[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2117695A1 - Dosiereinrichtung - Google Patents

Dosiereinrichtung

Info

Publication number
EP2117695A1
EP2117695A1 EP07848072A EP07848072A EP2117695A1 EP 2117695 A1 EP2117695 A1 EP 2117695A1 EP 07848072 A EP07848072 A EP 07848072A EP 07848072 A EP07848072 A EP 07848072A EP 2117695 A1 EP2117695 A1 EP 2117695A1
Authority
EP
European Patent Office
Prior art keywords
metering device
metering
valve
fuel
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07848072A
Other languages
English (en)
French (fr)
Inventor
Frank Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2117695A1 publication Critical patent/EP2117695A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure

Definitions

  • the invention relates to a metering device according to the preamble of claim 1.
  • the temperature required for the chemical reaction in which, for example, the fuel is reformed to hydrogen, inter alia, is provided by so-called cat burners or afterburners.
  • Cat burners are components which have catalyst coated surfaces.
  • the fuel / air mixture is converted into heat and exhaust gases, wherein the resulting heat, for example via the lateral surfaces and / or via the warm exhaust gas flow to the corresponding components, such as the chemical reformer or an evaporator, out.
  • the conversion of the fuel to heat is highly dependent on the size of the fuel droplets impinging on the catalytic layer. The smaller the droplet size and the more uniformly the catalytic layer is wetted with the fuel droplets, the more completely is the fuel converted to heat and the higher the efficiency.
  • the fuel is also implemented faster and reduced emissions. Too large droplets of fuel lead to an occupancy of the catalytic layer and thus to a slow reaction. This leads, for example, in the cold start phase, for example, to a poor efficiency.
  • the chemical reformers Since most of the hydrogen is consumed immediately, the chemical reformers must be capable of producing the production of hydrogen without delay, e.g. to adapt to demand during load changes or start-up phases. In particular, in the cold start phase additional measures must be taken because the reformer provides no waste heat. Conventional evaporators are unable to produce the appropriate amounts of gaseous reactants without delay.
  • the metering device has at least one metering device in the form of a fuel injection valve for metering fuel into a metering line and a nozzle body adjoining the metering line with at least one injection opening, which opens into a metering chamber.
  • a metering device downstream of a support member which includes a component containing the injection orifices and an upstream swirl insert.
  • the metering device has at least one metering device in the form of a fuel injection valve for metering fuel into a metering line and a nozzle body adjoining the metering line with at least one injection opening, which opens into a metering chamber.
  • the nozzle body of the metering device is designed such that a disk-shaped injection hole insert is provided on it, in which the at least one injection opening is formed.
  • the metering device according to the invention with the characterizing features of the main claim has the advantage that the atomization and distribution of the fuel or the fuel-gas mixture is substantially improved.
  • the metering device can be used without problems in particularly high ambient temperatures.
  • the metering device can be used in particular in fuel cells (catalysts), in the exhaust aftertreatment or the regeneration of particulate filters, since in these applications temperatures of up to 700 0 C are achieved, which are tolerated by the metering device in an advantageous manner.
  • the metering device according to the invention can be produced very simply, reliably and thus inexpensively.
  • standardized mass-produced components can be used.
  • the purely mechanical valve used as a treatment unit has a very simple structure and is particularly easy to integrate with the metering device.
  • the metering line and the metering device are hydraulically sealed and detachably joined by an adapter. This increases the ease of installation.
  • the adapter connecting the metering line and the metering device has an air supply, wherein the air supply in the adapter is connected to the metering line.
  • Initiate mixture preparation wherein the metered into the metering line fuel and / or the metered gas is mixed with air.
  • the atomization and mixture formation of fuel and / or the metered gas with air is thereby improved overall.
  • the metering line can be freed from undesired fuel or gas residues by the air supply, for example, by blowing them with air through the air supply, for example, a stop or idle phase. This can prevent an uncontrolled release of fuel into the metering room or the environment.
  • a fuel injection valve is used as the metering device, as e.g. is used for reciprocating internal combustion engines.
  • the use of such valves has several advantages. Thus, they allow a particularly accurate fuel metering, the metering being carried out over a number of parameters, e.g. Duty cycle, clock frequency and stroke length if necessary, can be controlled.
  • the dependence on the pump pressure is far less pronounced than with metering devices which control the volume flow of the fuel via the line cross-section, and the metering range is significantly greater.
  • the metering line advantageously has a number of wall thickness-reduced points, which reduce the thermal conductivity of the metering line or can also serve as a heat sink.
