EP2110357B1 - Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system - Google Patents
Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system Download PDFInfo
- Publication number
- EP2110357B1 EP2110357B1 EP08007630A EP08007630A EP2110357B1 EP 2110357 B1 EP2110357 B1 EP 2110357B1 EP 08007630 A EP08007630 A EP 08007630A EP 08007630 A EP08007630 A EP 08007630A EP 2110357 B1 EP2110357 B1 EP 2110357B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crane
- load
- bulk goods
- bulk
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/88—Safety gear
- B66C23/94—Safety gear for limiting slewing movements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
- B66C13/063—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
Definitions
- pendulum damping systems for container cranes prove to be less suitable for allowing controlled load oscillations to increase the handling capacity. Controlled permitting of load oscillations should take into account, in particular, boundary conditions of a ship cargo hold geometry, in particular with regard to load compartment hatches and cargo spaces.
- a method according to the preamble of claim 1 which allows for the discharge of bulk material with lateral displacement of the load by a trolley a time-optimized pendulum motion during Katzfahrt by the process of the trolley is automated.
- the pendulum movement of the lifting device is divided into different time periods and the different time periods are associated with positive or negative accelerations of the trolley.
- This serves a time-optimized unloading of the load-receiving means by controlling the movement of the trolley.
- the control causes an always constant movement or a constant time intervals associated acceleration of the trolley. Any changes in the process and ambient conditions that affect the load handler are largely disregarded.
- An interactive optimization by a controlled vibration damping for collision avoidance with simultaneous time-optimized trajectory does not take place.
- the present invention has for its object to provide a method for damping oscillations of a guided by a crane bulk load, which suppresses critical load oscillations and fast turnaround times when loading and unloading bulk loads while collision avoidance allows, as well as to provide a suitable implementation of the method.
- a controller provides at least one manipulated variable for at least one drive device of the crane for moving the bulk material load with a predetermined deviation along a time-optimized trajectory.
- the time-optimized trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material unloading area.
- a load-receiving means receiving the bulk material load is emptied at at least one overshoot point within the bulk material discharge area.
- the deviation with which the bulk material load is moved along the time-optimized trajectory can be influenced, for example, by selecting a quality measure for a controller design, by establishing weighting factors for the quality measure or by predeterminable controller parameters.
- setpoints for a crane paw position and for a crane rope length are only released for clearance by a collision detection system for monitoring the bulk material intake and / or unloading area.
- a collision detection system for monitoring the bulk material intake and / or unloading area.
- the time-optimized trajectory is preferably determined by minimizing a quadratic quality measure for a state-variable controller coupled to the at least one drive device.
- the state variable controller can be designed for a constant crane pitch and a given average bulk mass be. In this way, robust, relatively easy to handle control systems can be realized.
- At least one drive device of the crane is switched off as soon as the bulk material load reaches the bulk material discharge area.
- the drive device can be, for example, a motor for a crane winch and / or for a crane-drive. After a predefined residence time for the lifting device movement to the bulk material receiving area the drive device is switched on again. During the dwell time, the load handling device is emptied. This offers the advantage that no time delays caused by a compensation of the load-receiving means in a rest position.
- the control program according to the invention can be loaded into a main memory of a computer and has at least one code section, in the execution of which method steps described above are executed when the computer program runs in the computer.
- the crane automation system according to the invention comprises a controller for at least one drive device of the crane for moving the bulk material load with at most a predefinable deviation along a time-optimized trajectory.
- the trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area.
- a control means for emptying a load receiving the bulk material load is provided at least one overshoot point within the bulk material discharge area.
- a time-optimized trajectory for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area is first determined, taking into account a vibration model of the bulk material load guided by the crane (step 101).
- the time-optimized trajectory is determined in the present exemplary embodiment by minimizing a quadratic quality measure for a state variable controller coupled to the at least one drive device.
- the state variable controller is a Ricatti controller, as will be explained in more detail below.
- a load-receiving means receiving the bulk material load is in a critical area in which load objects could damage other objects in the surroundings of the load-receiving means (step 102). This is to be avoided, for example, that a loading wall in a ship or hatch edges is damaged by a swinging in acceleration of a crane crane gripper. Is the load handler still in a critical Area, it is further raised (step 103). Otherwise, at least one drive device of the crane, for example a cat drive and / or a linear actuator, is controlled by a crane controller such that the bulk material load is moved along the determined trajectory with at most one predeterminable deviation (step 104). In this case, it is continuously checked whether a limit of the bulk material discharge area has been reached (step 105). When the bulk material discharge area is reached, a dwell time starts to run, the sequence of which is checked (step 106).
- the load receiving means is also emptied at least one overshoot point by utilizing a pendulum movement of the load receiving means within the bulk material discharge area (step 107). Since no compensation of the bulk material load is carried out in a rest position before a settling, this results in a significant reduction in turnover times between loading and unloading. The fact that the bulk material load is guided within a predetermined tolerance range along the determined trajectory, although load oscillations are not completely eliminated, but at least limited to a non-critical measure.
- step 108 a return to the bulk material receiving area takes place (step 108).
- the crane controller is switched from a target position above the bulk material discharge area to a target position above the bulk material receiving area.
- a target position above the bulk material receiving area As a result, crane trolleys and load handling devices are accelerated in the direction of the bulk material receiving area.
- a final setpoint for a crane cable adjustment is activated and the load-carrying means is switched to a desired one Lowered position. This completes a work cycle of a bulk material unloading operation.
