[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2129454B1 - Strahldispergator - Google Patents

Strahldispergator Download PDF

Info

Publication number
EP2129454B1
EP2129454B1 EP08716547A EP08716547A EP2129454B1 EP 2129454 B1 EP2129454 B1 EP 2129454B1 EP 08716547 A EP08716547 A EP 08716547A EP 08716547 A EP08716547 A EP 08716547A EP 2129454 B1 EP2129454 B1 EP 2129454B1
Authority
EP
European Patent Office
Prior art keywords
gap
jet disperser
process space
piston
gaps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08716547A
Other languages
English (en)
French (fr)
Other versions
EP2129454A1 (de
Inventor
Frank Herbstritt
Olaf Behrend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehrfeld Mikrotechnik BTS GmbH
Original Assignee
Ehrfeld Mikrotechnik BTS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehrfeld Mikrotechnik BTS GmbH filed Critical Ehrfeld Mikrotechnik BTS GmbH
Publication of EP2129454A1 publication Critical patent/EP2129454A1/de
Application granted granted Critical
Publication of EP2129454B1 publication Critical patent/EP2129454B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4412Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed planar surfaces, e.g. pushed again each other by springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/442Mixers in which the components are pressed through slits characterised by the relative position of the surfaces during operation
    • B01F25/4422Mixers in which the components are pressed through slits characterised by the relative position of the surfaces during operation the surfaces being maintained in a fixed but adjustable position, spaced from each other, therefore allowing the slit spacing to be varied