  • Fig. 1 is a schematic representation of an embodiment of a metering device according to the invention and Fig. 2 is an illustration of a processing unit at the downstream end of the
  • a metering device 1 is designed in the form of a metering device 1 for the use of low-pressure fuel injection valves.
  • the metering device 1 is particularly suitable for entry and atomization of fuel or a fuel-gas mixture in a Zumessraum not shown a chemical reformer, not shown for the recovery of hydrogen or a Nachbrenn Road not shown for generating heat.
  • a metering device 1 is particularly suitable for the metering of fuels in hot environments. While known injectors for dosing media such as gasoline, diesel fuel, ethanol, methanol, urea water solutions, etc. for
  • the metering device 1 according to the invention can be used in addition to the application already mentioned in fuel cells in the exhaust aftertreatment or the regeneration of particulate filters, since in these applications temperatures of up to 700 0 C are achieved, which in an advantageous Way tolerated by the metering device 1.
  • the metering device 1 consists of a metering device 2, which is designed in this embodiment as a low-pressure fuel injection valve, an adapter 6 for receiving the metering device 2 and a tubular, for example 10 to 100 cm long Zumess Gustav 8, an air supply 9, optionally on the adapter. 6 may be provided, and a processing unit 7.
  • the metering device 2 is designed in the classical injection valve construction and has on its inlet side to a fuel port 13. To excite the e.g. Electromagnetically operated actuator, the metering device 2 to an electrical connection 5.
  • the metering of fuel or a fuel-gas mixture takes place in the Zumesstechnisch 8, wherein the adapter 6, the metering device 2 and the Zumess effet 8 connects hydraulically sealed to each other out.
  • the air supply 9 opens into the adapter 6 and is thus in communication with the metering line 8.
  • the processing unit 7 is hydraulically tightly connected.
  • the metering line 8 itself consists for example of a standardized, stainless steel existing metal pipe.
  • the metering line 8 can be embodied in one or more parts, wherein in a multi-part design of the metering line 8 hydraulically tight connecting elements are used.
  • the fuel flows during operation of the metering device 1 through the metering device 2 and is measured in a known manner by opening and closing a sealing seat in the Zumess effet 8.
  • opening air supply 9 can be supplied to the mixture preparation air or other gases, such as combustible residual gases from a reforming or fuel cell process.
  • the fuel or the fuel-gas mixture flows through the metering line 8 to the treatment unit 7, from where it is metered into a metering room, not shown.
  • Air for the controlled emptying of the metering line 8, for example shortly before an idling or stop phase, can also be supplied through the air feed 9.
  • the metering device in particular the opposite to high temperatures and high temperature fluctuations not shown sealing seat of the metering device 2, thermally decoupled from the temperatures in the metering room, not shown, which are for example 500 0 C.
  • the length, the material and the shape of the metering line 8 are chosen in particular according to the thermal and spatial conditions.
  • the metering line 8 can also have wall thickness-reduced points, which contribute to the thermal insulation or can act as a heat sink.
  • FIG. 2 shows an enlarged view of the processing unit 7, which is provided at the downstream end of the metering device 1.
  • the processing unit 7 is designed as a purely mechanical valve 11.
  • a filter screen 10 In the processing unit 7 may optionally be installed a filter screen 10.
  • the downstream end of the treatment unit 7 is formed by the actual valve 11, which comprises a valve pin 14 and a return spring 15.
  • the valve pin 14 has at its upstream end on a collar device 18 on which the return spring 15 can be supported, while at the downstream end of the valve pin 14, a valve plate 16 is provided.
  • the valve disk 16 of the valve pin 14 cooperates with a frusto-conical valve seat 17 to form a sealing seat. Since the mechanical valve 11 is an outwardly opening valve, due to the Spring force of the return spring 15 in the pressureless state of the treatment unit 7 of the valve disc 16 to the valve seat 17 at.
  • the valve 11 automatically opens, e.g. at an overpressure of about 3.6 bar and has no metering function, which is already taken over by the metering device 2.
  • the valve 11 opens and closes at a frequency of about 1500 Hz, which is why one can also speak of a "buzzing" of the valve 11, and causes a very good treatment and atomization of the fuel, which is delivered in sprays with the finest droplets Atomization quality is further improved by the possible air support.
  • the treatment unit 7 can additionally be introduced into a receptacle which is provided with cooling fins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft eine Dosiereinrichtung (1) für flüssige Kraftstoffe, insbesondere zum Eintrag in einen chemischen Reformer zur Gewinnung von Wasserstoff oder in eine Nachbrenneinrichtung zur Erzeugung von Wärme. Die Dosiereinrichtung (1) hat zumindest eine Zumesseinrichtung (2) zum Zumessen von Kraftstoff in eine Zumessleitung (8) und eine sich an die Zumessleitung (8) anschließende Aufbereitungseinheit (7), die den Kraftstoff in einen Zumessraum abgibt. Die Aufbereitungseinheit (7) ist als rein mechanisches Ventil (11) ausgeführt, das mit einer Frequenz von ca. 1500 Hz öffnet und schließt.

