EP2125673B1 - Non-toxic percussion primers - Google Patents
Non-toxic percussion primers Download PDFInfo
- Publication number
- EP2125673B1 EP2125673B1 EP07870653.8A EP07870653A EP2125673B1 EP 2125673 B1 EP2125673 B1 EP 2125673B1 EP 07870653 A EP07870653 A EP 07870653A EP 2125673 B1 EP2125673 B1 EP 2125673B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- primer composition
- percussion primer
- explosive
- percussion
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009527 percussion Methods 0.000 title claims description 54
- 231100000252 nontoxic Toxicity 0.000 title description 7
- 230000003000 nontoxic effect Effects 0.000 title description 7
- 239000000203 mixture Substances 0.000 claims description 101
- 239000002245 particle Substances 0.000 claims description 55
- 239000002360 explosive Substances 0.000 claims description 48
- 239000000446 fuel Substances 0.000 claims description 41
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 229910052782 aluminium Inorganic materials 0.000 claims description 24
- 239000000872 buffer Substances 0.000 claims description 20
- 239000000020 Nitrocellulose Substances 0.000 claims description 19
- 229920001220 nitrocellulos Polymers 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 claims description 13
- 239000007800 oxidant agent Substances 0.000 claims description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 10
- 239000007853 buffer solution Substances 0.000 claims description 9
- -1 nitrate ester Chemical class 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- NDYLCHGXSQOGMS-UHFFFAOYSA-N CL-20 Chemical compound [O-][N+](=O)N1C2N([N+]([O-])=O)C3N([N+](=O)[O-])C2N([N+]([O-])=O)C2N([N+]([O-])=O)C3N([N+]([O-])=O)C21 NDYLCHGXSQOGMS-UHFFFAOYSA-N 0.000 claims description 4
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- AGUIVNYEYSCPNI-UHFFFAOYSA-N N-methyl-N-picrylnitramine Chemical group [O-][N+](=O)N(C)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O AGUIVNYEYSCPNI-UHFFFAOYSA-N 0.000 claims description 3
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 claims description 3
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims description 2
- 239000000015 trinitrotoluene Substances 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- 125000005579 tetracene group Chemical group 0.000 claims 1
- 230000007062 hydrolysis Effects 0.000 description 20
- 238000006460 hydrolysis reaction Methods 0.000 description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 230000035945 sensitivity Effects 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 12
- IUKSYUOJRHDWRR-UHFFFAOYSA-N 2-diazonio-4,6-dinitrophenolate Chemical compound [O-]C1=C([N+]#N)C=C([N+]([O-])=O)C=C1[N+]([O-])=O IUKSYUOJRHDWRR-UHFFFAOYSA-N 0.000 description 10
- 239000003380 propellant Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 8
- WETZJIOEDGMBMA-UHFFFAOYSA-L lead styphnate Chemical compound [Pb+2].[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C([O-])=C1[N+]([O-])=O WETZJIOEDGMBMA-UHFFFAOYSA-L 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000000576 coating method Methods 0.000 description 6
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 6
- 229910000397 disodium phosphate Inorganic materials 0.000 description 6
- 235000019800 disodium phosphate Nutrition 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 241000416162 Astragalus gummifer Species 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229910000416 bismuth oxide Inorganic materials 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009972 noncorrosive effect Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000643 oven drying Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- HWSISDHAHRVNMT-UHFFFAOYSA-N Bismuth subnitrate Chemical compound O[NH+]([O-])O[Bi](O[N+]([O-])=O)O[N+]([O-])=O HWSISDHAHRVNMT-UHFFFAOYSA-N 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 206010065929 Cardiovascular insufficiency Diseases 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 240000001058 Sterculia urens Species 0.000 description 1
- 235000015125 Sterculia urens Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XFBXDGLHUSUNMG-UHFFFAOYSA-N alumane;hydrate Chemical compound O.[AlH3] XFBXDGLHUSUNMG-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229960001482 bismuth subnitrate Drugs 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910021346 calcium silicide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000004446 fluoropolymer coating Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical compound [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910001959 inorganic nitrate Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229940105296 zinc peroxide Drugs 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06C—DETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
- C06C7/00—Non-electric detonators; Blasting caps; Primers
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
- C06B23/006—Stabilisers (e.g. thermal stabilisers)
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B33/00—Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
Definitions
- the present invention relates to percussion primer compositions for explosive systems.
- Ignition devices rely on the sensitivity of the primary explosive that significantly limits available primary explosives.
- the most common lead styphnate alternative, diazodinitrophenol (DDNP or dinol) has been used for several decades relegated to training ammunition.
- DDNP-based primers suffer from poor reliability that may be attributed to low friction sensitivity, low flame temperature, and are hygroscopic.
- Metastable interstitial composites also known as metastable nanoenergetic composites (MNC) or superthermites
- MNC metastable nanoenergetic composites
- These materials have shown excellent performance characteristics, such as impact sensitivity and high temperature output.
- the main difficulty is handling of dry nano-size powder mixtures due to their sensitivity to friction and electrostatic discharge (ESD). See U.S. Patent No. 5717159 and U.S. Patent Publication No. 2006/0113014 .
- Health concerns may be further compounded by the use of barium and lead containing oxidizers. See, for example, U.S. Patent Publication No. 20050183805 .
- US2006113014A1 discloses a method for preparing metastable nanoenergetic composites (MNC) and for wet loading those MNCs into percussion primer cups.
- US4133707A discloses an extrudable ammunition priming mix with viscosity characteristics which remain relatively stable over an extended time span.
- EP0334725A1 discloses new percussive primer charges and process for their manufacture.
- DE19606237A1 discloses a non-toxic detonator composition for light weapon munitions free of lead and barium.
- EP1195366A discloses a non-toxic primer mix including both bismuth sulfide and potassium nitrate as the pyrotechnic portion of the primer.
- WO9944968A1 discloses a non-toxic primer composition for use in ammunition with a hygroscopic oxidizer which is protected from absorption of water.
- US6544363B1 discloses a non-toxic heavy-metal-free priming mix and a method of forming same.
- EP0699646A1 discloses a priming mixture containing no toxic materials, in particular no Pb, Ba or Sb compounds, and presenting at least one primary explosive, an oxidizing agent, a reducing agent, and an inert friction agent; the oxidizing agent comprising stannic oxide SnO 2 .
- WO2006009579A2 discloses a primer for small arms ammunition including a primary explosive and an oxidizer system containing bismuth oxide.
- US2006219341A1 discloses a sensitized explosive that comprises an explosive precipitated onto a sensitizer.
- WO2006083379A2 discloses nanoenergetic materials based on aluminum and bismuth oxide.
- US3367805A discloses thickened inorganic nitrate aqueous slurry containing finely divided aluminum having a lyophobic surface of high surface area.
- US3113059A discloses an inhibited aluminum-water composition and method.
- WO9612770A discloses a system for inhibiting the corrosion of ferrous and other metals by passivating the metals.
- WO0206421A discloses reaction mixtures that include exothermic generating particles having a water soluble coating encasing a portion of the particles and, optionally an aqueous solution, and a buffer.
- DE2513735A1 discloses a corrosion inhibitor for metals in aqueous systems containing polycarboxylic acid, zinc, phosphate, phosphonate or polymer dispersant.
- Müller B., CORROSION SCIENCE JANUARY 2004 ELSEVIER LTD GB, Vol. 46, No. 1, January 2004 (2004-01), pages 159-167, XP002507196 discloses citric acid as corrosion inhibitor for aluminium pigment.
- One aspect not forming part of the present invention relates to a method of making a percussion primer or igniter, the method including providing at least one water wet explosive, combining at least one nano-size non-coated fuel particle having natural surface oxides thereon with at least one water wet explosive to form a first mixture and combining at least one oxidizer.