- FIG. 2a-c schematically illustrated crane set and gripper kinematics used to derive a control engineering modeling of a crane system, which forms the basis for a controller design described below.
- a trolley gripper system with a crane trolley 201 and a crane gripper 202 connected thereto via a crane cable 203 represents, from a control engineering point of view, a pendulum to be controlled.
- FIG. 3 is a control engineering block diagram for a linearized modeling of crane set and gripper kinematics and shown for a crane control.
- the block diagram includes a controlled system 301, which the above a kitten drive means 302 for moving the crane trolley 201 in the x direction, a lifting drive means 303 for moving the crane gripper 202 in the z direction, a state size controller 311, a controller 321 and a pre-filter 322 for the cat propulsion device and a controller 331 for the Hubantriebs heard (see also Figures 2a-c ).
- the controller 321 and the pre-filter 322 provide as a manipulated variable for the Katzantriebs issued 302 a torque setpoint on a cable drum of the Katzantriebs announced.
- This torque command value is compared with a torque value for the cat drive device 302 provided by the state variable controller 311. Based on a comparison result, a manipulated variable for the cat drive device 302 is specified.
- a torque on a cable drum of the lifting drive device 303 is manipulated variable for a control of the rope length r, which in turn adaptively affects the state size controller 311.
- a position control of the crane gripper 202 is divided into a position control of the crane trolley 201 and a control of the cable length.
- the position control of the trolley is performed by a position controller with a subordinate speed control.
- the position controller is in the present embodiment, a proportional controller with gain K P and additional control variable limit in terms of magnitude and slope.
- the output of the position controller is setpoint for a subordinate state variable control of a cat speed, for which the pre-filter 322 is also provided.
- a desired pole position for the state variable controller 311 is achieved by optimization according to Ricatti for a medium rope length and a mean grip mass.
- cat speed, pendulum angle, pendulum angular velocity and manipulated variable for the cat driver 302 are considered by weighting matrices Q and R for a quadratic quality measure J.
- the state variable controller 311 is initially designed for constant pitch and gripper mass using linearized crane-and-crane kinematics modeling. An optimum pole position determined for the state variable controller 311 then serves as the basis for a controller design according to Ackermann, in which the rope length and gripper mass are carried along as open parameters. This results in an adaptive controller with respect to the cable length.
- K 1 r K 2 r K 3 r m K G ⁇ p 0 ⁇ r m K + m G ⁇ G - m K ⁇ p 1 ⁇ r m K G ⁇ p 0 ⁇ r 2 - m K ⁇ p 2 ⁇ r .
- p 0 , p 1 , p 2 are coefficients of a characteristic polynomial determined by minimizing the above measure of merit J.
- M K SHOULD v K SHOULD ⁇ K 1 r ,
- the controller 331 for the lifting drive device 303 for adjusting the cable length is a time-optimal position controller.
- a feedforward control is additionally provided. This feedforward control does not release setpoints for set position and rope length until collision risk no longer exists.
- the setpoint for the cat position at an in FIG. 4 schematically shown bulk material transport from a starting point within a bulk material receiving area 404 to a predetermined bulk material emptying area 405 along a time-optimized trajectory 421 is only released when the crane gripper 402 is lifted, for example, from a ship. Likewise, the crane gripper 402 is lowered only at the level of a ship hatch when it is above the open ship hatch.
- a release of a trolley travel from the bulk material receiving area 404 in the ship to the bulk material emptying area 405 and a release of a lifting of the crane gripper 402 takes place only when the following condition is met: z L - r - 2 ⁇ x L - x K a K Max ⁇ r ⁇ > 0th
- the crane trolley 401 can thus no longer reach the ship's hatch edge before the crane gripper 402 is led out of the ship's hatch when it is raised further at a constant lifting speed.
- the crane gripper 402 does not reach the height of the ship's hatch edge before it is above it when the crane trolley 401 continues to move at the current speed.
- a freely selectable time for a residence time over the bulk material emptying area 405 begins to run. During this time, the crane gripper 402 moves further towards the center of the bulk material discharge area 405 or remains above the bulk material discharge area 405. After the residence time has elapsed, a return journey to the bulk goods receiving area takes place 404 triggered. For this purpose, set values for the cat position and cable length corresponding to a gripper position over or in the bulk material receiving area 404 are specified.
- FIG. 5 shown mounted on a crane system sensor arrangement for detecting load oscillations comprises an active marker 521 on the crane gripper 502 and a moving with the trolley 501 the marker 521 detecting camera 511.
- Signals detected by the camera 511 signals via a wireless connection 561, such as a W-LAN Connection, to a receiver station 506 on a bulk goods receiving area side crane boom end 504 and transmitted from there via a wired connection to an evaluation device 507.
- the evaluation device 507 can be arranged, for example, in an electric room of a crane.
- the camera 511 is powered by at least one generator connected to a pulley of the trolley 501.
- 502 load swayings are determined by means of a control-technical observer model for the crane gripper.