Description

Dosiereinrichtung
Stand der Technik
Die Erfindung geht aus von einer Dosiereinrichtung nach der Gattung des Anspruchs 1.
Bei brennstoffzellengestützten Transportsystemen kommen zur Gewinnung des benötigten Wasserstoffs aus kohlenwasserstoffhaltigen Kraftstoffen wie beispielsweise Benzin, Ethanol oder Methanol sog. chemische Reformer zum Einsatz. Zur Wärmeerzeugung, insbesondere in Kaltstartphasen, kommen katalytische Brenner und Nachbrenneinrichtungen zum Einsatz.
Alle vom Reformer zum Reaktionsablauf benötigten Stoffe, wie z.B. Luft, Wasser und Kraftstoff, werden dem Reaktionsbereich idealerweise in gasförmigem oder zumindest zerstäubtem Zustand zugeführt. Da aber die Kraftstoffe, wie z.B. Methanol oder Benzin, und Wasser, an Bord des Transportsystems vorzugsweise in flüssiger Form vorliegen, müssen sie erst, kurz bevor sie zum Reaktionsbereich des Reformers gelangen, aufbereitet werden. Dies erfordert beispielsweise eine Dosiereinrichtung, welche in der Lage ist, die entsprechenden Mengen Kraftstoff oder anderer Stoffe fein zerstäubt zur Verfügung zu stellen.
Die für die chemische Reaktion, in welcher beispielsweise der Kraftstoff unter anderem zu Wasserstoff reformiert wird, notwendige Temperatur wird durch sogenannte Katbrenner oder Nachbrenneinrichtungen zur Verfügung gestellt. Katbrenner sind Komponenten, welche mit einem Katalysator beschichtete Flächen aufweisen. In diesen katalytischen Brennern wird das Kraftstoff/Luftgemisch in Wärme und Abgase gewandelt, wobei die entstehende Wärme beispielsweise über die Mantelflächen und/oder über den warmen Abgasstrom an die entsprechenden Komponenten, wie beispielsweise den chemischen Reformer oder einen Verdampfer, geführt wird. Die Umsetzung des Kraftstoffs in Wärme ist stark von der Größe der Kraftstofftröpfchen, welche auf die katalytische Schicht auftreffen, abhängig. Je kleiner die Tröpfchengröße ist und je gleichmäßiger die katalytische Schicht mit den Kraftstofftröpfchen benetzt wird, desto vollständiger wird der Kraftstoff in Wärme gewandelt und desto höher ist der Wirkungsgrad. Der Kraftstoff wird so zudem schneller umgesetzt und Schadstoffemissionen gemindert. Zu große Kraftstofftröpfchen führen zu einer Belegung der katalytischen Schicht und damit zu einer nur langsamen Umsetzung. Dieses führt insbesondere in der Kaltstartphase beispielsweise zu einem schlechten Wirkungsgrad.
Da der Wasserstoff zumeist sofort verbraucht wird, müssen die chemischen Reformer in der Lage sein, die Produktion von Wasserstoff verzögerungsfrei, z.B. bei Lastwechseln oder Startphasen, an die Nachfrage anzupassen. Insbesondere in der Kaltstartphase müssen zusätzliche Maßnahmen ergriffen werden, da der Reformer keine Abwärme bereitstellt. Konventionelle Verdampfer sind nicht in der Lage, die entsprechenden Mengen an gasförmigen Reaktanden verzögerungsfrei zu erzeugen.
Es ist daher sinnvoll, den Kraftstoff gut aufbereitet durch eine Dosiereinrichtung in feinverteilter Form und/oder gut platziert an Orte und Flächen zu verteilen, an denen die Kraftstoffe gut verdampfen können, beispielsweise in den Reaktionsraum oder die Vormischkammer eines Reformers oder katalytischen Brenners, die Innenflächen eines zylindrischen Brennraums oder die inneren Mantelflächen eines Katbrenners. Darüber hinaus ist es sinnvoll, die Kraftstoffwolke hinsichtlich ihrer geometrischen Form, ihrer Ausbreitungsgeschwindigkeit und Drallausbildung dem Brennraum und den darin vorherrschenden Bedingungen anpassen zu können.