- Another aspect not forming part of the present invention relates to a method for preparing a percussion primer, the method including providing at least one water wet explosive, combining at least one sensitizer with the at least one water wet explosive, combining at least one nano-size non-coated fuel particle having natural surface oxides thereon with the at least one additional water wet explosive to form a wet mixture, dry blending at least one oxidizer and at least one binder to form a resultant dry blend and adding the dry blend to the water wet mixture and mixing until homogeneous to form a final mixture.
- the present invention relates to a percussion primer composition according to claim 1.
- a percussion primer premixture including at least one explosive, at least one nano-size non-coated fuel particle having surface oxides thereon and water in an amount of about 10 wt-% to about 40 wt-% of the premixture.
- a primer composition including at least one explosive, at least one non-coated nano-size fuel particle having natural surface oxides thereon, a buffer system including at least one salt of citric acid and at least one salt of phosphoric acid and an oxidizer.
- a gun cartridge including a casing, a secondary explosive disposed within the casing and a primary explosive disposed within the casing, the primary explosive including at least one primary energetic, at least one nano-size non-coated fuel particle having natural surface oxides thereon and at least one oxidizer.
- a primer-containing ordinance assembly including a housing, a secondary explosive disposed within the housing and a primary explosive disposed within the housing, the primary explosive including at least one primary energetic, at least one nano-size non-coated fuel particle having natural surface oxides thereon; and at least one oxidizer.
- the present invention relates to percussion primer compositions according to claim 1.
- a sensitizer for increasing the sensitivity of the primary explosive is added to the primer compositions.
- the primer mixture according to one or more embodiments of the invention creates sufficient heat to allow for the use of moderately active metal oxides that are non-hygroscopic, non-toxic and non-corrosive.
- the primary energetic is suitably selected from energetics that are relatively insensitive to shock, friction and heat according to industry standards, making processing of these energetics more safe.
- Some of the relatively insensitive explosives that find utility herein for use as the primary explosive have been categorized generally as a secondary explosive due to their relative insensitivity.
- Suitable classes of energetics include, but are not limited to, nitrate esters, nitramines, nitroaromatics and mixtures thereof.
- the energetics suitable for use herein include both primary and secondary energetics in these classes.
- nitramines examples include, but are not limited to, CL-20, RDX, HMX and nitroguanidine.
- RDX (royal demolition explosive), hexahydro-1,3,5-trinitro-1,3,5 triazine or 1,3,5-trinitro-1,3,5-triazacyclohexane, may also be referred to as cyclonite, hexagen, or cyclotrimethylenetrinitramine.
- HMX high melting explosive
- octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine or 1,3,5,7-tetranitro-1,3,5,7 tetraazacyclooctane (HMX) may also be referred to as cyclotetramethylene-tetranitramine or octagen, among other names.
- CL-20 is 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) or 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.0 5,9 0 3,11 ]-dodecane.
- HNIW 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane
- CL-20 is 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.0 5,9 0 3,11 ]-dodecane.
- Suitable nitroaromatics include, but are not limited to, tetryl (2,4,6-trinitrophenyl-methylnitramine), TNT (2,4,6-trinitrotoluene), DDNP (diazodinitrophenol or 4,6-dinitrobenzene-2-diazo-1-oxide) and mixtures thereof.
- nitrate esters examples include, but are not limited to, PETN (pentaerythritoltetranitrate) and nitrocellulose.
- nitrocellulose is employed. Nitrocellulose, particularly nitrocellulose having a high percentage of nitrogen, for example, greater than about 10 wt-% nitrogen, and having a high surface area, has been found to increase sensitivity. In primers wherein the composition includes nitrocellulose, flame temperatures exceeding those of lead styphnate have been created. In some embodiments, the nitrocellulose has a nitrogen content of about 12.5-13.6% by weight and a particle size of 80-120 mesh.
- the primary explosive can be of varied particulate size.
- particle size may range from approximately 0.1 micron to about 100 microns. Blending of more than one size and type can be effectively used to adjust formulation sensitivity.
- the primary explosive is employed in amounts of about 5% to about 40% by weight.
- suitable nano-size non-coated fuel particles include, but are not limited to, aluminum, boron, molybdenum, silicon, titanium, tungsten, magnesium, melamine, zirconium, calcium silicide, and mixtures thereof.
- the size of the fuel particle is from about 0.05 microns (50 nm) to about 0.120 microns (about 120 nm), and suitably about 70 nm to about 120 nm.
- the fuel particle has an average size of greater than 0.05 microns (50 nm), more suitably greater than about 0.070 microns (70 nm) and even more suitably has an average particle size of about 0.1 micron or about 100 nanometers. Keeping the average size fuel particle above about 0.05 microns or 50 nanometers, significantly improves the safety of processing due to the naturally occurring surface oxides and thicker oxide layer that exist on larger fuel particles. Smaller fuel particles may exhibit higher impact (friction) and shock sensitivities.
- Very small fuel particles such as those between about 20 nm and 50 nm, can be unsafe to handle. In the presence of oxygen they are prone to autoignition and are thus typically kept solvent wet or coated such as with polytetrafluoroethylene or an organic acid such as oleic acid.
- the fuel particles according to one or more embodiments of the invention have a natural oxide coating.
- Surface oxides reduce the sensitivity of the fuel particle, and reduce the need to provide any additional protective coating such as a fluoropolymer coating, e.g. polytetrafluoroethylene (PTFE), an organic acid coating or a phosphate based coating to reduce sensitivity and facilitate safe processing of the composition.
- PTFE polytetrafluoroethylene
- phosphate based coating to reduce sensitivity and facilitate safe processing of the composition.
- the natural oxide coating on nano-size particles having a larger average particle size i.e. those having a particle size of about 50 nm to about 120 nm, suitably those having a particle size of about 70 nm to about 120 nm, improves the stability of the particles, which consequently increases the margin of safety for processing and handling. Furthermore, a lower surface area may also decrease hazards while handling the nano-size fuel particles as risk of an electrostatic discharge initiation of the nano-size fuel particles decreases as the surface area decreases.
- coatings for the protection of the fuel particle may be eliminated due to the increased surface oxides on the larger fuel particles.
- Alex® nano-aluminum powder having an average particle size of about 100 nanometers (0.1 microns) available from Argonide Nanomaterials in Pittsburgh, PA.
- the nano-size fuel particles are employed in amounts of about 5% to about 20% by weight of the primer composition.
- Buffers are added to the primer compositions to decrease the likelihood of hydrolysis of the fuel particles, which is dependent on both temperature and pH. While single acid buffers may be employed, the present inventors have found that a dual acid buffer system significantly increases the temperature stability of the percussion primer composition. Of course, more than two buffers may be employed as well. For example, it has been found that while a single acid buffer system can increase the temperature at which hydrolysis of the fuel particle occurs to about 120-140° F (about 49°C - 60°C), these temperatures are not sufficient for standard processing of percussion primers that includes oven drying. Therefore, higher hydrolysis onset temperatures are desirable for safe oven drying of the percussion primer compositions.
- any buffer may be suitably employed herein, it has been found that some buffers are more effective than others for reducing the temperature of onset of hydrolysis.
- an organic acid and a phosphate salt are employed. More specifically, in some embodiments, a combination of citrate and phosphate are employed. In weakly basic conditions, the dibasic phosphate ion (HPO 4 2- ) and the tribasic citrate ion (C 6 H 5 O 7 3- ) are prevalent. In weakly acid conditions, the monobasic phosphate ion (H 2 PO 4 - ) and the dibasic citrate ion (C 6 H 6 O 7 2- ) are most prevalent.
- the stability of explosives to both moisture and temperature is desirable for safe handling of firearms.
- small cartridges are subject to ambient conditions including temperature fluctuations and moisture, and propellants contain small amounts of moisture and volatiles. It is desirable that these loaded rounds are stable for decades, be stable for decades over a wide range of environmental conditions of fluctuating moisture and temperatures.