- a radio receiver station 505 can also be installed on a bulk goods unloading area-side crane boom end, which establishes a radio link to the camera 511 by means of a handover mechanism and forwards the signal received by the camera 511 to the evaluation device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
Description
Große Hubhöhen von mit einem Kran transportierten Lasten bergen Sicherheitsrisiken und erfordern bei einem Transport ohne Pendeldämpfung sehr viel Erfahrung eines Kranführers. Kritisch sind außerdem lange Auspendelvorgänge, woraus auch für einen Schüttguttransport eine deutlich schlechtere Umschlagsleistung resultiert. Erschwerend kommt bei Schüttgut hinzu, daß eine unregelmäßige Schüttgutverteilung in einem Lastaufnahmemittel, beispielsweise in einem Greifer, ohne Regelungseingriffe zu einem ungleichmäßigen Hebevorgang führen kann, durch welchen weitere Lastpendelungen verursacht werden. Speziell bei einem Entladen von Schiffen können ohne wirksame Pendeldämpfungsmaßnahme schwere Beschädigungen an Wänden von Schiffsladeräumen durch einen Krangreifer verursacht werden. Aufgrund dieser Problematik kommt eine voll- oder teilautomatisierte Entladung von Schiffen mit Schüttgut bisher nicht in Betracht.Large lifting heights of loads transported by a crane involve safety risks and require a great deal of crane operator experience for transport without pendulum suspension. Also critical are long Auspendelvorgänge, which also results in a bulk transport significantly worse handling performance. To make matters worse comes in bulk, that an irregular distribution of bulk material in a load handling device, for example in a gripper, without control intervention can lead to an uneven lifting process, which are caused by further load oscillations. Especially when unloading ships can be caused by a crane gripper without effective pendulum damping action severe damage to walls of ship holds. Due to this problem, a fully or partially automated unloading of ships with bulk material is not yet considered.
Versuche, Pendeldämpfungssystem für Containerkräne auf Schüttgutkräne zu adaptieren, sind bisher an erheblich zu langsamen Positionierungsvorgängen gescheitert, aus denen nicht akzeptable Umschlagsleistungen resultieren. Insbesondere erweisen sich Pendeldämpfungssysteme für Containerkräne als wenig geeignet, kontrollierte Lastpendelungen zur Steigerung der Umschlagleistung zuzulassen. Ein kontrolliertes Zulassen von Lastpendelungen sollte dabei insbesondere Randbedingungen einer Schiffsladeraumgeometrie Rechnung tragen, insbesondere im Hinblick auf Laderaumluken und Frachtraummaβe.Attempts to adapt pendulum damping system for container cranes to bulk cranes have hitherto failed at significantly slow positioning operations, resulting in unacceptable turnover rates. In particular, pendulum damping systems for container cranes prove to be less suitable for allowing controlled load oscillations to increase the handling capacity. Controlled permitting of load oscillations should take into account, in particular, boundary conditions of a ship cargo hold geometry, in particular with regard to load compartment hatches and cargo spaces.
In
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast anzugeben, das kritische Lastpendelungen unterdrückt und schnelle Umschlagzeiten beim Be- und Entladen von Schüttgutlasten bei gleichzeitiger Kollisionsvermeidung ermöglicht, sowie eine geeignete Implementierung des Verfahrens zu schaffen.The present invention has for its object to provide a method for damping oscillations of a guided by a crane bulk load, which suppresses critical load oscillations and fast turnaround times when loading and unloading bulk loads while collision avoidance allows, as well as to provide a suitable implementation of the method.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen, durch ein Steuerungsprogramm mit den in Anspruch 11 angegebenen Merkmalen und durch ein Kranautomatisierungssystem mit den in Anspruch 12 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a method with the features specified in
Entsprechend dem erfindungsgemäßen Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast stellt ein Regler zumindest eine Stellgröße für zumindest eine Antriebseinrichtung des Krans zur Bewegung der Schüttgutlast mit einer vorgegebenen Abweichung entlang einer zeitoptimierten Trajektorie bereit. Die zeitoptimierte Trajektorie ist unter Berücksichtigung eines Schwingungsmodells der durch den Kran geführten Schüttgutlast für eine Bewegung der Schüttgutlast von einem Startpunkt innerhalb eines Schüttgutaufnahmebereichs zu einem vorgebbaren Schüttgutentleerungsbereich ermittelt. Ein die Schüttgutlast aufnehmendes Lastaufnahmemittel wird an zumindest einem Überschwingpunkt innerhalb des Schüttgutentleerungsbereichs entleert. Die Abweichung, mit welcher die Schüttgutlast entlang der zeitoptimierten Trajektorie bewegt wird, kann beispielsweise durch Wahl eines Gütemaßes für einen Reglerentwurf, durch Festlegung von Gewichtungsfaktoren für das Gütemaß oder durch vorgebbare Reglerparameter beeinflußt werden.According to the method according to the invention for damping oscillations of a bulk material load guided by a crane, a controller provides at least one manipulated variable for at least one drive device of the crane for moving the bulk material load with a predetermined deviation along a time-optimized trajectory. Taking into account a vibration model of the bulk material load guided by the crane, the time-optimized trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material unloading area. A load-receiving means receiving the bulk material load is emptied at at least one overshoot point within the bulk material discharge area. The deviation with which the bulk material load is moved along the time-optimized trajectory can be influenced, for example, by selecting a quality measure for a controller design, by establishing weighting factors for the quality measure or by predeterminable controller parameters.
Darüber hinaus werden Sollwerte für eine Krankatzenposition und für eine Kranseillänge erst auf eine Freigabe durch ein Kollisionserkennungssystem zur Überwachung des Schüttgutaufnahme- und/oder -entleerungsbereichs freigegeben. Hierdurch wird zumindest eine Teilautomatisierung eines Schüttgutumschlags ermöglicht, die entsprechend bisherigen Lösungen nicht realisiert ist.In addition, setpoints for a crane paw position and for a crane rope length are only released for clearance by a collision detection system for monitoring the bulk material intake and / or unloading area. As a result, at least a partial automation of a bulk material handling is possible, which is not realized according to previous solutions.