Aus der DE 102 51 697 Al ist bereits eine Dosiereinrichtung für flüssige Kraftstoffe, insbesondere zum Eintrag in einen chemischen Reformer zur Gewinnung von Wasserstoff oder in eine Nachbrenneinrichtung zur Erzeugung von Wärme bekannt. Die Dosiereinrichtung hat zumindest eine Zumesseinrichtung in Form eines Brennstoffeinspritzventils zum Zumessen von Kraftstoff in eine Zumessleitung und einen sich an die Zumessleitung anschließenden Düsenkörper mit zumindest einer Abspritzöffnung, welche in einen Zumessraum ausmündet. An dem Düsenkörper der Dosiereinrichtung ist stromabwärtig ein Trägerelement befestigt, der ein die Abspritzöffnungen beinhaltendes Bauteil sowie einen stromaufwärts angeordneten Dralleinsatz beinhaltet. Des weiteren ist auch bereits aus der DE 102 51 699 Al eine Dosiereinrichtung für flüssige Kraftstoffe, insbesondere zum Eintrag in einen chemischen Reformer zur Gewinnung von Wasserstoff oder in eine Nachbrenneinrichtung zur Erzeugung von Wärme bekannt. Die Dosiereinrichtung hat zumindest eine Zumesseinrichtung in Form eines Brennstoffeinspritzventils zum Zumessen von Kraftstoff in eine Zumessleitung und einen sich an die Zumessleitung anschließenden Düsenkörper mit zumindest einer Abspritzöffnung, welche in einen Zumessraum ausmündet. Der Düsenkörper der Dosiereinrichtung ist derart ausgestaltet, dass an ihm ein scheibenförmiger Spritzlocheinsatz vorgesehen ist, in dem die wenigstens eine Abspritzöffnung ausgeformt ist.
Offenbarung der Erfindung
Die erfindungsgemäße Dosiereinrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, dass die Zerstäubung und Verteilung des Kraftstoffes bzw. des Kraftstoff-Gas-Gemisches wesentlich verbessert wird. Insbesondere kann die Dosiereinrichtung bei besonders hohen Umgebungstemperaturen problemlos eingesetzt werden. Die Dosiereinrichtung kann insofern insbesondere bei Brennstoffzellen (Katalysatoren), bei der Abgasnachbehandlung oder der Regeneration von Partikelfiltern eingesetzt werden, da bei diesen Anwendungen Temperaturen von bis zu 7000C erreicht werden, die in vorteilhafter Weise durch die Dosiereinrichtung vertragen werden. Die erfindungsgemäße Dosiereinrichtung lässt sich sehr einfach, zuverlässig und damit kostengünstig herstellen. Außerdem können standardisierte serienmäßig gefertigte Bauteile verwendet werden. Insbesondere besitzt das als Aufbereitungseinheit verwendete rein mechanische Ventil einen sehr einfachen Aufbau und ist besonders einfach an der Dosiereinrichtung integrierbar.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der im Hauptanspruch angegebenen Dosiereinrichtung möglich.
Vorteilhafterweise sind die Zumessleitung und die Zumesseinrichtung durch einen Adapter hydraulisch dicht und lösbar gefügt. Dadurch erhöht sich die Montagefreundlichkeit.
In einer weiteren Weiterbildung weist der die Zumessleitung und die Zumesseinrichtung verbindende Adapter eine Luftzuführung auf, wobei die Luftzuführung im Adapter mit der Zumessleitung verbunden ist. Dadurch lässt sich bereits in der Zumessleitung die
Gemischaufbereitung einleiten, wobei der in die Zumessleitung eingemessene Kraftstoff und/oder das eingemessene Gas mit Luft gemischt wird. Die Zerstäubung und Gemischbildung von Kraftstoff und/oder dem eingemessenen Gas mit Luft wird dadurch insgesamt verbessert. Darüber hinaus kann durch die Luftzuführung die Zumessleitung von unerwünschten Kraftstoff- bzw. Gasresten befreit werden, indem diese beispielsweise mit Luft durch die Luftzuführung, vor beispielsweise einer Stopp- oder Leerlaufphase, ausgeblasen werden. Dadurch lässt sich eine unkontrollierte Abgabe von Kraftstoff in den Zumessraum oder die Umwelt verhindern.
