[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2129752A1 - Mischung aus kaltfliessverbesserern und aminen - Google Patents

Mischung aus kaltfliessverbesserern und aminen

Info

Publication number
EP2129752A1
EP2129752A1 EP08717822A EP08717822A EP2129752A1 EP 2129752 A1 EP2129752 A1 EP 2129752A1 EP 08717822 A EP08717822 A EP 08717822A EP 08717822 A EP08717822 A EP 08717822A EP 2129752 A1 EP2129752 A1 EP 2129752A1
Authority
EP
European Patent Office
Prior art keywords
fuels
component
mixture according
carbon atoms
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08717822A
Other languages
English (en)
French (fr)
Inventor
Ansgar Eisenbeis
Irene Trötsch-Schaller
Uwe Rebholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08717822A priority Critical patent/EP2129752A1/de
Publication of EP2129752A1 publication Critical patent/EP2129752A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters

Definitions

  • the present invention relates to a mixture containing
  • R 1 is a hydrocarbyl radical having 6 to 40 carbon atoms, which may contain even more primary and / or secondary and / or tertiary amino functions
  • R 2 denotes a hydrocarbyl radical having 6 to 40 carbon atoms or hydrogen, wherein R 1 and R 2 together can also form a 5- to 7-membered ring
  • the present invention relates to the use of this mixture as an additive to fuels, such fuels themselves and fuel additive concentrates containing this mixture dissolved in a hydrocarbon solvent.
  • the fuels mentioned have a biodiesel component or consist of biodiesel.
  • Middle distillate fuels of fossil origin especially gas oils, diesel oils or light fuel oils derived from petroleum, have different levels of paraffins depending on the source of the crude oil.
  • cloudy point or Cloud Point (“CP") precipitates solid paraffins.
  • the platy n-paraffin crystals form a kind of "house of cards structure” and the middle distillate fuel stagnates, although its predominant part is still liquid.
  • the precipitated n-paraffins in the temperature range between cloud point (cloud point) and pour point (“PP”) significantly affect the flowability of middle distillate fuels;
  • the paraffins clog filters and cause uneven or completely interrupted fuel supply to the combustion units. Similar disturbances occur with light fuel oils.
  • n-paraffins can be modified in middle distillate fuels.
  • Well-acting additives prevent middle distillate fuels from reaching temperatures a few degrees Celsius below the temperature at which the first paraffin crystals crystallize, already become firm. Instead, fine, well crystallizing, separate paraffin crystals are formed, which also pass on further lowering of the temperature filter in motor vehicles and heating systems or at least form a permeable for the liquid part of the middle distillates filter cake, so that trouble-free operation is ensured.
  • the effectiveness of the flow improvers is usually expressed in accordance with the European standard EN 1 16 indirectly by measuring the CoId Filter Plugging Point ("CFPP").
  • CFPP CoId Filter Plugging Point
  • MDFI Middle Distillate Flow Improvers
  • MDFI Middle Distillate Flow Improvers
  • EVA ethylene-vinyl carboxylate copolymers
  • a disadvantage of these additives is that the paraffin crystals thus modified, due to their higher density compared to the liquid part, tend to settle more and more at the bottom of the container when storing the middle distillate fuel. As a result, a homogeneous low-paraffin phase forms in the upper container part and a two-phase paraffin-rich layer at the bottom. Since the deduction of the fuel usually takes place slightly above the container bottom both in the vehicle tanks and in storage or delivery tanks of the mineral oil dealer, there is the risk that the high concentration of solid paraffins leads to blockages of filters and metering devices. This danger increases the further the storage temperature falls below the extinction temperature of the paraffins, since the amount of paraffin precipitated increases with decreasing temperature. In particular, levels of biodiesel also enhance this undesirable tendency of the middle distillate fuel to paraffin sedimentation.
  • middle distillates of fossil origin precipitate during cooling of such FAME crystals, which can also enforce automotive filters and dosing.
  • these crystals do not consist of n-paraffins but of fatty acid esters.
  • fuels based on FAME can be characterized with the same characteristics as the middle distillates of fossil origin (CP, PP, CFPP).
  • the mentioned FAME and mixtures of these FAME with middle distillates generally have a worse low-temperature behavior than middle distillates of fossil origin alone.
  • the addition of FAME tends to produce paraffin sediments in mixtures with middle distillates of fossil origin.
  • the FAME are to partially or completely replace middle distillates of fossil origin as biofuel oils, they have too high CFPP values, so that they can not easily be used as fuel or heating oil in accordance with the applicable country and region specific requirements , Also, the increase in viscosity on cooling affects the cold property of FAME more than that of middle distillates of fossil origin.
  • the object was to make available products which bring about improved cold behavior in fuels based on biofuel (“biodiesel”), which is based on fatty acid esters (FAME).
  • biofuel biodiesel
  • FAME fatty acid esters
  • the object is achieved by the above-mentioned mixture of components (a) and (b), which is all the more surprising because when adding the component (b) to middle distillates of purely fossil origin, which already contain the component (a) , as a rule, an undesirable increase in CFPP levels is observed.
  • the amine component (b) usually alone has virtually no influence on the cold properties of fuels; in the present invention, it acts as a "booster" for component (a), to lower CFPP levels.
  • the mixture according to the invention preferably contains from 25 to 90% by weight, in particular from 35 to 80% by weight, in particular from 50 to 70% by weight, of the cold flow improver component (a) and from 10 to 75% by weight, in particular 20 to 65 wt .-%, especially 30 to 50 wt .-%, of the amine component (a).
  • component (a) in principle, all organic compounds can be used which are able to improve the cold flow behavior of fuels. Conveniently, they must have sufficient oil solubility.
  • cold flow improvers (MDFI) used for this purpose are usually suitable for middle distillates of fossil origin, that is to say for customary diesel fuels and heating oils.
  • component (a) it is also possible to use organic compounds which, when used in customary diesel fuels and heating oils, have partly or predominantly the properties of a wax anti-settling additive (WASA). Also, they can act partly or predominantly as nucleators. It is also possible to use mixtures of organic compounds which are active as MDFI and / or which act as WASA and / or nucleators, as component (a).
  • WASA wax anti-settling additive
  • the mixture according to the invention contains as component (a) at least one organic compound selected from
  • Mixtures of different representatives from one of the respective classes (a1) to (a6) as well as mixtures of representatives from different classes (a1) to (a6) can be used.
  • Suitable C 2 - to C 4 olefin monomers for the copolymers of class (a1) are, for example, those having 2 to 20, in particular 2 to 10, carbon atoms and having 1 to 3, preferably 1 or 2, in particular having one carbon-carbon atom. double bond. In the latter case, the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally. However, preference is given to ⁇ -olefins, more preferably ⁇ -olefins having 2 to 6 carbon atoms, for example propene, 1-butene, 1-pentene, 1-hexene and, above all, ethylene.
  • the at least one further ethylenically unsaturated monomer is preferably selected from carboxylic alkenyl esters, (meth) acrylic esters and further olefins.
  • olefins are polymerized in, these are preferably higher molecular weight than the abovementioned C 2 - to C 4 -olefin base monomers.
  • C 2 - to C 4 -olefin base monomers For example, set As olefin base monomer ethylene or propene, suitable as further olefins in particular C10 to C4o- ⁇ -olefins.
  • Other olefins are polymerized in most cases only when monomers with carboxylic acid ester functions are used.
  • Suitable (meth) acrylic esters are, for example, esters of (meth) acrylic acid with C 1 - to C 20 -alkanols, in particular C 1 -C 10 -alkanols, especially with methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol and decanol and structural isomers thereof.
  • Suitable carboxylic alkenyl esters are, for example, C2 to C6 alkenyl esters, e.g. the vinyl and propenyl esters of carboxylic acids having from 2 to 21 carbon atoms, the hydrocarbon radical of which may be linear or branched. Preferred among these are the vinyl esters.
  • carboxylic acids having a branched hydrocarbon radical preferred are those whose branch is in the ⁇ -position to the carboxyl group, the ⁇ -carbon atom being particularly preferably tertiary, ie. H. the carboxylic acid is a so-called neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is linear.
  • carboxylic alkenyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, the vinyl esters being preferred.
  • a particularly preferred alkyl alkynyl ester is vinyl acetate; typical copolymers of group (d) resulting therefrom are ethylene-vinyl acetate copolymers (EVA).
  • the mixture according to the invention contains as component (a1) at least one such ethylene-vinyl acetate copolymer.
  • component (a1) at least one such ethylene-vinyl acetate copolymer.
  • Particularly advantageous ethylene-vinyl acetate copolymers and their preparation are described in WO 99/29748.
  • copolymers of class (a1) are those which comprise two or more mutually different carboxylic acid alkenyl esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the carboxylic acid alkenyl ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • the mixture according to the invention contains as component (a1) at least one terpolymer of a C 2 - to C 4 - ⁇ -olefin, a C 1 - to C 20 -alkyl ester of an ethylenically unsaturated monocarboxylic acid acid having 3 to 15 carbon atoms and a C2 to C30 alkenyl ester of a saturated monocarboxylic acid having 2 to 21 carbon atoms.
  • terpolymers are described in WO 2005/054314.
  • a typical such terpolymer is composed of ethylene, 2-ethylhexyl acrylate and vinyl acetate.
  • the one or more ethylenically unsaturated monomers are present in the copolymers of class (a1) in an amount of preferably from 1 to 50% by weight, in particular from 10 to 45% by weight and in particular from 20 to 40% by weight, copolymerized based on the Automatcopo- polymer.
  • the majority by weight of the monomer units in the copolymers of class (a1) thus usually comes from the C2 to C4o-basic olefins.
  • the copolymers of class (a1) preferably have a number-average molecular weight M n of from 1,000 to 20,000, more preferably from 1,000 to 10,000 and in particular from 1,000 to 8,000.
  • Comb polymers suitable as component of class (a2) are, for example, those described in WO 2004/035715 and in Comb-Like Polymers, Structure and Properties, N.A. Plate and V.P. Shibaev, J. Poly. Be. Macromolecular Revs. 8, pages 1 17 to 253 (1974). Of the compounds described there, comb polymers of the formula IV are particularly suitable
  • D is R 17 , COOR 17 , OCOR 17 , R 18 , OCOR 17 or OR 17
  • E is H, CH 3 , D or R 18 ,
  • G is H or D
  • J is H, R 18 , R 18 is COOR 17 'aryl or heterocyclyl,
  • K is H, COOR 18 , OCOR 18 , OR 18 or COOH
  • L is H, R 18 COOR 18 , OCOR 18 , COOH or aryl, where
  • R 17 is a hydrocarbon radical having at least 10 carbon atoms, preferably with 10 to 30 carbon atoms,
  • R 18 is a hydrocarbon radical having at least one carbon atom, preferably having 1 to 30 carbon atoms, m is a mole fraction in the range of 1, 0 to 0.4 and n stands for a mole fraction in the range of 0 to 0.6.