Vorzugsweise ist die zeitoptimierte Trajektorie durch Minimierung eines quadratischen Gütemaßes für einen mit der zumindest einen Antriebseinrichtung gekoppelten Zustandsgrößenregler ermittelt. Zur Vereinfachung eines Reglerentwurfs kann der Zustandsgrößenregler für eine konstante Kranseillänge und eine vorgegebene durchschnittliche Schüttgutmasse entworfen sein. Auf diese Weise können robuste, verhältnismäßig einfach handhabbare Reglungssysteme realisiert werden.The time-optimized trajectory is preferably determined by minimizing a quadratic quality measure for a state-variable controller coupled to the at least one drive device. To simplify a controller design, the state variable controller can be designed for a constant crane pitch and a given average bulk mass be. In this way, robust, relatively easy to handle control systems can be realized.
Vorteilhafterweise wird zumindest eine Antriebseinrichtung des Krans abgeschaltet, sobald die Schüttgutlast den Schüttgutentleerungsbereich erreicht. Die Antriebseinrichtung kann beispielsweise ein Motor für eine Kranseilwinde und/oder für einen Krankatzenantrieb sein. Nach einer vorgebbaren Verweilzeit zur Lastaufnahmemittelbewegung zum Schüttgutaufnahmebereich wird die Antriebseinrichtung wieder zugeschaltet. Während der Verweilzeit wird das Lastaufnahmemittel entleert. Dies bietet den Vorteil, daß keine Zeitverzögerungen durch eine Ausregelung des Lastaufnahmemittels in eine Ruheposition entstehen.Advantageously, at least one drive device of the crane is switched off as soon as the bulk material load reaches the bulk material discharge area. The drive device can be, for example, a motor for a crane winch and / or for a crane-drive. After a predefined residence time for the lifting device movement to the bulk material receiving area the drive device is switched on again. During the dwell time, the load handling device is emptied. This offers the advantage that no time delays caused by a compensation of the load-receiving means in a rest position.
Das erfindungsgemäße Steuerungsprogramm ist in einen Arbeitsspeicher eines Rechners ladbar und weist zumindest einen Codeabschnitt auf, bei dessen Ausführung vorstehend beschriebene Verfahrensschritte ausgeführt werden, wenn das Computerprogramm im Rechner abläuft. Das erfindungsgemäße Kranautomatisierungssystem umfaßt einen Regler für zumindest eine Antriebseinrichtung des Krans zur Bewegung der Schüttgutlast mit höchstens einer vorgebbaren Abweichung entlang einer zeitoptimierten Trajektorie. Dabei ist die Trajektorie unter Berücksichtigung eines Schwingungsmodells der durch den Kran geführten Schüttgutlast für eine Bewegung der Schüttgutlast von einem Startpunkt innerhalb eines Schüttgutaufnahmebereichs zu einem vorgebbaren Schüttgutentleerungsbereich ermittelt. Außerdem ist ein Steuerungsmittel zur Entleerung eines die Schüttgutlast aufnehmenden Lastaufnahmemittels an zumindest einem Überschwingpunkt innerhalb des Schüttgutentleerungsbereichs vorgesehen.The control program according to the invention can be loaded into a main memory of a computer and has at least one code section, in the execution of which method steps described above are executed when the computer program runs in the computer. The crane automation system according to the invention comprises a controller for at least one drive device of the crane for moving the bulk material load with at most a predefinable deviation along a time-optimized trajectory. In this case, taking into account a vibration model of the bulk material load guided by the crane, the trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area. In addition, a control means for emptying a load receiving the bulk material load is provided at least one overshoot point within the bulk material discharge area.
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt
Figur 1- ein Ablaufdiagramm für ein Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast,
- Figur 2a-c
- eine schematische Darstellung von Krankatz- und -greiferkinematik zur Erläuterung einer regelungstechnischen Modellierung eines Kransystems
- Figur 3
- ein regelungstechnisches Blockschaltbild für eine linearisierte Modellierung von Krankatz- und-greiferkinematik und für eine Kranregelung,
- Figur 4
- eine schematische Darstellung eines Kransystems zur Schüttgutbe- und -entladung,
- Figur 5
- eine an einer Krananlage montierte Sensoranordnung zur Erfassung von Lastpendelungen.
- FIG. 1
- a flow chart for a method for damping oscillations of a guided by a crane bulk load,
- Figure 2a-c
- a schematic representation of crane set and gripper kinematics for explaining a control engineering modeling of a crane system
- FIG. 3
- a control-engineering block diagram for a linearized modeling of crane-tackle and gripper kinematics and for crane control,
- FIG. 4
- a schematic representation of a crane system for bulk material loading and unloading,
- FIG. 5
- a mounted on a crane system sensor arrangement for detecting load oscillations.