Definitions

  • the invention relates to a jet disperser with which fluid media can be mixed particularly finely and liquid mixtures subjected to high shear stresses, e.g. to produce finely dispersed emulsions or suspensions.
  • One method of producing particularly finely dispersed emulsions and suspensions is to premix the starting components of the dispersion and to promote the resulting predispersion at high pressure through one or more narrow orifices (nozzles). It is known that the pressure drop and thus the specific energy input via the nozzle or the nozzle system, which is required to achieve a certain dispersing result, decreases in most cases while reducing the characteristic dimensions (for example hydraulic diameter) of the nozzle used. In order to efficiently disperse larger mass flows, it is therefore preferable to resort to systems with many particularly fine openings through which they flow in parallel.
  • some dispersing apparatuses are also equipped with a device for varying the number of apertures through which they flow.
  • a jet disperser in which the fluids to be mixed pass through radially extending bores into a process space.
  • the bores can be completely or partially closed by means of an axially displaceable tube or piston guided inside the process chamber, in order to adapt the number of bores through to the desired pressure and throughput, whereby a good fine mixing of the fluid media is to be achieved.
  • a disadvantage of such a jet disperser is that the total cross section of the openings through which flows through can no longer be varied continuously but only gradually in the case of small mass flows and is ultimately limited by the minimum achievable bore cross section. It is also associated with high technical effort, a lot of holes with diameters well below 0.1 mm, as they would be desirable for many applications, in the walls of the process space bring, which at the same time have a considerable strength due to the high pressure loads. Finally, during operation, the piston, which closes the nozzle openings in the wall of the process chamber, has high forces in the direction of its axis of motion, which must be held by a suitable device in order to prevent undesired displacement of the piston. It is thus at least extremely difficult to produce particularly finely dispersed emulsions and suspensions in processes with varied or fluctuating flow rates with low energy consumption.
  • the US 2005/072300 A1 also describes a jet disperser for fine mixing of fluid media, but does not disclose that its gap height is variably adjustable.
  • the jet disperser according to the invention for fine mixing or dispersion of fluid media has a housing in which a process space for mixing the fluid media is arranged, which is in communication with a Zu-Abzhoukanal for a fluid medium. At least two columns extending substantially perpendicularly to the longitudinal axis of the process space, which are each also in connection with at least one further in-discharge channel for a fluid medium, respectively open into the process space via a gap opening substantially radially.
  • a rotatable about an axis of rotation piston which carries at the level of the stomata an array of openings with connection to the process space such that the stomata are closed depending on the angular position of the piston to a greater or lesser extent by the piston and the gap height of the first gap and the second gap is variably adjustable by spacers.
  • the gap in the circumferential direction relative to the height is relatively wide, since the gap opening can be reduced by the piston to a particularly small passage cross-section, wherein the outlet cross-section in a first application at the right end of can be located on the right side and in a second application at the left end of a gap, so that despite occurring signs of wear, the life of the jet disperser can be extended. Due to the possibility of setting a particularly small outlet cross section, extremely high shear forces can be achieved even at relatively low pressure drops via the jet disperser, which lead to a particularly fine dispersion of the fluid media.
  • the jet disperser according to the invention can be easily adapted to different system and process parameters, such as, for example, pressure or mass flow of educt fluids. This can also be done automatically with the aid of a control loop.
  • the columns of a preferred embodiment can be formed by two housing parts in the jet disperser according to the invention, it is possible with little manufacturing effort to provide gaps which have an extremely low height in the axial direction. For example, it is possible to mill recesses of a few micrometers in depth into one of the housing parts along the abutting edge adjacent to the process space, or by other manufacturing techniques such as grinding, lapping or forming sets, which then cover by a counter surface of the second Housing part define the dispersing column towards the process room. Elaborate microfabrication techniques are in principle not required for this.
  • the gap height can be set variably depending on the application.
  • the spacers are designed in the form of a foil, so that it is possible to produce gaps with a gap height of a few micrometers by using preferably metallic or polymeric foils with a layer thickness of a few micrometers thick.
  • the two housing parts are connected to each other in such a way that leaks even at high pressures to, for example 200 bar, are avoided.
  • self-reinforcing elastomer seals are provided between the housing parts.
  • the piston can be determined in particular steplessly in its angular position, so that the size of the opening into the process space gap openings of the columns variable - preferably from near zero to its full length - can be adjusted.
  • the locking of the angular position of the piston can take place with a comparatively simple device (for example locking screw, clamping jaws), since only very small pressure forces act on the piston during operation of the jet disperser in its direction of movement. It is thus also possible to adjust the angular position of the piston during operation of the jet disperser with little effort.
  • the adjustment of the angle of the piston by hand so this preferably takes place by means of a transmission with over- or reduction, so that the piston with high accuracy and reproducibility - preferably of about 2%, more preferably less than 0.5% of Angular opening of the column - can be positioned in a certain angular position.
  • the piston has a protruding lever, wherein the lever can be locked.
  • a rotary head or the like may be provided.
  • the lever or knob cooperates with a scale, so that the angular position of the piston can be read on the jet disperser.
  • a motorized adjustment of the angular position of the piston e.g.
  • jet disperser by a mechanical, electrical, magnetic, pneumatic or hydraulic drive.
  • a mechanical, electrical, magnetic, pneumatic or hydraulic drive Such an embodiment of the jet disperser according to the invention is particularly preferable if the angular position of the piston is to be defined via a control loop, e.g. to keep the pressure drop across the jet disperser or other process characteristic constant with varying media streams or media properties.
  • the arrangement of the gaps and in particular of the gap openings to the process chamber in a common plane perpendicular to the axis of rotation of the piston and the openings in the piston are in this plane in direct (ie straight) connection.
  • the stomata of the gaps are arranged in pairs opposite to each other. This makes it possible that the fluids to be mixed immediately after entering the process space in the center of which collide, resulting in a particularly good mixing or dispersion due to the higher turbulence and the higher shear forces.
  • the columns are arranged in such a way that two columns each are arranged in pairs opposite one another.
  • an even number of columns is therefore preferably provided.
  • the flow rate of at least one of the fluids may be split into two columns.
  • the width of the stomata is preferably the same for all columns and the piston or the openings therein are preferably shaped such that in each angular position of the piston of each stomata each same portion is closed. This is achieved, for example, in that the edges of the areas of the piston covering the stomata openings are at the same angular positions with respect to one another as the corresponding end edges of the respectively concealed stomata.
  • the gaps are preferably respectively connected to supply channels in order to be charged with the fluid media to be supplied, while the process chamber is connected to a discharge for the fluidic product.
  • This mode of operation of the jet dispersant according to the invention is particularly suitable, for example, for producing emulsions having approximately equal proportions of the oil and water phases, e.g. in the manufacture of cosmetics, detergents and cleaners, lubricants, in continuous extraction processes, or in the performance of phase transfer reactions, e.g. in the emulsion polymerization or the production of core-shell particles.
  • solid particles, in particular nanoparticles can also be advantageously produced by precipitation from two or more reactive fluid starting materials with the jet disperser according to the invention.
  • the first gap and the second gap can also be acted upon by the same medium to be supplied, while the process space has an outflow for the fluidic product is connected.
  • This is particularly advantageous when the fluid medium to be supplied is already partly predispersed in a preceding process step, so that fine dispersion takes place in the jet disperser according to the invention or in a plurality of parallel jet dispersants in a final step.
  • This mode of operation is suitable, for example, for the homogenization of emulsions or the comminution of solid particles or aggregates in fluid media.
  • one of the columns and the process space are each supplied with a fluid medium to be supplied and another gap is connected to a drain, via which the mixture formed in the process space flows.
  • This mode of operation is particularly preferred when the fluid medium fed into the process space has a significantly higher volume flow or a substantially different viscosity than the fluid medium supplied via the gap or if a two-stage dispersion is required to achieve a desired mixing or dispersion result (or mixing and homogenization) is necessary, especially if in this case the product of the predispersing is particularly unstable.
  • this operating mode since the fluid medium supplied via the gap is admixed with the medium supplied in the process space with the participation of high shear and inertial forces, predispersion is achieved in the process space.
  • the thus predispersed medium is additionally dispersed or homogenized by the subsequent outflow via the second gap.
  • the residence time of the mixture between the two dispersion steps can be kept extremely short by using a very small process chamber volume.
  • the media to be supplied can have a pressure of 10 to 200 bar or even more.
  • the gap height is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m.
  • the process space has orthogonal to the axis of rotation an effective diameter of in particular 0.2 mm - 10 mm, preferably 0.4 mm - 5 mm and particularly preferably 1 mm to 2.5 mm.
  • the effective diameter of the process space results in an optionally not completely round cross-sectional area in that the diameter of a circular area is calculated with an area size that corresponds to this cross-sectional area.
  • An enlargement of the gap cross-sections provided for the various flow rates in the process which could be desirable, for example, in the case that a higher mass flow of the educts is to be dispersed than is possible with a given jet disperser according to the invention under fully open gaps under given process conditions, can possibly while maintaining the gap height and the diameter of the process space can be achieved in that arranged around the process space more Spaltanorditch preferably the same geometry and angular position along the axis of rotation of the piston and in the same way in each plane with common supply and discharge channels for the respective fluid media get connected.
  • a flow geometry of the jet disperser which has been found to be advantageous for a particular process, can be scaled up with high design and manufacturing effort even for higher flow rates of the process media.
  • An in Fig. 1a illustrated inventive jet disperser has a housing of the housing parts 7, 9, 10, in which a process chamber 1 is formed.
  • the discharge channel 4 can also be operated as a feed channel and is therefore further referred to as the discharge channel 4.
  • the housing has a first housing part 7 and a second housing part 9, between which by means of spacers 8 (in the illustrated embodiment, the spacers are a spacer film) columns 2a and 2b are formed.
  • the gaps 2a, 2b are each acted upon by channels 3a, 3b with a fluid medium to be mixed.
  • These Channels can also be operated to supply channels or discharge channels and are therefore called either to-discharge channels or depending on the mode of operation and discharge channels on.
  • a piston 5 is arranged axially, which is rotatably mounted about a rotation axis 6.
  • the storage is via a bearing 11, which may be, for example, a plain bearing.
  • the bearing 11 is arranged in the illustrated embodiment in a third housing part 10.
  • the rotatable piston 5 has, at the level of the gaps 2a and 2b, an opening which communicates with the process space 1 ( Fig. 1b ).
  • the gap openings of the first gap 2a and of the second gap 2b opening into the process space 1 can be partially closed in order to adjust a gap opening adapted to the mass flow of the media to be dispersed.
  • the particularly small height of the stomata which can be set independently of the gap width, high shear and inertial forces occur in the gap and at the outlet, which cause a particularly finely dispersed emulsion or a high particle or agglomeration comminution in suspensions.
  • the medium dispersed in the process space 1 emerges after mixing via the inlet-to-discharge channel 4 connected to the process space 1.
  • the gaps 2a, 2b are the same width (measured along the circumference of the process space) in order to achieve the simplest possible geometry of the jet disperser.
  • the spacer foil 8 contains columns 2a, 2b of different lengths. In this case, it is sufficient to turn the spacer film 8 in order to connect, with the aid of the longer-running gaps 2a, 2b, previously closed in-discharge channels 3a, 3b which open at a greater radius into the longer-running gaps 2a, 2b.
  • the connection opening of the piston 5 can connect fewer columns 2a, 2b to the process space 1 than total columns are present.
  • Fig. 1a and Fig. 1b shown operating mode are fed via the to-discharge channels 3a, 3b and the column 2a, 2b, two different or identical reactants, which are mixed or dispersed in the process chamber 1.
  • This operating mode is particularly suitable when the volume flows of the media to be supplied are about the same size or when a solid product is precipitated during the mixing of the media. Since the supplied media are aligned in the connecting opening of the piston 5 to one another, a particle agglomeration of the precipitated solids or the solid particles already contained in the supplied streams is avoided or the existing particles or emulsion drops are even crushed.
  • This mode of operation is particularly suitable if an educt with a low volume flow to the educt with a high volume flow, which is supplied via the to-discharge channel 4, to be mixed, or if between the pre-mixing and the dispersion or Homogenization a particularly short residence time should be realized.
  • this operating mode is preferably suitable for processing reactive multiphase systems, since a reaction can take place only during the mixing of the fluids in the process space and only a short contact time is present until further dispersion or homogenization of the product mixture.
  • Both at the in Fig. 1a and Fig. 1b shown operating mode and in the in Fig. 1c and Fig. 1d shown operating mode can be adjusted via the angular position of the piston 5, the size of the mouth opening of the columns 2a, 2b, so that even with varying flow rates, the inlet velocity, the pressure drop, the shear rate, etc. can be kept substantially constant. Since hydrostatic forces acting on the piston only in the axial and radial directions, while in the azimuthal direction, if any, only slight hydrodynamic forces occur, only a small torque must be expended to open the gap openings of the columns 2a, 2b and close or to fix the position of the piston.
  • a total of four columns 2a, 2b, 2c, 2d are provided, which are each acted upon by a different educt A, B, C, D.
  • the educts A, B, C, D mix in the process chamber 1 and are discharged as finely dispersed product P via the process chamber channel 4.
  • the number of columns 2a, 2b, 2c, 2d need not necessarily coincide with the number of reactants A, B, C, D to be supplied. It is even possible for all four columns 2a, 2b, 2c, 2d or even more columns to be charged with only one, for example, predispersed starting material.
  • a starting material D supplied via the Zu-discharge channel 4, while the other reactants A, B, C are supplied via the Zu-Aburban Kunststoffkanäle 3a, 3b, 3d and the respective columns.
  • the product P is discharged via the gap 2c and the to-discharge channel 3c.
  • one or more educts A, B, C, D it is possible for one or more educts A, B, C, D to be supplied via at least two gaps 2a, 2b, 2c, 2d or to the exhaust duct 4 and at least one further gap 2a, 2c, 2d.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