- primer compositions can be safely stored water wet (25%) for long periods without any measurable affect on the primer sensitivity or ignition capability. In some embodiments, the primer compositions may be safely stored for at least about 5 weeks without any measurable affect on primer sensitivity or ignition capability.
- the aluminum contained in the percussion primer compositions according to one or more embodiments of the invention exhibit no exotherms during simulated bulk autoignition tests (SBAT) at temperatures greater than about 200° F (about 93° C), and even greater than about 225° F (about 107° C) when tested as a slurry in water.
- SBAT simulated bulk autoignition tests
- additional fuels may be added.
- a sensitizer may be added to the percussion primer compositions according to one or more embodiments of the invention. As the particle size of the nano-size fuel particles increases, sensitivity decreases. Thus, a sensitizer may be beneficial. Sensitizers may be employed in amounts of 0% to about 20%, suitably 0% to about 15% by weight and more suitably 0% to about 10% by weight of the composition. One example of a suitable sensitizer includes, but is not limited to, tetracene.
- the sensitizer may be employed in combination with a friction generator.
- Friction generators are useful in amounts of about 0% to about 25% by weight of the primer composition.
- a suitable friction generator includes, but is not limited to, glass powder.
- Tetracene is suitably employed as a sensitizing explosive while glass powder is employed as a friction generator.
- Oxidizers may be employed in amounts of about 20% to about 70% by weight of the primer composition.
- the oxidizers employed herein are moderately active metal oxides, and are non-hygroscopic and are not considered toxic.
- examples of oxidizers include, but are not limited to, bismuth oxide, bismuth subnitrate, bismuth tetroxide, bismuth sulfide, zinc peroxide, tin oxide, manganese dioxide, molybdenum trioxide, and combinations thereof.
- binders may be employed in the primer compositions herein as is known in the art. Both natural and synthetic binders find utility herein. Examples of suitable binders include, but are not limited to, natural and synthetic gums including xanthan, Arabic, tragacanth, guar, karaya, and synthetic polymeric binders such as hydroxypropylcellulose and polypropylene oxide, as well as mixtures thereof. See also U.S. Patent Publication No. 2006/0219341 A1 . Binders may be added in amounts of about 0.1 wt% to about 5 wt-% of the composition, and more suitably about 0.1 wt% to about 1 wt% of the composition.
- compositions according to one or more embodiments of the invention may also be employed in the compositions according to one or more embodiments of the invention.
- inert fillers, diluents, other binders, low out put explosives, etc. may be optionally added.
- the primer compositions may be processed using simple water processing techniques.
- the use of larger fuel particles is safer for handling while maintaining the sensitivity of the assembled primer. It is surmised that this may be attributed to the use of larger fuel particles and/or the dual buffer system.
- the steps of milling and sieving employed for MIC-MNC formulations may also be eliminated. For at least these reasons, processing of the primer compositions is safer.
- the method of making the primer compositions generally includes mixing the primary explosive water wet with at least one nano-size non-coated fuel particle having natural surface oxides thereon to form a first mixture, and adding an oxidizer to the first mixture.
- the oxidizer may be optionally dry blended with at least one binder to form a second dry mixture, and the second mixture then added to the first mixture and mixing until homogeneous to form a final mixture.
- water-wet shall refer to a water content of between about 10 wt-% and about 40 wt-%, more suitably about 18% to about 30% and most suitably about 25% by weight.
- the sensitizer may be added either to the water wet primary explosive, or to the primary explosive/nano-size non-coated fuel particle water wet blend.
- the sensitizer may optionally further include a friction generator such as glass powder.
- At least one buffer may be added to the process to keep the system acidic and to prevent significant hydrogen evolution and further oxides from forming.
- a mildly acidic buffer having a pH in the range of about 4-8, suitably 4-7, can help to prevent such hydrolysis. While at a pH of 8, hydrolysis is delayed, by lowering the pH, hydrolysis can be effectively stopped, thus, a pH range of 4-7 is preferable.
- the buffer solution is suitably added as increased moisture to the primary explosive prior to addition of the non-coated nano-size fuel particle.
- the nano-size fuel particle may be preimmersed in the buffer solution to further increase handling safety.
- the nano-size fuel particles and the explosive can be water-mixed , maintaining conventional mix methods and associated safety practices.
- primary oxidizer-fuel formulations when blended with fuels, sensitizers and binders, can be substituted in applications where traditional lead styphnate and diazodinitrophenol (DDNP) primers and igniter formulations are employed.
- DDNP diazodinitrophenol
- the heat output of the system is sufficient to utilize non-toxic metal oxidizers of higher activation energy typically employed but under utilized in lower flame temperature DDNP based formulations.
- Additional benefits of the present invention include improved stability, increased ignition capability, improved ignition reliability, lower final mix cost, and increased safety due to the elimination of lead styphnate production and handling.
- the present invention finds utility in any igniter or percussion primer application where lead styphnate is currently employed.
- the percussion primer according to the present invention may be employed for small caliber and medium caliber cartridges, as well as industrial powerloads.
- compositions and concentration ranges for a variety of different cartridges. Such compositions and concentration ranges are for illustrative purposes only, and are not intended as a limitation on the scope of the present invention as defined in the claims.
- the nitrocellulose is 30-100 mesh and 12.5-13.6 wt-% nitrogen.
- the nano-aluminum is sold under the tradename of Alex® and has an average particles size of 0.1 microns.
- the additional aluminum fuel is 80-120 mesh.
- Table 1 Illustrative percussion primer compositions for pistol/small rifle. Pistol/Small Rifle Range wt-% Preferred wt-% Nitrocellulose 10-30 20 Nano-Aluminum 8-12 10 Bismuth trioxide 50-70 64.5 Tetracene 0-6 5 Binder 0.3-0.8 0.4 Buffer/stabilizer 0.1-0.5 0.1
- Table 2 Illustrative percussion primer compositions for large rifle.
- the percussion primer is used in a centerfire gun cartridge or in a rimfire gun cartridge.
- a firing pin strikes a rim of a casing of the gun cartridge.
- the firing pin of small arms using the centerfire gun cartridge strikes a metal cup in the center of the cartridge casing containing the percussion primer.
- Gun cartridges and cartridge casings are known in the art and, therefore, are not discussed in detail herein.
- the force or impact of the firing pin may produce a percussive event that is sufficient to detonate the percussion primer in the rimfire gun cartridge or in the centerfire gun cartridge, causing the secondary explosive composition to ignite.
- FIG. 1A is a longitudinal cross-section of a rimfire gun cartridge shown generally at 6.
- Cartridge 6 includes a housing 4.
- Percussion primer 2 may be substantially evenly distributed around an interior volume defined by a rim portion 3 of casing 4 of the cartridge 6 as shown in FIG. 1B which is an enlarged view of an anterior portion of the rimfire gun cartridge 6 shown in FIG. 1A .
- FIG. 2A is a longitudinal cross-sectional view of a centerfire gun cartridge shown generally at 8.
- the percussion primer 2 may be positioned in an aperture 10 in the casing 4.
- FIG. 2B is an enlarged view of aperture 10 in FIG. 2A more clearly showing primer 2 in aperture 10.
- the propellant composition 12 may be positioned substantially adjacent to the percussion primer 2 in the rimfire gun cartridge 6 or in the centerfire gun cartridge 8.
- the percussion primer 2 When ignited or combusted, the percussion primer 2 may produce sufficient heat and condensing of hot particles to ignite the propellant composition 12 to propel projectile 16 from the barrel of the firearm or larger caliber ordnance (such as, without limitation, handgun, rifle, automatic rifle, machine gun, any small and medium caliber cartridge, automatic cannon, etc.) in which the cartridge 6 or 8 is disposed.