  • Preferred comb polymers of component (a2) are, for example, by the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester, such as vinyl acetate, and subsequent esterification of the anhydride or acid function an alcohol having at least 10 carbon atoms.
  • comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid. Also mixtures of comb polymers are suitable. Comb polymers may also be polyfumarates or polymaleinates. In addition, homopolymers and copolymers of vinyl ethers are suitable comb polymers.
  • Polyoxyalkylenes suitable as component of class (a3) are, for example, polyalkylene esters, ethers, esters / ethers and mixtures thereof.
  • the polyoxyalkylene compounds preferably contain at least one, particularly preferably at least two, linear alkyl groups each having from 10 to 30 carbon atoms and a polyoxyalkylene group having a molecular weight of up to 5,000.
  • the alkyl group of the polyoxyalkylene radical preferably contains from 1 to 4 carbon atoms.
  • Such polyoxyalkylene compounds are described, for example, in EP-A 061 895 and in US Pat. No. 4,491,455, to which reference is hereby fully made.
  • Preferred polyoxyalkylene esters, ethers and esters / ethers have the general formula V
  • R 19 and R 20 are each independently R 21 , R 21 OO-, R 21 -O-CO (CH 2 ) Z - or
  • R 21 is -O-CO (CH 2 ) Z -CO-, where R 21 is linear C 1 -C 8 -alkyl, y is a number from 1 to 4, x is a number from 2 to 200, and z is a number from 1 to 4.
  • Preferred polyoxyalkylene compounds of the formula V in which both R 19 and R 20 are R 21 are polyethylene glycols and polypropylene glycols having a number average molecular weight of 100 to 5,000.
  • Preferred polyoxyalkylenes of the formula V in which one of the radicals R 19 is R 21 and the other is R 21 -CO- are polyoxyalkylene esters of fatty acids having 10 to 30 carbon atoms such as stearic acid or behenic acid.
  • Preferred polyoxyalkylene compounds in which both R 19 and R 20 are a radical R 21 -CO- are diesters of fatty acids having 10 to 30 carbon atoms, preferably stearic or behenic acid.
  • Polar nitrogen compounds suitable as a component of class (a4) may be of both ionic and nonionic nature, and preferably have at least one, especially at least 2, tertiary nitrogen substituent of the general formula> NR 22 , wherein R 22 is a C 8 to C 40 Hydrocarbon residue.
  • the nitrogen substituents may also be quaternized, that is in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides obtainable by reacting at least one amine substituted with at least one hydrocarbyl radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines contain at least one linear Cs to C4o-alkyl radical.
  • Suitable primary amines for the preparation of said polar nitrogen compounds are octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues
  • secondary amines suitable for this purpose are, for example, dioctadecylamine and methylbehenylamine.
  • amine mixtures in particular industrially available amine mixtures such as fatty amines or hydrogenated tallamines, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic".
  • Suitable acids for the reaction are, for example, cyclohexane-1, 2-dicarboxylic acid, cyclohexene-1, 2-dicarboxylic acid, cyclopentane-1, 2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted by long-chain hydrocarbon radicals.
  • suitable polar nitrogen compounds are ring systems bearing at least two substituents of the formula -A'-NR 23 R 24 , wherein A 'represents a linear or branched aliphatic hydrocarbon group optionally substituted by one or more moieties selected from O , S, NR 35 and CO, is interrupted, and R 23 and R 24 are a C 9 to C 40 hydrocarbon residue, optionally interrupted by one or more moieties selected from O, S, NR 35 and CO, and or substituted by one or more substituents selected from OH, SH and NR 35 R 36 , wherein R 35 is C 1 to C 40 alkyl optionally substituted by one or more moieties selected from CO, NR 35 , O and S, interrupted, and / or by one or more radicals which are selected from NR 37 R 38 , OR 37 , SR 37 , COR 37 , COOR 37 , CONR 37 R 38 , aryl or heterocyclyl, substituted, in which R 37 and R 38 are each independently
  • the component of class (a4) is an oil-soluble reaction product of at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) with primary or secondary amines.
  • the poly (C 2 - to C 20 -carboxylic acids) which have at least one tertiary amino group and are based on this reaction product preferably contain at least 3 carboxyl groups, in particular 3 to 12, especially 3 to 5, carboxyl groups.
  • the carboxylic acid units in the poly Carboxylic acids preferably have 2 to 10 carbon atoms, in particular they are acetic acid units.
  • the carboxylic acid units are suitably linked to the polycarboxylic acids, for example via one or more carbon and / or nitrogen atoms. Preferably, they are attached to tertiary nitrogen atoms, which in the case of several nitrogen atoms are linked via hydrocarbon chains.
  • the component of class (a4) is preferably an oil-soluble reaction product based on poly (C 2 - to C 20 -carboxylic acids) of general formula IIa or IIb having at least one tertiary amino group
  • variable A is a straight-chain or branched C2 to C ⁇ -alkylene group or the grouping of the formula III
  • variable B denotes a C 1 to C 1 alkylene group.
  • the preferred oil-soluble reaction product of component (a4) in particular that of general formula IIa or IIb, is an amide, an amide ammonium salt or an ammonium salt in which no, one or more carboxylic acid groups are converted into amide groups.
  • Straight-chain or branched C 2 - to C 6 -alkylene groups of the variable A are, for example, 1, 1-ethylene, 1, 2-propylene, 1, 3-propylene, 1, 2-butylene, 1, 3-butylene, 1, 4-butylene ethylene, 2-methyl-1, 3-propylene, 1, 5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene (hexamethylene) and especially 1, 2-ethylene.
  • the variable A preferably comprises 2 to 4, in particular 2 or 3, carbon atoms.
  • C 1 - to C 18 -alkylene groups of the variables B are before, for example, 1, 2-ethylene, 1, 3-propylene, 1, 4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexadecamethylene, octadecamethylene, nonadecane methylene and especially methylene.
  • the variable B comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids to form component (a4) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines may be selected from a variety of amines bearing hydrocarbon radicals, optionally linked together.
  • amines which are the oil-soluble reaction products of component (a4), are preferably secondary amines and have the general formula HNR 2 in which the two variables R independently of one another are straight-chain or branched C 10 - to C 30 -alkyl radicals, in particular C 14- to C 24 -alkyl radicals , These longer-chain alkyl radicals are preferably straight-chain or only slightly branched.
  • the abovementioned secondary amines are derived with regard to their longer-chain alkyl radicals from naturally occurring fatty acid or from its derivatives.
  • the two radicals R are the same.
  • the abovementioned secondary amines can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only one part can be present as amide structures and another part as ammonium salts. Preferably, only a few or no free acid groups are present.
  • the oil-soluble reaction products of component (a4) are completely in the form of the amide structures.
  • Typical examples of such components (a4) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid with in each case 0.5 to 1.5 mol per carboxyl group, in particular 0.8 to 1.2 mol per carboxyl group, dioleylamine, dipalmitinamine, dicoco fatty amine, distearylamine, dibehenylamine or especially ditallow fatty amine.
  • a particularly preferred component (a4) is the reaction product of 1 mole of ethylenediaminetetraacetic acid and 4 moles of hydrogenated ditallow fatty amine.
  • component (a4) are the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mol of phthalic anhydride and 2 mol of ditallow fatty amine, the latter being hydrogenated or unhydrogenated , and the reaction product of 1 mole of an alkenyl spiro-bis-lactone with 2 moles of a dialkylamine, for example, ditallow fatty amine and / or tallow fatty amine, the latter two of which may be hydrogenated or unhydrogenated.
  • component of class (a4) are cyclic compounds having tertiary amino groups or long-chain primary or condensates secondary amines with carboxylic acid-containing polymers, as described in WO 93/181 15.
  • Suitable sulfocarboxylic acids / sulfonic acids or derivatives thereof as component of class (a5) are, for example, those of the general formula VI
  • R 26 and R 27 are alkyl, alkoxyalkyl or polyalkoxyalkyl having at least 10 carbon atoms in the main chain,
  • R 28 is C 2 -C 5 -alkylene
  • Z- is an anion equivalent and A "and B 'are alkyl, alkenyl or two substituted hydrocarbon radicals or together with the carbon atoms to which they are attached form an aromatic or cycloaliphatic ring system.
  • Poly (meth) acrylic esters suitable as component of class (a6) are both homo- and copolymers of acrylic and methacrylic acid esters. Preference is given to copolymers of at least two mutually different (meth) acrylic esters which differ with respect to the fused-in alcohol.
  • the copolymer contains a further, different of which olefinically unsaturated monomer copolymerized.
  • the weight-average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C 4 and C 15 alcohols, wherein the acid groups are neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylic esters are described, for example, in WO 00/44857, to which reference is hereby fully made.
  • the amine component (b) is a mono- or polyamine having at least one primary or secondary amino function and thus has at least one NH bond.
  • the NH bond and, furthermore, the basicity of component (b) caused by the lone pair of electrons optionally present on the nitrogen atom are responsible for the interaction with the cold flow improver component (a), which is effective for lowering the CFPP value when using the mixture according to the invention results in biofuel oils.
  • radicals R 1 and R 2 are pure hydrocarbyl radicals having from 4 to 40 carbon atoms, they are to be understood here as virtually pure hydrocarbon radicals of any structure but, to the extent that this does not distorts the predominant hydrocarbon character, to a minor extent heteroatoms, for example O or N. , and / or may have functional groups with heteroatoms, for example OH groups. In addition, further amino functions are allowed for the radical R 1 , which can give this radical a stronger nitrogen-basic character.
  • the said hydrocarbyl radicals may be saturated, unsaturated or aromatic in nature; they can be linear, branched or cyclic.
  • such a hydrocarbyl radical having 4 to 40 carbon atoms denotes a linear or branched alkyl or alkenyl radical such as n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, 2-ethylhexyl , Neo-octyl, nonyl, neononyl, decyl, neodecyl, 2-propylheptyl, undecyl, neoundecyl, dodecyl, tridecyl, isotridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl (stearyl), oleyl, linolyl, linolenyl,
  • hydrocarbyl radical having 4 to 40 carbon atoms may also denote an aryl, alkaryl or arylalkyl radical, for example phenyl, naphthyl, benzyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, o-, m- or p-tolyl or o-, m- or p-xylyl.
  • component (b) are, for example, saturated or unsaturated secondary cyclic amines, such as corresponding alkyl- or alkenyl-substituted pyrrolidines, for example 2- or 3-dodecylpyrrolidine, 2-pyrrolines, 3-pyrrolines, pyrroles, piperidines, pyrazanes, morpholines, 1 H-azepines, indoles or isoindolines with the respective prescribed total number of carbon atoms.
  • saturated or unsaturated secondary cyclic amines such as corresponding alkyl- or alkenyl-substituted pyrrolidines, for example 2- or 3-dodecylpyrrolidine, 2-pyrrolines, 3-pyrrolines, pyrroles, piperidines, pyrazanes, morpholines, 1 H-azepines, indoles or isoindolines with the respective prescribed total number of carbon atoms.
