie sie beispielsweise in einem Deacon-Prozess vorkommen, nicht geeignet sind.Additionally, in Deacon product gases, the presence of water of reaction leads to the formation of hydrochloric acid at a temperature below 100 ° C. The illustrated cleaning methods of the prior art have the disadvantage that they are not suitable for a purification of HCl gas streams at a temperature in particular above 250 0 C, as they occur for example in a Deacon process.
Aufgabe der Erfindung ist es, ein verbessertes Reinigungsverfahren für einen Chlorwasserstoff enthaltenden Rohgasstrom bereitzustellen.The object of the invention is to provide an improved purification process for a crude gas stream containing hydrogen chloride.
Erfindungsgemäß wird dies dadurch bewirkt, in dem die anorganischen Verunreinigungen bei hohen Temperaturen (> 120 °C Normaldruck), insbesondere bei mehr als 190 0C, durch das Leiten des Rohgases über ein Adsorberbett entfernt werden. Salzsäure, die aus dem so gereinigten Chlorwasserstoff erhalten werden kann, enthält nur noch Spuren an anorganischen Verunreinigungen und kann beispielsweise in Elektrolyse Verfahren oder als Neutralisationsmittel bzw. als Katalysator in chemischen Prozessen eingesetzt werden.According to the invention this is effected by the inorganic impurities are removed at high temperatures (> 120 ° C normal pressure), in particular at more than 190 0 C, by passing the raw gas through an adsorbent bed. Hydrochloric acid, which can be obtained from the thus purified hydrogen chloride, contains only traces of inorganic impurities and can be used, for example, in electrolysis processes or as a neutralizing agent or as a catalyst in chemical processes.
Die vorliegende Erfindung hat weiterhin insbesondere noch die Verringerung des Verlustes von Wertstoffkomponenten wie Ruthenium in der Prozessgasreinigung von mit anorganischen Verbindungen verunreinigten Chlorwasserstoff enthaltenden Gasströmen zum Ziel. Dies kann durch Aufarbeitung des Adsorptionsbettes erreicht werden.The present invention also has the particular aim of reducing the loss of valuable components such as ruthenium in the process gas purification of contaminated with inorganic compounds hydrogen chloride gas streams. This can be achieved by working up the adsorption bed.
Gegenstand der Erfindung ist ein Verfahren zur Entfernung anorganischer Komponenten aus einem heißen, Chlorwasserstoff enthaltenden Rohgasstrom mit den Schritten:The invention relates to a process for removing inorganic components from a hot crude gas stream containing hydrogen chloride, comprising the steps of:
A) Einbringung des heißen HCl-haltigem verunreinigtem Rohgas in einem AdsorberbettA) Introduction of the hot HCl-containing contaminated raw gas in an adsorbent bed
B) Adsorption Metallkomponenten aus HCl-haltigem Rohgas an einem AdsorbensB) Adsorption of metal components from HCl-containing crude gas to an adsorbent
C) Entfernung gereinigtes HCl-Gas aus AdsorberbettC) Purification of purified HCl gas from adsorber bed
Unter anorganischen Verunreinigungen im Sinne der Erfindung werden verstanden Titanverbindungen, insbesondere Titanchlorid, Titanoxide, Titanoxidchloride,Inorganic impurities in the context of the invention are understood to mean titanium compounds, in particular titanium chloride, titanium oxides, titanium oxide chlorides,
Rutheniumverbindungen, insbesondere Rutheniumoxide, Rutheniumchloride, Rutheniumoxidchloride, Chromverbindungen, insbesondere Chromoxide, Chromchloride oder Chromoxidchloride, Zinnverbindungen, insbesondere Zinnoxide, Zinnchloride, Zinnoxidchloride, Kupferverbindungen, insbesondere Kupferoxide, Kupferchloride oder Kupferoxidchloride, Zirkonverbindungen, Zirkonoxide, Zirkonchloride, Zirkonoxidchloride, ferner Silizium-, Aluminium-, Gold-, Silber-, Bismut-, Cobalt-, Eisen-, Mangan-, Molybdän-, Nickel-, Magnesium- und Vanadiumverbindungen, insbesondere in Form von Oxid, Chloriden oder Oxidchloriden. Bevorzugt werden mit dem Verfahren Zinnverbindungen, Rutheniumverbindungen oder Titanverbindungen der vorgenannten Art entfernt.
AIs Adsorptionsmittel für die Adsoφtion B) kommen hierbei in der Regel Zeolithe, Aluminiumoxid, (insbesondere auch als metallorganischer Komplex), SiO2 (insbesondere in Form von Kieselgel), Aluminium-Silicalite (insbesondere in Form von Bentonit) und sonstige Metalloxide zum Einsatz. Bevorzugt ist gamma-Aluminiumoxid.Ruthenium compounds, in particular ruthenium oxides, ruthenium chlorides, ruthenium oxide chlorides, chromium compounds, in particular chromium oxides, chromium chlorides or chromium oxide chlorides, tin compounds, in particular tin oxides, tin chlorides, tin oxide chlorides, copper compounds, in particular copper oxides, copper chlorides or copper oxide chlorides, zirconium compounds, zirconium oxides, zirconium chlorides, zirconium oxide chlorides, furthermore silicon, aluminum oxides , Gold, silver, bismuth, cobalt, iron, manganese, molybdenum, nickel, magnesium and vanadium compounds, in particular in the form of oxide, chlorides or oxide chlorides. Tin compounds, ruthenium compounds or titanium compounds of the aforementioned type are preferably removed by the process. As an adsorbent for Adsoφtion B) here are usually zeolites, alumina, (especially as organometallic complex), SiO 2 (especially in the form of silica gel), aluminum silicalites (in particular in the form of bentonite) and other metal oxides are used. Preferred is gamma-alumina.