- the combustion products of the percussion primer 2 may be environmentally friendly, noncorrosive, and nonabrasive
- the percussion primer 2 may also be used in larger ordnance, such as (without limitation) grenades, mortars, or detcord initiators, or to initiate mortar rounds, rocket motors, or other systems including a secondary explosive, alone or in combination with a propellant, all of the foregoing assemblies being encompassed by the term "primer-containing ordnance assembly," for the sake of convenience.
- the percussion primer 2 may be positioned substantially adjacent to a secondary explosive composition 12 in a housing 18, as shown in FIG. 3 .
- nitrocellulose in an amount of 30 grams was placed water-wet in a mixing apparatus.
- Water-wet tetracene 5g was added to the mixture and further mixed until the tetracene was not visible.
- Nano-aluminum powder, 10g was added to the water-wet nitrocellulose/tetracene blend and mixed until homogeneous.
- Bismuth trioxide 54 g was dry blended with 1 g of gum tragacanth and the resultant dry blend was added to the wet explosive mixture, and the resultant blend was then mixed until homogeneous. The final mixture was removed and stored cool in conductive containers.
- FIG. 4 is an SBAT graph illustrating the temperature at which hydrolysis begins when Alex® aluminum particles are mixed in water with no buffer.
- the hydrolysis onset temperature is 118° F (47.8° C). See no. 1 in table 7.
- FIG. 5 is an SBAT graph illustrating the temperature at which hydrolysis begins using only a single buffer which is citrate.
- the hydrolysis onset temperature is 140° F (60° C). See no. 11 in table 7.
- FIG. 6 is an SBAT graph illustrating the temperature at which hydrolysis begins using only a single buffer which is a phosphate buffer.
- the hydrolysis onset temperature is 129° F (53.9° C).
- FIG. 7 is an SBAT graph illustrating the temperature at which hydrolysis begins using a dual citrate/phosphate buffer system. Hydrolysis has been effectively stopped at a pH of 5.0 even at temperatures of well over 200° F (about 93° C).
- the present invention finds utility in any application where lead styphnate based igniters or percussion primers are employed.
- Such applications typically include an igniter or percussion primer, a secondary explosive, and for some applications, a propellant.
- other applications include, but are not limited to, igniters for grenades, mortars, detcord initiators, mortar rounds, detonators such as for rocket motors and mortar rounds, or other systems that include a primer or igniter, a secondary explosive system, alone or in combination with a propellant, or gas generating system such as air bag deployment and jet seat ejectors.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Paints Or Removers (AREA)
Description
- The present invention relates to percussion primer compositions for explosive systems.
- Due to the concern over the known toxicity of certain metal compounds such as lead, there has been an effort to replace percussion primers based on lead styphnate, with lead-free percussion primers.
- The Department of Defense (DOD) and the Department of Energy (DOE) have made a significant effort to find replacements for metal based percussion primers. Furthermore, firing ranges and other locales of firearms usage have severely limited the use of percussion primers containing toxic metal compounds due to the potential health risks associated with the use of lead, barium and antimony.
- Ignition devices rely on the sensitivity of the primary explosive that significantly limits available primary explosives. The most common lead styphnate alternative, diazodinitrophenol (DDNP or dinol), has been used for several decades relegated to training ammunition. DDNP-based primers suffer from poor reliability that may be attributed to low friction sensitivity, low flame temperature, and are hygroscopic.
- Metastable interstitial composites (MIC) (also known as metastable nanoenergetic composites (MNC) or superthermites), including Al/MoO3, Al/WO3, Al/CuO and Al/Bi22O3, have been identified as potential substitutes for currently used lead styphnate. These materials have shown excellent performance characteristics, such as impact sensitivity and high temperature output. However, it has been found that these systems, despite their excellent performance characteristics, are difficult to process safely. The main difficulty is handling of dry nano-size powder mixtures due to their sensitivity to friction and electrostatic discharge (ESD). See
U.S. Patent No. 5717159 andU.S. Patent Publication No. 2006/0113014 . - Health concerns may be further compounded by the use of barium and lead containing oxidizers. See, for example,
U.S. Patent Publication No. 20050183805 . -
US2006113014A1 discloses a method for preparing metastable nanoenergetic composites (MNC) and for wet loading those MNCs into percussion primer cups. -
US4133707A discloses an extrudable ammunition priming mix with viscosity characteristics which remain relatively stable over an extended time span. -
EP0334725A1 discloses new percussive primer charges and process for their manufacture.DE19606237A1 discloses a non-toxic detonator composition for light weapon munitions free of lead and barium.EP1195366A discloses a non-toxic primer mix including both bismuth sulfide and potassium nitrate as the pyrotechnic portion of the primer.WO9944968A1 -
US6544363B1 discloses a non-toxic heavy-metal-free priming mix and a method of forming same.EP0699646A1 discloses a priming mixture containing no toxic materials, in particular no Pb, Ba or Sb compounds, and presenting at least one primary explosive, an oxidizing agent, a reducing agent, and an inert friction agent; the oxidizing agent comprising stannic oxide SnO2.WO2006009579A2 discloses a primer for small arms ammunition including a primary explosive and an oxidizer system containing bismuth oxide.US2006219341A1 discloses a sensitized explosive that comprises an explosive precipitated onto a sensitizer.WO2006083379A2 discloses nanoenergetic materials based on aluminum and bismuth oxide.US3367805A discloses thickened inorganic nitrate aqueous slurry containing finely divided aluminum having a lyophobic surface of high surface area.US3113059A discloses an inhibited aluminum-water composition and method.WO9612770A -
WO0206421A DE2513735A1 discloses a corrosion inhibitor for metals in aqueous systems containing polycarboxylic acid, zinc, phosphate, phosphonate or polymer dispersant. Müller B., CORROSION SCIENCE JANUARY 2004 ELSEVIER LTD GB, Vol. 46, No. 1, January 2004 (2004-01), pages 159-167, XP002507196 discloses citric acid as corrosion inhibitor for aluminium pigment. - There remains a need in the art for an ignition formulation that is free of toxic metals, is non-corrosive, may be processed and handled safely, has sufficient sensitivity, and is more stable over a broad range of storage conditions.
- One aspect not forming part of the present invention relates to a method of making a percussion primer or igniter, the method including providing at least one water wet explosive, combining at least one nano-size non-coated fuel particle having natural surface oxides thereon with at least one water wet explosive to form a first mixture and combining at least one oxidizer.
- Another aspect not forming part of the present invention relates to a method for preparing a percussion primer, the method including providing at least one water wet explosive, combining at least one sensitizer with the at least one water wet explosive, combining at least one nano-size non-coated fuel particle having natural surface oxides thereon with the at least one additional water wet explosive to form a wet mixture, dry blending at least one oxidizer and at least one binder to form a resultant dry blend and adding the dry blend to the water wet mixture and mixing until homogeneous to form a final mixture.
- The present invention relates to a percussion primer composition according to claim 1.
- Another aspect not forming part of the present invention relates to a percussion primer premixture, the premixture including at least one explosive, at least one nano-size non-coated fuel particle having surface oxides thereon and water in an amount of about 10 wt-% to about 40 wt-% of the premixture.
- Another aspect not forming part of the present invention relates to a primer composition including at least one explosive, at least one non-coated nano-size fuel particle having natural surface oxides thereon, a buffer system including at least one salt of citric acid and at least one salt of phosphoric acid and an oxidizer.
- Another aspect not forming part of the present invention relates to a gun cartridge including a casing, a secondary explosive disposed within the casing and a primary explosive disposed within the casing, the primary explosive including at least one primary energetic, at least one nano-size non-coated fuel particle having natural surface oxides thereon and at least one oxidizer.
- Another aspect not forming part of the present invention relates to a primer-containing ordinance assembly including a housing, a secondary explosive disposed within the housing and a primary explosive disposed within the housing, the primary explosive including at least one primary energetic, at least one nano-size non-coated fuel particle having natural surface oxides thereon; and at least one oxidizer.
- The invention is described in the following detailed description of the invention and in the claims.