Entsprechend dem in
Nachfolgend wird überprüft, ob ein die Schüttgutlast aufnehmendes Lastaufnahmemittel in einem kritischen Bereich ist, in dem durch Lastpendelungen andere Gegenstände in Umgebung des Lastaufnahmemittels beschädigt werden könnten (Schritt 102). Hierdurch soll beispielsweise vermieden werden, daß eine Ladewand in einem Schiff oder Ladelukenkanten durch einen bei Beschleunigung einer Krankatze pendelnden Krangreifer beschädigt wird. Ist das Lastaufnahmemittel noch in einem kritischen Bereich, so wird es weiter angehoben (Schritt 103). Andernfalls wird zumindest eine Antriebseinrichtung des Krans, beispielsweise ein Katzantrieb und/oder ein Hubantrieb, durch einen Kranregler derart geregelt, daß die Schüttgutlast mit höchstens einer vorgebbaren Abweichung entlang der ermittelten Trajektorie bewegt wird (Schritt 104). Hierbei wird fortlaufend überprüft, ob eine Grenze des Schüttgutentleerungsbereichs erreicht ist (Schritt 105). Ist der Schüttgutentleerungsbereich erreicht, beginnt eine Verweilzeit zu laufen, deren Ablauf überprüft wird (Schritt 106).Subsequently, it is checked whether a load-receiving means receiving the bulk material load is in a critical area in which load objects could damage other objects in the surroundings of the load-receiving means (step 102). This is to be avoided, for example, that a loading wall in a ship or hatch edges is damaged by a swinging in acceleration of a crane crane gripper. Is the load handler still in a critical Area, it is further raised (step 103). Otherwise, at least one drive device of the crane, for example a cat drive and / or a linear actuator, is controlled by a crane controller such that the bulk material load is moved along the determined trajectory with at most one predeterminable deviation (step 104). In this case, it is continuously checked whether a limit of the bulk material discharge area has been reached (step 105). When the bulk material discharge area is reached, a dwell time starts to run, the sequence of which is checked (step 106).
Ist die Verweilzeit noch nicht abgelaufen, wird das Lastaufnahmemittel auch an zumindest einem Überschwingpunkt unter Ausnutzung einer Pendelbewegung des Lastaufnahmemittels innerhalb des Schüttgutentleerungsbereichs entleert (Schritt 107). Da keine Ausregelung der Schüttgutlast in eine Ruheposition vor einem Absetzvorgang vorgenommen wird, ergibt sich hieraus eine erhebliche Verkürzung von Umschlagzeiten zwischen Be- und Entladung. Dadurch daß die Schüttgutlast innerhalb eines vorgebbaren Toleranzbereichs entlang der ermittelten Trajektorie geführt wird, werden Lastpendelungen zwar nicht völlig eliminiert, jedoch zumindest auf ein sicherheitsunkritisches Maß begrenzt.If the dwell time has not yet expired, the load receiving means is also emptied at least one overshoot point by utilizing a pendulum movement of the load receiving means within the bulk material discharge area (step 107). Since no compensation of the bulk material load is carried out in a rest position before a settling, this results in a significant reduction in turnover times between loading and unloading. The fact that the bulk material load is guided within a predetermined tolerance range along the determined trajectory, although load oscillations are not completely eliminated, but at least limited to a non-critical measure.
Ist die Verweilzeit abgelaufen, erfolgt eine Rückfahrt zum Schüttgutaufnahmebereich (Schritt 108). Hierzu wird der Kranregler von einer Ziellage über dem Schüttgutentleerungsbereich auf eine Ziellage über dem Schüttgutaufnahmebereich umgeschaltet. Dadurch werden Krankatze und Lastaufnahmemittel in Richtung Schüttgutaufnahmebereich beschleunigt. Hat das Lastaufnahme sich obigem kritischen Bereich weit genug genähert, wird ein endgültiger Sollwert für eine Kranseilverstellung aufgeschaltet und das Lastaufnahmemittel auf eine gewünschte Position abgesenkt. Damit ist ein Arbeitszyklus eines Schüttgutentladevorgangs beendet.If the residence time has expired, a return to the bulk material receiving area takes place (step 108). For this purpose, the crane controller is switched from a target position above the bulk material discharge area to a target position above the bulk material receiving area. As a result, crane trolleys and load handling devices are accelerated in the direction of the bulk material receiving area. If the load pick-up has approached the above critical range far enough, a final setpoint for a crane cable adjustment is activated and the load-carrying means is switched to a desired one Lowered position. This completes a work cycle of a bulk material unloading operation.
Die in den
Für die Krankatze 201 ergibt sich in x-Richtung - also in Verfahrrichtung - folgende Bewegungsgleichung (siehe
mit Krankatzenmasse mK, Krankatzenkoordinate xK, Krankatzenantriebskraft FK, Seilzugkraft S und Krangreiferauslenkung ϑ.For
with crane paw mass m K , crane set coordinate x K , crane paw drive force F K , cable pull force S and crane grab deflection θ.
Für den Krangreifer 202 ergeben sich entsprechend
In z-Richtung - also in Lasthubrichtung - ergibt sich:
mit Krangreifermasse mG und Krangreiferkoordinaten xG, zG.For the
In z-direction - ie in load direction - results:
with crane gripper mass m G and crane gripper coordinates x G , z G.
Als kinematische Bedingungen ergeben sich:
mit Kranseillänge r.As kinematic conditions result:
with crane rope length r.