  • the polyamine component (b) having the respective prescribed total number of carbon atoms is, for example, N-dodecyl-1,4-butylenediamine, N 1 N ' Bisdecylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, dipropylenetriamine, tripropylenetetramine, tetrapropylenepentamine, pentapropylenhexamine, N, N'-bis (3-aminopropyl) ethylenediamine, 3- (N, N-dimethylamino) -propylamine (" DMAPA "), bis [3- (N, N-dimethylamino) propyl] amine (" bis-DMAPA ”) or N-tallow fat 1, 3-diaminopropane.
  • N-dodecyl-1,4-butylenediamine N 1 N ' Bisdecylethylenediamine, diethylenetri
  • the hydrocarbyl radicals R 1 and R 2 each contain 6 to 30, in particular 8 to 24, especially 10 to 22 carbon atoms.
  • the amines of component (b) are preferably aliphatic amines, in particular aliphatic monoamines. These amines preferably have no cyclic structure.
  • the mixture according to the invention contains as monoamine component (b) at least one mono-Cio to C22-alkyl- or -alkenylamine or a di-Cio to C22-alkyl- or -alkenylamine.
  • monoamine component (b) at least one mono-Cio to C22-alkyl- or -alkenylamine or a di-Cio to C22-alkyl- or -alkenylamine.
  • dialkyl or alkenylamines both chains may be different or the same.
  • mono-Cio- to Ci2-alkylamines are examples of mono-Cio- to Ci2-alkylamines.
  • Typical examples of such preferred mono-Cio to C22-alkyl or alkenylamines or mono-Cio to C12-alkylamines whose alkyl or alkenyl chain can be branched or preferably linear are decylamine, neodecylamine, 2-propylheptylamine , Undecylamine, neoundecylamine, dodecylamine, tridecylamine, isotridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecyl (stearyl) amine, oleylamine, linolylamine, linolenylamine, nonadecylamine, eicosylamine, hencosylamine and docosylamine.
  • Typical examples of such preferred di-Cio to C22-alkyl or alkenylamines whose alkyl or alkenyl chains may be branched or preferably linear are didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine, dioctadecyl (distearyl) amine, dioleylamine, dicoco fatty amine , Ditalgfettamine, Dibehenylamine and Methylbehenylamine.
  • the mixture according to the invention can be prepared by simple mixing, optionally in a suitable solvent, of the two components (a) and (b) without heat input.
  • the mixture according to the invention is suitable as an additive to fuels, especially to biofuel oils or to mixtures of biofuel oils and middle distillate fuels of fossil origin. Its addition is especially for improvement the cold flow behavior of the fuels.
  • Middle distillate fuels of fossil origin which find particular use as gas oils, kerosene, diesel oils (diesel fuels) or light fuel oils, are often referred to as fuel oils.
  • Such middle distillate fuels generally have boiling temperatures of 120 to 450 0 C.
  • the mixture according to the invention can be injected directly into the fuels, i. undiluted, but preferably as 10 to 90 wt .-%, in particular as 25 to 80 wt .-%, especially as 45 to 75 wt .-% solution (concentrate) in a suitable solvent, usually a hydrocarbon Solvents are added.
  • solvents in this context are aliphatic or aromatic hydrocarbons, for example xylenes or mixtures of high-boiling aromatics such as solvent naphtha.
  • naphthalene aromatic hydrocarbon mixtures such as naphthalene poor solvent naphtha can be used advantageously as a solvent here.
  • the metering rate of the mixture in the fuels is generally 10 to 10,000 ppm by weight, in particular 50 to 5000 ppm by weight, especially 100 to
  • 3000 ppm by weight e.g. 500 to 1500 ppm by weight, in each case based on the total amount of fuel.
  • the mixture of components (a) and (b) can be added to the fuels as a prefabricated mixture, in particular in the form of the concentrate described above. However, it is also possible to add the components (a) and (b) individually to the fuels so that the mixture according to the invention is physically present only in the fuel.
  • the mixture according to the invention is used as an additive to fuels which
  • the mixture according to the invention is used as an additive to fuels which consist of at least 100% by weight of at least one biofuel oil (A) based on fatty acid esters.
  • A biofuel oil
  • the fuel component (A) is usually referred to as "biodiesel".
  • the middle distillates of the fuel component (A) are preferably substantially alkyl esters of fatty acids derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually lower alkyl esters, in particular C 1 to C 4 alkyl esters, understood by transesterification of occurring in vegetable and / or animal oils and / or fats glycerides, especially triglycerides, by means of lower alcohols, such as ethanol, n-propanol, iso-Pro - Panol, n-butanol, iso-butanol, sec-butanol, tert-butanol or especially methanol ("FAME”) are available.
  • FAME methanol
  • Examples of vegetable oils which are converted into corresponding alkyl esters and thus can serve as a basis for biodiesel are castor oil, olive oil, peanut oil, pear kernel oil, coconut oil, mustard oil, cottonseed oil, and in particular sunflower oil, palm oil, soybean oil and rapeseed oil.
  • Other examples include oils that can be extracted from wheat, jute, sesame and the shea nut; furthermore, arachis oil, jatropha oil and linseed oil are also usable. The recovery of these oils and their conversion to the alkyl esters are known in the art or may be derived therefrom.
  • Vegetable fats are also useful in principle as a source of biodiesel, but play a minor role.
  • animal fats and oils that are converted to corresponding alkyl esters and thus can serve as the basis for biodiesel include fish oil, beef tallow, swine tallow, and similar fats and oils derived from the slaughtering or recycling of farmed or wild animals.
  • saturated or unsaturated fatty acids which usually have 12 to 22 carbon atoms and may carry additional functional group such as hydroxyl groups, occur in the alkyl esters in particular lauric acid, myristic acid, palmitic acid, stearic acid, Oleic acid, linoleic acid, linolenic acid, elaidic acid, erucic acid and / or ricinoleic acid.
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats which are used as biodiesel or biodiesel components are, for example, sunflower methyl ester, palm oil methyl ester ("PME”), soybean oil methyl ester (“SME”) and especially rapeseed oil methyl ester (“RME”). ).
  • fuel component (B) is to be understood as meaning middle distillate fuels boiling in the range from 120 to 450 ° C.
  • middle distillate fuels are used in particular as diesel fuel, heating oil or kerosene, with diesel fuel and heating oil being particularly preferred.
  • Middle distillate fuels are fuels which are obtained by distillation of crude oil as a first process step and boil in the range of 120 to 450 0 C.
  • low-sulfur middle distillates are used, ie those containing less than 350 ppm sulfur, especially less than 200 ppm sulfur, especially less than 50 ppm sulfur. In special cases they contain less than 10 ppm sulfur, these middle distillates are also called "sulfur-free".
  • These are generally crude oil distillates, which have been subjected to a hydrogenating refining, and therefore contain only small amounts of polyaromatic and polar compounds.
  • those middle distillates which have 90% distillation points below 370 0 C, in particular below 360 ° C and in special cases below 330 ° C.
  • middle distillates can also be obtained from heavier petroleum fractions, which can no longer be distilled under atmospheric pressure.
  • Hydrocarbon cracking, thermal cracking, catalytic cracking, coker processes and / or visbreaking may be mentioned as typical conversion processes for the preparation of middle distillates from heavy petroleum fractions. Depending on how the process is carried out, these middle distillates are produced with little or no sulfur or are subjected to hydrogenating refining.
  • the middle distillates preferably have aromatics contents of less than 28% by weight, in particular less than 20% by weight.
  • the content of normal paraffins is between 5% and 50% by weight, preferably between 10 and 35% by weight.
  • middle distillates should also be understood here, which can be derived either indirectly from fossil sources such as crude oil or natural gas or else produced from biomass via gasification and subsequent hydrogenation.
  • a typical example of a middle distillate fuel derived indirectly from fossil sources is GTL (gas-to-liquid) diesel fuel produced by Fischer-Tropsch synthesis.
  • GTL gas-to-liquid diesel fuel produced by Fischer-Tropsch synthesis.
  • biomass for example, a middle distillate is produced via the BTL (“biomass-to-liquid”) process, which can be used either alone or in admixture with other middle distillates as fuel component (B).
  • the middle distillates also include hydrocarbons obtained by hydrogenation of fats and fatty oils. They mainly contain n-paraffins.
  • the said middle distillate fuels have in common that they are essentially hydrocarbon mixtures and are free from fatty acid esters.
  • the mixture according to the invention can be added both in pure biofuel oils (biodiesel) and in their mixtures with the stated middle distillate fuels in order to improve their properties.
  • a significant improvement in the cold flow behavior of the fuel i. a reduction in particular the CFPP values, but also the CP values and / or the PP values, regardless of the origin or composition of the fuel observed.
  • the precipitated crystals are usually kept effectively in suspension, so that it does not come to blockages of filters and pipes by such sediments.
  • the mixture of the invention has a good broad effect in most cases and thus causes the precipitated crystals are very well dispersed in a variety of fuels.
  • the present invention also relates to fuels from or containing biofuel oils (biodiesel) which contain the mixture according to the invention, in particular in the above-mentioned metering rates.
  • the fuels mentioned or the fuel additive concentrates mentioned contain further cold flow improvers (as described above) as further additives in amounts customary therefor, paraffin dispersants, conductivity improvers, anti-corrosion additives, lubricity additives, antioxidants, metal deactivators, anti-oxidants.
  • foaming agents demulsifiers, detergents, cetane improvers, solvents or diluents, dyes or fragrances or mixtures thereof.
  • further additives which have not yet been mentioned above, are familiar to the person skilled in the art and therefore need not be further explained here.
  • EVA-1 Ethylene-vinyl acetate copolymer prepared according to WO 9/27,748, vinyl acetate content 30 wt .-%, viscosity at 120 0 C: 70 cSt (the indicated
  • EVA-1-SN Solution of 60% by weight of EVA-1 in 40% by weight of solvent naphtha
  • EVA-2 analog EVA-1, but with a vinyl acetate content of 35 wt .-%
  • Amines according to the chemical definition; available in the chemical trade; as coconut fatty amine Armeen C of the company AkzoNobel was used; Noric 2C from Ceca, France, was used as the nicotine fatty amine (coconut fatty and dicoco fatty amines mainly contain dodecyl and tetradecyl radicals as alkyl groups)
  • EA 1 Inventive mixture of 40% by weight of EVA-1, 30% by weight of dodecylamine and 30% by weight of solvent naphtha
  • EA 2 Inventive mixture of 35% by weight of EVA-2, 30% by weight of dodecylamine and 35% by weight of solvent naphtha
  • the Solvent Naptha used was Solvesso® 150 from Exxon.
  • EVA-1 was diluted with 40 weight percent solvent naphtha.
  • the CFPP-improving effect of the amine component (b) is not limited to primary amines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Mischung, enthaltend 5 bis 95 Gew.-% mindestens einer organischen Verbindung, welche in der Lage ist, das Kaltfließverhalten von Kraftstoffen zu verbessern, und 5 bis 95 Gew.-% mindestens eines hydrocarbylsubstituierten primären oder sekundären Mono- oder Polyamins. Diese Mischung eignet sich als Zusatz zu Kraftstoffen, insbesondere zu Biobrennstoffölen.