-
-
FIG. 1A is a longitudinal cross-section of a rimfire gun cartridge employing a percussion primer composition of one embodiment of the invention. -
FIG. 1B is an enlarged view of the anterior portion of the rimfire gun cartridge shown inFIG. 1A . -
FIG. 2A a longitudinal cross-section of a centerfire gun cartridge employing a percussion primer composition of one embodiment of the invention. -
FIG. 2B is an enlarged view a portion of the centerfire gun cartridge ofFIG. 2A that houses the percussion primer. -
FIG. 3 is a schematic illustration of exemplary ordnance in which a percussion primer of one embodiment of the invention is used. -
FIG. 4 is a simulated bulk autoignition temperature (SBAT) graph. -
FIG. 5 is an SBAT graph. -
FIG. 6 is an SBAT graph. -
FIG. 7 is an SBAT graph. - While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. This description is an exemplification of the invention as defined in the claims and is not intended to limit the invention to the particular embodiments illustrated.
- The present invention relates to percussion primer compositions according to claim 1.
- In some embodiments, a sensitizer for increasing the sensitivity of the primary explosive is added to the primer compositions.
- The primer mixture according to one or more embodiments of the invention creates sufficient heat to allow for the use of moderately active metal oxides that are non-hygroscopic, non-toxic and non-corrosive. The primary energetic is suitably selected from energetics that are relatively insensitive to shock, friction and heat according to industry standards, making processing of these energetics more safe. Some of the relatively insensitive explosives that find utility herein for use as the primary explosive have been categorized generally as a secondary explosive due to their relative insensitivity.
- Examples of suitable classes of energetics include, but are not limited to, nitrate esters, nitramines, nitroaromatics and mixtures thereof. The energetics suitable for use herein include both primary and secondary energetics in these classes.
- Examples of suitable nitramines include, but are not limited to, CL-20, RDX, HMX and nitroguanidine.
- RDX (royal demolition explosive), hexahydro-1,3,5-trinitro-1,3,5 triazine or 1,3,5-trinitro-1,3,5-triazacyclohexane, may also be referred to as cyclonite, hexagen, or cyclotrimethylenetrinitramine.
- HMX (high melting explosive), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine or 1,3,5,7-tetranitro-1,3,5,7 tetraazacyclooctane (HMX), may also be referred to as cyclotetramethylene-tetranitramine or octagen, among other names.
- CL-20 is 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) or 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,903,11]-dodecane.
- Examples of suitable nitroaromatics include, but are not limited to, tetryl (2,4,6-trinitrophenyl-methylnitramine), TNT (2,4,6-trinitrotoluene), DDNP (diazodinitrophenol or 4,6-dinitrobenzene-2-diazo-1-oxide) and mixtures thereof.
- Examples of suitable nitrate esters include, but are not limited to, PETN (pentaerythritoltetranitrate) and nitrocellulose.
- The above lists are intended for illustrative purposes only, and not as a limitation on the scope of the present invention as defined in the claims.
- In some embodiments, nitrocellulose is employed. Nitrocellulose, particularly nitrocellulose having a high percentage of nitrogen, for example, greater than about 10 wt-% nitrogen, and having a high surface area, has been found to increase sensitivity. In primers wherein the composition includes nitrocellulose, flame temperatures exceeding those of lead styphnate have been created. In some embodiments, the nitrocellulose has a nitrogen content of about 12.5-13.6% by weight and a particle size of 80-120 mesh.
- The primary explosive can be of varied particulate size. For example, particle size may range from approximately 0.1 micron to about 100 microns. Blending of more than one size and type can be effectively used to adjust formulation sensitivity.
- The primary explosive is employed in amounts of about 5% to about 40% by weight.
- Examples of suitable nano-size non-coated fuel particles include, but are not limited to, aluminum, boron, molybdenum, silicon, titanium, tungsten, magnesium, melamine, zirconium, calcium silicide, and mixtures thereof.
- The size of the fuel particle is from about 0.05 microns (50 nm) to about 0.120 microns (about 120 nm), and suitably about 70 nm to about 120 nm. The fuel particle has an average size of greater than 0.05 microns (50 nm), more suitably greater than about 0.070 microns (70 nm) and even more suitably has an average particle size of about 0.1 micron or about 100 nanometers. Keeping the average size fuel particle above about 0.05 microns or 50 nanometers, significantly improves the safety of processing due to the naturally occurring surface oxides and thicker oxide layer that exist on larger fuel particles. Smaller fuel particles may exhibit higher impact (friction) and shock sensitivities.
- Very small fuel particles, such as those between about 20 nm and 50 nm, can be unsafe to handle. In the presence of oxygen they are prone to autoignition and are thus typically kept solvent wet or coated such as with polytetrafluoroethylene or an organic acid such as oleic acid.
- The fuel particles according to one or more embodiments of the invention have a natural oxide coating. Surface oxides reduce the sensitivity of the fuel particle, and reduce the need to provide any additional protective coating such as a fluoropolymer coating, e.g. polytetrafluoroethylene (PTFE), an organic acid coating or a phosphate based coating to reduce sensitivity and facilitate safe processing of the composition. See, for example,
U.S. Patent No. 5,717,159 or U.S. Patent Application Publication No.US 2006/0113014 A1 . - The natural oxide coating on nano-size particles having a larger average particle size, i.e. those having a particle size of about 50 nm to about 120 nm, suitably those having a particle size of about 70 nm to about 120 nm, improves the stability of the particles, which consequently increases the margin of safety for processing and handling. Furthermore, a lower surface area may also decrease hazards while handling the nano-size fuel particles as risk of an electrostatic discharge initiation of the nano-size fuel particles decreases as the surface area decreases.
- Thus, coatings for the protection of the fuel particle may be eliminated due to the increased surface oxides on the larger fuel particles.
- A specific example of an aluminum fuel particle that may be employed herein is Alex® nano-aluminum powder having an average particle size of about 100 nanometers (0.1 microns) available from Argonide Nanomaterials in Pittsburgh, PA.
- The nano-size fuel particles are employed in amounts of about 5% to about 20% by weight of the primer composition.
- Buffers are added to the primer compositions to decrease the likelihood of hydrolysis of the fuel particles, which is dependent on both temperature and pH. While single acid buffers may be employed, the present inventors have found that a dual acid buffer system significantly increases the temperature stability of the percussion primer composition. Of course, more than two buffers may be employed as well. For example, it has been found that while a single acid buffer system can increase the temperature at which hydrolysis of the fuel particle occurs to about 120-140° F (about 49°C - 60°C), these temperatures are not sufficient for standard processing of percussion primers that includes oven drying. Therefore, higher hydrolysis onset temperatures are desirable for safe oven drying of the percussion primer compositions.
- While any buffer may be suitably employed herein, it has been found that some buffers are more effective than others for reducing the temperature of onset of hydrolysis. For example, in some embodiments, an organic acid and a phosphate salt are employed. More specifically, in some embodiments, a combination of citrate and phosphate are employed. In weakly basic conditions, the dibasic phosphate ion (HPO4 2-) and the tribasic citrate ion (C6H5O7 3-) are prevalent. In weakly acid conditions, the monobasic phosphate ion (H2PO4 -) and the dibasic citrate ion (C6H6O7 2-) are most prevalent.
- Furthermore, the stability of explosives to both moisture and temperature is desirable for safe handling of firearms. For example, small cartridges are subject to ambient conditions including temperature fluctuations and moisture, and propellants contain small amounts of moisture and volatiles. It is desirable that these loaded rounds are stable for decades, be stable for decades over a wide range of environmental conditions of fluctuating moisture and temperatures.
- It has been discovered that primer compositions can be safely stored water wet (25%) for long periods without any measurable affect on the primer sensitivity or ignition capability. In some embodiments, the primer compositions may be safely stored for at least about 5 weeks without any measurable affect on primer sensitivity or ignition capability.
