[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2126951B1 - Actionneur electromagnetique hybride - Google Patents

Actionneur electromagnetique hybride Download PDF

Info

Publication number
EP2126951B1
EP2126951B1 EP08708951.2A EP08708951A EP2126951B1 EP 2126951 B1 EP2126951 B1 EP 2126951B1 EP 08708951 A EP08708951 A EP 08708951A EP 2126951 B1 EP2126951 B1 EP 2126951B1
Authority
EP
European Patent Office
Prior art keywords
coil
magnetic
actuator
electromagnetic actuator
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08708951.2A
Other languages
German (de)
English (en)
Other versions
EP2126951A1 (fr
Inventor
Christian Bataille
Philippe Pruvost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP2126951A1 publication Critical patent/EP2126951A1/fr
Application granted granted Critical
Publication of EP2126951B1 publication Critical patent/EP2126951B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H53/00Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them
    • H01H53/01Details
    • H01H53/015Moving coils; Contact-driving arrangements associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/32Electromagnetic mechanisms having permanently magnetised part
    • H01H71/321Electromagnetic mechanisms having permanently magnetised part characterised by the magnetic circuit or active magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics

Definitions

  • the present invention relates to an electromagnetic actuator intended to be used in a switch electrical appliance, in particular in a relay, contactor or contactor-circuit breaker type apparatus.
  • the invention also relates to a switch device comprising such an actuator for actuating its movable contacts.
  • the switch device comprises fixed contacts cooperating with moving contacts and an electromagnetic actuator which moves the movable contacts between a closed position in which they are pressed against the fixed contacts to circulate the supply current in the electric charge. , and an open position in which they are separated from the fixed contacts, thereby cutting off power to the load.
  • the actuators can use various actuation systems based on different magnetic and / or electromagnetic properties.
  • an electromagnet reluctant system is an actuation system frequently used in contactors. It comprises an excitation coil traversed by an electric control current and a variable inductance ferromagnetic circuit comprising a fixed part and a movable part. It can also be polarized by the addition of a permanent magnet.
  • a reluctant system primarily generates a magnetic force that results from the change in reluctance due to the change in the value of the air gap of the magnetic circuit between the open and closed positions. This force is inversely proportional to the square of the value of the magnetic gap. In the closed position, when the value of the gap is minimal, the motor force generated is therefore maximum. A low holding current in the coil is then sufficient to oppose the resisting force of the return means (such as return springs and contact pressure springs) and maintain the system in the closed position with a pressure of sufficient contact.
  • the return means such as return springs and contact pressure springs
  • a reluctant system is capable of providing this important motor force only over a very short stroke, generally less than a few millimeters. Indeed, in the open position, the value of the air gap of the magnetic circuit is maximum. To start the closing stroke bringing the moving contacts from the open position towards the closed position, a high inrush current in the coil is therefore necessary to create a sufficient motor force capable of attracting the moving part of the magnetic circuit. This can then lead to oversize the entire system (magnetic circuit and coil) with respect to this high inrush current requirement in the coil.
  • An actuating system of the electrodynamic type has a fixed ferromagnetic circuit, a magnet assembly and a coil which is movable with respect to this magnet assembly. It can be either fixed magnet and moving coil (such as a Voice-coil), or fixed coil and moving magnet (Moving Magnet electromagnet).
  • the magnetic force is mainly a Laplace force which results from the variation of the mutual inductance between the magnet assembly and the coil. It is proportional to the current flowing through the coil, to the magnetic induction generated by the magnet assembly and also to the length of the coil traversed perpendicularly by the magnetic field generated by the magnet assembly.
  • Such a system therefore provides a motor force having a good linearity throughout the race between the open and closed positions, for a magnetic flux and a given coil current.
  • this system does not provide a significant additional motor force near the closed position to ensure a good contact pressure of the movable contacts on the fixed contacts of the switch device. It is then necessary to greatly increase the coil current in the closed position, resulting in a significant electrical consumption as well as possible thermal problems.
  • the document EP1655755 discloses such a hybrid electromagnetic actuator operating either in reluctant mode or in electrodynamic mode, depending on the position of the movable part of the actuator.
  • the electrodynamic system mainly provides the necessary motor force during the approach stroke of the moving contacts and the reluctant system mainly provides the additional motor force required at the end of the closing stroke to effectively press and hold the moving contacts against fixed contacts.
  • the magnetic field of the permanent magnet always passes through the coil, which maintains the electrodynamic-type operation and can disrupt the smooth operation of type cogging.
  • this magnet permanently creates an attractive force which tends to keep the air gap at its minimum value, even in the absence of any current flowing in the coil. This effect is then troublesome when opening the actuator because it requires greater elastic return means to effectively open the contacts, which obviously increases the resisting force of the actuator.
  • the object of the invention is therefore to design is a hybrid electromagnetic actuator capable of operating either in reluctant mode, or in electrodynamic mode according to the position of the movable part of the actuator, but which does not have the aforementioned drawbacks.
  • the invention must thus optimize the stroke of the motor force of the actuator, minimize the energy consumption and optimize the size of the reluctant part of the actuator.
  • the invention describes an electromagnetic actuator for a switch electrical apparatus comprising a magnet assembly, an excitation coil that can be traversed by an electric control current, the coil and the magnet assembly being movable, one by relative to the other between a first position and a second position, a magnetic circuit comprising a fixed yoke and a moving part, the moving part being integral with the magnet assembly or the coil, and having with the fixed yoke a minimum air gap in the first position and maximum in the second position.
  • the actuator is characterized in that it comprises a magnetic switch set to the coil and arranged to be placed partly between the coil and the magnet assembly in the first position, so as to deflect part of the magnetic field of the magnet assembly.
  • the magnetic switch in the first position, is mainly positioned within an area delimited by coil surfaces. and the magnet assembly which are facing each other, and in the second position, the magnetic switch is mainly positioned outside said zone.
  • the magnetic switch in the first position, is completely positioned inside said zone. According to another characteristic, in the second position, the magnetic switch is completely positioned outside said zone.
  • the magnet assembly is integral with the fixed yoke and the coil is integral with the moving part of the magnetic circuit.
  • the coil is integral with the fixed yoke and the magnet assembly is integral with the moving part of the magnetic circuit.
  • the magnetic switch will make it possible to switch and channel to a preferred direction all or part of the magnetic field created by the magnet assembly and passing through the coil, so that in particular this magnetic field less disturbs the reluctant system, in the vicinity of the closed position and so as to reduce the attraction force generated by the magnetic field in the absence of coil current, when opening the actuator.
  • the invention also relates to an electrical switch apparatus having fixed contacts cooperating with movable contacts to switch the supply of an electric load, and comprising at least one such electromagnetic actuator for actuating the movable contacts.
  • the figure 1 shows an example of a known hybrid electromagnetic actuator used in a switch, contactor-circuit breaker or relay type electrical switchgear. As indicated above, such an actuator combines the advantages of a reluctant system and an electrodynamic system, so as to better adapt the curve profile of the motor force of the actuator to the profile of the resistant stress curve .
  • the fixed yoke 10 has a lateral portion formed by two lateral flanks 12, 13 and a central core 15, the assembly resting on a common base 14.
  • the central core 15 is wholly or partially surrounded by an excitation coil 30 which is movable in translation along a longitudinal axis of displacement X when it is traversed by an electric control current.
  • the central core 15 and the coil 30 have indifferently a square or circular cross section.
  • the electrical apparatus comprises fixed contacts cooperating with movable contacts which are driven by the actuator.
  • the moving part 20 of the magnetic circuit is for example composed of a simple moving vane 20. Equivalently, this movable part 20 could also have a constitution similar to the fixed yoke, with side flanks and a central core which would be placed in position. vis-à-vis those of the fixed yoke, as frequently occurs in contactors.
  • the movable pallet 20 is mechanically linked to the reel 30 by various conventional connecting means not detailed here.
  • the mobile contact or contacts of the apparatus (not shown in the figures) are mechanically coupled with the moving vane 20.
  • the movable vane 20 and the reel 30 therefore move along the X axis between a first closed position in which the contacts movable are pressed against the fixed contacts, and a second open position in which the movable contacts are separated from the fixed contacts of the apparatus.
  • the magnetic circuit has a magnetic gap E formed by the spaces between the different surfaces vis-à-vis the movable pallet 20 and the fixed yoke 10. This air gap has a maximum value in the open position and a minimum value in the closed position .
  • Unrepresented return means (such as a spring for example) allow the actuator to move from the closed position to the open position.
  • This opening movement is facilitated by sending a reverse current in the coil.
  • the actuator also comprises a magnet assembly which is composed of two magnets 32, 33 respectively, fixed on the inner wall of the lateral flanks 12, respectively 13, symmetrically with respect to the axis of longitudinal displacement X of the coil 30 and facing the coil 30.
  • the magnetization axes of the magnets 32, 33 are perpendicular and symmetrical with respect to the axis X and directed either towards the X axis or opposite the X axis.
  • the magnetization direction of the magnets 32,33 and the direction of the current flowing in the coil are chosen to obtain the desired movement of the assembly. "coil 30 + moving pallet 20".
  • the magnetic fluxes Br and Be are indicated in the closed position.