Description

Mischung aus Kaltfließverbesserern und Aminen
Beschreibung
Die vorliegende Erfindung betrifft eine Mischung, enthaltend
(a) 5 bis 95 Gew.-% mindestens einer organischen Verbindung, welche in der Lage ist, das Kaltfließverhalten von Kraftstoffen zu verbessern, und
(b) 5 bis 95 Gew.-% mindestens eines Amins der allgemeinen Formel I
R1R2HN (I)
in der R1 für einen Hydrocarbylrest mit 6 bis 40 Kohlenstoffatomen, der noch wei- tere primäre und/oder sekundäre und/oder tertiäre Aminofunktionen enthalten kann, steht und R2 einen Hydrocarbylrest mit 6 bis 40 Kohlenstoffatomen oder Wasserstoff bezeichnet, wobei R1 und R2 gemeinsam auch einen 5- bis 7-glied- rigen Ring bilden können,
wobei die Summe der Komponenten (a) und (b) 100 Gew.-% ergibt.
Weiterhin betrifft die vorliegende Erfindung die Verwendung dieser Mischung als Zusatz zu Kraftstoffen, derartige Kraftstoffe selbst sowie Kraftstoffadditiv-Konzentrate, die diese Mischung gelöst in einem Kohlenwasserstoff-Lösungsmittel enthalten. Die ge- nannten Kraftstoffe weisen insbesondere einen Biodiesel-Anteil auf oder bestehen aus Biodiesel.
Mitteldestillat-Kraftstoffe aus fossilem Ursprung, insbesondere Gasöle, Dieselöle oder leichte Heizöle, die aus Erdöl gewonnen werden, haben je nach Herkunft des Rohöls unterschiedliche Gehalte an Paraffinen. Bei tiefen Temperaturen kommt es am Trübungspunkt oder Cloud Point ("CP") zur Ausscheidung fester Paraffine. Bei weiterer Abkühlung bilden die plättchenförmigen n-Paraffinkristalle eine Art von "Kartenhausstruktur" und der Mitteldestillat-Kraftstoff stockt, obwohl sein überwiegender Teil noch flüssig ist. Durch die ausgefallenen n-Paraffine im Temperaturbereich zwischen Trü- bungspunkt (Cloud Point) und Pour Point ("PP") wird die Fließfähigkeit der Mitteldestillat-Kraftstoffe erheblich beeinträchtigt; die Paraffine verstopfen Filter und verursachen eine ungleichmäßige oder völlig unterbrochene Kraftstoffzufuhr zu den Verbrennungsaggregaten. Ähnliche Störungen treten bei leichten Heizölen auf.
Es ist seit langem bekannt, dass durch geeignete Zusätze das Kristallwachstum der n- Paraffine in Mitteldestillat-Kraftstoffen modifiziert werden kann. Gut wirksame Additive verhindern, dass Mitteldestillat-Kraftstoffe bei Temperaturen wenige Grade Celsius unterhalb der Temperatur, bei welcher die ersten Paraffinkristalle auskristallisieren, bereits fest werden. Statt dessen werden feine, gut kristallisierende, separate Paraffinkristalle gebildet, welche auch bei weiterer Absenkung der Temperatur Filter in Kraftfahrzeugen und Heizungsanlagen passieren oder zumindest einen für den flüssigen Teil der Mitteldestillate durchlässigen Filterkuchen bilden, so dass ein störungsfreier Betrieb sichergestellt ist. Die Wirksamkeit der Fließverbesserer wird üblicherweise nach der europäischen Norm EN 1 16 indirekt durch Messung des CoId Filter Plugging Point ("CFPP") ausgedrückt. Als derartige Kaltfließverbesserer oder Middle Distillate Flow Improvers ("MDFI") werden beispielsweise Ethylen-Vinylcarboxylat-Copolymere wie Ethylen-Vinylacetat-Copolymere ("EVA") eingesetzt.
Ein Nachteil dieser Additive liegt darin, dass die derart modifizierten Paraffinkristalle aufgrund ihrer gegenüber dem flüssigen Teil höheren Dichte dazu neigen, sich beim Lagern des Mitteldestillat-Kraftstoffes mehr und mehr am Boden des Behälters abzusetzen. Dadurch bildet sich im oberen Behälterteil eine homogene paraffinarme Phase und am Boden eine zweiphasige paraffinreiche Schicht. Da sowohl in den Fahrzeugtanks als auch in Lager- oder Liefertanks der Mineralölhändler der Abzug des Kraftstoffes meist wenig oberhalb des Behälterbodens erfolgt, besteht die Gefahr, dass die hohe Konzentration an festen Paraffinen zu Verstopfungen von Filtern und Dosiereinrichtungen führt. Diese Gefahr wird um so größer, je weiter die Lagertemperatur die Aus- Scheidungstemperatur der Paraffine unterschreitet, da die ausgeschiedene Paraffinmenge mit sinkender Temperatur zunimmt. Insbesondere verstärken auch Anteile an Biodiesel diese unerwünschte Neigung des Mitteldestillat-Kraftstoffes zur Paraffinsedimentation.
Durch den zusätzlichen Einsatz von Paraffindispergatoren oder Wax Anti-Settling Additiven ("WASA") können die geschilderten Probleme verringert werden.
Im Zuge abnehmender Welterdölreserven und der Diskussion um die die Umwelt beeinträchtigenden Konsequenzen des Verbrauchs fossiler und mineralischer Brennstoffe steigt das Interesse an alternativen, auf nachwachsenden Rohstoffen basierenden Energiequellen. Dazu gehören insbesondere native Öle und Fette pflanzlichen oder tierischen Ursprungs. Dies sind insbesondere Triglyceride von Fettsäuren mit 10 bis 24 Kohlenstoffatomen, die zu Niedrigalkylestern wie Methylestern umgesetzt werden. Diese Ester werden allgemein auch als "FAME" (Fatty Acid Methyl Ester) bezeichnet.
Wie bei Mitteldestillaten aus fossilem Ursprung fallen beim Abkühlen solcher FAME Kristalle aus, welche ebenfalls Kraftfahrzeugfilter und Dosiereinrichtungen zusetzen können. Diese Kristalle bestehen jedoch nicht aus n-Paraffinen sondern aus Fettsäureestern, trotzdem lassen sich Kraftstoffe auf Basis von FAME mit den gleichen Kenn- großen wie bei den Mitteldestillaten aus fossilem Ursprung (CP, PP, CFPP) charakterisieren. Die genannten FAME sowie Mischungen dieser FAME mit Mitteldestillaten besitzen in der Regel ein schlechteres Kälteverhalten als Mitteldestillate aus fossilem Ursprung alleine. Die Zugabe der FAME erhöht bei Mischungen mit Mitteldestillaten aus fossilem Ursprung die Tendenz zur Bildung von Paraffinsedimenten. Insbesondere jedoch wei- sen die genannten FAME, wenn sie als Biobrennstofföle Mitteldestillate aus fossilem Ursprung teilweise oder vollständig ersetzen sollen, zu hohe CFPP-Werte auf, so dass sie nicht problemlos als Kraftstoff oder Heizöl entsprechend den geltenden länder- und regionalspezifischen Anforderungen eingesetzt werden können. Auch beeinflusst die Zunahme der Viskosität bei Abkühlung die Kälteeigenschaft bei FAME stärker als bei Mitteldestillaten aus fossilem Ursprung.
Es sind bereits Additive vorgeschlagen worden, die die Kälteeigenschaften von Kraftstoffen auf Basis von FAME verbessern sollen. So werden in der WO 93/18115 konventionelle Kaltfließverbesserer für Mitteldestillate aus fossilem Ursprung, beispiels- weise Ethylen-Vinylacetat-Copolymere ("EVA") oder polare organische stickstoffhaltige Verbindungen wie Aminsalze, Amide, cyclische Verbindungen mit tertiären Aminogrup- pen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, auch als Kaltfließverbesserer für Biobrennstofföle, beispielsweise Rapsölmethylester ("RME"), empfohlen. Die dort beschriebene Absenkung der CFPP-Werte im Biobrennstofföl (mit einer Dosierrate von 1000 ppm einer EVA-Mi- schung wird ein CFPP-Wert von lediglich -18°C in RME erreicht) ist jedoch in Hinblick auf die pro-blemlose Handhabbarkeit der Kraftstoffe noch nicht ausreichend.
Es bestand die Aufgabe, Produkte zur Verfügung zu stellen, welche ein verbessertes Kälteverhalten bei Kraftstoffen auf Basis von Biobrennstofföl ("Biodiesel"), welches auf Fettsäureestern (FAME) basiert, bewirken. Insbesondere sollte der CFPP-Wert für solche Kraftstoff effektiv abgesenkt werden.
Die Aufgabe wird erfindungsgemäß durch die eingangs genannte Mischung aus den Komponenten (a) und (b) gelöst, was um so erstaunlicher ist, da bei Zugabe der Komponente (b) zu Mitteldestillaten aus rein fossilem Ursprung, die bereits die Komponente (a) enthalten, in aller Regel eine unerwünschte Erhöhung des CFPP-Werte beobachtet wird. Die Amin-Komponente (b) hat üblicherweise allein praktisch keinen Einfluß auf die Kälteeigenschaften von Kraftstoffen; bei der vorliegenden Erfindung wirkt sie gleichsam als "Booster" für die Komponente (a), um die CFPP-Werte abzusenken.
Vorzugsweise enthält die erfindungsgemäße Mischung 25 bis 90 Gew.-%, insbesondere 35 bis 80 Gew.-%, vor allem 50 bis 70 Gew.-%, der Kaltfließverbesserer-Kompo- nente (a) und 10 bis 75 Gew.-%, insbesondere 20 bis 65 Gew.-%, vor allem 30 bis 50 Gew.-%, der Amin-Komponente (a). Als Komponente (a) können im Prinzip alle organischen Verbindungen eingesetzt werden, welche in der Lage sind, das Kaltfließverhalten von Kraftstoffen zu verbessern. Zweckmäßigerweise müssen sie eine ausreichende Öllöslichkeit aufweisen. Insbesondere kommen hierfür üblicherweise bei Mitteldestillaten aus fossilem Ursprung, also bei üblichen Dieselkraftstoffen und Heizölen, eingesetzte Kaltfließverbesserer (MDFI) in Betracht. Jedoch können als Komponente (a) auch organische Verbindungen verwendet werden, die beim Einsatz in üblichen Dieselkraftstoffen und Heizölen zum Teil oder überwiegend die Eigenschaften eines Wax Anti-Settling Additivs (WASA) aufweisen. Auch können sie zum Teil oder überwiegend als Nukleatoren wirken. Es können auch Mischungen aus als MDFI wirksamen und/oder als WASA wirksamen und/oder als Nukleatoren wirksamen organischen Verbindungen als Komponente (a) eingesetzt werden.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Komponente (a) mindestens eine organische Verbindung ausgewählt aus
(a1 ) Copolymeren eines C2- bis C4o-Olefins mit wenigstens einem weiteren ethyle- nisch ungesättigten Monomer; (a2) Kammpolymeren; (a3) Polyoxyalkylenen;
(a4) polaren Stickstoffverbindungen;
(a5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und
(a6) Poly(meth)acrylsäureestern.
Es können sowohl Mischungen verschiedener Vertreter aus einer der jeweiligen Klassen (a1 ) bis (a6) als auch Mischungen von Vertretern aus verschiedenen Klassen (a1 ) bis (a6) eingesetzt werden.
Geeignete C2- bis C4o-Olefin-Monomere für die Copolymeren der Klasse (a1 ) sind bei- spielsweise solche mit 2 bis 20, insbesondere 2 bis10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff-Doppelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (α-Olefine) als auch intern angeordnet sein kann. Bevorzugt sind jedoch α-Olefine, besonders bevorzugt α-Olefine mit 2 bis 6 Kohlenstoffatomen, bei- spielsweise Propen, 1 -Buten, 1-Penten, 1 -Hexen und vor allem Ethylen.
Bei den Copolymeren der Klasse (a1 ) ist das wenigstens eine weitere ethylenisch ungesättigte Monomer vorzugsweise ausgewählt unter Carbonsäurealkenylestern, (Meth)Acrylsäureestern und weiteren Olefinen.
Werden weitere Olefine mit einpolymerisiert, sind dies vorzugsweise höhermolekulare als das oben genannte C2- bis C4o-Olefin-Basismonomere. Setzt man beispielsweise als Olefin-Basismonomer Ethylen oder Propen ein, eignen sich als weitere Olefine insbesondere C10- bis C4o-α-Olefine. Weitere Olefine werden in den meisten Fällen nur dann mit einpolymerisiert, wenn auch Monomere mit Carbonsäureester-Funktionen eingesetzt werden.
Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit Cr bis C2o-Alkanolen, insbesondere d- bis Cio-Alkanolen, vor allem mit Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pen- tanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol sowie Struk- turisomeren hiervon.