- The aluminum contained in the percussion primer compositions according to one or more embodiments of the invention exhibit no exotherms during simulated bulk autoignition tests (SBAT) at temperatures greater than about 200° F (about 93° C), and even greater than about 225° F (about 107° C) when tested as a slurry in water.
- In some embodiments, additional fuels may be added.
- A sensitizer may be added to the percussion primer compositions according to one or more embodiments of the invention. As the particle size of the nano-size fuel particles increases, sensitivity decreases. Thus, a sensitizer may be beneficial. Sensitizers may be employed in amounts of 0% to about 20%, suitably 0% to about 15% by weight and more suitably 0% to about 10% by weight of the composition. One example of a suitable sensitizer includes, but is not limited to, tetracene.
- The sensitizer may be employed in combination with a friction generator. Friction generators are useful in amounts of about 0% to about 25% by weight of the primer composition. One example of a suitable friction generator includes, but is not limited to, glass powder.
- Tetracene is suitably employed as a sensitizing explosive while glass powder is employed as a friction generator.
- An oxidizer is employed in the primer compositions according to one or more embodiments of the invention. Oxidizers may be employed in amounts of about 20% to about 70% by weight of the primer composition. Suitably, the oxidizers employed herein are moderately active metal oxides, and are non-hygroscopic and are not considered toxic. Examples of oxidizers include, but are not limited to, bismuth oxide, bismuth subnitrate, bismuth tetroxide, bismuth sulfide, zinc peroxide, tin oxide, manganese dioxide, molybdenum trioxide, and combinations thereof.
- Other conventional primer additives such as binders may be employed in the primer compositions herein as is known in the art. Both natural and synthetic binders find utility herein. Examples of suitable binders include, but are not limited to, natural and synthetic gums including xanthan, Arabic, tragacanth, guar, karaya, and synthetic polymeric binders such as hydroxypropylcellulose and polypropylene oxide, as well as mixtures thereof. See also
U.S. Patent Publication No. 2006/0219341 A1 . Binders may be added in amounts of about 0.1 wt% to about 5 wt-% of the composition, and more suitably about 0.1 wt% to about 1 wt% of the composition. - Other optional ingredients as are known in the art may also be employed in the compositions according to one or more embodiments of the invention. For example, inert fillers, diluents, other binders, low out put explosives, etc., may be optionally added.
- The above lists and ranges are intended for illustrative purposes only, and are not intended as a limitation on the scope of the present invention as defined in the claims.
- The primer compositions may be processed using simple water processing techniques. The use of larger fuel particles is safer for handling while maintaining the sensitivity of the assembled primer. It is surmised that this may be attributed to the use of larger fuel particles and/or the dual buffer system. The steps of milling and sieving employed for MIC-MNC formulations may also be eliminated. For at least these reasons, processing of the primer compositions is safer.
- The method of making the primer compositions generally includes mixing the primary explosive water wet with at least one nano-size non-coated fuel particle having natural surface oxides thereon to form a first mixture, and adding an oxidizer to the first mixture. The oxidizer may be optionally dry blended with at least one binder to form a second dry mixture, and the second mixture then added to the first mixture and mixing until homogeneous to form a final mixture.
- As used herein, the term water-wet, shall refer to a water content of between about 10 wt-% and about 40 wt-%, more suitably about 18% to about 30% and most suitably about 25% by weight.
- If a sensitizer is added, the sensitizer may be added either to the water wet primary explosive, or to the primary explosive/nano-size non-coated fuel particle water wet blend. The sensitizer may optionally further include a friction generator such as glass powder.
- At least one buffer, or combination of two or more buffers, may be added to the process to keep the system acidic and to prevent significant hydrogen evolution and further oxides from forming. In embodiments wherein the metal based fuel is subject to hydrolysis, such as with aluminum, the addition of a mildly acidic buffer having a pH in the range of about 4-8, suitably 4-7, can help to prevent such hydrolysis. While at a pH of 8, hydrolysis is delayed, by lowering the pH, hydrolysis can be effectively stopped, thus, a pH range of 4-7 is preferable. The buffer solution is suitably added as increased moisture to the primary explosive prior to addition of the non-coated nano-size fuel particle. Furthermore, the nano-size fuel particle may be preimmersed in the buffer solution to further increase handling safety.
- Although several mechanisms can be employed depending on the primary explosive, it is clear that simple water mixing methods may be used to assemble the percussion primer using standard industry practices and such assembly can be accomplished safely without stability issues. The use of such water processing techniques is beneficial as previous primer compositions such as MIC/MNC primer compositions have limited stability in water.
- The nano-size fuel particles and the explosive can be water-mixed , maintaining conventional mix methods and associated safety practices.
- Broadly, primary oxidizer-fuel formulations, when blended with fuels, sensitizers and binders, can be substituted in applications where traditional lead styphnate and diazodinitrophenol (DDNP) primers and igniter formulations are employed. The heat output of the system is sufficient to utilize non-toxic metal oxidizers of higher activation energy typically employed but under utilized in lower flame temperature DDNP based formulations.
- Additional benefits of the present invention include improved stability, increased ignition capability, improved ignition reliability, lower final mix cost, and increased safety due to the elimination of lead styphnate production and handling.
- The present invention finds utility in any igniter or percussion primer application where lead styphnate is currently employed. For example, the percussion primer according to the present invention may be employed for small caliber and medium caliber cartridges, as well as industrial powerloads.
- The following tables provide various compositions and concentration ranges for a variety of different cartridges. Such compositions and concentration ranges are for illustrative purposes only, and are not intended as a limitation on the scope of the present invention as defined in the claims.
- For purposes of the following tables, the nitrocellulose is 30-100 mesh and 12.5-13.6 wt-% nitrogen. The nano-aluminum is sold under the tradename of Alex® and has an average particles size of 0.1 microns. The additional aluminum fuel is 80-120 mesh.
Table 1: Illustrative percussion primer compositions for pistol/small rifle. Pistol/Small Rifle Range wt-% Preferred wt-% Nitrocellulose 10-30 20 Nano-Aluminum 8-12 10 Bismuth trioxide 50-70 64.5 Tetracene 0-6 5 Binder 0.3-0.8 0.4 Buffer/stabilizer 0.1-0.5 0.1 Table 2: Illustrative percussion primer compositions for large rifle. Large rifle Range wt-% Preferred wt-% Nitrocellulose 6-10 7.5 Single-base ground propellant 10-30 22.5 Nano-Aluminum 8-12 10 Aluminum 2-6 4 Bismuth trioxide 40-60 50 Tetracene 0-6 5 Binder 0.3-0.8 0.4 Buffer/stabilizer 0.1-0.5 0.1 Table 3: Illustrative percussion primer compositions for industrial/commercial power load rimfire. Power load rimfire Range wt-% Preferred wt-% Nitrocellulose 14-22 18 Nano-Aluminum 7-15 9.5 Bismuth trioxide 30-43 38 DDNP 12-18 14.5 Tetracene 0-7 5 Binder 1-2 1 Glass 12-18 14 Table 4: Illustrative percussion primer compositions for industrial commercial power load rimfire. Rimfire Range wt-% Preferred wt-% Nitrocellulose 14-25 19 Nano-Aluminum 7-15 10 Bismuth trioxide 40-70 55 Tetracene 0-10 5 Binder 1-2 1 Glass 0-20 10 Table 5: Illustrative percussion primer compositions for industrial/commercial rimfire. Range wt-% Preferred wt-% Nitrocellulose 12-20 15 Nano-Aluminum 8-12 10 Bismuth trioxide 50-72 59 Tetracene 4-10 5 Binder 1-2 1 Glass 0-25 10 Table 6: Illustrative percussion primer compositions for industrial/commercial shotshell. Shotshell Range wt-% Preferred wt-% Nitrocellulose 14-22 18 Single-base ground propellant 8-16 9 Aluminum 6-10 8 Aluminum 2-5 3 Bismuth trioxide 45-65 46 Tetracene 4-10 5 Binder 1-2 1 Glass 0-25 10 - In one embodiment, the percussion primer is used in a centerfire gun cartridge or in a rimfire gun cartridge. In small arms using the rimfire gun cartridge, a firing pin strikes a rim of a casing of the gun cartridge. In contrast, the firing pin of small arms using the centerfire gun cartridge strikes a metal cup in the center of the cartridge casing containing the percussion primer. Gun cartridges and cartridge casings are known in the art and, therefore, are not discussed in detail herein. The force or impact of the firing pin may produce a percussive event that is sufficient to detonate the percussion primer in the rimfire gun cartridge or in the centerfire gun cartridge, causing the secondary explosive composition to ignite.