Die BET-Oberfläche des Adsorptionsmittels, insbesondere des Aluminiumoxids, liegt bevorzugt im Bereich von 10-1000 rnVg, besonders bevorzugt im Bereich von > 25 m2/g.The BET surface area of the adsorbent, in particular of the aluminum oxide, is preferably in the range of 10-1000 rnVg, more preferably in the range of> 25 m 2 / g.
Gängige Apparatetypen zur Herstellung eines intensiven Gas-Adsorbens Kontaktes sind einfache Festbetten, Fließbetten, Wirbelbetten oder auch als ganzes bewegbare Festbetten. Eine andere Möglichkeit besteht darin das Adsorberbett in einem Deaconreaktor, als nachgelagerte Schüttung zum Katalysatorbett einzusetzen.Common types of apparatus for producing an intensive gas adsorbent Kontaktes are simple fixed beds, fluidized beds, fluidized beds or as a whole movable fixed beds. Another possibility is to use the adsorber bed in a Deaconreaktor as a downstream bed to the catalyst bed.
Die Vorteile der adsorptiven Entfernung von Metallkomponenten aus Gasströmen sind, dass die so hoch-gereinigte HCl für den Einsatz in der HCl-Elektrolyse, insbesondere mittels Sauerstoff- Verzehr- Kathode, als Katalysator und als Neutralisationsmittel für die chemische Synthese ohne weitere Nachbehandlung geeignet ist. Beispielsweise bei der HCl-Elektrolyse mittels Sauerstoff-Verzehr- Kathode setzen insbesondere vierwertige Kationen (z. B. Zinn- oder Titanverbindungen) die Zellspannung herauf und setzen so die Lebensdauer der Elektrolyse-Zellen unerwünschterweise herab.The advantages of adsorptive removal of metal components from gas streams are that the highly purified HCl is suitable for use in HCl electrolysis, in particular by means of an oxygen-consuming cathode, as a catalyst and as a neutralizing agent for chemical synthesis without further aftertreatment. For example, in the case of HCl electrolysis by means of an oxygen-consuming cathode, especially tetravalent cations (eg tin or titanium compounds) increase the cell voltage and thus undesirably lower the life of the electrolysis cells.
Das Verfahren wird besonders bevorzugt angewendet, wenn der chlorwasserstoffhaltige gereinigte Gasstrom aus einem Produktionsverfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff stammt, insbesondere einer katalysierten Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff oder einer nicht-thermischen Umsetzung von Chlorwasserstoff und Sauerstoff. Die Kopplung mit der katalysierten Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff (Deacon- Verfahren) ist besonders bevorzugt.The method is particularly preferably used when the hydrogen chloride-containing purified gas stream originates from a production process for the production of chlorine from hydrogen chloride and oxygen, in particular a catalyzed gas phase oxidation of hydrogen chloride with oxygen or a non-thermal reaction of hydrogen chloride and oxygen. The coupling with the catalyzed gas phase oxidation of hydrogen chloride with oxygen (Deacon method) is particularly preferred.
Besonders bevorzugt wird wie oben bereits beschrieben das als Deacon-Prozess bekannte katalytische Verfahren in Kombination mit dem erfϊndungsgemäßen Verfahren eingesetzt. Hierbei wird Chlorwasserstoff mit Sauerstoff in einer exothermen Gleichgewichtsreaktion zu Chlor oxidiert, wobei Wasserdampf anfällt. Die Reaktionstemperatur beträgt üblicherweise 150 bis 5000C, der übliche Reaktionsdruck beträgt 1 bis 25 bar. Da es sich um eine Gleichgewichtsreaktion handelt, ist es zweckmäßig, bei möglichst niedrigen Temperaturen zu arbeiten, bei denen der Katalysator noch eine ausreichende Aktivität aufweist. Ferner ist es zweckmäßig, Sauerstoff in überstöchiometrischen
Mengen zum Chlorwasserstoff einzusetzen. Üblich ist beispielsweise ein zwei- bis vierfacher Sauerstoff-Überschuss. Da keine Selektivitätsverluste zu befürchten sind, kann es wirtschaftlich vorteilhaft sein, bei relativ hohem Druck und dementsprechend bei gegenüber Normaldruck längerer Verweilzeit zu arbeiten.As described above, the catalytic process known as the Deacon process is particularly preferably used in combination with the process according to the invention. Here, hydrogen chloride is oxidized with oxygen in an exothermic equilibrium reaction to chlorine, whereby water vapor is obtained. The reaction temperature is usually 150 to 500 0 C, the usual reaction pressure is 1 to 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity. Furthermore, it is expedient to oxygen in superstoichiometric Use quantities of hydrogen chloride. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, longer residence time than normal pressure.