  • the gap has a minimum value E corresponding to a residual gap which is maintained by construction, to avoid saturation of the actuator.
  • the flow Br circulates between the bolt 20 and the fixed yoke 15, 14, 12 (respectively 13) of the actuator through the gap E of the actuator.
  • the stream Be passes through the poles SN of the magnet 32 (respectively 33) and passes through the coil 30 perpendicularly to the axis of displacement X, before recoupling on the one hand via the parts 15, 14, 12 (respectively 13). ) of the actuator and secondly via the parts 15, E, 20, E, 12 (13 respectively) of the actuator.
  • the figure 1 shows that, in the closed position, the flow Be can have a direction opposite to the flow Br in the cylinder head 20 of the actuator, which affects the effectiveness of the contact pressure force of the movable contacts.
  • the magnetic field of the permanent magnets 32, 33 creates a force of attraction which maintains the gap E between the bolt 20 and the fixed yoke (central core 15, lateral flanks 12, 13) to their minimum value and that it must be overcome during the opening movement of the actuator.
  • a portion of the reluctance flow Br passes through the magnets 32, 33 and not by the gap E, which reduces the efficiency of the ampere turns n * I of the coil 30.
  • the invention proposes to add in such a hybrid actuator a magnetic switch made of ferromagnetic material (such as a material mu-metal or iron) and attached to the excitation coil.
  • This magnetic switch is intended to deflect all or part of the magnetic field of the magnet assembly in the closed position of the actuator, so that the magnetic field does not cross the coil.
  • a first embodiment is shown in the Figures 2 & 3 , in which the magnetic switch is composed of two plates 35, 36 which are fixed on the outer wall of the voice coil 30, symmetrically with respect to the axis X. The two plates 35, 36 therefore move with the coil 30
  • the actuator shown is of the same type as that of the figure 1 .
  • the magnetic switch is arranged to be placed partly between the coil 30 and the magnet assembly 32, 33 in a first position corresponding to the closed position of the actuator (see FIG. figure 2 ).
  • the magnetic switch is mainly placed between the coil and the magnet assembly, that is to say the magnetic switch 35 (respectively 36) is mainly positioned within a zone 37 (38 respectively) delimited by the surfaces of the coil 30 and the magnet assembly 32 (respectively 33) facing one another.
  • the magnetic switch 35 is completely positioned inside the zone 37 (respectively 38) in the closed position of the actuator.
  • the magnetic switch is not mainly placed between the coil and the magnet assembly, that is to say that the magnetic switch 35 (respectively 36) is mainly positioned outside the zone 37 (38 respectively). ) delimited by the surfaces of the coil 30 and the magnet assembly 32 (respectively 33) which are opposite one another.
  • the magnetic switch 35 is completely positioned outside the zone 37 (respectively 38) in the open position of the actuator.
  • the magnetic switchgear 35 When the magnetic switchgear 35 is predominantly positioned outside the zone 37, then it has little influence on the operation of the hybrid actuator, since the magnetic field lines of the magnet 32 are little or no deflected by the presence of the magnetic switch.
  • the operation of the actuator of the Figures 2 & 3 is substantially identical to that of the figure 1 .
  • the figure 3 shows and in the open position, given the large value of the gap E, the main motor force is due to the electrodynamic magnetic flow Be through the elements 32/33, 30, 15, 14, 12/13 and generating a force Laplace Fe displacement of the assembly "coil 30 + moving pallet 20", when a current flows in the coil 30.
  • the magnetic switchgear 35 when the magnetic switchgear 35 is predominantly positioned inside the zone 37, then it deflects a large part of the magnetic field lines of the magnet 32 in order to direct them towards a privileged direction, that is to say to say towards the nearest magnetic material, in this case towards the bolt 20, so that the part of the stream Be passing through the path 32, 30, 15, 14, 12 will become negligible, as long as the switcher magnetic will not be saturated.
  • a significant portion of the stream Be no longer perpendicularly crosses the coil 30, which results in the Laplace Fe force decreases very substantially. Therefore, in the closed position, the motor force acting on the bolt 20 remains mainly the reluctant force Fr.
  • the magnetic switch 35 also has the effect that the magnetic field of the permanent magnet 32 (respectively 33) no longer crosses the gap between the central core 15 and the bolt 20.
  • the attraction force due to the magnet assembly in the absence of coil current is lower than in the same hybrid actuator having no magnetic switch.
  • the magnetic switch is composed of two elements 35 ', 36' of ferromagnetic material which are fixed on the outer wall of the voice coil 30, symmetrically with respect to the axis X.
  • the shape of the element 35 '(respectively 36') differs from the plate 35 (respectively 36) of the figure 2 , in that it further comprises a flange allowing the magnetic switch to come closer to the side flank 12 (respectively 13) of the fixed yoke 10.
  • this rim is that, in the closed position, the switch 35 (respectively 36) is closer to the lateral flank 12 (respectively 13) of the fixed yoke 10 that the movable pallet 20 of the magnetic circuit. That is to say that, in the closed position, the gap between the switch 35 (respectively 36) and the lateral flank 12 (respectively 13) is less than the gap between the switch 35 (respectively 36) and the mobile pallet 20.
  • the magnetic switch is able to redirect and loop the magnetic field of the magnet assembly directly to the fixed yoke 10 without passing through the movable paddle 20.
  • the magnetic field is then short-circuited so it no longer crosses the air gap between the central core 15 and the bolt 20 and the air gaps between the lateral flanks 12, 13 and the bolt 20.
  • the influence of the force of attraction of the assembly magnetized in the absence of current coil is further diminished, which further facilitates the opening movement of the actuator.
  • FIGS. 5 & 6 show a second embodiment of a hybrid actuator according to the invention.
  • This actuator comprises a magnetic circuit made of ferromagnetic material and comprising a fixed yoke 40 and a movable member 41 of central plunger type, which is movable in translation along a longitudinal axis of displacement X.
  • a fixed excitation coil 44 is positioned at the interior of the flanks of the fixed yoke 40.
  • the movable core 41 and the coil 44 have either a square or circular cross section.
  • the actuator also comprises a magnet assembly which is composed of two magnets 42, 43 respectively, fixed on the sides of the movable core 41 symmetrically with respect to the longitudinal axis of displacement X.
  • the magnetization axes of the magnets 42, 43 are perpendicular and symmetrical with respect to the X axis and directed either towards the X axis or opposite to the X axis.
  • the movable part 41 of the magnetic circuit is therefore integral with the magnet assembly 42, 43 .
  • the coil is still movable relative to the magnet assembly. But in this second embodiment, the coil 44 is now fixed and the magnets 42, 43 are movable. This arrangement advantageously makes it possible to have a fixed coil, which simplifies its electrical connection.
  • the actuator also comprises a magnetic switch composed of two elements 45, 46 made of ferromagnetic material (such as a mu-metal or iron material) and fixed on an inner wall of the coil 44.
  • the magnetic switch 45 (respectively 46) is mainly positioned within an area delimited by the surfaces of the coil 44 and the magnet assembly 42 (respectively 43) facing one from the other.
  • the switchman magnetic 45 (respectively 46) is mainly positioned outside the area delimited by the surfaces of the coil 44 and the magnet assembly 42 (respectively 43) which are facing one another.
  • the shape of the magnetic switch 45 advantageously allows that in the closed position, the switch 45 (respectively 46) is closer to the movable core 41 than the fixed yoke 40 of the magnetic circuit. That is to say that, in the closed position, the gap between the switch 45 (respectively 46) and the movable core 41 is less than the gap between the switch 45 (respectively 46) and the fixed yoke 40 , so as to reduce the influence of the magnetic field of the magnets 42, 43 during the opening movement.
  • the actuator behaves like an electrodynamic actuator with a flow Be traversing perpendicularly the coil 44 and passing through the fixed yoke 40, the central core 41 and the magnets 42, 43, as indicated in FIG. figure 6 .
  • the magnetic gap between the fixed yoke 40 and the central core 41 is minimal and a reluctant flow Br passes through the fixed yoke 40 and the central core 41.
  • the magnetic field of the magnets 42,43 is largely redirected portion and looped directly to the central core 41 without passing through the coil 44 and without going through the air gap between the fixed yoke 40 and the central core 41, thanks to the magnetic switch 45, 46.
  • the invention it is thus possible to optimize the curve of the motor force generated by the actuator as a function of the travel X of the moving part of the magnetic circuit, so as to get as close as possible to the resisting force of the electrical appliance.
  • An example of such a curve is given in figure 7 in a graph showing the different forces F as a function of the stroke X.
  • the curve F1 represents the conventional resistant force of a switch-type switch or relay.
  • the resistant force F1 is minimum in the open position (when the stroke X is maximum - Off in figure 7 ), slowly increases to a threshold marking the meeting between the movable contacts and the fixed contacts of the apparatus, then continues to increase more rapidly as the stroke X decreases (to the closed position - On figure 7 ) corresponding to the compression of the contact pressure springs of the movable contacts.
  • Curve F2 shows the motor force of a conventional electrodynamic type actuator. This effort F2 is regular over the entire stroke of the moving part but is not able to overcome the additional resistance force when approaching the closed position.
  • Curve F3 shows the motor force of a conventional actuator reluctant type. This effort F3 is very high near the closed position, but then decreases rapidly as the air gap of the magnetic circuit of the actuator increases.
  • Curve F4 shows the motor force of a hybrid actuator according to the invention, which is a combination of the force F2 in the vicinity of the open position (negligible influence of F3 because of the large gap) and the F3 effort near the closed position (through the use of the magnetic switch).
  • Adjustments concerning the shapes, dimensions and positioning of the magnet assembly and the magnetic switch make it possible to precisely regulate the instant and progressivity of the tilting between the reluctant type of operation and the electrodynamic type operation. These adjustments must be adapted to the desired operation of the electrical apparatus comprising such an actuator.
  • the invention makes it possible to obtain an optimized motor force stroke F4 with respect to the resistant force curve F1, with an electric coil control current which remains constant over the entire stroke of the actuator. which considerably reduces the complexity of the electronic control of the coil.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Description