- Turning now to the figures,
FIG. 1A is a longitudinal cross-section of a rimfire gun cartridge shown generally at 6.Cartridge 6 includes ahousing 4. Percussion primer 2 may be substantially evenly distributed around an interior volume defined by arim portion 3 ofcasing 4 of thecartridge 6 as shown inFIG. 1B which is an enlarged view of an anterior portion of therimfire gun cartridge 6 shown inFIG. 1A . -
FIG. 2A is a longitudinal cross-sectional view of a centerfire gun cartridge shown generally at 8. In this embodiment, the percussion primer 2 may be positioned in anaperture 10 in thecasing 4.FIG. 2B is an enlarged view ofaperture 10 inFIG. 2A more clearly showing primer 2 inaperture 10. - The
propellant composition 12 may be positioned substantially adjacent to the percussion primer 2 in therimfire gun cartridge 6 or in thecenterfire gun cartridge 8. When ignited or combusted, the percussion primer 2 may produce sufficient heat and condensing of hot particles to ignite thepropellant composition 12 to propel projectile 16 from the barrel of the firearm or larger caliber ordnance (such as, without limitation, handgun, rifle, automatic rifle, machine gun, any small and medium caliber cartridge, automatic cannon, etc.) in which thecartridge - As previously mentioned, the percussion primer 2 may also be used in larger ordnance, such as (without limitation) grenades, mortars, or detcord initiators, or to initiate mortar rounds, rocket motors, or other systems including a secondary explosive, alone or in combination with a propellant, all of the foregoing assemblies being encompassed by the term "primer-containing ordnance assembly," for the sake of convenience. In the ordnance, motor or
system 14, the percussion primer 2 may be positioned substantially adjacent to a secondaryexplosive composition 12 in ahousing 18, as shown inFIG. 3 . - The following non-limiting examples further illustrate the present invention but are in no way intended to limit the scope thereof as defined in the claims.
-
Nitrocellulose 10-40 wt% Aluminum 5-20 wt% (average particle size 0.1 micron) Aluminum 0-15 wt% (standard mesh aluminum as common to primer mixes) Tetracene 0-10 wt% Bismuth Trioxide 20-75 wt% Gum Tragacanth 0.1-1.0 wt% - The nitrocellulose in an amount of 30 grams was placed water-wet in a mixing apparatus. Water-wet tetracene, 5g, was added to the mixture and further mixed until the tetracene was not visible. Nano-aluminum powder, 10g, was added to the water-wet nitrocellulose/tetracene blend and mixed until homogeneous. Bismuth trioxide, 54 g, was dry blended with 1 g of gum tragacanth and the resultant dry blend was added to the wet explosive mixture, and the resultant blend was then mixed until homogeneous. The final mixture was removed and stored cool in conductive containers.
- Various buffer systems were tested using the simulated bulk autoignition temperature (SBAT) test. Simple acidic buffers provided some protection of nano-aluminum particles. However, specific dual buffer systems exhibited significantly higher temperatures for the onset of hydrolysis. The sodium hydrogen phosphate and citric acid dual buffer system exhibited significantly higher temperatures before hydrolysis occurred. This is well above stability requirements for current primer mix and propellants. As seen in the SBAT charts, even at pH=8.0, onset with this system is delayed to 222° F (105.6° C). At pH = 5.0 onset is effectively stopped.
Table 7 ALEX® Aluminum in Water Buffer pH SBAT onset Temperature °F(°C) 1) Distilled water only 118° F (47.8° C) 2) Sodium acetate/acetic acid 5.0 139° F (59.4° C) 3) Potassium phosphate/borax 6.6 137° F (58.3° C) 4) Potassium phosphate/borax 8.0 150° F (65.6° C) 5) Sodium hydroxide/acetic acid/phosphoric acid / boric acid 5.02 131° F (55° C) 6) Sodium hydroxide/ acetic acid/phosphoric acid/boric acid 6.6 125° F (51.7° C) 7) Sodium hydroxide/ acetic acid/phosphoric acid/boric acid 7.96 121° F (49.4° C) 8) Sodium hydrogen phosphate/citric acid 5.0 No exotherm/water evaporation endotherm only 9) Sodium hydrogen phosphate/citric acid 6.6 239° F (115° C) 10) Sodium hydrogen phosphate/citric acid 8.0 222° F (105.6° C) 11) Citric acid/NaOH 3.84g/1.20g in 100g H2O 4.29 140° F (60° C) 12) Citric acid/NaOH (3.84g/2.00g in 100g H2O) 5.43 100° F (37.8° C) 13) Sodium hydrogen phosphate (2.40g/2.84g in 100g H2O) 6.57 129° F (53.9° C) - As can be seen from Table 7, the combination of sodium hydrogen phosphate and citric acid significantly increases the temperature of onset of hydrolysis at a pH of 8.0 to 222° F (105.6° C) (see no. 10 above). At a pH of 5.0, hydrolysis is effectively stopped. See no. 8 in table 7.
-
FIG. 4 is an SBAT graph illustrating the temperature at which hydrolysis begins when Alex® aluminum particles are mixed in water with no buffer. The hydrolysis onset temperature is 118° F (47.8° C). See no. 1 in table 7. -
FIG. 5 is an SBAT graph illustrating the temperature at which hydrolysis begins using only a single buffer which is citrate. The hydrolysis onset temperature is 140° F (60° C). See no. 11 in table 7. -
FIG. 6 is an SBAT graph illustrating the temperature at which hydrolysis begins using only a single buffer which is a phosphate buffer. The hydrolysis onset temperature is 129° F (53.9° C). -
FIG. 7 is an SBAT graph illustrating the temperature at which hydrolysis begins using a dual citrate/phosphate buffer system. Hydrolysis has been effectively stopped at a pH of 5.0 even at temperatures of well over 200° F (about 93° C). - As previously discussed, the present invention finds utility in any application where lead styphnate based igniters or percussion primers are employed. Such applications typically include an igniter or percussion primer, a secondary explosive, and for some applications, a propellant.
- As previously mentioned, other applications include, but are not limited to, igniters for grenades, mortars, detcord initiators, mortar rounds, detonators such as for rocket motors and mortar rounds, or other systems that include a primer or igniter, a secondary explosive system, alone or in combination with a propellant, or gas generating system such as air bag deployment and jet seat ejectors.
- The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The scope of the invention is defined by the attached claims.
Claims (12)
- A percussion primer composition obtainable by using a water processing technique, the composition comprising:about 5% to about 40% by weight of the primer composition of at least one explosive and optionally a sensitizer;about 5% to about 20% by weight of the primer composition of at least one nano-size non-coated fuel particle with an average size of about 50 nanometres to about 120 nanometres, the fuel particle having natural surface oxides thereon;at least one buffer; andan oxidizer.
- The percussion primer composition of claim 1 wherein said at least one explosive is selected from the group consisting of nitramines, nitroaromatics, nitrate esters and mixtures thereof.
- The percussion primer composition of claim 1 wherein said nano-size non-coated fuel particle is aluminium.
- The percussion primer composition of claim 1 wherein said nano-size non-coated fuel particle has an average particle size of about 70 nanometres to about 120 nanometres.