Geeignete Carbonsäurealkenylester sind beispielsweise C2- bis Cu-Alkenylester, z.B. die Vinyl- und Propenylester, von Carbonsäuren mit 2 bis 21 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear.
Beispiele für geeignete Carbonsäurealkenylester sind Vinylacetat, Vinylpropionat, Vi- nylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und die entsprechenden Propenylester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Carbonsäureal- kenylester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (d) sind Ethylen-Vinylacetat-Copolymere (EVA).
In einer ganz besonders bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Komponente (a1 ) mindestens ein solches Ethylen-Vinylacetat-Copoly- mer. Besonders vorteilhaft einsetzbare Ethylen-Vinylacetat-Copolymere und ihre Herstellung sind in der WO 99/29748 beschrieben.
Als Copolymere der Klasse (a1 ) sind auch solche geeignet, die zwei oder mehrere voneinander verschiedene Carbonsäurealkenylester einpolymerisiert enthalten, wobei diese sich in der Alkenylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Carbonsäurealkenylester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten.
In einer weiteren ganz besonders bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Komponente (a1) mindestens ein Terpolymer aus einem C2- bis C4o-α-Olefin, einem d- bis C2o-Alkylester einer ethylenisch ungesättigten Monocarbon- säure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis Cu-Alkenylester einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen. Derartige Terpolymere sind in der WO 2005/054314 beschrieben. Ein typisches derartiges Terpolymer ist aus Ethy- len, Acrylsäure-2-ethylhexylester und Vinylacetat aufgebaut.
Das oder die weiteren ethylenisch ungesättigten Monomeren sind in den Copolymeren der Klasse (a1 ) in einer Menge von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 10 bis 45 Gew.-% und vor allem von 20 bis 40 Gew.-%, bezogen auf das Gesamtcopo- lymer, einpolymerisiert. Der gewichtsmäßige Hauptanteil der Monomereinheiten in den Copolymeren der Klasse (a1) stammt somit in der Regel aus den C2- bis C4o-Basis- Olefinen.
Die Copolymere der Klasse (a1) weisen vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbe- sondere von 1000 bis 8000 auf.
Als Komponente der Klasse (a2) geeignete Kammpolymere sind beispielsweise solche, die in der WO 2004/035715 und in "Comb-Like Polymers. Structure and Properties", N. A. Plate und V. P. Shibaev, J. PoIy. Sei. Macromolecular Revs. 8, Seiten 1 17 bis 253 (1974)" beschrieben sind. Von den dort beschriebenen sind insbesondere Kammpolymere der Formel IV geeignet
worin
D für R17, COOR17, OCOR17, R18, OCOR17 oder OR17 steht, E für H, CH3, D oder R18 steht,
G für H oder D steht,
J für H, R18, R18COOR17' Aryl oder Heterocyclyl steht,
K für H, COOR18, OCOR18, OR18 oder COOH steht,
L für H, R18 COOR18, OCOR18, COOH oder Aryl steht, wobei
R17 für einen Kohlenwasserstoffrest mit wenigstens 10 Kohlenstoffatomen, Vorzugs weise mit 10 bis 30 Kohlenstoffatomen, steht,
R18 für einen Kohlenwasserstoffrest mit wenigstens einem Kohlenstoffatom, vorzugsweise mit 1 bis 30 Kohlenstoffatomen, steht, m für einen Molenbruch im Bereich von 1 ,0 bis 0,4 steht und n für einen Molenbruch im Bereich von 0 bis 0,6 steht. Bevorzugte Kammpolymere der Komponente (a2) sind beispielsweise durch die Copo- lymerisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem α-Olefin oder einem ungesättigten Ester wie Vinylacetat, und anschließende Veresterung der Anhydrid- bzw. Säurefunkti- on mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere bevorzugte Kammpolymere sind Copolymere von α-Olefinen und veresterten Comonome- ren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Auch Gemische von Kammpolymeren sind geeignet. Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethern geeignete Kammpolymere.
Als Komponente der Klasse (a3) geeignete Polyoxyalkylene sind beispielsweise PoIy- oxyalkylenester, -ether, -ester/ether und Gemische davon. Bevorzugt enthalten die Polyoxyalkylenverbindungen wenigstens eine, besonders bevorzugt wenigstens zwei lineare Alkylgruppen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalky- lengruppe mit einem Molekulargewicht von bis zu 5000. Die Alkylgruppe des Polyoxy- alkylenrestes enthält dabei vorzugsweise 1 bis 4 Kohlenstoffatome. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP-A 061 895 sowie in der US 4 491 455 beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird. Bevorzugte Polyoxyalkylen-ester, -ether und ester/ether besitzen die allgemeine Formel V
R19fO-(CH2)y]χO-R20 (V)
worin
R19 und R20 jeweils unabhängig voneinander für R21, R21OO-, R21-O-CO(CH2)Z- oder
R21-O-CO(CH2)Z-CO- stehen, wobei R21 für lineares d-Cso-Alkyl steht, y für eine Zahl von 1 bis 4 steht, x für eine Zahl von 2 bis 200 steht, und z für eine Zahl von 1 bis 4 steht.
Bevorzugte Polyoxyalkylenverbindungen der Formel V, in denen sowohl R19 als auch R20 für R21 stehen, sind Polyethylenglykole und Polypropylenglykole mit einem zahlen- mittleren Molekulargewicht von 100 bis 5000. Bevorzugte Polyoxyalkylene der Formel V, in denen einer der Reste R19 für R21 und der andere für R21-CO- steht, sind Polyoxy- alkylenester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behensäure. Bevorzugte Polyoxyalkylenverbindungen, in denen sowohl R19 als auch R20 für einen Rest R21-CO- stehen, sind Diester von Fettsäuren mit 10 bis 30 Kohlen- stoffatomen, bevorzugt von Stearin- oder Behensäure. Als Komponente der Klasse (a4) geeignete polare Stickstoffverbindungen können sowohl ionischer als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens 2 Substituenten in Form eines tertiären Stickstoffatoms der allgemeinen Formel >NR22, worin R22 für einen Cs- bis C4o-Kohlenwas- serstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Beispiele für solche Stickstoffverbindungen sind Ammoniumsalze und/oder Amide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugs- weise enthalten die Amine wenigstens einen linearen Cs- bis C4o-Alkylrest. Zur Herstellung der genannten polaren Stickstoffverbindungen geeignete primäre Amine sind beispielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetradecyl- amin und die höheren linearen Homologen, hierzu geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind hierzu auch Amingemische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1 ,2-dicarbonsäure, Cyclo- hexen-1 ,2-dicarbonsäure, Cyclopentan-1 ,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
Weitere Beispiele für geeignete polare Stickstoffverbindungen sind Ringsysteme, die wenigstens zwei Substituenten der Formel -A'-NR23R24 tragen, worin A' für eine lineare oder verzweigte aliphatische Kohlenwasserstoffgruppe steht, die gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter O, S, NR35 und CO, unterbrochen ist, und R23 und R24 für einen Cg- bis C4o-Kohlenwasserstoffrest stehen, der gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter O, S, NR35 und CO, unterbrochen und/oder durch einen oder mehrere Substituenten, die ausgewählt sind unter OH, SH und NR35R36, substituiert ist, wobei R35 für d- bis C40- Alkyl, das gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter CO, NR35, O und S, unterbrochen, und/oder durch einen oder mehrere Reste, die ausgewählt sind unter NR37R38, OR37, SR37, COR37, COOR37, CONR37R38, Aryl oder Heterocyclyl, substituiert ist, wobei R37 und R38 jeweils unabhängig voneinander ausgewählt sind unter H oder d- bis C4-Alkyl und wobei R36 für H oder R35 steht.
Insbesondere ist die Komponente der Klasse (a4) ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbon- säuren) mit primären oder sekundären Aminen. Die diesem Umsetzungsprodukt zu- grundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20- Carbonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxylgruppen. Die Carbonsäure-Einheiten in den PoIy- carbonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, beispielsweise über ein oder mehrere Kohlenstoff- und/oder Stickstoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebun- den, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.
Vorzugsweise ist die Komponente der Klasse (a4) ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20- Carbonsäuren) der allgemeinen Formel IIa oder IIb
HOOCn _ X00H B B
HOOC._, N. . , NL XOOH
B A B (IIa)
HOOC'B "I\TB"COOH
I
^COOH (| | b)
in denen die Variable A eine geradkettige oder verzweigte C2- bis Cβ-Alkylengruppe oder die Gruppierung der Formel III
Hooc-ByChVCH2'
CH2-CH2-
darstellt und die Variable B eine d- bis Cig-Alkylengruppe bezeichnet.
Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (a4), insbesondere das der allgemeinen Formel IIa oder IIb, ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.
Geradkettige oder verzweigte C2- bis Cβ-Alkylengruppen der Variablen A sind beispielsweise 1 ,1-Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Bu- tylen, 2-Methyl-1 ,3-propylen, 1 ,5-Pentylen, 2-Methyl-1 ,4-butylen, 2,2-Dimethyl-1 ,3-pro- pylen, 1 ,6-Hexylen (Hexamethylen) und insbesondere 1 ,2-Ethylen. Vorzugsweise um- fasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome.
Cr bis Ci9-Alkylengruppen der Variablen B sind vor beispielsweise 1 ,2-Ethylen, 1 ,3-Propylen, 1 ,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodeca- methylen, Tetradecamethylen, Hexadecamethylen, Octadecamethylen, Nonadeca- methylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome.
Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (a4) sind üblicherweise Monoamine, insbesondere alipha- tische Monoamine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen.
Vorzugsweise sind diese den öllöslichen Umsetzungsprodukten der Komponente (a4) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel HNR2 auf, in der die beiden Variablen R unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C3o-Alkylreste, insbesondere C14- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugsweise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundären Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäure bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R gleich.
Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammoniumsalze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. In einer bevorzugten Ausführungsform liegen die öllöslichen Umsetzungsprodukte der Komponente (a4) vollständig in Form der Amidstrukturen vor.
Typische Beispiele für derartige Komponenten (a4) sind Umsetzungsprodukte der Nitri- lotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1 ,2-diamintetra- essigsäure mit jeweils 0,5 bis 1 ,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1 ,2 Mol pro Carboxylgruppe, Dioleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenylamin oder insbesondere Ditalgfettamin. Eine besonders bevorzugte Komponente (a4) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditalgfettamin.