Für die kinetische Energie von Krankatze 201 und Krangreifer 202 gilt:
Entsprechend folgendem Ansatz werden aus der kinetischen Energie die Lagrange'schen Bewegungsgleichungen abgeleitet:
Hierin sind QK verallgemeinerte Kräfte und qK verallgemeinerte Koordinaten. Als verallgemeinerte Koordinaten werden im vorliegenden Ausführungsbeispiel x und ϑ verwendet, während Krankatzenantriebskraft FK und Kraft Fϑ auf den Krangreifer 202 in Richtung Koordinate ϑ als verallgemeinerte Kräfte ausgewählt werden. Für die Kraft Fϑ ergibt sich:
Damit ergeben sich folgende Bewegungsgleichungen für die Koordinaten x und ϑ:
Die Bewegungsgleichungen lassen sich für kleine Auslenkungswinkel ϑ mit folgenden Näherungen linearisieren:
Damit ergeben sich folgende linearisierte Bewegungsgleichungen:
In
Der Regler 321 und der Vorfilter 322 geben als Stellgröße für die Katzantriebseinrichtung 302 einen Drehmomentsollwert an einer Seiltrommel der Katzantriebseinrichtung vor. Dieser Drehmomentsollwert wird mit einem durch den Zustandsgrößenregler 311 bereitgestellten Drehmomentwert für die Katzantriebseinrichtung 302 verglichen. Basierend auf einem Vergleichsergebnis wird eine Stellgröße für die Katzantriebseinrichtung 302 vorgegeben. Ein Drehmoment an einer Seiltrommel der Hubantriebseinrichtung 303 ist Stellgröße für eine Regelung der Seillänge r, die wiederum adaptiv den Zustandsgröβenregler 311 beeinflußt.The
Eine Positionsregelung des Krangreifers 202 wird in eine Positionsregelung der Krankatze 201 und eine Regelung der Seillänge aufgeteilt. Die Positionsregelung der Krankatze erfolgt durch einen Positionsregler mit einer unterlagerten Geschwindigkeitsregelung. Der Positionsregler ist im vorliegenden Ausführungsbeispiel ein Proportionalregler mit Verstärkungsfaktor KP sowie zusätzlicher Stellgrößenbegrenzung hinsichtlich Betrag und Steigung.A position control of the
Der Ausgang des Positionsreglers ist Sollwert für eine unterlagerte Zustandsgrößenreglung einer Katzgeschwindigkeit, für die auch der Vorfilter 322 vorgesehen ist. Eine gewünschte Pollage für den Zustandsgrößenregler 311 wird durch eine Optimierung nach Ricatti für eine mittlere Seillänge und eine mittlere Greifermasse ermittelt. Bei der Optimierung werden Katzgeschwindigkeit, Pendelwinkel, Pendelwinkelgeschwindigkeit und Stellgröße für die Katzantriebseinrichtung 302 durch Gewichtungsmatrizen Q und R für ein quadratisches Gütemaß J berücksichtigt. Das Gütemaß J hat folgende Form:
mit Stellgröße MK STELL.The output of the position controller is setpoint for a subordinate state variable control of a cat speed, for which the
with manipulated variable M K STELL .
Durch das Gütemaß J wird dabei Anforderungen Rechnung getragen, daß einerseits ein Übergang eines beliebigen Anfangszustands in einen gewünschten Endzustand nicht zu langsam erfolgen soll und Überschwingungen nicht zu stark sein sollen, und daß andererseits eine für den Übergang erforderliche Stellenenergie im Sinne eines Stellgrößenverbrauchs möglichst klein sein soll.By the quality measure J requirements are taken into account that on the one hand a transition of any initial state should not be too slow in a desired final state and overshoots should not be too strong, and that on the other hand be required for the transition point energy in terms of manipulated variable consumption as small as possible should.
Der Zustandsgrößenregler 311 wird mit Hilfe der linearisierten Modellierung von Krankatz- und -greiferkinematik zunächst für eine konstante Seillänge und eine mittlere Greifermasse entworfen. Eine dabei ermittelte optimale Pollage für den Zustandsgrößenregler 311 dient dann als Basis für einen Reglerentwurf nach Ackermann, bei dem Seillänge und Greifermasse als offene Parameter mitgeführt werden. Dadurch ergibt sich ein bezüglich der Seillänge adaptiver Regler. Eine den Zustandsgrößenregler 311 beschreibende Zustandsrückführung K(r) für das Drehmoment MK der Katzantriebseinrichtung 302 lautet damit:
mit
wobei p0, p1, p2 Koeffizienten eines durch Minimierung des obigen Gütemaßes J bestimmten charakteristischen Polynoms sind.The
With
where p 0 , p 1 , p 2 are coefficients of a characteristic polynomial determined by minimizing the above measure of merit J.