  • La présente invention se rapporte à un actionneur électromagnétique destiné à être utilisé dans un appareil électrique interrupteur, en particulier dans un appareil de type relais, contacteur ou contacteur-disjoncteur. L'invention concerne aussi un appareil interrupteur comportant un tel actionneur pour actionner ses contacts mobiles.
  • Ces appareils électriques interrupteurs servent habituellement à commuter le circuit d'alimentation d'une charge ou d'un récepteur électrique, par exemple un moteur électrique, raccordé en aval de l'appareil. Pour cela, l'appareil interrupteur comporte des contacts fixes coopérant avec des contacts mobiles et un actionneur électromagnétique qui déplace les contacts mobiles entre une position fermée dans laquelle ils sont plaqués contre les contacts fixes pour faire circuler le courant d'alimentation dans la charge électrique, et une position ouverte dans laquelle ils sont séparés des contacts fixes, coupant ainsi l'alimentation de la charge.
  • Les actionneurs peuvent utiliser divers systèmes d'actionnement basés sur différentes propriétés magnétiques et/ou électromagnétiques. Par exemple, un système réluctant de type électroaimant est un système d'actionnement fréquemment utilisé dans des contacteurs. Il comporte une bobine d'excitation parcourue par un courant électrique de commande et un circuit ferromagnétique à inductance variable comprenant une partie fixe et une partie mobile. Il peut par ailleurs être polarisé par l'adjonction d'un aimant permanent.
  • Un système réluctant génère principalement une force magnétique qui résulte de la variation de réluctance due à la variation de la valeur de l'entrefer du circuit magnétique entre les positions ouverte et fermée. Cette force est inversement proportionnelle au carré de la valeur de l'entrefer magnétique. En position fermée, quand la valeur de l'entrefer est minimale, l'effort moteur généré est donc maximal. Un faible courant de maintien dans la bobine est alors suffisant pour s'opposer à l'effort résistant des moyens de rappel (tels que des ressorts de rappel et des ressorts de pression de contacts) et maintenir le système en position fermée avec une pression de contact suffisante.
  • Néanmoins, un système réluctant n'est capable de fournir cet effort moteur important que sur une très faible course, généralement inférieure à quelques millimètres. En effet, en position ouverte, la valeur de l'entrefer du circuit magnétique est maximale. Pour démarrer la course de fermeture amenant les contacts mobiles de la position ouverte vers la position fermée, un fort courant d'appel dans la bobine est donc nécessaire pour créer un effort moteur suffisant capable d'attirer la partie mobile du circuit magnétique. Cela peut conduire alors à sur-dimensionner l'ensemble du système (circuit magnétique et bobine) par rapport à ce besoin de fort courant d'appel dans la bobine.
  • Un système d'actionnement appelé de type électrodynamique présente un circuit ferromagnétique fixe, un ensemble aimanté et une bobine qui est mobile par rapport à cet ensemble aimanté. Il peut être soit à aimant fixe et bobine mobile (tel qu'un Voice-coil), soit à bobine fixe et aimant mobile (électroaimant de type Moving Magnet). Dans un tel actionneur de type électrodynamique, la force magnétique est principalement une force de Laplace qui résulte de la variation de l'inductance mutuelle entre l'ensemble aimanté et la bobine. Elle est proportionnelle au courant traversant la bobine, à l'induction magnétique générée par l'ensemble aimanté et aussi à la longueur de la bobine traversée perpendiculairement par le champ magnétique généré par l'ensemble aimanté. Un tel système fournit donc un effort moteur ayant une bonne linéarité tout au long de la course entre les positions ouverte et fermée, pour un flux magnétique et un courant bobine donné.
  • Inversement, ce système ne permet pas de fournir un effort moteur supplémentaire important au voisinage de la position fermée pour garantir une bonne pression de contact des contacts mobiles sur les contacts fixes de l'appareil interrupteur. Il faut alors augmenter fortement le courant bobine en position fermée, entraînant une consommation électrique importante ainsi que d'éventuels problèmes thermiques.
  • Il existe déjà des actionneurs hybrides combinant les avantages d'un système réluctant et d'un système électrodynamique, de façon à ce que le profil de la courbe de l'effort moteur de l'actionneur soit plus adapté au profil de la courbe d'effort résistant des contacts mobiles dans un appareil de type contacteur. Par exemple, le document EP1655755 décrit un tel actionneur électromagnétique hybride fonctionnant soit en mode réluctant, soit en mode électrodynamique, en fonction de la position de la partie mobile de l'actionneur. Dans cet actionneur, le système électrodynamique fournit principalement l'effort moteur nécessaire pendant la course d'approche des contacts mobiles et le système réluctant fournit principalement l'effort moteur supplémentaire nécessaire en fin de course de fermeture pour plaquer et maintenir efficacement les contacts mobiles contre les contacts fixes.
  • Néanmoins, le problème d'un tel actionneur hybride est que le basculement du fonctionnement de type électrodynamique au fonctionnement de type réluctant n'est pas toujours assez prononcé. Il est en effet préférable que le passage d'un type de fonctionnement à l'autre type de fonctionnement se fasse assez rapidement, pour optimiser la course de l'effort moteur de l'actionneur.
  • Ainsi, en fin de course de fermeture des contacts lorsque l'entrefer est proche de sa valeur minimale, le champ magnétique de l'aimant permanent traverse toujours la bobine, ce qui maintient le fonctionnement de type électrodynamique et peut perturber le bon fonctionnement de type réluctant.
  • De plus, cet aimant crée en permanence une force d'attraction qui a tendance à maintenir l'entrefer à sa valeur minimale, même en l'absence de tout courant circulant dans la bobine. Cet effet est alors gênant lors de l'ouverture de l'actionneur car il nécessite des moyens de rappel élastiques plus importants pour ouvrir efficacement les contacts, ce qui augmente évidemment l'effort résistant de l'actionneur.
  • Le but de l'invention est donc de concevoir est un actionneur électromagnétique hybride capable de fonctionner soit en mode réluctant, soit en mode électrodynamique suivant la position de la partie mobile de l'actionneur, mais qui ne présente pas les inconvénients précités. L'invention doit ainsi permettre d'optimiser la course de l'effort moteur de l'actionneur, de minimiser la consommation énergétique et d'optimiser la taille de la partie réluctante de l'actionneur.