Als weitere typische Beispiele für die Komponente (a4) seien die N,N-Dialkylammoni- umsalze von 2-N',N'-Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsäureanhydrid und 2 Mol Ditalgfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislactons mit 2 Mol eines Dialkylamins, beispielsweise Ditalgfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt.
Weitere typische Strukturtypen für die Komponente der Klasse (a4) sind cyclische Verbindungen mit tertiären Aminogruppen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, wie sie in der WO 93/181 15 beschrieben sind.
Als Komponente der Klasse (a5) geeignete Sulfocarbonsäuren/Sulfonsäuren bzw. de- ren Derivate sind beispielsweise solche der allgemeinen Formel VI
worin Y' für SO3-(N R25 3R26)+, SO3-(N H R25 2R26)+, SO3-(NH2R25R26), SO3-(NH3R26) oder
SO2NR25R26 steht,
X' für Y', CONR25R27, CO2-(N R25 3R27)+, CO2-(N H R25 2R27)+, R28-COOR27, NR25COR27,
R28OR27, R28OCOR27, R28R27, N (CO R25) R27 oder Z-(NR25 3R27)+ steht, wobei R25 für einen Kohlenwasserstoffrest steht,
R26 und R27 für Alkyl, Alkoxyalkyl oder Polyalkoxyalkyl mit wenigstens 10 Kohlenstoffatomen in der Hauptkette stehen,
R28 für C2-C5-Alkylen steht,
Z- für ein Anionenäquivalent steht und A" und B' für Alkyl, Alkenyl oder zwei substituierte Kohlenwasserstoffreste stehen oder gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, ein aromatisches oder cycloaliphatisches Ringsystem bilden.
Derartige Sulfocarbonsäuren bzw. Sulfonsäuren und ihre Derivate sind in der EP-A-O 261 957 beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird.
Als Komponente der Klasse (a6) geeignete Poly(meth)acrylsäureester sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäureestern. Bevorzugt sind Co- polymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäureestern von gesättigten Ci4- und Ci5-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben, worauf hiermit in vollem Umfang Bezug genommen wird. Die Amin-Komponente (b) ist ein Mono- oder Polyamin mit mindestens einer primären oder sekundären Aminofunktion und weist somit mindestens eine N-H-Bindung auf. Die N-H-Bindung und weiterhin auch die durch das gegebenenfalls am Stickstoffatom vorhandene freie Elektronenpaar verursachte Basizität der Komponente (b) sind verant- wortlich für die Wechselwirkung mit der Kaltfließverbesserer-Komponente (a), welche zur effektiven Absenkung des CFPP-Wertes beim Einsatz der erfindungsgemäßen Mischung in Biobrennstoffölen führt.
Stehen die Reste R1 und R2 für reine Hydrocarbylreste mit 4 bis 40 Kohlenstoffatomen, sollen diese hier als praktisch reine Kohlenwasserstoffreste jeglicher Struktur verstanden werden, die jedoch - solange dies den dominierenden Kohlenwasserstoffcharakter nicht verfälscht - noch in geringen Umfang Heteroatome, beispielsweise O oder N, und/oder funktionelle Gruppen mit Heteroatomen, beispielsweise OH-Gruppen, aufweisen können. Für den Rest R1 sind zudem weitere Aminofunktionen zugelassen, die diesem Rest einen stärkeren stickstoff-basischen Charakter verleihen können. Die genannten Hydrocarbylreste können gesättigter, ungesättigter oder aromatischer Natur sein; sie können linear, verzweigt oder cyclisch aufgebaut sein.
Vorzugsweise bezeichnet ein solcher Hydrocarbylrest mit 4 bis 40 Kohlenstoffatomen einen linearen oder verzweigten Alkyl- oder Alkenylrest wie n-Butyl, sec.-Butyl, Isobu- tyl, tert.-Butyl, Pentyl, Neopentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, Neooctyl, Nonyl, Neononyl, Decyl, Neodecyl, 2-Propylheptyl, Undecyl, Neoundecyl, Dodecyl, Tridecyl, Isotridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl (Stearyl), Oleyl, Linolyl, Linolenyl, Nonadecyl, Eicosyl, Hencosyl, Docosyl, Tricosyl, Tetracosyl, Penta- cosyl, Hexacosyl, Heptacosyl, Octacosyl, Nonacosyl, Squalyl oder deren Konstitutionsisomere. Derartige längerkettige Alkylreste können auch aus natürlich vorkommenden Quellen stammen, insbesondere aus Glyceriden bzw. den zugrundeliegenden Fettsäuren.
Weiterhin kann ein solcher Hydrocarbylrest mit 4 bis 40 Kohlenstoffatomen auch einen Aryl-, Alkaryl- oder Arylalkylrest bezeichnen, beispielsweise Phenyl, Naphthyl, Benzyl, 2-Phenylethyl, 3-Phenylpropyl, 4-Phenylbutyl, o-, m- oder p-Tolyl oder o-, m- oder p-Xylyl.
Bilden die beiden Reste R1 und R2 gemeinsam einen 5- bis 7-gliedrigen Ring, liegen als Komponente (b) beispielsweise gesättigte oder ungesättigte sekundäre cyclische Amine wie entsprechend alkyl- oder alkenylsubstituierte Pyrrolidine, z.B. 2- oder 3-Do- decylpyrrolidin, 2-Pyrroline, 3-Pyrroline, Pyrrole, Piperidine, Pyrazane, Morpholine, 1 H- Azepine, Indole oder Isoindoline mit der jeweiligen vorgeschriebenen Gesamtanzahl an Kohlenstoffatomen vor. Enthält der Rest R1 weitere primäre und/oder sekundäre und/oder tertiäre Aminofunkti- onen, liegen als Polyamin-Komponente (b) mit der jeweiligen vorgeschriebenen Gesamtanzahl an Kohlenstoffatomen beispielsweise N-Dodecyl-1 ,4-butylendiamin, N1N'- Bisdecyl-ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin, Dipropylentriamin, Tripropylentetramin, Tetrapropylenpentamin, Pentapropylenhexamin, N,N'-Bis-(3-aminopropyl)-ethylenediamin, 3-(N,N-Dimethyl- amino)-propylamin ("DMAPA"), Bis[3-(N,N-Dimethylamino)propyl]-amin ("Bis-DMAPA") oder N-Talgfett-1 ,3-diaminopropan vor.
Vorzugsweise enthalten die Hydrocarbylreste R1 und R2 jeweils 6 bis 30, insbesondere 8 bis 24, vor allem 10 bis 22 Kohlenstoffatome.
Vorzugsweise handelt es sich bei den Aminen der Komponente (b) um aliphatische Amine, insbesondere um aliphatische Monoamine. Diese Amine haben vorzugsweise keine cyclische Struktur.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Monoamin-Komponente (b) mindestens ein Mono-Cio- bis C22-alkyl- oder -alkenylamin oder ein Di-Cio- bis C22-alkyl- oder -alkenylamin. Bei den letztgenannten Dialkyl- oder -alkenylaminen können beide Ketten verschieden oder gleich sein. Ganz besonders bevorzugt sind hiervon Mono-Cio- bis Ci2-alkylamine.
Typische Beispiel für solche bevorzugte Mono-Cio- bis C22-alkyl- oder alkenylamine bzw. Mono-Cio- bis Ci2-alkylamine, deren Alkyl- bzw. Alkenylkette verzweigt oder vor- zugsweise linear sein kann, sind Decylamin, Neodecylamin, 2-Propylheptylamin, Un- decylamin, Neoundecylamin, Dodecylamin, Tridecylamin, Isotridecylamin, Tetradecy- lamin, Pentadecylamin, Hexadecylamin, Heptadecylamin, Octadecyl(Stearyl)amin, Oleylamin, Linolylamin, Linolenylamin, Nonadecylamin, Eicosylamin, Hencosylamin und Docosylamin.
Typische Beispiel für solche bevorzugte Di-Cio- bis C22-alkyl- oder alkenylamine, deren Alkyl- bzw. Alkenylketten verzweigt oder vorzugsweise linear sein können, sind Didecy- lamin, Didodecylamin, Ditetradecylamin, Dihexadecylamin, Dioctadecyl(Distearyl)amin, Dioleylamin, Dikokosfettamin, Ditalgfettamin, Dibehenylamin und Methylbehenylamin.
Die erfindungsgemäße Mischung kann durch einfaches Vermischen, gegebenenfalls in einem geeigneten Lösungsmittel, der beiden Komponenten (a) und (b) ohne Wärmezufuhr hergestellt werden.
Die erfindungsgemäße Mischung eignet sich als Zusatz zu Kraftstoffen, speziell zu Biobrennstoffölen oder zu Mischungen aus Biobrennstoffölen und Mitteldestillat- Kraftstoffen aus fossilem Ursprung. Ihr Zusatz dient insbesondere zur Verbesserung des Kaltfließverhaltens der Kraftstoffe. Mitteldestillat-Kraftstoffe aus fossilem Ursprung, die insbesondere als Gasöle, Petroleum, Dieselöle (Dieselkraftstoffe) oder leichte Heizöle Verwendung finden, werden oft auch als Brennstofföle bezeichnet. Derartige Mitteldestillat-Kraftstoffe weisen in der Regel Siedetemperaturen von 120 bis 4500C auf.
Die erfindungsgemäße Mischung kann den Kraftstoffen direkt, d.h. unverdünnt, bevorzugt jedoch als 10 bis 90 gew.-%ige, insbesondere als 25 bis 80 gew.-%ige, vor allem als 45 bis 75 gew.-%ige Lösung (Konzentrat) in einem geeigneten Lösungsmittel, übli- cherweise einem Kohlenwasserstoff-Lösungsmittel, zugesetzt werden. Ein solches Konzentrat, enthaltend 10 bis 90 Gew.-%, insbesondere 25 bis 80 Gew.-%, vor allem 45 bis 75 Gew.-%, bezogen auf die Gesamtmenge des Konzentrates, der erfindungsgemäßen Mischung, gelöst in einem Kohlenwasserstoff-Lösungsmittel, ist daher auch Gegenstand der vorliegenden Erfindung. Gängige Lösungsmittel sind in diesem Zu- sammenhang aliphatische oder aromatische Kohlenwasserstoffe, beispielsweise XyIoIe oder Gemische hochsiedender Aromaten wie Solvent Naphtha. Auch naphthalinarme aromatische Kohlenwasserstoff-Gemische wie naphthalinarmes Solvent Naphtha können hier vorteilhaft als Lösungsmittel eingesetzt werden. Weiterhin eignen sich hierfür auch in Biobrennstoffölen und Mitteldestillaten lösliche Lösungsmittel aus der Gruppe der Alkohole, Ester und Ether, einschließlich der Polyoxyalkylene und der Polyglykole. Auch Mitteldestillat-Kraftstoffe selbst können als Lösungsmittel für derartige Konzentrate verwendet werden.
Die Dosierrate der Mischung in den Kraftstoffen beträgt in der Regel 10 bis 10.000 Gew.-ppm, insbesondere 50 bis 5000 Gew.-ppm, vor allem 100 bis
3000 Gew.-ppm, z.B. 500 bis 1500 Gew.-ppm, jeweils bezogen auf die Gesamtmenge an Kraftstoff.
Die Mischung aus den Komponenten (a) und (b) kann den Kraftstoffen als vorgefertigte Mischung, insbesondere in Form des oben beschriebenen Konzentrates, zugegeben werden. Man kann jedoch auch den Kraftstoffen die Komponenten (a) und (b) jeweils einzeln zusetzen, so dass die erfindungsgemäße Mischung erst im Kraftstoff physikalisch vorliegt.
In einer bevorzugten Ausführungsform wird die erfindungsgemäße Mischung als Zusatz zu Kraftstoffen verwendet, welche
(A) zu 0,1 bis 100 Gew.-%, vorzugsweise zu 0,1 bis weniger als 100 Gew.-%, insbesondere zu 10 bis 95 Gew.-%, vor allem zu 30 bis 90 Gew.-%, aus mindestens einem Biobrennstofföl, welches auf Fettsäureestern basiert, und
(B) zu 0 bis 99,9 Gew.-%, vorzugsweise zu mehr als 0 bis 99,9 Gew.-%, insbesondere zu 5 bis 90 Gew.-%, vor allem zu 10 bis 70 Gew.-%, aus Mitteldestillaten aus fossilem Ursprung und/oder aus pflanzlichem und/oder tierischem Ursprung, welche im wesentlichen Kohlenwasserstoffmischungen darstellen und frei von Fettsäureestern sind,
bestehen.
In einer besonders bevorzugten Ausführungsform wird die erfindungsgemäße Mischung als Zusatz zu Kraftstoffen verwendet, welche zu 100 Gew.-% aus mindestens einem Biobrennstofföl (A), welches auf Fettsäureestern basiert, bestehen.
Die Kraftstoff-Komponente (A) wird meist auch als "Biodiesel" bezeichnet. Bei den Mitteldestillaten der Kraftstoff-Komponente (A) handelt es sich vorzugsweise im wesentlichen um Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere d- bis C4-Alkylester, verstanden, die durch Umesterung der in pflanzlichen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesondere Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol, n-Propanol, iso-Pro- panol, n-Butanol, iso-Butanol, sec.-Butanol, tert.-Butanol oder insbesondere Methanol ("FAME"), erhältlich sind.