Weiterhin gilt für den Vorfilter 322 folgende Beziehung, um mit dem Zustandsgrößenregler 311 eine stationäre Genauigkeit zu erreichen:
Der Regler 331 für die Hubantriebseinrichtung 303 zur Einstellung der Seillänge ist ein zeitoptimaler Positionsregler.The
Da sich der Krangreifer nur innerhalb eines bestimmten Bereichs bewegen sollte, beispielsweise sollte er nicht gegen eine Kaimauer oder eine Schiffsluke schlagen, ist zusätzlich eine Vorsteuerung vorgesehen. Diese Vorsteuerung gibt Sollwerte Sollwerte für Katzposition und Seillänge erst dann freigibt, wenn keine Kollisionsgefahr mehr besteht. Der Sollwert für die Katzposition bei einem in
Eine Freigabe einer Katzfahrt vom Schüttgutaufnahmebereich 404 im Schiff zum Schüttgutentleerungsbereich 405 und eine Freigabe eines Anhebens des Krangreifers 402 erfolgen erst dann, wenn folgende Bedingung erfüllt ist:
Auch bei maximaler Beschleunigung kann die Krankatze 401 somit die Schiffslukenkante nicht mehr erreichen, bevor der Krangreifer 402 aus der Schiffsluke herausgeführt ist, wenn er mit konstanter Hubgeschwindigkeit weiter angehoben wird.Even with maximum acceleration, the
Ein Absenken des Krangreifers 402 im Schüttgutaufnahmebereich 404 nach einer Rückfahrt zum Schiff wird erst freigegeben, wenn folgende Bedingung erfüllt ist:
Auch bei Absenken des Krangreifers 402 mit maximaler Geschwindigkeit erreicht der Krangreifer 402 somit nicht die Höhe der Schiffslukenkante, bevor er sich darüber befindet, wenn die Krankatze 401 mit momentaner Geschwindigkeit weiterfährt.Thus, even when the
Erreicht der Krangreifer 402 den Schüttgutentleerungsbereich 405, so beginnt eine frei wählbare Zeit für eine Verweildauer über dem Schüttgutentleerungsbereich 405 zu laufen. Während dieser Zeit bewegt sich der Krangreifer 402 weiter in Richtung Mittelpunkt des Schüttgutentleerungsbereichs 405 bzw. verharrt über dem Schüttgutentleerungsbereich 405. Nach Ablauf der Verweildauer wird eine Rückfahrt zum Schüttgutaufnahmebereich 404 ausgelöst. Hierzu werden Sollwerte für Katzposition und Seillänge entsprechend einer Greiferposition über bzw. im Schüttgutaufnahmebereich 404 vorgegeben.If the
Die in
Die Anwendung der vorliegenden Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt.The application of the present invention is not limited to the described embodiment.
Claims (12)
- Method for damping oscillations of a bulk goods load guided by a crane, in which- a control unit (321) supplies at least one actuating variable for at least one drive mechanism of the crane for moving the bulk goods load with a predefined deviation along a time-optimized trajectory (421), which trajectory is determined, with due regard to a vibration model of the bulk goods load guided by the crane, for a movement of the bulk goods load from a starting point within a bulk goods receiving region (404) to a predefinable bulk goods emptying region (405),- a bulk-carrying load-receiving means (202, 402, 502) is emptied at at least one swing-over point within the bulk goods emptying region (405),characterized in that- desired values for a crane trolley position and for a crane cable length are enabled only when approved by a collision detection system for monitoring the bulk goods receiving and/or emptying region (404, 405),- a check is made as to whether the bulk-carrying load-receiving means (202, 402, 502) is in a critical region in which other objects in the surroundings of the load-receiving means (202, 402, 502) could be damaged by load oscillations,- the drive mechanism of the crane is controlled by a crane control unit such that the bulk goods load is moved with at most a predefinable deviation along the determined trajectory (421) once the load instrument is no longer in the critical region.
- Method according to Claim 1,
in which the time-optimized trajectory (421) is determined by minimization of a quadratic quality measure for a state variable control unit coupled to the at least one drive mechanism. - Method according to Claim 2,
in which the state variable control unit is a Ricatti control unit. - Method according to one of Claims 2 or 3,
in which the state variable control unit is designed for a constant crane cable length and a predefined average bulk goods mass. - Method according to one of Claims 1 to 4,
in which the at least one drive mechanism is switched off as soon as the bulk goods load reaches the bulk goods emptying region (405), and after a predefinable dwell time is switched on again for movement of the load-receiving means to the bulk goods receiving region (404), and in which the load-receiving means (202, 402, 502) is emptied during the dwell time. - Method according to one of Claims 1 to 5,
in which the at least one drive mechanism of the crane is a motor for a crane cable winch and/or for a crane trolley drive. - Method according to one of Claims 1 to 6,
in which the load oscillations are determined by means of an active marker on the load-receiving means and by means of a camera which is moved with a crane trolley (201, 401, 501) and registers the marker (511). - Method according to Claim 7,
in which signals registered by the camera (511) are transmitted via a radio link (561) to a receiver station (506) on a crane jib end (504) situated on the bulk goods receiving region side, and from there via a cable-bound link to an evaluating device (507). - Method according to one of Claims 7 or 8,
in which the camera is powered by at least one generator connected to a cable pulley of the crane trolley (201, 401, 501). - Method according to one of Claims 7 to 9,
in which load oscillations are additionally determined by means of a control engineering observer model for the load-receiving means (202, 402, 502). - Control program, which is loadable into a main memory of a computer and has at least one code portion and in the embodiment whereof:- a control unit (321) supplies at least one actuating variable for at least one drive mechanism of the crane for moving the bulk goods load with a predefined deviation along a time-optimized trajectory (421), which trajectory is determined, with due regard to a vibration model of the bulk goods load guided by the crane, for a movement of the bulk goods load from a starting point within a bulk goods receiving region (404) to a predefinable bulk goods emptying region (405),- a bulk-carrying load-receiving means is emptied at at least one swing-over point within the bulk goods emptying region (405),when the computer program is running in the computer,