  • Die Erfindung betrifft einen Strahldispergator, mit dem fluide Medien besonders fein vermischt und flüssige Gemische hohen Scherbeanspruchungen ausgesetzt werden können, um z.B. feindispergierte Emulsionen oder Suspensionen zu erzeugen.
  • Eine Methode, besonders fein dispergierte Emulsionen und Suspensionen zu erzeugen, besteht darin, die Ausgangskomponenten der Dispersion vorzuvermischen und die entstehende Vordispersion mit hohem Druck durch eine oder mehrere enge Öffnungen (Düsen) zu fördern. Es ist bekannt, dass der Druckabfall und damit der spezifische Energieeintrag über die Düse bzw. das Düsensystem, welcher zur Erzielung eines bestimmten Dispergierergebnisses erforderlich ist, in den meisten Fällen bei Verringerung der charakteristischen Abmessungen (z.B. hydraulischer Durchmesser) der verwendeten Düse abnimmt. Um größere Massenströme effizient zu dispergieren, greift man daher bevorzugt auf Systeme mit vielen parallel durchströmten besonders feinen Öffnungen zurück. Um ferner mit einer gegebenen Dispergiervorrichtung auch bei veränderlichen Massenströmen der Ausgangsstoffe ein gutes Dispergierergebnis mit geringem Energieaufwand zu realisieren, werden manche Dispergierapparate außerdem mit einer Vorrichtung zur Veränderung der Zahl der durchströmten Öffnungen ausgestattet.
  • So ist beispielsweise aus der EP 0 685 544 ein Strahldispergator bekannt, bei dem über radial verlaufende Bohrungen die zu vermischenden Fluide in einen Prozessraum gelangen. Die Bohrungen können mit Hilfe eines innerhalb des Prozessraums geführten axial verschiebbaren Rohres oder Kolbens ganz oder teilweise verschlossen werden, um die Anzahl der durchströmten Bohrungen an den gewünschten Druck und Durchsatz anzupassen, wodurch eine gute Feinvermischung der fluiden Medien erreicht werden soll.
  • Nachteilig bei einem derartigen Strahldispergator ist, dass der Gesamtquerschnitt der durchströmten Öffnungen bei kleinen Massenströmen nicht mehr kontinuierlich sondern nur noch stufenweise variiert werden kann und letztlich durch den minimal erreichbaren Bohrungsquerschnitt limitiert ist. Dabei ist es auch mit hohem technischem Aufwand verbunden, sehr viele Bohrungen mit Durchmessern deutlich unterhalb von 0.1 mm, wie sie für viele Anwendungen wünschenswert wären, in die Wandungen des Prozessraums einzubringen, welche aufgrund der hohen Druckbelastungen gleichzeitig eine nicht unerhebliche Stärke aufweisen müssen. Schließlich wirken im Betrieb auf den Kolben, mit dem die Düsenöffnungen in der Wand des Prozessraums verschlossen werden, hohe Kräfte in Richtung seiner Bewegungsachse, die durch eine geeignete Vorrichtung gehalten werden müssen, um eine unerwünschte Verschiebung des Kolbens zu verhindern. Es ist somit zumindest äußerst schwierig, in Prozessen mit variierten bzw. schwankenden Mengenströmen mit geringem Energieaufwand besonders fein dispergierte Emulsionen und Suspensionen zu erzeugen.
  • Die US 2005/072300 A1 beschreibt auch einen Strahldispergator zur Feinver-mischung fluider Medien, offenbart aber nicht, dass dessen Spalthöhe variabel einstellbar ist.
  • Es ist daher die Aufgabe der Erfindung, einen Strahldispergator zu schaffen, mit dem in Prozessen mit variierten bzw. schwankenden Mengenströmen besonders fein dispergierte Mischungen mit geringem Energieaufwand erzeugt werden können.
  • Die Aufgabe wurde überraschend durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Der erfindungsgemäße Strahldispergator zur Feinvermischung bzw. Dispergierung fluider Medien weist ein Gehäuse auf, in dem ein Prozessraum zur Vermischung der fluiden Medien angeordnet ist, welcher in Verbindung mit einem Zu-Abführkanal für ein fluides Medium steht. Mindestens zwei zur Längsachse des Prozessraums im Wesentlichen senkrecht verlaufende Spalten, die jeweils ebenfalls in Verbindung mit wenigstens einem weiteren Zu-Abführkanal für ein fluides Medium stehen, münden jeweils über eine Spaltöffnung im Wesentlichen radial in den Prozessraum. In den Prozessraum ist ein um eine Drehachse drehbarer Kolben eingebracht, welcher in Höhe der Spaltöffnungen eine Anordnung von Öffnungen mit Verbindung zum Prozessraum trägt dergestalt, dass die Spaltöffnungen je nach Winkelstellung des Kolbens zu einem mehr oder weniger großen Anteil durch den Kolben verschlossen werden und wobei die Spalthöhe des ersten Spalts und des zweiten Spalts durch Distanzstücke variabel einstellbar ist.
  • Bei dem erfindungsgemäßen Strahldispergator ist es nicht nachteilig, wenn der Spalt in Umfangsrichtung im Verhältnis zur Höhe relativ breit ausgeführt ist, da die Spaltöffnung durch den Kolben auf einen besonders geringen Durchtrittsquerschnitt verkleinert werden kann, wobei sich der Austrittsquerschnitt in einem ersten Anwendungsfall am rechten Ende der rechten Seite und in einem zweiten Anwendungsfall am linken Ende eines Spaltes befinden kann, so dass trotz auftretender Verschleißerscheinungen die Lebensdauer des Strahldispergators verlängert werden kann. Aufgrund der Möglichkeit, einen besonders kleinen Austrittsquerschnitt einzustellen, können bereits bei verhältnismäßig geringen Druckabfällen über den Strahldispergator äußerst hohe Scherkräfte erreicht werden, die zu einer besonders feinen Dispergierung der fluiden Medien führen. Ferner kann durch die Variation der Austrittsquerschnitte der Spaltöffnungen der erfindungsgemäße Strahldispergator einfach an unterschiedliche System- und Prozessparameter, wie zum Beispiel Druck oder Massenstrom der Eduktfluide, angepasst werden. Dies kann mit Hilfe eines Regelkreises auch automatisch erfolgen.
  • Dadurch, dass bei dem erfindungsgemäßen Strahldispergator die Spalten je einer bevorzugten Ausführungsform durch zwei Gehäuseteile ausgebildet sein können, ist es mit geringem Fertigungsaufwand möglich, Spalten bereit zu stellen, die in axialer Richtung eine äußerst geringe Höhe aufweisen. Beispielsweise ist es möglich, in eines der Gehäuseteile entlang der an den Prozessraum grenzenden Stoßkante zum daran angrenzenden Gehäuseteil Vertiefungen von wenigen Mikrometern Tiefe zu fräsen oder durch andere Fertigungstechniken wie beispielsweise Schleifen, Läppen oder Formätzen zu erzeugen, die dann durch Abdeckung mit einer Gegenfläche des zweiten Gehäuseteils die Dispergierspalte zum Prozessraum hin definieren. Aufwändige Mikrofertigungstechniken sind hierfür prinzipiell nicht erforderlich.