Beispiele für pflanzliche Öle, die in entsprechende Alkylester umgewandelt werden und somit als Basis für Biodiesel dienen können, sind Rizinusöl, Olivenöl, Erdnussöl, PaIm- kernöl, Kokosöl, Senföl, Baumwollsamenöl sowie insbesondere Sonnenblumenöl, Palmöl, Sojaöl und Rapsöl. Weitere Beispiele schließen Öle ein, die sich aus Weizen, Jute, Sesam und der Scheabaumnuß gewinnen lassen; weiterhin sind auch Arachisöl, Jatrophaöl und Leinöl verwendbar. Die Gewinnung dieser Öle und deren Umwandlung in die Alkylester sind aus dem Stand der Technik bekannt oder können daraus abgeleitet werden.
Es können auch schon verwendete pflanzliche Öle, beispielsweise gebrauchtes Frit- tieröl, gegebenenfalls nach einer entsprechenden Reinigung, in Alkylester umgewandelt werden und somit als Basis für Biodiesel dienen.
Pflanzliche Fette sind ebenfalls im Prinzip als Quelle für Biodiesel verwendbar, spielen jedoch eine untergeordnete Rolle.
Beispiele für tierische Fette und Öle, die in entsprechende Alkylester umgewandelt werden und somit als Basis für Biodiesel dienen können, sind Fischöl, Rindertalg, Schweinetalg und ähnliche beim Schlachten oder Verwerten von Nutz- oder Wildtieren als Abfälle anfallende Fette und Öle. Als den genannten pflanzlichen und/oder tierischen Ölen und/oder Fetten zugrundeliegenden gesättigte oder ungesättigte Fettsäuren, die meist 12 bis 22 Kohlenstoffatome aufweisen und zusätzliche funktionelle Gruppe wie Hydroxylgruppen tragen können, treten in den Alkylestern insbesondere Laurinsäure, Myristinsäure, Palmitinsäure, Stea- rinsäure, Ölsäure, Linolsäure, Linolensäure, Elaidinsäure, Erucasäure und/oder Rici- nolsäure auf.
Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biodiesel oder Biodiesel-Komponenten Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölmethylester ("PME"), Sojaölmethylester ("SME") und insbesondere Rapsölmethylester ("RME").
Es können jedoch auch die Monoglyceride, Diglyceride und insbesondere Triglyceride selbst, beispielsweise Rizinusöl, oder Mischungen aus solchen Glyceriden als Bio- diesel oder Komponenten für Biodiesel eingesetzt werden.
Unter der Kraftstoff-Komponente (B) sollen im Rahmen der vorliegenden Erfindung im Bereich von 120 bis 4500C siedende Mitteldestillat-Kraftstoffe verstanden werden. Solche Mitteldestillat-Kraftstoffe werden insbesondere als Dieselkraftstoff, Heizöl oder Kerosin verwendet, wobei Dieselkraftstoff und Heizöl besonders bevorzugt sind.
Mit Mitteldestillat-Kraftstoffen werden Kraft- und Brennstoffe bezeichnet, die durch Destillation von Rohöl als erstem Verfahrensschritt gewonnen werden und im Bereich von 120 bis 4500C sieden. Vorzugsweise werden schwefelarme Mitteldestillate verwendet, d.h. solche, die weniger als 350 ppm Schwefel, insbesondere weniger als 200 ppm Schwefel, vor allem weniger als 50 ppm Schwefel enthalten. In speziellen Fällen enthalten sie weniger als 10 ppm Schwefel, diese Mitteldestillate werden auch als "schwefelfrei" bezeichnet. Es handelt sich dabei im allgemeinen um Rohöldestillate, die einer hydrierenden Raffination unterworfen wurden, und daher nur geringe Anteile an poly- aromatischen und polaren Verbindungen enthalten. Vorzugsweise handelt es sich um solche Mitteldestillate, die 90%-Destillationspunkte unter 3700C, insbesondere unter 360°C und in Spezialfällen unter 330°C aufweisen.
Schwefelarme und schwefelfreie Mitteldestillate können auch aus schwereren Erdöl- fraktionen gewonnen werden, die nicht mehr unter Atmosphärendruck destilliert werden können. Als typische Konversionsverfahren zur Herstellung von Mitteldestillaten aus schweren Erdölfraktionen seien genannt: Hydrocracken, thermisches Cracken, katalytisches Cracken, Cokerprozesse und/oder Visbreaking. Je nach Verfahrensdurchführung fallen diese Mitteldestillate schwefelarm oder schwefelfrei an oder wer- den einer hydrierenden Raffination unterworfen. Vorzugsweise haben die Mitteldestillate Aromatengehalte von unter 28 Gew.-%, insbesondere unter 20 Gew.-%. Der Gehalt an Normalparaffinen beträgt zwischen 5% und 50 Gew.-%, vorzugsweise liegt er zwischen 10 und 35 Gew.%.
Unter den als Kraftstoff-Komponente (B) bezeichneten Mitteldestillaten sollen hier auch Mitteldestillate verstanden werden, welche sich entweder indirekt von fossilen Quellen wie Erdöl oder Erdgas ableiten lassen oder aber aus Biomasse über Vergasung und anschließende Hydrierung hergestellt werden. Ein typisches Beispiel für einen sich indirekt von fossilen Quellen ableitenden Mitteldestillat-Kraftstoff ist der mittels Fischer- Tropsch-Synthese erzeugte GTL("gas-to-liquid")-Dieselkraftstoff. Aus Biomasse wird beispielweise über den BTL("biomass-to-liquid")-Prozeß ein Mitteldestillat hergestellt, das entweder allein oder in Mischung mit anderen Mitteldestillaten als Kraftstoffkomponente (B) verwendet werden kann. Zu den Mitteldestillaten gehören auch Kohlenwasserstoffe, die durch Hydrierung von Fetten und Fettölen gewonnen werden. Sie enthal- ten überwiegend n-Paraffine. Den genannten Mitteldestillat-Kraftstoffen ist gemeinsam, dass sie im wesentlichen Kohlenwasserstoffmischungen darstellen und frei von Fettsäureestern sind.
Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DIN 51603 und EN 590 näher festgelegt (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff., worauf hiermit ausdrücklich Bezug genommen wird).
Die erfindungsgemäße Mischung kann sowohl in reinen Biobrennstoffölen (Biodiesel) als auch in deren Mischungen mit den genannten Mitteldestillat-Kraftstoffen zur Ver- besserung deren Eigenschaften zugesetzt werden. In beiden Fällen wird eine deutliche Verbesserung des Kaltfließverhaltens des Kraftstoffes, d.h. eine Absenkung insbesondere der CFPP-Werte, aber auch der CP-Werte und/oder der PP-Werte, unabhängig von der Herkunft oder der Zusammensetzung des Kraftstoffes beobachtet. Die ausgeschiedenen Kristalle werden in der Regel wirksam in der Schwebe gehalten, so dass es nicht zu Verstopfungen von Filtern und Leitungen durch solche Sedimente kommt. Die erfindungsgemäße Mischung weist in den meisten Fällen eine gute Breitenwirkung auf und bewirkt so, dass die ausgeschiedenen Kristalle in den unterschiedlichsten Kraftstoffen sehr gut dispergiert werden.
Ebenso können durch die Verwendung der erfindungsgemäßen Mischung eine Reihe weitere Kraftstoffeigenschaften verbessert werden. Exemplarisch sollen hier nur die zusätzliche Wirkung als Korrosionsschutz oder die Verbesserung der Oxidationsstabili- tät genannt werden. Gegenstand der vorliegenden Erfindung sind auch Kraftstoffe aus oder mit einem Ge- halt an Biobrennstoffölen (Biodiesel), die die erfindungsgemäße Mischung - insbesondere in den oben genannten Dosierraten - enthalten. In der Regel enthalten die genannten Kraftstoffe bzw. die genannten Kraftstoffadditiv- Konzentrate noch als weitere Zusätze in hierfür üblichen Mengen weitere Kaltfließver- besserer (wie oben beschrieben), Paraffindispergatoren, Leitfähigkeitsverbesserer, Korrosionsschutzadditive, Lubricity-Additive, Antioxidantien, Metall-Deaktivatoren, Anti- schaummittel, Demulgatoren, Detergentien, Cetanzahl-Verbesserer, Lösungs- oder Verdünnungsmittel, Farbstoffe oder Duftstoffe oder Gemische davon. Die vorstehend genannten weiteren Zusätze, die oben noch nicht angesprochen worden sind, sind dem Fachmann geläufig und brauchen deshalb hier nicht weiter erläutert zu werden.
Die nachfolgenden Beispiele sollen die vorliegende Erfindung erläutern, ohne sie zu beschränken.
Beispiele
Verwendete Kraftstoffe:
Für den Vergleich der Effektivität der erfindungsgemäßen Mischung in Dieselkraftstoff aus fossilem Ursprung wurde ein typischer deutscher Winter-Dieselkraftstoff mit folgenden Eigenschaften verwendet:
CP (DIN EN 23015): -6,5°C
CFPP (DIN EN 1 16) -9°C
Dichte bei 15°C (EN ISO 1285): 835,6 kg/m3
Cetanindex: (ASTM D 4737) 51 ,8
Siedeverlauf (EN ISO 3405):
Siedebeginn: 185°C
5 Vol.-% bis: 2020C
10 Vol.-% bis 2100C
50 Vol.-% bis 265°C
90 Vol.-% bis 3300C
95 Vol.-% bis 342°C
Siedeende 353°C n-Paraffingehalt (GC-Methode): 21 ,4 Gew.-%
Für die hier aufgeführten Beispiele wurden die folgenden Biobrennstofföle (FAME) verwendet:
Verwendete Additive:
Die verwendeten Additive können wie folgt charakterisiert werden:
EVA-1 : Ethylen-Vinylacetat-Copolymer hergestellt gemäß WO 9/29748,Vinylacetat- Gehalt 30 Gew.-%, Viskosität bei 1200C: 70 cSt (die angegebenen
Dosierungmengen beziehen sich auf das reine Copolymer)
EVA-1-SN: Lösung von 60 Gew.-% EVA-1 in 40 Gew.-% Solvent Naphtha
EVA-2: analog EVA-1 , jedoch mit einem Vinylacetat-Gehalt von 35 Gew.-%
Amine: gemäß der chemischen Definition; erhältlich im Chemikalienfachhandel;als Kokosfettamin wurde Armeen C der Fa. AkzoNobel verwendet; als Diko- kosfettamin wurde Noram 2C der Fa. Ceca, Frankreich, verwendet(Kokos- fett- und Dikokosfettamin enthalten als Alkylgruppen hauptsächlich Do- decyl- und Tetradecylreste)
WASA handelsübliches WASA der BASF, erhältlich unter der Bezeichnung Kero- flux 3614
EA 1 : erfindungsgemäße Mischung aus 40 Gew.-% EVA-1 , 30 Gew.-% Dodecyl- amin und 30 Gew.-% Solvent Naphtha EA 2: erfindungsgemäße Mischung aus 35 Gew.-% EVA-2, 30 Gew.-% Dodecyl- amin und 35 Gew.-% Solvent Naphtha
Als Solvent Naptha wurde Solvesso® 150 von Fa. Exxon verwendet.
Vergleichsbeispiel 1 in Dieselkraftstoff aus fossilem Ursprung
Die nachfolgende Tabelle zeigt, dass der Wirkung der erfindungsgemäß Mischung der Komponente (a) (Kaltfließverbesserer MDFI, gegebenenfalls in Kombination mit WA- SA) mit der Amin-Komponente (b) aus dem Einsatz in reinem fossilen Dieselkraftstoff nicht vorhersehbar war.
Anmerkung: zur besseren Handhabung wurde EVA-1 mit 40 Gew.-% Solvent Naphtha verdünnt.
Erfindungsgemäßes Beispiel 2 in Biobrennstofföl (06/222)
Die Ergebnisse zeigen, dass durch die Verwendung einer EVA/Amin-Mischung die Dosierraten der Kaltfließverbesserer (MDFI) drastisch reduziert werden können. Erfindungsgemäßes Beispiel 3 - Variation der Amine
Die nachfolgend gezeigten Versuche belegen, dass die CFPP-verbessernde Wirkung des Amins nicht auf Dodecylamin, wie in EA 1 und EA 2 enthalten, beschränkt ist.
Erfindungsgemäßes Beispiel 4 - Verhältnis Kaltfließverbesserer zu Amin
Die nachfolgenden Werte zeigen, dass das Verhältnis Kaltfließverbesserer (a) zu Amin (b) über einen weiten Bereich variiert werden kann.
Erfindungsgemäßes Beispiel 5 - Verbesserung der Kälteeigenschaften von Mischungen verschiedener Biobrennstofföle
Gemäß den nachfolgenden Resultaten können auch Mischungen von RME mit anderen Biobrennstoffölen (FAME) in den Kälteeigenschaften verbessert werden.
Erfindungsgemäßes Beispiel 6 - Verwendung von sekundären Aminen
Wie die nachfolgenden Werte belegen, ist die CFPP-verbessernde Wirkung der Amin- Komponente (b) nicht nur auf primäre Amine beschränkt.