Geeignete bevorzugte Katalysatoren für das Deacon- Verfahren enthalten Rutheniumoxid, Rutheniumchlorid oder andere Rutheniumverbindungen auf Zinnoxid, Siliziumdioxid, Aluminiumoxid, Titandioxid oder Zirkondioxid als Träger. Geeignete Katalysatoren können beispielsweise durch Aufbringen von Rutheniumchlorid auf den Träger und anschließendes Trocknen oder Trocknen und Kalzinieren erhalten werden. Geeignete Katalysatoren können ergänzend zu oder an Stelle einer Rutheniumverbindung auch Verbindungen anderer Edelmetalle, beispielsweise Gold, Palladium, Platin, Osmium, Iridium, Silber, Kupfer oder Rhenium enthalten. Geeignete Katalysatoren können ferner Chromoxid enthalten.Suitable preferred catalysts for the Deacon process include ruthenium oxide, ruthenium chloride or other ruthenium compounds on tin oxide, silica, alumina, titania or zirconia as a carrier. Suitable catalysts can be obtained, for example, by applying ruthenium chloride to the support and then drying or drying and calcining. Suitable catalysts may, in addition to or instead of a ruthenium compound, also contain compounds of other noble metals, for example gold, palladium, platinum, osmium, iridium, silver, copper or rhenium. Suitable catalysts may further contain chromium oxide.
Die katalytische Chlorwasserstoff- Oxidation kann adiabatisch oder bevorzugt isotherm oder annähernd isotherm, diskontinuierlich, bevorzugt aber kontinuierlich als Fließ- oder Festbettverfahren, bevorzugt als Festbettverfahren, besonders bevorzugt in Rohrbündelreaktoren an Heterogenkatalysatoren bei einer Reaktortemperatur von 180 bis 5000C, bevorzugt 200 bis 4000C, besonders bevorzugt 220 bis 3500C und einem Druck von 1 bis 25 bar (1000 bis 25000 hPa), bevorzugt 1,2 bis 20 bar, besonders bevorzugt 1,5 bis 17 bar und insbesondere 2,0 bis 15 bar durchgeführt werden.The catalytic hydrogen chloride oxidation may be adiabatic or preferably isothermal or approximately isothermal, batchwise, but preferably continuously or as a fixed bed process, preferably as a fixed bed process, more preferably in tube bundle reactors to heterogeneous catalysts at a reactor temperature of 180 to 500 0 C, preferably 200 to 400 0th C, more preferably 220 to 350 0 C and a pressure of 1 to 25 bar (1000 to 25000 hPa), preferably 1.2 to 20 bar, more preferably 1.5 to 17 bar and in particular 2.0 to 15 bar are performed ,
Übliche Reaktionsapparate, in denen die katalytische Chlorwasserstoff-Oxidation durchgeführt wird, sind Festbett- oder Wirbelbettreaktoren. Die katalytische Chlorwasserstoff- Oxidation kann bevorzugt auch mehrstufig durchgeführt werden.Typical reactors in which the catalytic hydrogen chloride oxidation is carried out are fixed bed or fluidized bed reactors. The catalytic hydrogen chloride oxidation can preferably also be carried out in several stages.
Bei der adiabatischen, der isothermen oder annähernd isothermen Fahrweise können auch mehrere, also 2 bis 10, bevorzugt 2 bis 6, besonders bevorzugt 2 bis 5, insbesondere 2 bis 3, in Reihe geschaltete Reaktoren mit Zwischenkühlung eingesetzt werden. Der Chlorwasserstoff kann entweder vollständig zusammen mit dem Sauerstoff vor dem ersten Reaktor oder über die verschiedenen Reaktoren verteilt zugegeben werden. Diese Reihenschaltung einzelner Reaktoren kann auch in einem Apparat zusammengeführt werden.In the case of the adiabatic, isothermal or approximately isothermal mode of operation, it is also possible to use a plurality of reactors with intermediate cooling, that is to say 2 to 10, preferably 2 to 6, particularly preferably 2 to 5, in particular 2 to 3, connected in series. The hydrogen chloride can be added either completely together with the oxygen before the first reactor or distributed over the various reactors. This series connection of individual reactors can also be combined in one apparatus.
Eine weitere bevorzugte Ausführungsform einer für das Verfahren geeigneten Vorrichtung besteht darin, dass man eine strukturierte Katalysatorschüttung einsetzt, bei der die Katalysatoraktivität in Strömungsrichtung ansteigt. Eine solche Strukturierung der Katalysatorschüttung kann durch unterschiedliche Tränkung der Katalysatorträger mit Aktivmasse oder durch unterschiedliche Verdünnung des Katalysators mit einem Inertmaterial erfolgen. Als Inertmaterial können beispielsweise Ringe, Zylinder oder Kugeln aus Titandioxid, Zirkondioxid oder deren Gemischen,
Aluminiumoxid, Steatit, Keramik, Glas, Graphit, Edelstahl oder Nickellegierungen eingesetzt werden. Beim bevorzugten Einsatz von Katalysatorformkörpern sollte das Inertmaterial bevorzugt ähnliche äußeren Abmessungen haben.A further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction. Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material. As an inert material, for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof, Alumina, steatite, ceramic, glass, graphite, stainless steel or nickel alloys can be used. In the preferred use of shaped catalyst bodies, the inert material should preferably have similar external dimensions.
Als Katalysatorformkörper eignen sich Formkörper mit beliebigen Formen, bevorzugt sind Tabletten, Ringe, Zylinder, Sterne, Wagenräder oder Kugeln, besonders bevorzugt sind Ringe, Zylinder oder Sternstränge als Form.Suitable shaped catalyst bodies are shaped bodies with any desired shapes, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, particular preference being given to rings, cylinders or star strands as molds.