Vorteilhafterweise wird als Zumesseinrichtung ein Brennstoffeinspritzventil eingesetzt, wie es z.B. für Hubkolbenmaschinen mit innerer Verbrennung benutzt wird. Der Einsatz solcher Ventile hat mehrere Vorteile. So lassen sie eine besonders genaue Kraftstoffzumessung zu, wobei die Zumessung über mehrere Parameter, wie z.B. Tastverhältnis, Taktfrequenz und ggf. Hublänge, gesteuert werden kann. Dabei ist die Abhängigkeit vom Pumpendruck weit weniger ausgeprägt, als bei Zumesseinrichtungen, die über den Leitungsquerschnitt den Volumenstrom des Kraftstoffs steuern, und der Dosierbereich ist deutlich größer.
Darüber hinaus sind die Brennstoffeinspritzventile vielfach bewährte, in ihrem Verhalten bekannte, kostengünstige, gegenüber den verwendeten Kraftstoffen chemisch stabile und zuverlässige Bauteile, wobei dies im besonderen für sog. Niederdruck- Brennstoffeinspritzventile zutrifft, die aufgrund der thermischen Entkopplung durch die Zumessleitung hier gut einsetzbar sind.
Die Zumessleitung weist vorteilhafterweise eine Anzahl wandstärkereduzierter Stellen auf, die die Wärmeleitfähigkeit der Zumessleitung herabsetzten bzw. auch als Kühlkörper dienen können.
Durch den mehrteiligen Aufbau der Dosiereinrichtung ist eine kostengünstige Herstellung und der Einsatz von standardisierten Bauteilen möglich.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Dosiereinrichtung und Fig. 2 eine Darstellung einer Aufbereitungseinheit am stromabwärtigen Ende der
Dosiereinrichtung.
Beschreibung der Ausführungsbeispiele
Ein in Fig. 1 dargestelltes Ausführungsbeispiel einer erfindungsgemäßen Dosiereinrichtung 1 ist in der Form einer Dosiereinrichtung 1 für die Verwendung von Niederdruck- Brennstoffeinspritzventilen ausgeführt. Die Dosiereinrichtung 1 eignet sich insbesondere zum Eintrag und zur Zerstäubung von Kraftstoff bzw. eines Kraftstoff-Gas-Gemisches in einen nicht dargestellten Zumessraum eines nicht weiter dargestellten chemischen Reformers zur Gewinnung von Wasserstoff oder einer nicht weiter dargestellten Nachbrenneinrichtung zur Erzeugung von Wärme. Grundsätzlich ist jedoch eine derartige Dosiereinrichtung 1 besonders für die Dosierung von Kraftstoffen in heiße Umgebungen geeignet. Während bekannte Einspritzventile für die Dosierung von Medien, wie Benzin, Dieselkraftstoff, Ethanol, Methanol, Harnstoff- Wasser- Lösungen usw. für
Umgebungstemperaturen von etwa 1500C konzipiert sind, kann die erfindungsgemäße Dosiereinrichtung 1 neben der bereits erwähnten Anwendung bei Brennstoffzellen auch bei der Abgasnachbehandlung oder der Regeneration von Partikelfiltern eingesetzt werden, da bei diesen Anwendungen Temperaturen von bis zu 7000C erreicht werden, die in vorteilhafter Weise durch die Dosiereinrichtung 1 vertragen werden.
Die Dosiereinrichtung 1 besteht aus einer Zumesseinrichtung 2, welche in diesem Ausführungsbeispiel als Niederdruck-Brennstoffeinspritzventil ausgeführt ist, einem Adapter 6 zur Aufnahme der Zumesseinrichtung 2 und einer rohrförmigen, beispielsweise 10 bis 100 cm langen Zumessleitung 8, einer Luftzuführung 9, die optional am Adapter 6 vorgesehen sein kann, und einer Aufbereitungseinheit 7. Die Zumesseinrichtung 2 ist in der klassischen Einspritzventil- Bauweise ausgeführt und weist an ihrer Zuströmseite einen Kraftstoffanschluss 13 auf. Zur Erregung des z.B. elektromagnetisch betriebenen Aktuators weist die Zumesseinrichtung 2 einen elektrischen Anschluss 5 auf. Am stromabwärtigen Ende der Zumesseinrichtung 2 erfolgt die Zumessung von Kraftstoff oder eines Kraftstoff- Gas-Gemisches in die Zumessleitung 8, wobei der Adapter 6 die Zumesseinrichtung 2 und die Zumessleitung 8 nach außen hydraulisch dicht miteinander verbindet. Die Luftzuführung 9 mündet in den Adapter 6 und steht so mit der Zumessleitung 8 in Verbindung.