- The percussion primer composition of claim 1 wherein said nano-size non-coated fuel particle has an average particle size of about 100 nanometres.
- The percussion primer composition of claim 1, the at least one buffer comprising:a buffer system, the buffer system comprising at least one salt of citric acid andat least one salt of phosphoric acid.
- The percussion primer composition of any of the preceding claims, wherein said at least one explosive is nitrocellulose.
- The percussion primer composition of any of claim 1 to 6, wherein the at least one explosive consists essentially of at least one moderately insensitive explosive chosen from nitrocellulose, PETN, CL-20, RDX, HMX, TNT, nitroguanidine, DDNP t, tetryl, and mixtures thereof.
- The percussion primer composition of claim 1 further comprising at least one sensitizer.
- The percussion primer composition of claim 9 wherein said sensitizer is tetracene.
- The percussion primer composition of any one of the preceding claims, further comprising at least one binder.
- The percussion primer composition of claim 1, where the at least one explosive consists essentially of a nitrate ester chosen from pentaerythritoltetranitrate, nitrocellulose, and mixtures thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13157579.7A EP2602238B1 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers and methods of preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2007/003806 WO2008100252A2 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers and methods of preparing the same |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13157579.7A Division EP2602238B1 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers and methods of preparing the same |
EP13157579.7A Division-Into EP2602238B1 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers and methods of preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2125673A2 EP2125673A2 (en) | 2009-12-02 |
EP2125673B1 true EP2125673B1 (en) | 2020-08-26 |
Family
ID=39690638
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07870653.8A Active EP2125673B1 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers |
EP13157579.7A Active EP2602238B1 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers and methods of preparing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13157579.7A Active EP2602238B1 (en) | 2007-02-09 | 2007-02-09 | Non-toxic percussion primers and methods of preparing the same |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP2125673B1 (en) |
WO (1) | WO2008100252A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8641842B2 (en) | 2011-08-31 | 2014-02-04 | Alliant Techsystems Inc. | Propellant compositions including stabilized red phosphorus, a method of forming same, and an ordnance element including the same |
US8192568B2 (en) | 2007-02-09 | 2012-06-05 | Alliant Techsystems Inc. | Non-toxic percussion primers and methods of preparing the same |
US8206522B2 (en) | 2010-03-31 | 2012-06-26 | Alliant Techsystems Inc. | Non-toxic, heavy-metal free sensitized explosive percussion primers and methods of preparing the same |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113059A (en) * | 1962-07-31 | 1963-12-03 | Intermountain Res And Engineer | Inhibited aluminum-water composition and method |
US3367805A (en) * | 1965-06-02 | 1968-02-06 | Intermountain Res And Engineer | Thickened inorganic nitrate aqueous slurry containing finely divided aluminum having a lyophobic surface of high surface area |
DE2513735A1 (en) * | 1974-04-01 | 1975-10-02 | Calgon Corp | CORROSION PROTECTION AGENT |
US4133707A (en) * | 1977-11-14 | 1979-01-09 | Olin Corporation | Priming mix with minimum viscosity change |
FR2628735B1 (en) * | 1988-03-15 | 1990-08-24 | Ncs Pyrotechnie Technologies | PERCUSSION PRIMER LOADS AND THEIR MANUFACTURING METHOD |
IT1266171B1 (en) * | 1994-07-15 | 1996-12-23 | Europa Metalli Sezione Difesa | PRIMING MIX WITHOUT TOXIC MATERIALS AND PERCUSSION PRIMING FOR CARTRIDGES USING THIS MIX. |
JPH10509469A (en) * | 1994-10-21 | 1998-09-14 | エリシャ・テクノロジーズ・カンパニー・エルエルシー | Corrosion resistance buffer system for metal products |
BR9500890A (en) * | 1995-02-24 | 1997-04-29 | Companhia Brasileira De Cartuc | Non-toxic starter mixtures free of lead and barium and with tin oxide as the main oxidant |
US5717159A (en) | 1997-02-19 | 1998-02-10 | The United States Of America As Represented By The Secretary Of The Navy | Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology |
CA2335474C (en) * | 1998-03-06 | 2006-01-31 | Snc Technologies Inc. | Non-toxic primers for small caliber ammunition |
MXPA03000357A (en) * | 2000-07-13 | 2004-09-13 | Procter & Gamble | Methods and reaction mixtures for controlling exothermic reactions. |
US6478903B1 (en) * | 2000-10-06 | 2002-11-12 | Ra Brands, Llc | Non-toxic primer mix |
US6544363B1 (en) * | 2000-10-30 | 2003-04-08 | Federal Cartridge Company | Non-toxic, heavy-metal-free shotshell primer mix |
US8784583B2 (en) * | 2004-01-23 | 2014-07-22 | Ra Brands, L.L.C. | Priming mixtures for small arms |
US7670446B2 (en) * | 2004-11-30 | 2010-03-02 | The United States Of America As Represented By The Secretary Of The Navy | Wet processing and loading of percussion primers based on metastable nanoenergetic composites |
US20060219341A1 (en) * | 2005-03-30 | 2006-10-05 | Johnston Harold E | Heavy metal free, environmentally green percussion primer and ordnance and systems incorporating same |
-
2007
- 2007-02-09 EP EP07870653.8A patent/EP2125673B1/en active Active
- 2007-02-09 EP EP13157579.7A patent/EP2602238B1/en active Active
- 2007-02-09 WO PCT/US2007/003806 patent/WO2008100252A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2602238B1 (en) | 2021-07-28 |
EP2125673A2 (en) | 2009-12-02 |
EP2602238A2 (en) | 2013-06-12 |
WO2008100252A3 (en) | 2009-02-26 |
EP2602238A3 (en) | 2014-11-26 |
WO2008100252A2 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8202377B2 (en) | Non-toxic percussion primers and methods of preparing the same | |
EP2167447B1 (en) | Non-toxic percussion primers | |
US8206522B2 (en) | Non-toxic, heavy-metal free sensitized explosive percussion primers and methods of preparing the same | |
US8784583B2 (en) | Priming mixtures for small arms | |
US8282751B2 (en) | Methods of forming a sensitized explosive and a percussion primer | |
US8540828B2 (en) | Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same | |
EP1829849B1 (en) | Nontoxic, noncorrosive phosphorus based primer composition, a percussion cap primer comprising the same and ordnance including the same | |
EP2125673B1 (en) | Non-toxic percussion primers | |
US9409830B1 (en) | Non-toxic primer mix | |
CA2668123C (en) | Non-toxic percussion primers and methods of preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090824 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110221 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VISTA OUTDOOR OPERATIONS LLC |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200309 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007060594 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1306218 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VISTA OUTDOOR OPERATIONS LLC |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602007060594 Country of ref document: DE Owner name: FEDERAL CARTRIDGE CO., ANOKA, US Free format text: FORMER OWNER: VISTA OUTDOOR OPERATIONS LLC, FARMINGTON, UT, US Ref country code: DE Ref legal event code: R082 Ref document number: 602007060594 Country of ref document: DE Representative=s name: BARDEHLE PAGENBERG PARTNERSCHAFT MBB PATENTANW, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602007060594 Country of ref document: DE Owner name: VISTA OUTDOOR OPERATIONS LLC, ANOKA, US Free format text: FORMER OWNER: VISTA OUTDOOR OPERATIONS LLC, FARMINGTON, UT, US |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201228 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201127 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1306218 Country of ref document: AT Kind code of ref document: T Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201226 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007060594 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210209 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210209 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210209 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602007060594 Country of ref document: DE Owner name: FEDERAL CARTRIDGE CO., ANOKA, US Free format text: FORMER OWNER: VISTA OUTDOOR OPERATIONS LLC, ANOKA, MN, US |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070209 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200826 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240222 Year of fee payment: 18 Ref country code: FR Payment date: 20240226 Year of fee payment: 18 |