Als Heterogenkatalysatoren eignen sich insbesondere Rutheniumverbindungen oder Kupferverbindungen auf Trägermaterialen, die auch dotiert sein können, bevorzugt sind gegebenenfalls dotierte Rutheniumkatalysatoren. Als Trägermaterialen eignen sich beispielsweise Siliziumdioxid, Graphit, Titandioxid mit Rutil- oder Anatas-Struktur, Zinndioxid, Zirkondioxid, Aluminiumoxid oder deren Gemische, bevorzugt Titandioxid, Zirkondioxid, Aluminiumoxid, Zinndioxid oder deren Gemische, besonders bevorzugt γ- oder δ-Aluminiumoxid, Zinndioxid oder deren Gemische.Ruthenium compounds or copper compounds on support materials, which may also be doped, are particularly suitable as heterogeneous catalysts, preference being given to optionally doped ruthenium catalysts. Suitable support materials are, for example, silicon dioxide, graphite, rutile or anatase titanium dioxide, tin dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide, tin dioxide or mixtures thereof, particularly preferably γ- or δ-aluminum oxide, tin dioxide or their mixtures.
Die Kupfer- bzw. die Rutheniumträgerkatalysatoren können beispielsweise durch Tränkung des Trägermaterials mit wässrigen Lösungen von CuCl2 bzw. RuCl3 und gegebenenfalls eines Promotors zur Dotierung, bevorzugt in Form ihrer Chloride, erhalten werden. Die Formgebung des Katalysators kann nach oder bevorzugt vor der Tränkung des Trägermaterials erfolgen.The copper or ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of CuCl 2 or RuCl 3 and optionally a promoter for doping, preferably in the form of their chlorides. The shaping of the catalyst can take place after or preferably before the impregnation of the support material.
Zur Dotierung der Katalysatoren eignen sich als Promotoren Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium und Calcium, besonders bevorzugt Magnesium, Seltenerdmetalle wie Scandium, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandium, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische.For doping the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
Die Formkörper können anschließend bei einer Temperatur von 100 bis 4000C, bevorzugt 100 bis 3000C beispielsweise unter einer Stickstoff-, Argon- oder Luftatmosphäre getrocknet und gegebenenfalls kalziniert werden. Bevorzugt werden die Formkörper zunächst bei 100 bis 1500C getrocknet und anschließend bei 200 bis 4000C kalziniert.The moldings can then be dried at a temperature of 100 to 400 0 C, preferably 100 to 300 0 C, for example, under a nitrogen, argon or air atmosphere and optionally calcined. Preferably, the moldings are first dried at 100 to 150 0 C and then calcined at 200 to 400 0 C.
Der Umsatz an Chlorwasserstoff im einfachen Durchgang kann bevorzugt auf 15 bis 95 %, bevorzugt 40 bis 90 %, besonders bevorzugt 50 bis 90 % begrenzt werden. Nicht umgesetzter Chlorwasserstoff kann nach Abtrennung teilweise oder vollständig in die katalytische Chlorwasserstoff-Oxidation zurückgeführt werden. Das Volumenverhältnis von Chlorwasserstoff zu Sauerstoff am Reaktoreintritt beträgt bevorzugt 1 : 1 bis 20:1, bevorzugt 1:1 bis 8: 1, besonders bevorzugt 1:1 bis 5:1.
Die Reaktionswärme der katalytischen Chlorwasserstoff-Oxidation kann in vorteilhafter Weise zur Erzeugung von Hochdruck-Wasserdampf genutzt werden. Dieser kann zum Betrieb eines Phosgeniemngsreaktors und oder von Destillationskolonnen, insbesondere von Isocyanat- Destillationskolonnen genutzt werden.The conversion of hydrogen chloride in a single pass can preferably be limited to 15 to 95%, preferably 40 to 90%, particularly preferably 50 to 90%. After conversion, unreacted hydrogen chloride can be partly or completely recycled to the catalytic hydrogen chloride oxidation. The volume ratio of hydrogen chloride to oxygen at the reactor inlet is preferably 1: 1 to 20: 1, preferably 1: 1 to 8: 1, particularly preferably 1: 1 to 5: 1. The heat of reaction of the catalytic hydrogen chloride oxidation can be used advantageously for the production of high-pressure steam. This can be used to operate a Phosgeniemngsreaktors and or distillation columns, in particular of isocyanate distillation columns.
In einem weiteren Schritt wird das gebildete Chlor abgetrennt. Der Abtrennschritt umfasst üblicherweise mehrere Stufen, nämlich die Abtrennung und gegebenenfalls Rückführung von nicht umgesetztem Chlorwasserstoff aus dem Produktgasstrom der katalytischen Chlorwasserstoff- Oxidation, die Trocknung des erhaltenen, im wesentlichen Chlor und Sauerstoff enthaltenden Stroms sowie die Abtrennung von Chlor aus dem getrockneten Strom.In a further step, the chlorine formed is separated off. The separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
Die Abtrennung von nicht umgesetztem Chlorwasserstoff und von gebildetem Wasserdampf kann durch Auskondensieren von wässriger Salzsäure aus dem Produktgasstrom der Chlorwasserstoffoxidation durch Abkühlung erfolgen. Chlorwasserstoff kann auch in verdünnter Salzsäure oder Wasser absorbiert werden.The separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
Das mit anorganischen Verunreinigungen beladene Adsorptionsmaterial wird in zweckmäßigen zeitlichen Abständen durch frisches Adsorptionsmittel ersetzt. Die im Asorptionsmittel enthaltenen wertvollen Metallverbindungen (insbesondere Ruthenium- oder andere Edelmetallverbindungen) werden durch geeignete grundsätzlich bekannte Aufschlussverfahren vom Adsorptionsmittel entfernt und der Wiederverwendung zugeführt.