  • C'est pourquoi l'invention décrit un actionneur électromagnétique pour appareil électrique interrupteur comprenant un ensemble aimanté, une bobine d'excitation susceptible d'être traversée par un courant électrique de commande, la bobine et l'ensemble aimanté étant mobiles l'un par rapport à l'autre entre une première position et une seconde position, un circuit magnétique comportant une culasse fixe et une pièce mobile, la pièce mobile étant solidaire de l'ensemble aimanté ou de la bobine, et présentant avec la culasse fixe un entrefer minimal dans la première position et maximal dans la seconde position. L'actionneur est caractérisé en ce qu'il comporte un aiguilleur magnétique fixé à la bobine et agencé pour qu'il soit placé en partie entre la bobine et l'ensemble aimanté dans la première position, de façon à dévier une partie du champ magnétique de l'ensemble aimanté.
  • Selon une caractéristique, dans la première position, l'aiguilleur magnétique est majoritairement positionné à l'intérieur d'une zone délimitée par des surfaces de la bobine et de l'ensemble aimanté qui sont en regard l'une de l'autre, et, dans la seconde position, l'aiguilleur magnétique est majoritairement positionné à l'extérieur de ladite zone.
  • Selon une autre caractéristique, dans la première position, l'aiguilleur magnétique est complètement positionné à l'intérieur de ladite zone. Selon une autre caractéristique, dans la seconde position, l'aiguilleur magnétique est complètement positionné à l'extérieur de ladite zone.
  • Selon un premier mode de réalisation, l'ensemble aimanté est solidaire de la culasse fixe et la bobine est solidaire de la pièce mobile du circuit magnétique. Selon un deuxième mode de réalisation, la bobine est solidaire de la culasse fixe et l'ensemble aimanté est solidaire de la pièce mobile du circuit magnétique.
  • Grâce à l'invention, l'aiguilleur magnétique va permettre d'aiguiller et de canaliser vers une direction privilégiée tout ou partie du champ magnétique créé par l'ensemble aimanté et traversant la bobine, de manière à ce qu'en particulier ce champ magnétique perturbe moins le système réluctant, au voisinage de la position fermée et de manière à diminuer la force d'attraction engendrée par ce champ magnétique en l'absence de courant bobine, lors de l'ouverture de l'actionneur.
  • L'invention concerne aussi un appareil électrique interrupteur comportant des contacts fixes coopérant avec des contacts mobiles pour commuter l'alimentation d'une charge électrique, et comprenant au moins un tel actionneur électromagnétique pour actionner les contacts mobiles.
  • D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels :
    • la figure 1 montre une vue en coupe d'un actionneur hybride connu ne comportant pas d'aiguilleur magnétique,
    • la figure 2 représente une vue en coupe d'un premier mode de réalisation d'un actionneur hybride conforme à l'invention, en position fermée,
    • la figure 3 représente l'actionneur de la figure 2 en position ouverte,
    • la figure 4 détaille une variante à l'actionneur de la figure 2,
    • les figures 5 & 6 représentent des vues en coupe d'un deuxième mode de réalisation d'un actionneur hybride conforme à l'invention, respectivement en position fermée et ouverte,
    • la figure 7 montre schématiquement une courbe d'effort de l'actionneur hybride conforme à l'invention.
  • La figure 1 montre un exemple d'actionneur électromagnétique hybride connu utilisé dans un appareil électrique interrupteur de type contacteur, contacteur-disjoncteur ou relais. Comme indiqué précédemment, un tel actionneur combine les avantages d'un système réluctant et d'un système électrodynamique, de façon à mieux adapter le profil de la courbe de l'effort moteur de l'actionneur au profil de la courbe d'effort résistant.
  • Il comporte un circuit magnétique réalisé en matériau ferromagnétique et comprenant une culasse fixe 10 et une pièce mobile 20. La culasse fixe 10 présente une partie latérale formée par deux flancs latéraux 12,13 et un noyau central 15, l'ensemble s'appuyant sur une base commune 14. Le noyau central 15 est entouré totalement ou partiellement par une bobine d'excitation 30 qui est mobile en translation suivant un axe de déplacement longitudinal X lorsqu'elle est traversée par un courant électrique de commande. Le noyau central 15 et la bobine 30 possèdent indifféremment une section transversale carrée ou circulaire. L'appareil électrique comporte des contacts fixes coopérant avec des contacts mobiles qui sont mus par l'actionneur.
  • La pièce mobile 20 du circuit magnétique est par exemple composée d'une simple palette mobile 20. De façon équivalente, cette pièce mobile 20 pourrait aussi avoir une constitution similaire à la culasse fixe, avec des flancs latéraux et un noyau central qui seraient placés en vis-à-vis de ceux de la culasse fixe, comme cela existe fréquemment dans des contacteurs. La palette mobile 20 est mécaniquement liée à la bobine 30 par divers moyens de liaison classiques non détaillés ici. Le ou les contacts mobiles de l'appareil (non représentés dans les figures) sont couplés mécaniquement avec la palette mobile 20. La palette mobile 20 et la bobine 30 se déplacent donc suivant l'axe X entre une première position fermée dans laquelle les contacts mobiles sont plaqués contre les contacts fixes, et une seconde position ouverte dans laquelle les contacts mobiles sont séparés des contacts fixes de l'appareil. Le circuit magnétique présente un entrefer magnétique E formé par les espaces entre les différentes surfaces en vis-à-vis de la palette mobile 20 et de la culasse fixe 10. Cet entrefer a une valeur maximale en position ouverte et une valeur minimale en position fermée.
  • Des moyens de rappel non représentés (tel qu'un ressort par exemple) permettent à l'actionneur de passer de la position fermée à la position ouverte. On pourrait aussi envisager que ce mouvement d'ouverture est facilité par l'envoi d'un courant de sens inverse dans la bobine.
  • L'actionneur comporte également un ensemble aimanté qui est composé de deux aimants 32, respectivement 33, fixés sur la paroi interne des flancs latéraux 12, respectivement 13, de façon symétrique par rapport à l'axe de déplacement longitudinal X de la bobine 30 et en regard de la bobine 30. Les axes d'aimantation des aimants 32,33 sont perpendiculaires et symétriques par rapport à l'axe X et dirigés soit vers l'axe X, soit à l'opposé de l'axe X. Le sens de l'aimantation des aimants 32,33 et le sens du courant circulant dans la bobine sont choisis pour obtenir le mouvement souhaité de l'ensemble "bobine 30 + palette mobile 20".
  • Le mouvement de la palette mobile 20 le long de l'axe X par rapport à la culasse fixe 10 représente la course de l'actionneur entre la position ouverte et la position fermée. Pour passer de la position ouverte à la position fermée, on fait circuler un courant électrique dans la bobine 30. Il se produit alors :
    • un premier flux magnétique Br créé par l'effet réluctant de l'actionneur. Ce flux réluctant Br génère une force Fr de déplacement de la palette mobile qui est proportionnelle aux ampères-tours n*I fournis par la bobine 30, à la surface S de l'entrefer du circuit magnétique et qui est inversement proportionnelle au carré de la distance E formée par cet entrefer. Cette force est donc de forme non linéaire en fonction de la course de l'actionneur. Elle est évidemment beaucoup plus importante au voisinage de la position fermée, lorsque la distance E est minimale.