Mit der Zumessleitung 8 ist die Aufbereitungseinheit 7 hydraulisch dicht verbunden. Die Zumessleitung 8 selbst besteht beispielsweise aus einem standardisierten, aus Edelstahl bestehenden Metallrohr. Die Zumessleitung 8 kann ein- oder mehrteilig ausgeführt sein, wobei bei einer mehrteiligen Ausführung der Zumessleitung 8 hydraulisch dichte Verbindungselemente verwendet werden.
Der Kraftstoff strömt bei Betrieb der Dosiereinrichtung 1 durch die Zumesseinrichtung 2 und wird in bekannter Weise durch Öffnen und Schließen eines Dichtsitzes in die Zumessleitung 8 eingemessen. Durch die über den Adapter 6 in die Zumessleitung 8 mündende Luftzuführung 9 können zur Gemischaufbereitung Luft oder andere Gase, beispielsweise brennbare Restgase aus einem Reformierungs- oder Brennstoffzellenprozess, zugeführt werden. Im weiteren Verlauf strömt der Kraftstoff bzw. das Kraftstoff-Gas-Gemisch durch die Zumessleitung 8 zur Aufbereitungseinheit 7, von wo aus er in einen nicht dargestellten Zumessraum eindosiert wird. Durch die Luftzuführung 9 kann außerdem Luft zur kontrollierten Entleerung der Zumessleitung 8, beispielsweise kurz vor einer Leerlauf- oder Stoppphase, zugeführt werden.
Durch die Zumessleitung 8 wird die Zumesseinrichtung 2, insbesondere der gegenüber hohen Temperaturen und großen Temperaturschwankungen empfindliche nicht dargestellte Dichtsitz der Zumesseinrichtung 2, thermisch von den Temperaturen im nicht dargestellten Zumessraum, welche beispielsweise 500 0C betragen, entkoppelt. Die Länge, das Material und die Form der Zumessleitung 8 werden insbesondere entsprechend den thermischen und räumlichen Gegebenheiten gewählt. Vorzugsweise kann die Zumessleitung 8 auch wandstärkereduzierte Stellen aufweisen, welche zur thermischen Isolierung beitragen oder als Kühlkörper wirken können.
Fig. 2 zeigt eine vergrößerte Darstellung der Aufbereitungseinheit 7, die am stromabwärtigen Ende der Dosiereinrichtung 1 vorgesehen ist. Die Aufbereitungseinheit 7 ist dabei als rein mechanisches Ventil 11 ausgeführt. In der Aufbereitungseinheit 7 kann optional ein Filtersieb 10 eingebaut sein. Das stromabwärtige Ende der Aufbereitungseinheit 7 wird von dem eigentlichen Ventil 11 gebildet, das einen Ventilzapfen 14 und eine Rückstellfeder 15 umfasst. Der Ventilzapfen 14 weist an seinem stromaufwärtigen Ende eine Krageneinrichtung 18 auf, an der sich die Rückstellfeder 15 abstützen kann, während am stromabwärtigen Ende des Ventilzapfens 14 ein Ventilteller 16 vorgesehen ist. Der Ventilteller 16 des Ventilzapfens 14 wirkt mit einem kegelstumpfförmig ausgebildeten Ventilsitz 17 zu einem Dichtsitz zusammen. Da es sich bei dem mechanischen Ventil 11 um ein nach außen öffnendes Ventil handelt, liegt aufgrund der Federkraft der Rückstellfeder 15 im drucklosen Zustand der Aufbereitungseinheit 7 der Ventilteller 16 an dem Ventilsitz 17 an.
Das Ventil 11 öffnet selbsttätig z.B. bei einem Überdruck von etwa 3,6 bar und hat dabei keine Zumessfunktion, die bereits von der Zumesseinrichtung 2 übernommen wird. Das Ventil 11 öffnet und schließt mit einer Frequenz von ca. 1500 Hz, weshalb auch von einem „Schnarren" des Ventils 11 gesprochen werden kann, und bewirkt eine sehr gute Aufbereitung und Zerstäubung des Kraftstoffs, der in Sprays mit feinsten Tröpfchen abgegeben wird. Die Zerstäubungsgüte wird durch die mögliche Luftunterstützung noch verbessert.
Um die thermische Belastung der Aufbereitungseinheit 7 zu reduzieren, kann die Aufbereitungseinheit 7 noch zusätzlich in eine Aufnahme, die mit Kühlrippen versehen ist, eingebracht werden.