The loaded with inorganic impurities adsorbent material is replaced at appropriate intervals by fresh adsorbent. The valuable metal compounds present in the asorption agent (in particular ruthenium or other noble metal compounds) are removed from the adsorbent by suitable basically known digestion processes and fed to reuse.
BeispieleExamples
Beispiel 1 (Vergleich)Example 1 (comparison)
In einem Festbettreaktor werden 50 g Katalysator eines Zinndioxid-geträgerten Rutheniumchloridkatalysators (Gehalt RuCl3 4 Gew.-%) mit 150 g Glaskörper verdünnt und bei 4 bar und 3500C mit 40,5 l/h Chlorwasserstoff, 315 l/h Sauerstoff und 252 l/h Stickstoff durchströmt. Der Umsatz an Chlorwasserstoff beträgt > 95%. Aus dem Produktstrom, der neben nicht umgesetzten Edukten und Stickstoff zu gleichen Teilen aus Chlor und Wasser besteht, werden das Wasser und der nicht umgesetzte Chlorwasserstoff in einem Kondensator abgetrennt. Das Kondensat wird anschließend mittels ICP-OES analysiert. Es ergibt sich im Mittel ein Zinngehalt von 72 mg Sn und ein Rutheniumgehalt von 0,5 mg pro kg Kondensat. Die einzelnen Messwerte sind unter D bis F in Tabelle 1 wiedergegeben.In a fixed bed reactor 50 g of catalyst of a tin dioxide-supported ruthenium chloride catalyst (content RuCl 3 4 wt .-%) diluted with 150 g of glass body and at 4 bar and 350 0 C with 40.5 l / h of hydrogen chloride, 315 l / h of oxygen and Nitrogen flows through 252 l / h. The conversion of hydrogen chloride is> 95%. From the product stream, which consists in addition to unreacted educts and nitrogen in equal parts of chlorine and water, the water and the unreacted hydrogen chloride are separated in a condenser. The condensate is then analyzed by ICP-OES. This results in an average tin content of 72 mg Sn and a ruthenium content of 0.5 mg per kg condensate. The individual measured values are reproduced under D to F in Table 1.
Beispiel 2 hi einem Festbettreaktor werden 50 g Katalysator mit 150 g Glaskörper verdünnt und bei 4 bar und 3500C mit 40,5 l/h Chlorwasserstoff, 315 l/h Sauerstoff und 252 l/h Stickstoff durchströmt. Der Umsatz an Chlorwasserstoff beträgt > 95%. Der heiße Produktgasstrom (195 0C) wird über einen Adsorber (γ- Al2O3, Hersteller Saint-Gobain, Typ SA3177, 3 mm Pellets) zu einem Kondensator geleitet. Aus dem Produktstrom, der neben nicht umgesetzten Edukten und Stickstoff zu gleichen Teilen aus Chlor und Wasser besteht, werden das Wasser und der nicht umgesetzte Chlorwasserstoff in einem Kondensator abgetrennt. Das Kondensat wird anschließend mittels ICP-OES analysiert. Es ergibt sich ein Zinngehalt von im Mittel < 1 mg Sn pro kg Kondensat. Der Rutheniumgehalt ist unterhalb der Nachweisgrenze. Die Messswerte sind unter A bis C in Tabelle 1 wiedergegeben.Example 2 hi a fixed bed reactor 50 g of catalyst are diluted with 150 g of glass body and at 4 bar and 350 0 C with 40.5 l / h of hydrogen chloride, 315 l / h of oxygen and 252 l / h of nitrogen flowed through. The conversion of hydrogen chloride is> 95%. The hot product gas stream (195 0 C) is passed through an adsorber (γ- Al 2 O 3 , manufacturer Saint-Gobain, type SA3177, 3 mm pellets) to a condenser. From the product stream, which consists in addition to unreacted educts and nitrogen in equal parts of chlorine and water, the water and the unreacted hydrogen chloride are separated in a condenser. The condensate is then analyzed by ICP-OES. The result is a tin content of on average <1 mg Sn per kg of condensate. The ruthenium content is below the detection limit. The measured values are shown under A to C in Table 1.