    • un second flux magnétique Be créé par l'effet électrodynamique de l'actionneur. Ce flux Be génère une force de Laplace Fe qui tend à faire déplacer la bobine suivant l'axe X. Cette force Fe est proportionnelle à l'intensité I du courant circulant dans la bobine 30, au champ magnétique B créé par les aimants 32,33 et à la longueur L de la bobine traversée perpendiculairement par le champ de l'aimant. Cette force est donc de forme linéaire en fonction de la course de l'actionneur et est relativement constante durant toute la course de l'actionneur.
  • Sur la figure 1, les flux magnétiques Br et Be sont indiqués en position fermée. Dans cette position, l'entrefer a une valeur E minimale correspondant à un entrefer résiduel qui est maintenu par construction, pour éviter la saturation de l'actionneur. Le flux Br circule entre la culasse mobile 20 et la culasse fixe 15, 14, 12 (respectivement 13) de l'actionneur en traversant l'entrefer E de l'actionneur. Le flux Be passe par les pôles S-N de l'aimant 32 (respectivement 33) et traverse la bobine 30 perpendiculairement à l'axe de déplacement X, avant de se reboucler d'une part via les parties 15, 14, 12 (respectivement 13) de l'actionneur et d'autre part via les parties 15, E, 20, E, 12 (respectivement 13) de l'actionneur.
  • La figure 1 montre que, en position fermée, le flux Be peut avoir un sens opposé au flux Br dans la culasse mobile 20 de l'actionneur, ce qui nuit à l'efficacité de la force de pression de contact des contacts mobiles. De plus, même en l'absence de courant dans la bobine, le champ magnétique des aimants permanents 32, 33 crée une force d'attraction qui maintient l'entrefer E entre la culasse mobile 20 et la culasse fixe (noyau central 15, flancs latéraux 12,13) à leur valeur minimale et qu'il faut vaincre lors du mouvement d'ouverture de l'actionneur. De plus, en position fermée, une partie du flux réluctant Br passe par les aimants 32, 33 et non par l'entrefer E, ce qui réduit l'efficacité des ampères tours n*I de la bobine 30.
  • C'est pourquoi, l'invention propose de rajouter dans un tel actionneur hybride un aiguilleur magnétique réalisé en matériau ferromagnétique (tel qu'un matériau en mu-métal ou fer) et fixé à la bobine d'excitation. Cet aiguilleur magnétique est destiné à dévier tout ou partie du champ magnétique de l'ensemble aimanté dans la position fermée de l'actionneur, de façon notamment à ce que ce champ magnétique ne traverse pas la bobine.
  • Un premier mode de réalisation est représenté dans les figures 2 & 3, dans lequel l'aiguilleur magnétique est composé de deux plaques 35, 36 qui sont fixées sur la paroi externe de la bobine mobile 30, symétriquement par rapport à l'axe X. Les deux plaques 35, 36 se déplacent donc avec la bobine 30. L'actionneur représenté est du même type que celui de la figure 1. Selon l'invention, l'aiguilleur magnétique est agencé pour être placé en partie entre la bobine 30 et l'ensemble aimanté 32, 33 dans une première position correspondant à la position fermée de l'actionneur (voir figure 2).
  • Dans cette première position, l'aiguilleur magnétique est principalement placé entre la bobine et l'ensemble aimanté, c'est-à-dire que l'aiguilleur magnétique 35 (respectivement 36) est majoritairement positionné à l'intérieur d'une zone 37 (respectivement 38) délimitée par les surfaces de la bobine 30 et de l'ensemble aimanté 32 (respectivement 33) en regard l'une de l'autre. Préférentiellement, l'aiguilleur magnétique 35 (respectivement 36) est complètement positionné à l'intérieur de la zone 37 (respectivement 38) dans la position fermée de l'actionneur.
  • Inversement, dans une seconde position correspondant à la position ouverte de l'actionneur (voir figure 3), l'aiguilleur magnétique n'est pas principalement placé entre la bobine et l'ensemble aimanté, c'est-à-dire que l'aiguilleur magnétique 35 (respectivement 36) est majoritairement positionné en dehors de la zone 37 (respectivement 38) délimitée par les surfaces de la bobine 30 et de l'ensemble aimanté 32 (respectivement 33) qui sont en regard l'une de l'autre. Préférentiellement, l'aiguilleur magnétique 35 (respectivement 36) est complètement positionné à l'extérieur de la zone 37 (respectivement 38) dans la position ouverte de l'actionneur.
  • Lorsque l'aiguilleur magnétique 35 est majoritairement positionné à l'extérieur de la zone 37, alors il influence peu le fonctionnement de l'actionneur hybride, car les lignes du champ magnétique de l'aimant 32 sont peu ou pas déviées par la présence de l'aiguilleur magnétique 35. Cela signifie qu'en position ouverte, le fonctionnement de l'actionneur des figures 2 & 3 est sensiblement identique à celui de la figure 1. La figure 3 montre ainsi qu'en position ouverte, étant donné la valeur importante de l'entrefer E, le principal effort moteur est dû au flux magnétique Be électrodynamique traversant les éléments 32/33, 30, 15, 14, 12/13 et générant une force de Laplace Fe de déplacement de l'ensemble "bobine 30 + palette mobile 20", lorsqu'un courant circule dans la bobine 30.
  • Par contre, lorsque l'aiguilleur magnétique 35 est majoritairement positionné à l'intérieur de la zone 37, alors il dévie une partie importante des lignes du champ magnétique de l'aimant 32 pour les aiguiller vers une direction privilégiée, c'est-à-dire vers le matériau magnétique le plus proche, en l'occurrence vers la culasse mobile 20, ce qui fait que la partie du flux Be passant par le chemin 32, 30, 15, 14, 12 deviendra négligeable, tant que l'aiguilleur magnétique ne sera pas saturé. Ainsi, une partie importante du flux Be ne traverse plus perpendiculairement la bobine 30, ce qui entraîne que la force de Laplace Fe diminue très sensiblement. Donc, en position fermée, l'effort moteur agissant sur la culasse mobile 20 reste principalement l'effort réluctant Fr.
  • Par ailleurs, l'aiguilleur magnétique 35 (respectivement 36) a également pour effet que le champ magnétique de l'aimant permanent 32 (respectivement 33) ne traverse plus l'entrefer situé entre le noyau central 15 et la culasse mobile 20. Ainsi, la force d'attraction due à l'ensemble aimanté en l'absence de courant bobine est moins élevée que dans un même actionneur hybride ne comportant pas d'aiguilleur magnétique.
  • Une variante de l'actionneur de la figure 2 est présentée en figure 4. Dans cette variante, l'aiguilleur magnétique est composé de deux éléments 35', 36' en matériau ferromagnétique qui sont fixés sur la paroi externe de la bobine mobile 30, symétriquement par rapport à l'axe X. La forme de l'élément 35' (respectivement 36') diffère de la plaque 35 (respectivement 36) de la figure 2, en ce qu'elle comporte en plus un rebord permettant à l'aiguilleur magnétique de se rapprocher au plus près du flanc latéral 12 (respectivement 13) de la culasse fixe 10.
  • Le but de ce rebord est que, en position fermée, l'aiguilleur 35 (respectivement 36) soit plus proche du flanc latéral 12 (respectivement 13) de la culasse fixe 10 que de la palette mobile 20 du circuit magnétique. C'est-à-dire que, en position fermée, l'entrefer entre l'aiguilleur 35 (respectivement 36) et le flanc latéral 12 (respectivement 13) soit inférieur à l'entrefer entre l'aiguilleur 35 (respectivement 36) et la palette mobile 20.