  • Durch die erfindungsgemäße Ausführung mit vorgenannten Distanzstücken kann die Spalthöhe je nach Anwendungsfall variabel eingestellt werden. Vorzugsweise sind die Distanzstücke folienförmig ausgestaltet, so dass es möglich ist, durch Verwendung von vorzugsweise metallischen oder polymeren Folien mit einer Schichtdicke von wenigen Mikrometern Stärke besonders einfach Spalten mit einer Spalthöhe von wenigen Mikrometern zu erzeugen. Besonders bevorzugt sind die beiden Gehäuseteile derart miteinander verbunden, dass Undichtigkeiten auch bei hohen Drücken bis beispielsweise 200 bar, vermieden sind. Hierzu sind zwischen den Gehäuseteilen beispielsweise selbstverstärkende Elastomerdichtungen vorgesehen.
  • Vorzugsweise kann der Kolben insbesondere stufenlos in seiner Winkelposition festgestellt werden, so dass die Größe der in den Prozessraum einmündenden Spaltöffnungen der Spalten variabel - bevorzugt von nahe Null bis zu ihrer vollen Länge - eingestellt werden kann. Die Arretierung der Winkelposition des Kolbens kann dabei mit einer vergleichsweise einfachen Vorrichtung (z.B. Feststellschraube, Klemmbacken) erfolgen, da auf den Kolben auch während des Betriebs des Strahldispergators in seiner Bewegungsrichtung nur sehr geringe Druckkräfte wirken. Es ist somit auch möglich, die Winkelposition des Kolbens während des Betriebs des Strahldispergators mit geringem Kraftaufwand zu verstellen. Soll die Winkeleinstellung des Kolbens von Hand erfolgen, so findet diese vorzugsweise mit Hilfe eines Getriebes mit Über- beziehungsweise Untersetzung statt, so dass der Kolben mit hoher Genauigkeit und Reproduzierbarkeit - bevorzugt von etwa 2%, besonders bevorzugt von weniger als 0,5% der Winkelöffnung der Spalte - in einer bestimmten Winkelposition positioniert werden kann. Dies wird beispielsweise dadurch erreicht, dass der Kolben einen abstehenden Hebel aufweist, wobei der Hebel arretiert werden kann. Anstelle eines Hebels kann auch ein Drehkopf oder ähnliches vorgesehen sein. Besonders bevorzugt wirkt der Hebel oder Drehknopf mit einer Skala zusammen, so dass die Winkelposition des Kolbens am Strahldispergator abgelesen werden kann. Möglich ist auch eine motorische Verstellung der Winkelposition des Kolbens, z.B. durch einen mechanischen, elektrischen, magnetischen, pneumatischen oder hydraulischen Antrieb. Eine solche Ausführungsform des erfindungsgemäßen Strahldispergators ist insbesondere dann zu bevorzugen, wenn die Winkelstellung des Kolbens über einen Regelkreis definiert werden soll, z.B. um den Druckabfall über den Strahldispergator oder eine andere Prozesskenngröße bei variierenden Medienströmen oder Medieneigenschaften konstant zu halten.
  • Bevorzugt liegt die Anordnung der Spalten und insbesondere der Spaltöffnungen zum Prozessraum in einer gemeinsamen Ebene senkrecht zur Drehachse des Kolbens und die Öffnungen im Kolben stehen in dieser Ebene in direkter (d.h. geradliniger) Verbindung. Besonders bevorzugt sind die Spaltöffnungen der Spalte dabei jeweils paarweise gegenüber liegend angeordnet. Dadurch ist es möglich, dass die zu vermischenden Fluide unmittelbar nach dem Eintritt in den Prozessraum in dessen Zentrum aufeinanderprallen, wodurch sich aufgrund der höheren Turbulenz und der höheren Scherkräfte eine besonders gute Durchmischung bzw. Dispergierung ergibt. Falls mehr als zwei Spalten verwendet werden, um beispielsweise mehr als zwei Fluide miteinander zu vermischen, sind die Spalten insbesondere derart angeordnet, dass jeweils zwei Spalten paarweise gegenüber liegend angeordnet sind. Um im Prozessraum eine möglichst symmetrische Strömung zu erreichen ist daher vorzugsweise eine gerade Anzahl an Spalten vorgesehen. Falls eine ungerade Anzahl an Fluiden miteinander vermischt werden oder ein vorvermischtes System homogenisiert werden soll, kann in diesem Fall der Mengenstrom mindestens eines der Fluide auf zwei Spalten aufgeteilt werden. Die Breite der Spaltöffnungen ist vorzugsweise bei allen Spalten gleich groß und der Kolben bzw. die Öffnungen darin vorzugsweise derart geformt, dass in jeder Winkelstellung des Kolbens von allen Spaltöffnungen jeweils derselbe Anteil verschlossen wird. Dies wird z.B. erreicht, indem die Kanten der die Spaltöffnungen verdeckenden Bereiche des Kolbens unter denselben Winkelpositionen zueinander stehen wie die korrespondierenden Endkanten der jeweils verdeckten Spaltöffnungen.
  • Sollen zwei fluide Medien mit in etwa gleichen Massenströmen vermischt bzw. dispergiert werden, sind die Spalten vorzugsweise jeweils mit Zuführkanälen verbunden, um mit den zuzuführenden fluiden Medien beaufschlagt zu werden, während der Prozessraum mit einem Abfluss für das fluidische Produkt verbunden ist. Diese Betriebsweise des erfindungsgemäßen Strahldispergators eignet sich beispielsweise besonders zur Erzeugung von Emulsionen mit in etwa gleichen Anteilen der Öl- und Wasserphase, wie z.B. bei der Herstellung von Kosmetika, Wasch- und Reinigungsmitteln, Schmiermitteln, bei kontinuierlich betriebenen Extraktionsprozessen oder der Durchführung von Phasentransferreaktionen wie z.B. bei der Emulsionspolymerisation oder der Herstellung von Core-Shell-Partikeln. In dieser Betriebsweise können auch vorteilhaft Feststoffpartikel, insbesondere Nanopartikel, durch Fällung aus zwei oder mehreren reaktiven fluiden Edukten mit dem erfindungsgemäßen Strahldispergator hergestellt werden.
  • Gegebenenfalls kann der erste Spalt und der zweite Spalt auch mit demselben zuzuführenden Medium beaufschlagt werden, während der Prozessraum mit einem Abfluss für das fluidische Produkt verbunden ist. Dies bietet sich insbesondere dann als bevorzugt an, wenn das zuzuführende fluide Medium in einem vorhergehenden Verfahrensschritt bereits teilweise vordispergiert ist, so dass in dem erfindungsgemäßen Strahldispergator beziehungsweise in mehreren parallel geschalteten Strahldispergatoren in einem letzten Schritt die Feindispergierung stattfindet. Diese Betriebsweise bietet sich z.B. für die Homogenisierung von Emulsionen oder die Zerkleinerung von Feststoffpartikeln oder -aggregaten in fluiden Medien an.