Tabelle 1 : Zinn- und Rutheniumgehalt im Kondensat bei Versuchen mit und ohne AdsorberTable 1: Tin and ruthenium content in the condensate in experiments with and without adsorber
Versuch A B C D E FExperiment A B C D E F
Sn [mg/kg Kond.] 1,17 0,94 0,50 63 75 78Sn [mg / kg Cond.] 1.17 0.94 0.50 63 75 78
Ru [mg/kg Kond.] < 0,l < 0,l < 0,l 0,61 0,11 0,85
Ru [mg / kg Kond.] <0, l <0, l <0, l 0.61 0.11 0.85
Claims
1. Verfahren zur Entfernung anorganischer Komponenten aus einem heißen Chlorwasserstoff enthaltenden Rohgasstrom mit den Schritten:A process for removing inorganic components from a crude hydrogen gas stream containing hot hydrogen, comprising the steps of:
A) Einbringung des heißen HCl-haltigen verunreinigten Rohgases in ein Adsorberbett,A) introduction of the hot HCl-containing contaminated raw gas into an adsorbent bed,
B) Adsorption der anorganischen Komponenten aus dem HCl-haltigen Rohgas an einem Absorber,B) adsorption of the inorganic components from the HCl-containing raw gas to an absorber,
C) Ableitung des gereinigten HCl-Gases aus dem Adsorberbett.C) Discharge of the purified HCl gas from the adsorber bed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Adsorption B) bei einer Temperatur von wenigstens 120 0C, bevorzugt 190 bis 400 0C, durchgeführt wird.2. The method according to claim 1, characterized in that the adsorption B) at a temperature of at least 120 0 C, preferably 190 to 400 0 C, is performed.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Adsorptionsmittel wenigstens eines aus der Reihe: Zeolithe, Aluminiumoxid, Siliciumdioxid, Aluminiumsilicalit, bevorzugt γ-Aluminiumoxid, verwendet wird.3. The method according to any one of claims 1 or 2, characterized in that as adsorbent at least one of the series: zeolites, alumina, silica, aluminum silicalite, preferably γ-alumina, is used.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Adsorptionsmittel eine spezifische Oberfläche nach BET von 10 bis 1000 m2/g, bevorzugt 25 bis 1000 m2/g aufweist.4. The method according to any one of claims 1 to 3, characterized in that the adsorbent has a BET specific surface area of 10 to 1000 m 2 / g, preferably 25 to 1000 m 2 / g.
5. Verfahren nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Adsorptionsmittel in Form eines Festbettes vorliegt, insbesondere als nachgelagerte Schüttung zu einem Katalysatorfestbett.5. The method according to at least one of claims 1 to 4, characterized in that the adsorbent is in the form of a fixed bed, in particular as a downstream bed to a fixed catalyst bed.
6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die anorganische Verunreinigung eine oder mehrere der folgenden Metallverbindungen umfasst: Titan-, Ruthenium-, Chrom-, Zinn-, Kupfer-, Zirkon-, Silizium-, Aluminium-, Gold-, Silber-, Rhodium-, Iridium-, Platin-, Paladium-, Bismut-, Cobalt-, Eisen-, Mangan-, Molybdän-, Nickel-, Magnesium- und Vanadiumverbindungen.6. The method according to at least one of claims 1 to 5, characterized in that the inorganic impurity comprises one or more of the following metal compounds: titanium, ruthenium, chromium, tin, copper, zirconium, silicon, aluminum , Gold, silver, rhodium, iridium, platinum, palladium, bismuth, cobalt, iron, manganese, molybdenum, nickel, magnesium and vanadium compounds.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Metallverbindungen in Form ihrer Chloride, Oxide oder Oxidchloride vorliegen.7. The method according to claim 6, characterized in that the metal compounds in the form of their chlorides, oxides or oxide chlorides are present.
8. Verfahren nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Adsorption bei einem Druck von 1 bis 25 bar, bevorzugt 2 bis 20 bar, besonders bevorzugt 4 bis 15 bar, erfolgt. 8. The method according to at least one of claims 1 to 7, characterized in that the adsorption at a pressure of 1 to 25 bar, preferably 2 to 20 bar, more preferably 4 to 15 bar, takes place.
9. Verfahren nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Rohgas noch wenigstens eines der Gase aus der Reihe: Chlor, Sauerstoff, Wasser, Inertgas, insbesondere Kohlendioxid, Stickstoff, Helium, Neon, Argon, Krypton, umfasst.9. The method according to at least one of claims 1 to 8, characterized in that the raw gas still at least one of the gases from the series: chlorine, oxygen, water, inert gas, in particular carbon dioxide, nitrogen, helium, neon, argon, krypton comprises.
10. Verfahren nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass im Anschluss an die Ableitung C) das gereinigte Chlorwasserstoffgas in Wasser oder verdünnter Salzsäure gelöst und vom Restgas getrennt wird.10. The method according to at least one of claims 1 to 9, characterized in that following the discharge C), the purified hydrogen chloride gas is dissolved in water or dilute hydrochloric acid and separated from the residual gas.
11. Verwendung der Salzsäure aus dem Verfahren nach Anspruch 10 zur Salzsäureelektrolyse oder als saurer Katalysator oder als Neutralisationsmittel in chemischen Verfahren.11. Use of the hydrochloric acid from the process according to claim 10 for hydrochloric acid electrolysis or as an acidic catalyst or as a neutralizing agent in chemical processes.
12. Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff, insbesondere in Gegenwart von Katalysator (Deacon- Verfahren), dadurch gekennzeichnet, dass der nach der Oxidation erhaltene Teil von nicht umgesetztem Chlorwasserstoff umfassende Produktgassstrom einer Reinigung gemäß einem Verfahren nach einem der Ansprüche 1 bis 9 unterzogen wird. 12. A process for the preparation of chlorine from hydrogen chloride and oxygen, in particular in the presence of catalyst (Deacon process), characterized in that the product obtained after the oxidation of unreacted hydrogen chloride comprising product gas stream of a purification according to a method of any one of claims 1 to 9 is subjected.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007018016A DE102007018016A1 (en) | 2007-04-17 | 2007-04-17 | Absorption process for removing inorganic components from a gas stream containing hydrogen chloride |
PCT/EP2008/002687 WO2008125235A1 (en) | 2007-04-17 | 2008-04-04 | Adsorption process for removing inorganic components from a hydrochloric acid gas flow |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2139809A1 true EP2139809A1 (en) | 2010-01-06 |
Family
ID=39684160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08735019A Withdrawn EP2139809A1 (en) | 2007-04-17 | 2008-04-04 | Adsorption process for removing inorganic components from a hydrochloric acid gas flow |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080257150A1 (en) |
EP (1) | EP2139809A1 (en) |
JP (1) | JP2010524814A (en) |
KR (1) | KR20090129476A (en) |
CN (1) | CN101657380A (en) |
DE (1) | DE102007018016A1 (en) |
WO (1) | WO2008125235A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109678114A (en) * | 2019-02-19 | 2019-04-26 | 苏州晶瑞化学股份有限公司 | The minimizing technology of arsenic impurities in a kind of electronic grade hydrochloric acid |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101935020B (en) * | 2010-09-15 | 2012-01-25 | 重庆天原化工有限公司 | Purification method of by-product hydrogen chloride of methane chloride |
US9352270B2 (en) | 2011-04-11 | 2016-05-31 | ADA-ES, Inc. | Fluidized bed and method and system for gas component capture |
CN102602892B (en) * | 2012-04-11 | 2015-04-01 | 万华化学集团股份有限公司 | Method for preparing chlorine gas through catalytic oxidation of hydrogen chloride |
AU2013317997B2 (en) | 2012-09-20 | 2016-04-07 | ADA-ES, Inc. | Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts |
WO2014185499A1 (en) * | 2013-05-15 | 2014-11-20 | 旭硝子株式会社 | Method for purifying hydrogen chloride |
EP3010637B1 (en) * | 2013-06-17 | 2019-04-03 | Reliance Industries Limited | A process for the removal of metal contaminants from fluids |
CN104689782A (en) * | 2013-12-05 | 2015-06-10 | 无锡钻石地毯制造有限公司 | Ecological carpet hydrogen chloride adsorbent |
CN106145039B (en) * | 2015-04-01 | 2020-09-11 | 上海氯碱化工股份有限公司 | Method for pretreating raw materials in process of preparing chlorine from hydrogen chloride |
CN106422656A (en) * | 2016-11-30 | 2017-02-22 | 广东广山新材料有限公司 | Hydrogen chloride gas purification method |
CN112678775B (en) * | 2019-10-17 | 2022-12-06 | 新疆晶硕新材料有限公司 | Method and device for purifying and recycling white carbon black tail gas |
CN114212757B (en) * | 2021-12-24 | 2023-03-17 | 昆山市年沙助剂有限公司 | Production process of reagent-grade chemical auxiliary |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1936078A (en) * | 1926-12-09 | 1933-11-21 | Gen Chemical Corp | Process of purifying hydrochloric acid gas |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE730177C (en) * | 1939-09-16 | 1943-01-07 | Metallgesellschaft Ag | Process for the continuous production of selenium-free hydrochloric acid |
US3029575A (en) * | 1958-11-03 | 1962-04-17 | Exxon Research Engineering Co | Chlorine separation process |
GB1090521A (en) | 1965-11-04 | 1967-11-08 | Ici Ltd | Purification of hydrogen chloride |
GB1186941A (en) * | 1966-04-02 | 1970-04-08 | Sir Soc Italiana Resine Spa | Method of Manufacturing Useful Intermediates in the Synthesis of Biologically Degradable Detergents |
CA991822A (en) * | 1971-06-16 | 1976-06-29 | Dhirendra R. Merchant | Purification of gaseous hydrogen chloride |
DE2413043A1 (en) | 1974-03-19 | 1975-09-25 | Bayer Ag | METHOD FOR PURIFYING HYDROLINE ACID |
US4009214A (en) * | 1975-04-25 | 1977-02-22 | The Lummus Company | Separation of hydrogen fluoride from hydrogen chloride gas |
US4053558A (en) * | 1975-07-14 | 1977-10-11 | Stauffer Chemical Company | Purification of gas streams containing ferric chloride |
US4639259A (en) * | 1985-10-09 | 1987-01-27 | Kaiser Aluminum & Chemical Corporation | Promoted scavenger for purifying HCl-contaminated gases |
US4663052A (en) * | 1985-12-12 | 1987-05-05 | Union Carbide Corporation | Drying process using chabazite-type adsorbents |
US5316998A (en) * | 1992-05-05 | 1994-05-31 | Discovery Chemicals, Inc. | HCl adsorbent and method for making and using same |
US5284638A (en) * | 1992-08-05 | 1994-02-08 | Corning Incorporated | System and method for removing hydrocarbons from gaseous mixtures using multiple adsorbing agents |
US5958356A (en) * | 1997-11-05 | 1999-09-28 | Air Products And Chemicals, Inc. | Method for removal of moisture from gaseous HCl |