  • Ainsi, grâce à cette variante, l'aiguilleur magnétique est capable de rediriger et de reboucler le champ magnétique de l'ensemble aimanté directement vers la culasse fixe 10 sans passer par la palette mobile 20. Le champ magnétique est alors court-circuité de sorte qu'il ne traverse plus l'entrefer situé entre le noyau central 15 et la culasse mobile 20 ni les entrefers situés entre les flancs latéraux 12, 13 et la culasse mobile 20. L'influence de la force d'attraction de l'ensemble aimanté en l'absence de courant bobine est encore diminuée, ce qui facilite d'autant plus le mouvement d'ouverture de l'actionneur.
  • Les figures 5 & 6 montrent un second mode de réalisation d'un actionneur hybride conforme à l'invention. Cet actionneur comporte un circuit magnétique réalisé en matériau ferromagnétique et comprenant une culasse fixe 40 et une pièce mobile 41 de type noyau plongeur central, qui est mobile en translation suivant un axe de déplacement longitudinal X. Une bobine d'excitation fixe 44 est positionnée à l'intérieur des flancs de la culasse fixe 40. Le noyau mobile 41 et la bobine 44 possèdent indifféremment une section transversale carrée ou circulaire.
  • L'actionneur comporte également un ensemble aimanté qui est composé de deux aimants 42, respectivement 43, fixés sur les côtés du noyau mobile 41 de façon symétrique par rapport à l'axe de déplacement longitudinal X. Les axes d'aimantation des aimants 42, 43 sont perpendiculaires et symétriques par rapport à l'axe X et dirigés soit vers l'axe X, soit à l'opposé de l'axe X. La pièce mobile 41 du circuit magnétique est donc solidaire de l'ensemble aimanté 42, 43.
  • Ainsi, dans les deux modes de réalisation, la bobine est toujours mobile par rapport à l'ensemble aimanté. Mais dans ce second mode de réalisation, la bobine 44 est désormais fixe et les aimants 42, 43 sont mobiles. Cet agencement permet avantageusement d'avoir une bobine fixe, ce qui simplifie son raccordement électrique.
  • L'actionneur comporte également un aiguilleur magnétique composé de deux éléments 45, 46 réalisé en matériau ferromagnétique (tel qu'un matériau en mu-métal ou fer) et fixé sur une paroi intérieure de la bobine 44. Comme pour le premier mode de réalisation, dans la première position ou position fermée, l'aiguilleur magnétique 45 (respectivement 46) est majoritairement positionné à l'intérieur d'une zone délimitée par les surfaces de la bobine 44 et de l'ensemble aimanté 42 (respectivement 43) en regard l'une de l'autre. Inversement, dans la seconde position ou position ouverte, l'aiguilleur magnétique 45 (respectivement 46) est majoritairement positionné en dehors de la zone délimitée par les surfaces de la bobine 44 et de l'ensemble aimanté 42 (respectivement 43) qui sont en regard l'une de l'autre.
  • L'exemple présenté dans les figures 5 & 6 montre que la forme de l'aiguilleur magnétique 45 (respectivement 46) permet avantageusement que, en position fermée, l'aiguilleur 45 (respectivement 46) soit plus proche du noyau mobile 41 que de la culasse fixe 40 du circuit magnétique. C'est-à-dire que, en position fermée, l'entrefer entre l'aiguilleur 45 (respectivement 46) et le noyau mobile 41 est inférieur à l'entrefer entre l'aiguilleur 45 (respectivement 46) et la culasse fixe 40, de façon à diminuer l'influence du champ magnétique des aimants 42, 43 lors du mouvement d'ouverture.
  • En position ouverte, l'actionneur se comporte comme un actionneur électrodynamique avec un flux Be traversant perpendiculairement la bobine 44 et passant par la culasse fixe 40, le noyau central 41 et les aimants 42,43, comme indiqué en figure 6. En position fermée, l'entrefer magnétique entre la culasse fixe 40 et le noyau central 41 est minimal et un flux réluctant Br traverse la culasse fixe 40 et le noyau central 41. Par contre, le champ magnétique des aimants 42,43 est en grande partie redirigé et rebouclé directement vers le noyau central 41 sans passer par la bobine 44 et sans passer par l'entrefer entre la culasse fixe 40 et le noyau central 41, grâce à l'aiguilleur magnétique 45, 46.
  • Grâce à l'invention, on peut ainsi optimiser la courbe de l'effort moteur généré par l'actionneur en fonction de la course X de la pièce mobile du circuit magnétique, de façon à s'approcher au mieux de l'effort résistant de l'appareil électrique. Un exemple d'une telle courbe est donné en figure 7 dans un graphique montrant les différents efforts F en fonction de la course X. La courbe F1 représente l'effort résistant classique d'un appareil interrupteur de type contacteur ou relais. L'effort résistant F1 est minimum en position ouverte (lorsque la course X est maximale - Off en figure 7), augmente doucement jusqu'à un seuil marquant la rencontre entre les contacts mobiles et les contacts fixes de l'appareil, puis continue à augmenter plus rapidement à mesure que la course X diminue (jusqu'à la position fermée - On en figure 7) correspondant à la compression des ressorts de pression de contact des contacts mobiles.
  • La courbe F2 montre l'effort moteur d'un actionneur classique de type électrodynamique. Cet effort F2 est régulier sur toute la course de la pièce mobile mais n'est pas capable de vaincre l'effort résistant supplémentaire à l'approche de la position fermée. La courbe F3 montre l'effort moteur d'un actionneur classique de type réluctant. Cet effort F3 est très élevé au voisinage de la position fermée, mais décroît ensuite rapidement au fur et à mesure que l'entrefer du circuit magnétique de l'actionneur augmente. La courbe F4 montre l'effort moteur d'un actionneur hybride conforme à l'invention, qui est une combinaison de l'effort F2 au voisinage de la position ouverte (influence de F3 négligeable à cause de l'entrefer important) et de l'effort F3 au voisinage de la position fermée (grâce à l'utilisation de l'aiguilleur magnétique).
  • Des ajustements concernant les formes, les dimensions et les positionnements de l'ensemble aimanté et de l'aiguilleur magnétique permettent de régler précisément l'instant et la progressivité du basculement entre le fonctionnement de type réluctant et le fonctionnement de type électrodynamique. Ces réglages doivent être adaptés au fonctionnement souhaité de l'appareil électrique comprenant un tel actionneur.
  • De plus, le fait de mettre un aiguilleur de flux d'aimant permet aussi de dimensionner et d'optimiser chaque partie de l'actionneur l'hybride indépendamment l'un de l'autre pour la zone dans laquelle il travaille, à savoir la courbe F3 pour la partie réluctante et la courbe F2 pour la partie VoiceCoil, ce qui simplifie le travail de conception et de mise au point.
  • Par ailleurs, l'invention permet d'obtenir une course d'effort moteur F4 optimisée par rapport à la courbe d'effort résistant F1, avec un courant électrique de commande de la bobine qui reste constant sur toute la course de l'actionneur, ce qui réduit considérablement la complexité de la commande électronique de la bobine.