Claims

Patentansprüche
1. Mischung, enthaltend
(a) 5 bis 95 Gew.-% mindestens einer organischen Verbindung, welche in der
Lage ist, das Kaltfließverhalten von Kraftstoffen zu verbessern, und
(b) 5 bis 95 Gew.-% mindestens eines Amins der allgemeinen Formel I
R1R2HN (I)
in der R1 für einen Hydrocarbylrest mit 4 bis 40 Kohlenstoffatomen, der noch weitere primäre und/oder sekundäre und/oder tertiäre Aminofunktio- nen enthalten kann, steht und R2 einen Hydrocarbylrest mit 4 bis 40 Koh- lenstoffatomen oder Wasserstoff bezeichnet, wobei R1 und R2 gemeinsam auch einen 5- bis 7-gliedrigen Ring bilden können,
wobei die Summe der Komponenten (a) und (b) 100 Gew.-% ergibt.
2. Mischung nach Anspruch 1 , enthaltend als Komponente (a) mindestens eine organische Verbindung ausgewählt aus
(a1 ) Copolymeren eines C2- bis C4o-Olefins mit wenigstens einem weiteren ethy- lenisch ungesättigten Monomer; (a2) Kammpolymeren;
(a3) Polyoxyalkylenen;
(a4) polaren Stickstoffverbindungen;
(a5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und
(a6) Poly(meth)acrylsäureestern.
3. Mischung nach Anspruch 2, enthaltend als Komponente (a1) mindestens ein E- thylen-Vinylacetat-Copolymer.
4. Mischung nach Anspruch 3, enthaltend als Komponente (a1 ) mindestens ein Ter- polymer aus einem C2- bis C4o-α-Olefin, einem d- bis C2o-Alkylester einer ethy- lenisch ungesättigten Monocarbonsäure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis Ci4-Alkenylester einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen.
5. Mischung nach den Ansprüchen 1 bis 4, enthaltend als Komponente (b) mindestens ein Mono-Cio- bis C22-alkyl- oder -alkenylamin oder ein Di-Cio- bis C22-alkyl- oder -alkenylamin.
6. Verwendung der Mischung gemäß den Ansprüchen 1 bis 5 als Zusatz zu Kraftstoffen.
7. Verwendung der Mischung nach Anspruch 6 als Zusatz zu Kraftstoffen, welche
(A) zu 0,1 bis 100 Gew.-% aus mindestens einem Biobrennstofföl, welches auf Fettsäureestern basiert, und
(B) zu 0 bis 99,9 Gew.-% aus Mitteldestillaten aus fossilem Ursprung und/oder aus pflanzlichem und/oder tierischem Ursprung, welche im wesentlichen Kohlenwasserstoffmischungen darstellen und frei von Fettsäureestern sind, bestehen.
8. Verwendung nach Anspruch 7, wobei es sich bei der Kraftstoff-Komponente (A) im wesentlichen um Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten, handelt.
9. Kraftstoffe gemäß Anspruch 6 bis 8, enthaltend eine Mischung gemäß den Ansprüchen 1 bis 5.
10. Kraftstoffe nach Anspruch 9, enthaltend als weitere Zusätze in hierfür üblichen Mengen weitere Kaltfließverbesserer, Paraffindispergatoren, Leitfähigkeitsverbesserer, Korrosionsschutzadditive, Lubricity-Additive, Antioxidantien, Metall- Deaktiva-toren, Antischaummittel, Demulgatoren, Detergentien, Cetanzahl- Verbesserer, Lösungs- oder Verdünnungsmittel, Farbstoffe oder Duftstoffe oder Gemische davon.
1 1. Kraftstoffadditiv-Konzentrat, enthaltend 10 bis 90 Gew.-%, bezogen auf die Gesamtmenge des Konzentrates, einer Mischung gemäß den Ansprüchen 1 bis 5, gelöst in einem Kohlenwasserstoff-Lösungsmittel.
12. Kraftstoffadditiv-Konzentrat nach Anspruch 11 , enthaltend als weitere Zusätze in hierfür üblichen Mengen weitere Kaltfließverbesserer, Paraffindispergatoren, Leitfähigkeitsverbesserer, Korrosionsschutzadditive, Lubricity-Additive, Antioxidantien, Metall-Deaktivatoren, Antischaummittel, Demulgatoren, Detergentien, Ce- tanzahl-Verbesserer, Lösungs- oder Verdünnungsmittel, Farbstoffe oder Duftstoffe oder Gemische davon.
EP08717822A 2007-03-22 2008-03-14 Mischung aus kaltfliessverbesserern und aminen Withdrawn EP2129752A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08717822A EP2129752A1 (de) 2007-03-22 2008-03-14 Mischung aus kaltfliessverbesserern und aminen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07104684 2007-03-22
EP08717822A EP2129752A1 (de) 2007-03-22 2008-03-14 Mischung aus kaltfliessverbesserern und aminen
PCT/EP2008/053080 WO2008113757A1 (de) 2007-03-22 2008-03-14 Mischung aus kaltfliessverbesserern und aminen

Publications (1)

Publication Number Publication Date
EP2129752A1 true EP2129752A1 (de) 2009-12-09

Family

ID=39495256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08717822A Withdrawn EP2129752A1 (de) 2007-03-22 2008-03-14 Mischung aus kaltfliessverbesserern und aminen

Country Status (4)

Country Link
EP (1) EP2129752A1 (de)
AR (1) AR067237A1 (de)
BR (1) BRPI0808949A2 (de)
WO (1) WO2008113757A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271593B2 (ja) * 2008-04-25 2013-08-21 株式会社Adeka バイオディーゼル燃料用低温流動性向上剤
JP5271594B2 (ja) * 2008-04-25 2013-08-21 株式会社Adeka バイオディーゼル燃料用低温流動性向上剤
WO2009131024A1 (ja) * 2008-04-25 2009-10-29 株式会社Adeka バイオディーゼル燃料用低温流動性向上剤
RU2012152519A (ru) 2010-05-07 2014-06-20 Басф Се Тройной сополимер и его применение для улучшения хладотекучести среднедистиллятных топлив
RU2565055C2 (ru) 2010-07-06 2015-10-20 Басф Се Сополимеризат с высокой химической однородностью и его применение для улучшения характеристик холодной текучести жидких топлив
US8721744B2 (en) 2010-07-06 2014-05-13 Basf Se Copolymer with high chemical homogeneity and use thereof for improving the cold flow properties of fuel oils
CA2830308A1 (en) 2011-03-30 2012-10-04 Basf Se Copolymer and use thereof for improving the cold flow properties of middle distillate fuels
US8790424B2 (en) 2011-03-30 2014-07-29 Basf Se Copolymer and use thereof for improving the cold flow properties of middle distillate fuels
EP3885424A1 (de) 2020-03-24 2021-09-29 Clariant International Ltd Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
WO2024061760A1 (de) * 2022-09-23 2024-03-28 Basf Se Verminderung der kristallisation von paraffinen in kraftstoffen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955940A (en) * 1975-01-06 1976-05-11 Exxon Research And Engineering Company Middle distillate petroleum oils containing cold flow improving additives
JP2508783B2 (ja) * 1988-01-26 1996-06-19 日本油脂株式会社 燃料油用流動性向上剤
GB9222458D0 (en) * 1992-10-26 1992-12-09 Exxon Chemical Patents Inc Oil additives and compositions
AU674052B2 (en) * 1993-05-24 1996-12-05 Lubrizol Corporation, The Pour point depressant treated fatty acid esters as biodegradable, combustion engine fuels
AU4877897A (en) * 1996-11-14 1998-06-03 Bp Exploration Operating Company Limited Inhibitors and their uses in oils
US5857287A (en) * 1997-09-12 1999-01-12 Baker Hughes Incorporated Methods and compositions for improvement of low temperature fluidity of fuel oils
EP1668099B1 (de) * 2003-09-15 2008-11-05 The Lubrizol Corporation Bei niedriger temperatur arbeitsfähige fettsäureesterbrennstoffzusammensetzung und verfahren dafür
DE10356595A1 (de) * 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
DE102004028495B4 (de) * 2004-06-11 2007-08-30 Clariant Produkte (Deutschland) Gmbh Kaltfließverbessererzusammensetzungen in naphthalinarmem Solvent Naphtha

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008113757A1 *

Also Published As

Publication number Publication date
WO2008113757A1 (de) 2008-09-25
AR067237A1 (es) 2009-10-07
BRPI0808949A2 (pt) 2014-08-26

Similar Documents

Publication Publication Date Title
EP2038380B1 (de) Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe
EP2129752A1 (de) Mischung aus kaltfliessverbesserern und aminen
EP1116781B1 (de) Mehrfunktionelles Additiv für Brennstofföle
EP2092045B2 (de) Kaltfliessverbesserer
EP1116780B1 (de) Mehrfunktionelles Additiv für Brennstofföle
EP3464399B1 (de) Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
EP2162514B1 (de) Verwendung in detergenzadditive enthaltenden mineralölen mit verbesserter kältefliessfähigkeit
DE10058356A1 (de) Brennstofföle mit verbesserter Schmierwirkung, enthaltend Umsetzungsprodukte aus Fettsäuren mit kurzkettigen öllöslichen Aminen
WO2011134923A1 (de) Quaternisiertes terpolymerisat
EP1209215B1 (de) Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Festtsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
DE102022132342A1 (de) Guanidiniumsalze als Kraftstoffadditive
EP2417229B1 (de) Mischung aus polaren öllöslichen stickstoffverbindungen und öllöslichen aliphatischen verbindungen zur absenkung des cloud point in mitteldestillat-brennstoffen
DE10324101A1 (de) Brennstoffzusammensetzungen mit verbesserten Kaltfließeigenschaften
EP2691360B1 (de) Copolymerisat und seine verwendung zur verbesserung der kaltfliesseigenschaften von mitteldestillat-kraftstoffen
DE10324102A1 (de) Brennstoffzusammensetzungen mit verbesserten Kaltfließeingenschaften
WO2004101716A1 (de) Brennstoffzusammensetzungen, enthaltend terpolymere mit verbesserten kaltfliesseigenschaften
DE10254640A1 (de) Verwendung von Homopolymeren ethylenisch ungesättigter Ester zur Vebesserung der Wirkung von Kaltfließverbesserern
DE10000650C2 (de) Mehrfunktionelles Additiv für Brennstofföle
DE10048682A1 (de) Mehrfunktionelles Additiv für Brennstofföle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001