  • Es ist auch möglich, dass einer der Spalten und der Prozessraum jeweils mit einem zuzuführenden fluiden Medium beaufschlagt sind und ein anderer Spalt mit einem Abfluss verbunden ist, über den das im Prozessraum gebildete Gemisch abfließt. Dieser Betriebsmodus bietet sich insbesondere dann als bevorzugt an, wenn das in den Prozessraum zugeführte fluide Medium einen deutlich höheren Volumenstrom oder eine wesentlich andere Viskosität aufweist als das über den Spalt zugeführte fluide Medium oder wenn zur Erreichung eines gewünschten Misch- bzw. Dispergierergebnisses eine zweistufige Dispergierung (bzw. Vermischung und Homogenisierung) notwendig ist, insbesondere wenn hierbei das Produkt der Vordispergierstufe besonders instabil ist. Da in diesem Betriebsmodus das über den Spalt zugeführte fluide Medium zu dem in dem Prozessraum zugeführten Medium unter Beteiligung hoher Scher- und Trägheitskräfte zugemischt wird, wird im Prozessraum eine Vordispersion erreicht. Das derart vordispergierte Medium wird durch das anschließende Abströmen über den zweiten Spalt zusätzlich dispergiert beziehungsweise homogenisiert. Die Verweilzeit des Gemischs zwischen den beiden Dispergierschritten kann dabei durch Verwendung eines sehr kleinen Prozessraumvolumens extrem kurz gehalten werden. Vorteilhafte Anwendung findet der erfindungsgemäße Strahldispergator in diesem Betriebsmodus wiederum bei der Erzeugung von Emulsionen und Feststoffdispersionen, wie z.B. bei der Herstellung von Kosmetika, Wasch- und Reinigungsmitteln, Schmiermitteln, Farben und Pigmenten, bei kontinuierlich betriebenen Extraktionsprozessen, der Durchführung von Phasentransferreaktionen wie z.B. bei der Emulsionspolymerisation oder bei der Herstellung von Partikeln durch Fällung (z.B. auch Core-Shell- oder Nanopartikel), insbesondere wenn bei den zugrunde liegenden Prozessen Fluide mit deutlich unterschiedlichen Volumenströmen oder Viskositäten gemischt bzw. dispergiert werden müssen oder kurze Verweilzeiten zwischen der Vorvermischung und der Homogenisierung/Dispergierung für den Prozess vorteilhaft sind.
  • Aufgrund der kompakten, stabilen Bauweise des erfindungsgemäßen Strahldispergators ist es möglich, dass die zuzuführenden Medien einen Druck von 10 bis 200 bar oder sogar mehr aufweisen können. Gleichzeitig ist es möglich, auf einfache Weise Spalthöhen im Bereich von 1. µm bis 500 µm zu erreichen. Vorzugsweise beträgt die Spalthöhe 5 µm bis 200 µm, besonders bevorzugt 10 µm bis 100 µm. Der Prozessraum weist orthogonal zur Drehachse einen effektiven Durchmesser von insbesondere 0,2 mm - 10 mm, vorzugsweise 0,4 mm - 5 mm und besonders bevorzugt 1 mm bis 2,5 mm auf. Der effektive Durchmesser des Prozessraums ergibt sich bei einer gegebenenfalls nicht vollständig runden Querschnittsfläche dadurch, dass der Durchmesser einer Kreisfläche mit einer Flächengröße, die dieser Querschnittfläche entspricht, berechnet wird.
  • Eine Vergrößerung der für die verschiedenen Mengenströme im Prozess bereitgestellten Spaltquerschnitte, welche z.B. in den Fall erwünscht sein könnte, dass ein höherer Massenstrom der Edukte dispergiert werden soll als die mit einem gegebenen erfindungsgemäßen Strahldispergator bei vollständig geöffneten Spalten unter gegebenen Prozessbedingungen möglich ist, kann ggf. unter Beibehaltung der Spalthöhe und des Durchmessers des Prozessraumes dadurch erreicht werden, dass um den Prozessraum mehrere Spaltanordungen bevorzugt gleicher Geometrie und Winkelposition entlang der Drehachse des Kolbens parallel angeordnet und in der in jeder Ebene gleichen Weise mit gemeinsamen Zu- und Abführkanälen für die jeweiligen fluiden Medien verbunden werden. Auf diese Weise kann eine für einen bestimmten Prozess als vorteilhaft herausgestellte Strömungsgeometrie des Strahldispergators mit geringem Konstruktions- und Fertigungsaufwand auch für höhere Mengenströme der Prozessmedien hoch skaliert werden.
  • Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert.
  • Es zeigen:
  • Fig. 1a
    eine schematische Schnittansicht eines erfindungsgemäßen Strahldispergators in einem ersten Betriebsmodus
    Fig. 1b
    eine schematische Querschnittansicht des in Fig. 1a dargestellten Strahldispergators
    Fig. 1c
    eine schematische Schnittansicht des in Fig. 1 a dargestellten Strahldispergators in einem zweiten Betriebsmodus
    Fig. 1d
    eine schematische Querschnittansicht des in Fig. 1c dargestellten Strahldispergators
    Fig. 2a
    eine schematische Querschnittansicht des erfindungsgemäßen Strahldispergators in einer weiteren Ausführungsform in einem ersten Betriebsmodus
    Fig.2b
    eine schematische Querschnittansicht des in Fig. 2a dargestellten Strahldispergators in einem zweiten Betriebsmodus
    Fig.2c
    eine schematische Querschnittansicht des in Fig. 2a dargestellten Strahldispergators in einem dritten Betriebsmodus
    Fig. 2d
    ein schematische Querschnittansicht des in Fig. 2a dargestellten Strahldispergators in einem vierten Betriebsmodus.
  • Ein in Fig. 1a dargestellter erfindungsgemäßer Strahldispergator weist ein Gehäuse aus den Gehäuseteilen 7, 9, 10 auf, in dem ein Prozessraum 1 ausgebildet ist. Der Prozessraum 1 ist im dargestellten Ausführungsbeispiel zylindrisch ausgebildet und mündet in einen Abführkanal 4. Im dargestellten Ausführungsbeispiel kann der Abführkanal 4 ebenfalls als Zuführkanal betrieben werden und wird daher Zu-Abführkanal 4 weiter genannt. Das Gehäuse weist ein erstes Gehäuseteil 7 und ein zweites Gehäuseteil 9 auf, zwischen denen mit Hilfe Distanzstücke 8 (in der dargestellten Ausführungsform sind die Distanzstücke eine Distanzfolie) Spalten 2a und 2b ausgebildet sind. Die Spalten 2a, 2b werden jeweils über Kanäle 3a, 3b mit einem zu vermischenden fluiden Medium beaufschlagt. Diese Kanäle können ebenfalls zur Zuführkanäle oder Abführkanäle betrieben werden und werden daher entweder Zu-Abführkanäle oder je nach Betriebsweise Zu- bzw. Abführkanäle weiter genannt.
  • Innerhalb des Gehäuses ist ein Kolben 5 axial angeordnet, der um eine Drehachse 6 drehbar gelagert ist. Die Lagerung erfolgt über ein Lager 11, bei dem es sich beispielsweise um ein Gleitlager handeln kann. Das Lager 11 ist im dargestellten Ausführungsbeispiel in einem dritten Gehäuseteil 10 angeordnet.