Claims (11)

  1. Actionneur électromagnétique pour appareil électrique interrupteur comprenant :
    - un ensemble aimanté (32,33,42,43),
    - une bobine d'excitation (30,44) susceptible d'être traversée par un courant électrique de commande, la bobine et l'ensemble aimanté étant mobiles l'un par rapport à l'autre entre une première position et une seconde position,
    - un circuit magnétique comportant une culasse fixe (10,40) et une pièce mobile (20,41), la pièce mobile étant solidaire de l'ensemble aimanté ou de la bobine, et présentant avec la culasse fixe un entrefer magnétique dont la valeur est minimale dans la première position et est maximale dans la seconde position,
    caractérisé en ce que l'actionneur comporte un aiguilleur magnétique (35,36,35', 36',45,46) fixé à la bobine (30,44) et agencé de telle sorte que :
    - l'aiguilleur magnétique est positionné au moins en partie à l'intérieur d'une zone (37,38) délimitée par des surfaces de la bobine (30) et de l'ensemble aimanté (32,33) qui sont en regard l'une de l'autre dans la première position, de façon à dévier une partie du champ magnétique de l'ensemble aimanté (32,33,42,43),
    - et est majoritairement positionné à l'extérieur de ladite zone (37,38) dans la seconde position.
  2. Actionneur électromagnétique selon la revendication 1, caractérisé en ce que dans la première position, l'aiguilleur magnétique (35,36,35',36') est majoritairement positionné à l'intérieur de ladite zone (37,38).
  3. Actionneur électromagnétique selon la revendication 1, caractérisé en ce que dans la première position, l'aiguilleur magnétique (35,36,35',36') est complètement positionné à l'intérieur de ladite zone (37,38).
  4. Actionneur électromagnétique selon la revendication 1, caractérisé en ce que dans la seconde position, l'aiguilleur magnétique (35,36,35',36') est complètement positionné à l'extérieur de ladite zone (37,38).
  5. Actionneur électromagnétique selon l'une des revendications 1 à 4, caractérisé en ce que l'ensemble aimanté (32,33) est solidaire de la culasse fixe (10) et la bobine (30) est solidaire de la pièce mobile (20) du circuit magnétique.
  6. Actionneur électromagnétique selon la revendication 5, caractérisé en ce que la culasse fixe (10) comprend une partie latérale (12,13) et un noyau central (15), en ce que l'ensemble aimanté (est composé de deux aimants permanents (32,33) fixés sur la partie latérale (12,13) symétriquement par rapport à un axe de déplacement (X) de la bobine et en ce que l'aiguilleur magnétique est formé de deux éléments (35,36,35',36') d'un matériau ferromagnétique fixés sur des flancs extérieurs de la bobine (30).
  7. Actionneur électromagnétique selon la revendication 6, caractérisé en ce que l'aiguilleur magnétique (35',36') est agencé pour que, dans la première position, l'entrefer entre l'aiguilleur magnétique et la partie latérale (12,13) de la culasse fixe soit inférieur à l'entrefer entre l'aiguilleur magnétique et la pièce mobile (20) du circuit magnétique.
  8. Actionneur électromagnétique selon l'une des revendications 1 à 4, caractérisé en ce que la bobine (44) est solidaire de la culasse fixe (40) et l'ensemble aimanté (42,43) est solidaire de la pièce mobile (41) du circuit magnétique.
  9. Actionneur électromagnétique selon la revendication 8, caractérisé en ce que la pièce mobile du circuit magnétique comprend un noyau central mobile (41), en ce que l'ensemble aimanté est composé de deux aimants permanents (42,43) fixés sur le noyau mobile (41) symétriquement par rapport à un axe de déplacement (X) de la bobine et en ce que l'aiguilleur magnétique est formé de deux éléments (45,46) d'un matériau ferromagnétique fixés sur des flancs intérieurs de la bobine (44).
  10. Actionneur électromagnétique selon la revendication 9, caractérisé en ce que l'aiguilleur magnétique est agencé pour que, dans la première position, l'entrefer entre l'aiguilleur magnétique et le noyau central mobile (41) soit inférieur à l'entrefer entre l'aiguilleur magnétique et la culasse fixe (40).
  11. Appareil électrique interrupteur comportant des contacts fixes coopérant avec des contacts mobiles pour commuter l'alimentation d'une charge électrique, caractérisé en ce qu'il comprend au moins un actionneur électromagnétique selon l'une des revendications précédentes pour actionner les contacts mobiles.
EP08708951.2A 2007-02-27 2008-02-13 Actionneur electromagnetique hybride Active EP2126951B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0753517A FR2913142B1 (fr) 2007-02-27 2007-02-27 Actionneur electromagnetique hybride.
PCT/EP2008/051734 WO2008107273A1 (fr) 2007-02-27 2008-02-13 Actionneur electromagnetique hybride