US6395070B1 (en) * | 1998-10-06 | 2002-05-28 | Matheson Tri-Gas, Inc. | Methods for removal of impurity metals from gases using low metal zeolites |
US6110258A (en) * | 1998-10-06 | 2000-08-29 | Matheson Tri-Gas, Inc. | Methods for removal of water from gases using superheated zeolites |
US6221132B1 (en) * | 1999-10-14 | 2001-04-24 | Air Products And Chemicals, Inc. | Vacuum preparation of hydrogen halide drier |
US6547861B2 (en) * | 2000-12-26 | 2003-04-15 | Matheson Tri-Gas,, Inc. | Method and materials for purifying reactive gases using preconditioned ultra-low emission carbon material |
GB0103762D0 (en) * | 2001-02-15 | 2001-04-04 | Air Prod & Chem | A gas purification unit |
US7175696B2 (en) * | 2002-02-19 | 2007-02-13 | American Air Liquide, Inc. | Method and apparatus for corrosive gas purification |
US7101415B2 (en) * | 2002-08-30 | 2006-09-05 | Matheson Tri-Gas, Inc. | Methods for regenerating process gas purifier materials |
US6709487B1 (en) * | 2002-10-22 | 2004-03-23 | Air Products And Chemicals, Inc. | Adsorbent for moisture removal from fluorine-containing fluids |
KR20070043792A (en) * | 2004-07-20 | 2007-04-25 | 엔테그리스, 아이엔씨. | Removal of metal contaminants from ultra-high purity gases |
US7314506B2 (en) * | 2004-10-25 | 2008-01-01 | Matheson Tri-Gas, Inc. | Fluid purification system with low temperature purifier |
-
2007
- 2007-04-17 DE DE102007018016A patent/DE102007018016A1/en not_active Withdrawn
-
2008
- 2008-04-04 CN CN200880012362A patent/CN101657380A/en active Pending
- 2008-04-04 JP JP2010503374A patent/JP2010524814A/en not_active Withdrawn
- 2008-04-04 EP EP08735019A patent/EP2139809A1/en not_active Withdrawn
- 2008-04-04 KR KR1020097021616A patent/KR20090129476A/en not_active Application Discontinuation
- 2008-04-04 WO PCT/EP2008/002687 patent/WO2008125235A1/en active Application Filing
- 2008-04-16 US US12/103,994 patent/US20080257150A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1936078A (en) * | 1926-12-09 | 1933-11-21 | Gen Chemical Corp | Process of purifying hydrochloric acid gas |
Non-Patent Citations (1)
Title |
---|
See also references of WO2008125235A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109678114A (en) * | 2019-02-19 | 2019-04-26 | 苏州晶瑞化学股份有限公司 | The minimizing technology of arsenic impurities in a kind of electronic grade hydrochloric acid |
CN109678114B (en) * | 2019-02-19 | 2021-04-02 | 苏州晶瑞化学股份有限公司 | Method for removing arsenic impurity in electronic grade hydrochloric acid |
Also Published As
Publication number | Publication date |
---|---|
KR20090129476A (en) | 2009-12-16 |
JP2010524814A (en) | 2010-07-22 |
DE102007018016A1 (en) | 2008-10-30 |
CN101657380A (en) | 2010-02-24 |
US20080257150A1 (en) | 2008-10-23 |
WO2008125235A1 (en) | 2008-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008125235A1 (en) | Adsorption process for removing inorganic components from a hydrochloric acid gas flow | |
EP2142470B1 (en) | Condensation-adsorption process for removing organic components from a gaseous stream containing hydrogen chloride | |
EP1529033B1 (en) | Integrated method for producing isocyanates | |
EP1866239B1 (en) | Method for producing chlorine | |
EP1981619B1 (en) | Process for extracting (chlorinated) hydrocarbon-free hydrogen chloride and phosgene-free (chlorinated) hydrocarbons from a hydrogen chloride stream containing (chlorinated) hydrocarbons and phosgene | |
EP1558521B1 (en) | Method for producing chlorine from hydrochloric acid | |
EP1981806B1 (en) | Method for the production of chlorine | |
EP2608879B1 (en) | Catalyst and method for the production of chlorine by gas phase oxidation | |
EP2257372A2 (en) | Method for regenerating a ruthenium- or ruthenium compound-containing catalyst which is contaminated with sulfur in the form of sulfur compounds | |
DE102007020142A1 (en) | Process for the recovery of ruthenium from a ruthenium-containing supported catalyst material | |
EP1542923B1 (en) | Fixed-bed method for production of chlorine by catalytic gas-phase oxidation of hydrogen chloride | |
EP2384240A1 (en) | Catalyst for hydrogen chloride oxidation containing ruthenium and nickel | |
WO2010076296A1 (en) | Method for regenerating a catalyst containing ruthenium oxide for hydrogen chloride oxidation | |
EP2391740A2 (en) | Method for recovering ruthenium from spent catalysts containing ruthenium oxide | |
DE10252859A1 (en) | Production of vinyl chloride comprises direct chlorination of ethylene and pyrolysis with catalytic oxidation of hydrogen chloride and recycle to the direct chlorination zone | |
EP2136893A1 (en) | Regenerative condensation and adsorption process for eliminating organic components from a gas flow | |
WO2018210770A1 (en) | Method for regenerating a toxified catalyst containing ruthenium or ruthenium compounds | |
WO2008131869A1 (en) | Method for the cleaning up and oxidation of a gas containing hydrogen chloride | |
EP2177268A1 (en) | Catalyst and method for producing chlorine by gas phase oxidation | |
WO2007134723A2 (en) | Method for producing chlorine by gas phase oxidation | |
DE10234908B4 (en) | Process for the production of chlorine from a (chlorine) hydrocarbons containing hydrogen chloride stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130610 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131022 |