  • Der drehbare Kolben 5 weist in Höhe der Spalte 2a und 2b eine Öffnung auf, die mit dem Prozessraum 1 in Verbindung steht (Fig. 1b). Je nach Winkellage des Kolbens 5 können die in den Prozessraum 1 einmündenden Spaltöffnungen des ersten Spalts 2a und des zweiten Spalts 2b teilweise verschlossen werden, um eine dem Massenstrom der zu dispergierenden Medien angepasste Spaltöffnung einzustellen. Aufgrund der unabhängig von der Spaltbreite einstellbaren besonders kleinen Höhe der Spaltöffnungen entstehen im Spalt und an dessen Austritt hohe Scher- und Trägheitskräfte, die eine besonders fein dispergierte Emulsion beziehungsweise eine hohe Partikel- beziehungsweise Agglomeratzerkleinerung in Suspensionen bewirken. Das in dem Prozessraum 1 dispergierte Medium tritt nach der Vermischung über den mit dem Prozessraum 1 verbundenen Zu-Abführkanal 4 aus.
  • Vorzugsweise sind die Spalten 2a, 2b gleich breit (entlang des Umfangs des Prozessraums gemessen), um eine möglichst einfache Geometrie des Strahldispergators zu erreichen. Insbesondere bei mehreren Zu-Abführkanäle 3a, 3b kann es vorteilhaft sein, wenn die Distanzfolie 8 unterschiedlich lange Spalten 2a, 2b enthält. In diesem Fall reicht es aus, die Distanzfolie 8 zu drehen, um mit Hilfe der länger ausgeführten Spalten 2a, 2b zuvor verschlossene Zu-Abführkanäle 3a, 3b anzuschließen, die auf einem größeren Radius in die länger ausgeführten Spalten 2a, 2b einmünden. Ferner kann es vorteilhaft sein, wenn die Verbindungsöffnung des Kolbens 5 weniger Spalten 2a, 2b mit dem Prozessraum 1 verbinden kann als insgesamt Spalten vorhanden sind. Durch eine entsprechende Drehung des Kolbens 5 können in diesem Fall besonders einfach zuvor verschlossene Spalten geöffnet werden, während gleichzeitig zuvor geöffnete Spalten geschlossen werden. Dies ermöglicht es, durch eine einfache Drehung des Kolbens 5 andere Zu-Abführkanäle 3a, 3b anzuschließen, die beispielsweise mit einem anderen Medium beaufschlagt sind. Diese Betriebsweise eignet sich besonders, wenn im wechselnden kontinuierlichen Betrieb mit demselben Strahldispergator unterschiedliche Dispersionen hergestellt werden sollen.
  • Bei dem in Fig. 1a und Fig. 1b dargestellten Betriebsmodus werden über die Zu-Abführkanäle 3a, 3b beziehungsweise die Spalte 2a, 2b zwei unterschiedliche oder identische Edukte zugeführt, die im Prozessraum 1 vermischt bzw. dispergiert werden. Dieser Betriebsmodus eignet sich besonders dann, wenn die Volumenströme der zuzuführenden Medien in etwa gleich groß sind oder wenn bei der Mischung der Medien ein festes Produkt ausgefällt wird. Da die zugeführten Medien in der Verbindungsöffnung des Kolbens 5 aufeinander zugerichtet sind, wird eine Partikelagglomeration der ausgefällten Feststoffe oder der bereits in den zugeführten Strömen enthaltenen Feststoffpartikel vermieden beziehungsweise die vorhandenen Partikel oder Emulsionstropfen werden sogar zerkleinert.
  • Bei dem in Fig. 1c und Fig. 1d dargestellten Betriebsmodus ist derselbe in Fig. 1a und Fig. 1b dargestellte Strahldispergator verwendet. Im Vergleich zu dem in Fig. 1a und Fig. 1b dargestellten Betriebsmodus ist bei dem in Fig. 1c und Fig. 1d dargestellten Betriebsmodus der Anschluss des Zu-Abführkanals 3b beziehungsweise des Spalts 2b und der Zu-Abführkanal 4 vertauscht. Das heißt, dass über dem Zu-Abführkanal 4 und dem Zu-Abführkanal 3a beziehungsweise Spalt 2a jeweils ein Edukt zugeführt wird das im Prozessraum 1 dispergiert wird und über den Spalt 2a abgeführt wird, wobei beim Übergang vom Spalt 2b in den Zu-Abführkanal 3d eine weitere Dispergierung stattfindet. Dieser Betriebsmodus eignet sich besonders, falls über den Zu-Abführkanal 3a ein Edukt mit einem geringen Volumenstrom einem Edukt mit einem hohen Volumenstrom, das über den Zu-Abführkanal 4 zugeführt wird, beigemischt werden soll, oder falls zwischen der Vorvermischung und der Dispergierung bzw. Homogenisierung eine besonders kurze Verweilzeit realisiert werden soll. Beispielsweise eignet sich dieser Betriebsmodus bevorzugt zur Verarbeitung reaktiver Mehrphasensysteme, da erst während der Vermischung der Fluide im Prozessraum eine Reaktion stattfinden kann und bis zur weiteren Dispergierung bzw. Homogenisierung des Produktgemischs nur eine kurze Kontaktzeit vorliegt.
  • Sowohl bei dem in Fig. 1a und Fig. 1b dargestellten Betriebsmodus als auch in dem in Fig. 1c und Fig. 1d dargestellten Betriebsmodus kann über die Winkelstellung des Kolbens 5 die Größe der Einmündungsöffnung der Spalten 2a, 2b eingestellt werden, so dass auch bei variierenden Volumenströmen, die Einströmgeschwindigkeit, der Druckverlust, die Scherrate usw. im Wesentlichen konstant gehalten werden können. Da hydrostatische Kräfte auf den Kolben nur in axialer und radialer Richtung wirken, während in azimutaler Richtung, falls überhaupt, nur geringe hydrodynamische Kräfte auftreten, muss nur ein geringes Drehmoment aufgewendet werden, um die Spaltöffnungen der Spalten 2a, 2b zu öffnen und zu verschließen oder die Stellung des Kolbens zu fixieren.
  • Bei dem in Fig. 2a dargestellten Strahldispergator sind insgesamt vier Spalten 2a, 2b, 2c, 2d vorgesehen, die jeweils mit einem unterschiedlichen Edukt A, B, C, D beaufschlagt sind. Die Edukte A, B, C, D vermischen sich im Prozessraum 1 und werden als feindispergiertes Produkt P über den Prozesskammerkanal 4 abgeführt. Es ist aber auch möglich, über die vier Spalten 2a, 2b, 2c, 2d nur zwei Edukte A, B zuzuführen, die jeweils über zwei gegenüberliegende Spalten zugeführt werden (Fig. 2b). Die Anzahl der Spalten 2a, 2b, 2c, 2d müssen also nicht notwendigerweise mit der Anzahl der zuzuführenden Edukte A, B, C, D übereinstimmen. Es ist sogar möglich, dass alle vier Spalten 2a, 2b, 2c, 2d oder noch mehr Spalten mit nur einem zum Beispiel vordispergierten Edukt beaufschlagt werden.
  • Bei dem in Fig. 2c dargestellten Betriebsmodus ist im Vergleich zum in Fig. 2a dargestellten Betriebsmodus ein Edukt D über den Zu-Abführkanal 4 zugeführt, während die übrigen Edukte A, B, C über die Zu-Abführkanäle 3a, 3b, 3d und über die jeweiligen Spalten zugeführt werden. Das Produkt P wird über den Spalt 2c und den Zu-Abführkanal 3c abgeführt. Auch in diesem Betriebsmodus ist es möglich, dass ein oder mehrere Edukte A, B, C, D über mindestens zwei Spalten 2a, 2b, 2c, 2d beziehungsweise dem Zu-Abführkanal 4 und mindestens einem weiteren Spalt 2a, 2c, 2d zugeführt werden. Darüber hinaus ist es möglich, das Produkt P über mindestens zwei der Spalten 2a, 2b, 2c, 2d und die korrespondierenden Zu-Abführkanal 3a, 3b, 3c, 3d abzuführen (Fig. 2d). Ferner ist jegliche Kombination möglich, bei der eines der Edukte A, B, C, D oder das Produkt P über mehr als einen der Zu-Abführkanäle 3a, 3b, 3c, 3d, 4 zu- beziehungsweise abgeführt wird.