Publications (2)

Publication Number Publication Date
EP2126951A1 EP2126951A1 (fr) 2009-12-02
EP2126951B1 true EP2126951B1 (fr) 2013-12-04

Family

ID=38246139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08708951.2A Active EP2126951B1 (fr) 2007-02-27 2008-02-13 Actionneur electromagnetique hybride

Country Status (6)

Country Link
EP (1) EP2126951B1 (fr)
JP (1) JP5179516B2 (fr)
KR (1) KR101362009B1 (fr)
CN (1) CN101622685B (fr)
FR (1) FR2913142B1 (fr)
WO (1) WO2008107273A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011050847U1 (de) * 2010-10-16 2011-11-21 Msm Krystall Gbr (Vertretungsberechtigte Gesellschafter: Dr. Rainer Schneider, 12165 Berlin; Arno Mecklenburg, 10999 Berlin) Elektromagnetischer Linearaktor
KR20120052809A (ko) 2010-11-16 2012-05-24 현대자동차주식회사 액츄에이터
DE102011083282B3 (de) * 2011-09-23 2013-02-21 Siemens Aktiengesellschaft Elektromagnetischer Antrieb
US9412507B2 (en) * 2014-04-01 2016-08-09 The Boeing Company Positioning system for an electromechanical actuator
DE102014214439A1 (de) * 2014-07-23 2016-01-28 Micro-Epsilon Messtechnik Gmbh & Co. Kg Aktor-Sensor-Anordnung und Verfahren zur Anwendung bei einer solchen Anordnung
CN105321742B (zh) * 2014-07-28 2019-07-09 苏州磁明科技有限公司 螺线管线性驱动器及其制作方法
CN109516336B (zh) * 2018-12-29 2024-09-13 刘英辉 直线驱动装置、安全钳装置及电梯系统的控制方法
CN109974988A (zh) * 2019-03-29 2019-07-05 华南理工大学 一种音圈作动器动特性测试装置及系统
KR102230962B1 (ko) * 2020-01-09 2021-03-23 한밭대학교 산학협력단 액츄에이터

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893302A (ja) * 1981-11-30 1983-06-03 Matsushita Electric Works Ltd 有極ソレノイド
JPS63133604A (ja) * 1986-11-26 1988-06-06 Matsushita Electric Works Ltd 有極電磁石
JPS6474707A (en) * 1987-09-16 1989-03-20 Matsushita Electric Works Ltd Electromagnet device
JP3096155B2 (ja) * 1992-05-20 2000-10-10 愛知電機株式会社 ソレノイドの手動操作装置
CN2627632Y (zh) * 2003-07-22 2004-07-21 吉林永大集团有限公司 一种低压电磁操动永磁保持驱动机构
DE202004006156U1 (de) * 2004-04-19 2004-08-26 Bürkert Werke GmbH & Co. KG Magnetantrieb für ein Ventil
FR2875637B1 (fr) * 2004-09-22 2006-10-27 Schneider Electric Ind Sas Actionneur electromagnetique bistable a serrure integree.
FR2877762B1 (fr) * 2004-11-08 2007-07-13 Schneider Electric Ind Sas Actionneur electromagnetique a bobine mobile

Also Published As

Publication number Publication date
CN101622685A (zh) 2010-01-06
WO2008107273A1 (fr) 2008-09-12
KR101362009B1 (ko) 2014-02-11
FR2913142A1 (fr) 2008-08-29
JP5179516B2 (ja) 2013-04-10
CN101622685B (zh) 2012-03-14
JP2010519776A (ja) 2010-06-03
FR2913142B1 (fr) 2009-05-08
KR20090115950A (ko) 2009-11-10
EP2126951A1 (fr) 2009-12-02

Similar Documents

Publication Publication Date Title
EP2126951B1 (fr) Actionneur electromagnetique hybride
EP2037476B1 (fr) Actionneur électromagnétique et appareil interrupteur équipé d'un tel actionneur électromagnétique
EP1811536B1 (fr) Actionneur magnetique a aimant permanent a volume reduit
US7746202B2 (en) Magnetic actuating device
EP1185995B1 (fr) Dispositif de commande d'ouverture et/ou de fermeture, en particulier pour un appareil de coupure tel un disjoncteur, et disjoncteur equipe d'un tel dispositif
FR2705510A1 (fr) Actionneur électromagnétique monophasé à faible course présentant un bon rapport force sur puissance électrique.
WO2011069879A1 (fr) Dispositif generateur d'energie electrique
WO2010018030A1 (fr) Actionneur electromagnetique hybride a bobine fixe
WO2010072908A1 (fr) Actionneur electromagnetique a double circuits de commande
EP1655755B1 (fr) Actionneur électromagnétique à bobine mobile
WO2004061276A1 (fr) Actionneur electromagnetique de soupape bibobine a aimant permanent.
EP3652845B1 (fr) Convertisseur d'energie electromagnetique
EP1576627B1 (fr) Actionneur electromagnetique de soupape a aimant permanent
CA1274573A (fr) Electro-aimant a courant continu a mouvement de translation
FR2972844A1 (fr) Actionneur rotatif et contacteur comportant un tel actionneur
FR2977067A1 (fr) Dispositif de guidage de l'arc dans un appareil de protection electrique et appareil de protection electrique comportant un tel dispositif
EP0163349B1 (fr) Circuit d'alimentation perfectionné pour un contacteur électromagnétique
FR3060194A1 (fr) Dispositif de coupure electrique equipe d'un module magnetique pour le soufflage de l'arc electrique
WO2001084578A1 (fr) Electroaimant rotatif
EP0693764A1 (fr) Disjoncteur électrique à actionneur électromagnétique pour calibres élevés
WO2004038750A2 (fr) Actionneur modulable pour appareil interrupteur
FR2768856A1 (fr) Disjoncteur a declencheur electromagnetique a propulseur d'un contact mobile a fourche
EP1501112A1 (fr) Sous-ensemble magnétique amélioré et disjoncteur comportant un tel sous-ensemble magnétique
FR2803430A1 (fr) Electroaimant pour appareil interrupteur
EP0794547A1 (fr) Disjoncteur électrique à actionneur électromagnétique et mécanisme de commande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRUVOST, PHILIPPE

Inventor name: BATAILLE, CHRISTIAN

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 643824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008029080

Country of ref document: DE

Effective date: 20140130

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 643824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140404

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

BERE Be: lapsed

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008029080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140213

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

26N No opposition filed

Effective date: 20140905

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008029080

Country of ref document: DE

Effective date: 20140905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140213

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 17

Ref country code: GB

Payment date: 20240220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 17