Claims

Ansprüche
1. Dosiereinrichtung (1) für flüssige Kraftstoffe, insbesondere zum Eintrag in einen chemischen Reformer, in eine Nachbrenneinrichtung zur Erzeugung von Wärme, in einen Abgasstrang oder einen Partikelfilter, mit zumindest einer Zumesseinrichtung (2) zum Zumessen von Kraftstoff in eine Zumessleitung (8) und mit einer sich an die Zumessleitung (8) anschließenden Aufbereitungseinheit (7), die den Kraftstoff in einen Zumessraum abgibt, dadurch gekennzeichnet, dass die Aufbereitungseinheit (7) als rein mechanisches Ventil (11) ausgeführt ist.
2. Dosiereinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Ventil (11) als nach außen öffnendes Ventil (11) ausgebildet ist.
3. Dosiereinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Ventil (11) einen Ventilzapfen (14) und eine Rückstellfeder (15) umfasst.
4. Dosiereinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Ventilzapfen (14) eine Krageneinrichtung (18) besitzt, an der sich die Rückstellfeder (15) abstützt.
5. Dosiereinrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Ventilzapfen (14) einen Ventilteller (16) besitzt, der mit einem Ventilsitz (17) zusammenwirkt.
6. Dosiereinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Ventil (11) mit einer Frequenz von ca. 1500 Hz öffnet und schließt.
7. Dosiereinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass in der Aufbereitungseinheit (7) ein Filtersieb (10) eingebaut ist.
8. Dosiereinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Aufbereitungseinheit (7) in eine Aufnahme, die mit Kühlrippen versehen ist, eingebracht ist.
9. Dosiereinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Zumessleitung (8) und die Zumesseinrichtung (2) durch einen Adapter (6) hydraulisch dicht und lösbar gefügt sind.
10. Dosiereinrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Adapter (6) eine Luftzuführung (9) aufweist, die im Adapter (6) mit der Zumessleitung (8) in Verbindung steht.
11. Dosiereinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Zumesseinrichtung (2) ein Brennstoffeinspritzventil ist.
EP07848072A 2007-01-31 2007-12-12 Dosiereinrichtung Withdrawn EP2117695A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007004799A DE102007004799A1 (de) 2007-01-31 2007-01-31 Dosiereinrichtung
PCT/EP2007/063756 WO2008092530A1 (de) 2007-01-31 2007-12-12 Dosiereinrichtung

Publications (1)

Publication Number Publication Date
EP2117695A1 true EP2117695A1 (de) 2009-11-18

Family

ID=39111490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07848072A Withdrawn EP2117695A1 (de) 2007-01-31 2007-12-12 Dosiereinrichtung

Country Status (8)