Claims (12)

  1. Strahldispergator zur Feinvermischung bzw. Dispergierung fluider Medien, mit einem Gehäuse,
    einem in dem Gehäuse angeordneten Prozessraum (1) zur Vermischung der fluiden Medien, einem radial über eine erste Spaltöffnung in den Prozessraum (1) einmündenden, zur Längsachse des Prozessraums senkrecht verlaufenden ersten Spalt (2a) und
    einem radial in den Prozessraum (1) über eine erste Spaltöffnung einmündenden, zur Längsachse des Prozessraums senkrecht verlaufenden zweiten Spalt (2b),
    dadurch gekennzeichnet, dass in den Prozessraum (1) ein um eine Drehachse (6) drehbarer Kolben (5) eingebracht ist, welcher in Höhe der Spaltöffnungen eine Anordnung von Öffnungen mit Verbindung zum Prozessraum trägt, dergestalt, dass die Spaltöffnungen je nach Winkelstellung des Kolbens zu einem mehr oder weniger großen Anteil durch den Kolben verschlossen werden,
    weiter dadurch gekennzeichnet, dass die Spalthöhe des ersten Spalts (2a) und des zweiten Spalts (2b) durch Distanzstücke (8) variabel einstellbar ist.
  2. Strahldispergator nach Anspruch 1, dadurch gekennzeichnet, dass der Prozessraum rotationssymmetrisch, bevorzugt zylinderförmig ausgebildet ist.
  3. Strahldispergator, nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gehäuse ein erstes Gehäuseteil (7) und ein zweites Gehäuseteil (9) aufweist, zwischen denen die Spalten (2a, 2b) ausgebildet sind.
  4. Strahldispergator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Distanzstücke (8) folienförmig ausgebildet sind.
  5. Strahldispergator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine gerade Anzahl an Spalten (2a, 2b, 2c, 2d) vorgesehen ist und die Spaltöffnungen des ersten Spalts (2a, 2c) und des zweiten Spalts (2b, 2d) jeweils paarweise gegenüberliegend angeordnet sind.
  6. Strahldispergator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste Spalt (2a) und der zweite Spalt (2b) jeweils mit einem Zuführkanal für ein zuzuführendes fluides Medium verbunden sind und der Prozessraum (1) mit einem Abführkanal (4) verbunden ist.
  7. Strahldispergator nach Anspruch 6, dadurch gekennzeichnet, dass der erste Spalt (2a) und der zweite Spalt (2b) mit demselben zuzuführenden fluiden Medium beaufschlagt sind.
  8. Strahldispergator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste Spalt (2a) und der Prozessraum (1) jeweils mit einem Zuführkanal (3a bzw. 4) für ein zuzuführendes fluides Medium verbunden sind und der zweite Spalt (2b) mit einem Abführkanal (3b) verbunden ist.
  9. Strahldispergator nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die zuzuführenden Medien einen Druck von 10 bis 200 bar aufweisen, der beim Durchströmen der Spalte abgebaut wird.
  10. Strahldispergator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Spalten (2a, 2b) in axialer Richtung eine Höhe von 1 µm bis 500 µm, bevorzugt 5 µm bis 200 µm, besonders bevorzugt 10 µm bis 100 µm aufweisen.
  11. Strahldispergator nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Prozessraum (1) orthogonal zur Drehachse (6) einen effektiven Durchmesser von 0,2 mm - 10 mm, bevorzugt 0,4 mm - 5 mm, besonders bevorzugt 1 mm - 2,5 mm aufweist.
  12. Strahldispergator nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sich die Anordnung der Spalten (2a, 2b) in mehreren Ebenen entlang der Drehachse (6) des Kolbens (5) mit gleicher Geometrie und Winkelausrichtung wiederholt und von ihrer Winkelposition her korrespondierende Spalten in den verschiedenen Ebenen jeweils mit demselben Zu-Abführkanal (3a, 3b) verbunden sind.
EP08716547A 2007-03-22 2008-03-14 Strahldispergator Active EP2129454B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007014487A DE102007014487A1 (de) 2007-03-22 2007-03-22 Strahldispergator
PCT/EP2008/002053 WO2008113519A1 (de) 2007-03-22 2008-03-14 Strahldispergator