characterized in that- desired values for a crane trolley position and for a crane cable length are enabled only when approved by a collision detection system for monitoring the bulk goods receiving and/or emptying region (404, 405),- a check is made as to whether a bulk-carrying load-receiving means (202, 402, 502) is in a critical region in which other objects in the surroundings of the load-receiving means (202, 402, 502) could be damaged by load oscillations,- the drive mechanism of the crane is controlled by a crane control unit such that the bulk goods load is moved with at most a predefinable deviation along the determined trajectory (421) once the load instrument is no longer in the critical region. - Crane automation system for damping oscillations of a bulk goods load guided by a crane, comprising- a control unit for at least one drive mechanism of the crane for moving the bulk goods load with at most a predefinable deviation along a time-optimized trajectory, which trajectory is determined, with due regard to a vibration model of the bulk goods load guided by the crane, for a movement of the bulk goods load from a starting point within a bulk goods receiving region to a predefinable bulk goods emptying region,- a control means for emptying of a bulk-carrying load-receiving means at at least one swing-over point within the bulk goods emptying region,characterized by- a collision detection system for monitoring the bulk goods receiving and/or emptying region (404, 405), as well as for approving desired values for a crane trolley position and for a crane cable length.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08007630A EP2110357B1 (en) | 2008-04-18 | 2008-04-18 | Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system |
AT08007630T ATE488466T1 (en) | 2008-04-18 | 2008-04-18 | METHOD FOR DAMPING SWINGS OF A BULK LOAD CARRIED BY A CRANE, CONTROL PROGRAM AND CRANE AUTOMATION SYSTEM |
DE502008001820T DE502008001820D1 (en) | 2008-04-18 | 2008-04-18 | Method for damping oscillations of a bulk material load guided by a crane, control program and crane automation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08007630A EP2110357B1 (en) | 2008-04-18 | 2008-04-18 | Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2110357A1 EP2110357A1 (en) | 2009-10-21 |
EP2110357B1 true EP2110357B1 (en) | 2010-11-17 |
Family
ID=39711940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08007630A Not-in-force EP2110357B1 (en) | 2008-04-18 | 2008-04-18 | Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2110357B1 (en) |
AT (1) | ATE488466T1 (en) |
DE (1) | DE502008001820D1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202019102393U1 (en) | 2019-03-08 | 2020-06-09 | Liebherr-Werk Biberach Gmbh | Crane and device for its control |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2637696A1 (en) * | 1976-08-21 | 1978-02-23 | Licentia Gmbh | Gantry crab position regulation system - has detector-regulator generating control voltage for crab driving motor |
SE429748B (en) * | 1981-09-21 | 1983-09-26 | Asea Ab | KEEP LOADING GOODS DURING SIDE MOVEMENT BY A GOOD PREVENTING TRUCK |
DE202005002315U1 (en) * | 2005-02-11 | 2005-06-16 | Isam Ag | Bulk grain cargo loading/unloading system has bucket grab position continually monitored by sensor |
-
2008
- 2008-04-18 EP EP08007630A patent/EP2110357B1/en not_active Not-in-force
- 2008-04-18 DE DE502008001820T patent/DE502008001820D1/en active Active
- 2008-04-18 AT AT08007630T patent/ATE488466T1/en active
Also Published As
Publication number | Publication date |
---|---|
DE502008001820D1 (en) | 2010-12-30 |
EP2110357A1 (en) | 2009-10-21 |
ATE488466T1 (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3461783B1 (en) | Lifting device and method for controlling a lifting device | |
EP3619111B1 (en) | Method and device for lifting a load | |
EP1958915B1 (en) | Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space | |
EP2636632B1 (en) | Crane controls with drive restriction | |
EP3409636A1 (en) | Method for damping torsional vibrations of a load-bearing element of a lifting device | |
EP2636635B1 (en) | Crane controls with rope force mode | |
EP2272786B1 (en) | Crane control for controlling a crane's hoisting gear | |
EP3653562A1 (en) | Method and oscillating regulator for regulating oscillations of an oscillatory technical system | |
Ngo et al. | Skew control of a quay container crane | |
EP2110357B1 (en) | Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system | |
DE10029579B4 (en) | Method for orienting the load in crane installations | |
EP3487803A1 (en) | Operating method for a crane installation, in particular for a container crane | |
DE4025749A1 (en) | Automatic operation of revolving crane without load swings - involves controlled timing of grab acceleration and retardation adjusted to period of natural frequency of oscillation | |
DE69432653T2 (en) | Control and control system for the speed of a moving, oscillating load and lifting device with such a system | |
EP3652104B1 (en) | Control equipment for a hoisting gear and method for operating the same | |
JPH0228493A (en) | Control for swing suppressing operation for suspended load | |
EP4174013A1 (en) | Method for moving a load with a crane | |
DE102005002192B4 (en) | Method for operating a crane installation, in particular a container crane, and crane installation, in particular a container crane | |
EP2546185B1 (en) | Vibration absorber | |
EP4186847B1 (en) | Trajectory planning with flexible reordering functionality - modified endpoint | |
KR20050063440A (en) | Automated overhead cranes and motion control method for the same | |
EP4211069A1 (en) | Tower crane, method and control unit for operating a tower crane, trolley and trolley travel unit | |
EP3762324B1 (en) | Method for controlling and in particular monitoring an actuator, in particular of a winch, a hoist or a crane, and system for carrying out such a method | |
EP4406905A1 (en) | Method and device for operating a boom slewing crane and boom slewing crane | |
WO2004016540A1 (en) | Method for controlling the operation of a trolley |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081022 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502008001820 Country of ref document: DE Date of ref document: 20101230 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101117 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110217 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110317 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110317 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110228 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110818 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008001820 Country of ref document: DE Effective date: 20110818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110502 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120418 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 488466 Country of ref document: AT Kind code of ref document: T Effective date: 20130418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130418 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200619 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008001820 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 |