Country Link
US (1) US20100065664A1 (de)
EP (1) EP2117695A1 (de)
JP (1) JP2010516947A (de)
CN (1) CN101600495A (de)
AU (1) AU2007345409A1 (de)
DE (1) DE102007004799A1 (de)
RU (1) RU2009132608A (de)
WO (1) WO2008092530A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743491B1 (de) * 2012-12-13 2015-08-12 Continental Automotive GmbH Ventilkörper, Flüssigkeitseinspritzventil und Verfahren zur Herstellung eines Ventilkörpers
US10233552B2 (en) * 2013-08-22 2019-03-19 0798465 B.C. Ltd. Apparatus and method for feeding a multi-phase mixture of reactants to an electrochemical reactor
CN105114226A (zh) * 2015-08-13 2015-12-02 温州职业技术学院 带有加热功能的电控汽油喷射器
CN106299407B (zh) * 2016-11-08 2018-12-25 常州博能新能源有限公司 一种自计量的甲醇燃料电池液体供给装置
US20190170037A1 (en) * 2017-12-06 2019-06-06 Continental Automotive Systems, Inc. Diesel dosing unit having an anti-coking injector assembly, and methods of constructing and utilizing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2501283A1 (de) * 1975-01-15 1976-07-22 Bosch Gmbh Robert Einspritzventil
DE4009236A1 (de) * 1990-03-22 1991-09-26 Pierburg Gmbh Elektromagnetisches einspritzventil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9014334D0 (en) * 1990-06-27 1990-08-15 Lucas Ind Plc Fuel injector
DE19542317A1 (de) * 1995-11-14 1997-05-15 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für einen Verbrennungsmotor
DE10058373A1 (de) * 2000-11-24 2002-06-13 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10251697A1 (de) 2002-11-06 2004-05-19 Robert Bosch Gmbh Dosiereinrichtung
DE10251699A1 (de) * 2002-11-06 2004-06-03 Robert Bosch Gmbh Dosiereinrichtung
DE10251698A1 (de) * 2002-11-06 2004-06-03 Robert Bosch Gmbh Dosiereinrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2501283A1 (de) * 1975-01-15 1976-07-22 Bosch Gmbh Robert Einspritzventil
DE4009236A1 (de) * 1990-03-22 1991-09-26 Pierburg Gmbh Elektromagnetisches einspritzventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008092530A1 *

Also Published As

Publication number Publication date
US20100065664A1 (en) 2010-03-18
CN101600495A (zh) 2009-12-09
AU2007345409A1 (en) 2008-08-07
JP2010516947A (ja) 2010-05-20
RU2009132608A (ru) 2011-06-10
DE102007004799A1 (de) 2008-08-07
WO2008092530A1 (de) 2008-08-07

Similar Documents

Publication Publication Date Title
WO2005005799A1 (de) Gekühlte vorrichtung zur dosierung von reduktionsmittel zum abgas eines verbrennungsmotors
EP2117695A1 (de) Dosiereinrichtung
EP3408528B1 (de) Emulgiersystem und emulgierverfahren
EP1807612A1 (de) Vorrichtung und verfahren zur erzeugung eines betriebsmittels für ein kraftfahrzeug
EP1567253B1 (de) Zerstäubungsanordnung
DE102006033235A1 (de) Vorrichtung zum Verdampfen bzw. Zerstäuben eines Brennstoffs, Abgasanlage für eine Verbrennungskraftmaschine sowie Baugruppe mit einer Reformierungseinrichtung
EP1560645B1 (de) Dosiereinrichtung
EP1560644B1 (de) Dosiereinrichtung
EP1560643B1 (de) Dosiereinrichtung
EP1520315B1 (de) Zerstäubungsanordnung
EP1578535B1 (de) Beheizte dosiereinrichtung für den reformer einer brennstoffzellenanordnung
EP1569870A1 (de) Zerstauberd se
WO2004036119A1 (de) Zerstäuberdüse
DE102010040365A1 (de) Druckluftzerstäuber
EP1408225B1 (de) Adapter für Zerstäubungsanordnung
DE10229904A1 (de) Dosiereinrichtung
EP1408226A2 (de) Zerstäubungsanordnung
DE102009026270B4 (de) Katalytisches Heizgerät
EP1418333A1 (de) Zerstäubungsanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100118

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170823