Publications (2)

Publication Number Publication Date
EP2129454A1 EP2129454A1 (de) 2009-12-09
EP2129454B1 true EP2129454B1 (de) 2011-07-20

Family

ID=39563450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08716547A Active EP2129454B1 (de) 2007-03-22 2008-03-14 Strahldispergator

Country Status (4)

Country Link
EP (1) EP2129454B1 (de)
AT (1) ATE516874T1 (de)
DE (1) DE102007014487A1 (de)
WO (1) WO2008113519A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993791B1 (fr) * 2012-07-27 2014-07-11 Eveon Distributeur fluidique et dispositif de reconstitution in situ et d'administration
DE102013213273A1 (de) 2013-02-22 2014-08-28 Bayer Materialscience Aktiengesellschaft Kohlenstoffnanoröhren-haltige Dispersion und ihre Verwendung in der Herstellung von Elektroden

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2014278B (en) * 1977-11-29 1982-04-07 Toyo Water Machine Co Ltd Pressurized-liquids mixing device
DE4105852C1 (en) * 1991-02-25 1992-06-04 Janke & Kunkel Gmbh & Co Kg Ika-Labortechnik, 7813 Staufen, De Dispersing device for long fibres - comprising tube enclosing shaft and rotor with three cutting edges, and slotted stator
EP0685544B1 (de) 1994-06-03 1999-08-18 Bayer Ag Wässrige 2-Komponenten-Polyurethanlack-Emulsionen und Verfahren zu deren Herstellung
DE19814267A1 (de) * 1997-09-25 1999-04-01 Ge Bayer Silicones Gmbh & Co Vorrichtung und Verfahren zur Herstellung von Siliconemulsionen
DE19933441A1 (de) * 1999-07-16 2001-01-18 Bayer Ag Verstellbarer Strahldispergator zur Herstellung wäßriger 2-Komponenten-Polyurethanlack-Emulsionen
GB2383276B (en) * 2001-12-21 2005-06-08 Statoil Asa Acid gas removal
EP1333005A1 (de) * 2002-02-01 2003-08-06 Aqamore GmbH Mischvorrichtung
DE10218280C1 (de) * 2002-04-19 2003-11-20 Fraunhofer Ges Forschung Integriertes Misch- und Schaltsystem für die Mikroreaktionstechnik
KR101186708B1 (ko) * 2004-02-17 2012-09-27 에어펠트 미크로테크니크 베테에스 게엠베하 마이크로 혼합기
DE102005028291A1 (de) * 2005-06-18 2006-12-21 Bayer Materialscience Ag Homogenisierdüse und Verfahren zur Herstellung einer wässrigen Zweikomponenten-Polyurethan-Lackemulsion

Also Published As

Publication number Publication date
ATE516874T1 (de) 2011-08-15
EP2129454A1 (de) 2009-12-09
DE102007014487A1 (de) 2008-10-09
WO2008113519A8 (de) 2009-09-11
WO2008113519A1 (de) 2008-09-25

Similar Documents

Publication Publication Date Title
EP2403633B1 (de) Koaxialer kompaktstatikmischer sowie dessen verwendung
DE69716224T2 (de) Vorrichtungen zur Herstellung von Feinpartikeln
EP1171227B1 (de) Verfahren und mikrovermischer zur herstellung einer dispersion
EP1718402B1 (de) Mikromischer
DE3851106T2 (de) Vorrichtung zum Mischen fliessfähiger Medien.
WO1998033582A1 (de) Verfahren und vorrichtung zur herstellung eines dispersen gemisches
EP1866066A1 (de) Mischersystem, Reaktor und Reaktorsystem
EP0090257B1 (de) Mischvorrichtung für die Herstellung eines chemisch reaktionsfähigen Gemisches aus mindestens zwei flüssigen Kunststoffkomponenten
DE4128999C2 (de)
EP3283204A1 (de) Vorrichtung und verfahren zum mischen, insbesondere zum dispergieren
EP1638675B1 (de) Dispergiervorrichtung
EP2129454B1 (de) Strahldispergator
EP2403632A1 (de) Zerkleinerungs- und dispergiervorrichtung
EP0158358A2 (de) Vorrichtung zum Dispergieren bzw. Emulgieren einer aus wenigstens zwei Produkten bestehenden Menge
EP1432502B1 (de) Flockungseinrichtung und verfahren zur konditionierung von kolloidalen suspensionen
DE10161180B4 (de) Mischvorrichtung zum Mischen von mindestens zwei flüssigen Komponenten
EP2676725B1 (de) Vorrichtung und Verfahren zum Mischen, insbesondere zum Dispergieren
EP3914379B1 (de) Mischvorrichtung
EP0572610B1 (de) Verfahren zum dispergieren, vermischen bzw. homogenisieren von mischungen sowie vorrichtung zur durchführung dieses verfahrens
EP2662131B1 (de) Emulgiervorrichtung
DE102005060280B4 (de) Integrierbarer Mikromischer sowie dessen Verwendung
DD272039A1 (de) Einrichtung zur herstellung von feinteiligen dispersionen
DE10206829C2 (de) Vorrichtung mit einem Stator und einem zu diesem drehbeweglichen Rotor
DE102005003965A1 (de) Mikromischer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100205

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EHRFELD MIKROTECHNIK BTS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004253

Country of ref document: DE

Effective date: 20110908

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004253

Country of ref document: DE

Effective date: 20120423

BERE Be: lapsed

Owner name: EHRFELD MIKROTECHNIK BTS G.M.B.H.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120314

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120314

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 516874

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008004253

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003080000

Ipc: B01F0023400000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 17