[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2110357B1 - Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system - Google Patents

Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system Download PDF

Info

Publication number
EP2110357B1
EP2110357B1 EP08007630A EP08007630A EP2110357B1 EP 2110357 B1 EP2110357 B1 EP 2110357B1 EP 08007630 A EP08007630 A EP 08007630A EP 08007630 A EP08007630 A EP 08007630A EP 2110357 B1 EP2110357 B1 EP 2110357B1
Authority
EP
European Patent Office
Prior art keywords
crane
load
bulk goods
bulk
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08007630A
Other languages
German (de)
French (fr)
Other versions
EP2110357A1 (en
Inventor
Jan Lubricht
Helmut Marks
Carsten Steinmetz
Stephan Wöbse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08007630A priority Critical patent/EP2110357B1/en
Priority to AT08007630T priority patent/ATE488466T1/en
Priority to DE502008001820T priority patent/DE502008001820D1/en
Publication of EP2110357A1 publication Critical patent/EP2110357A1/en
Application granted granted Critical
Publication of EP2110357B1 publication Critical patent/EP2110357B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/94Safety gear for limiting slewing movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical

Definitions

  • pendulum damping systems for container cranes prove to be less suitable for allowing controlled load oscillations to increase the handling capacity. Controlled permitting of load oscillations should take into account, in particular, boundary conditions of a ship cargo hold geometry, in particular with regard to load compartment hatches and cargo spaces.
  • a method according to the preamble of claim 1 which allows for the discharge of bulk material with lateral displacement of the load by a trolley a time-optimized pendulum motion during Katzfahrt by the process of the trolley is automated.
  • the pendulum movement of the lifting device is divided into different time periods and the different time periods are associated with positive or negative accelerations of the trolley.
  • This serves a time-optimized unloading of the load-receiving means by controlling the movement of the trolley.
  • the control causes an always constant movement or a constant time intervals associated acceleration of the trolley. Any changes in the process and ambient conditions that affect the load handler are largely disregarded.
  • An interactive optimization by a controlled vibration damping for collision avoidance with simultaneous time-optimized trajectory does not take place.
  • the present invention has for its object to provide a method for damping oscillations of a guided by a crane bulk load, which suppresses critical load oscillations and fast turnaround times when loading and unloading bulk loads while collision avoidance allows, as well as to provide a suitable implementation of the method.
  • a controller provides at least one manipulated variable for at least one drive device of the crane for moving the bulk material load with a predetermined deviation along a time-optimized trajectory.
  • the time-optimized trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material unloading area.
  • a load-receiving means receiving the bulk material load is emptied at at least one overshoot point within the bulk material discharge area.
  • the deviation with which the bulk material load is moved along the time-optimized trajectory can be influenced, for example, by selecting a quality measure for a controller design, by establishing weighting factors for the quality measure or by predeterminable controller parameters.
  • setpoints for a crane paw position and for a crane rope length are only released for clearance by a collision detection system for monitoring the bulk material intake and / or unloading area.
  • a collision detection system for monitoring the bulk material intake and / or unloading area.
  • the time-optimized trajectory is preferably determined by minimizing a quadratic quality measure for a state-variable controller coupled to the at least one drive device.
  • the state variable controller can be designed for a constant crane pitch and a given average bulk mass be. In this way, robust, relatively easy to handle control systems can be realized.
  • At least one drive device of the crane is switched off as soon as the bulk material load reaches the bulk material discharge area.
  • the drive device can be, for example, a motor for a crane winch and / or for a crane-drive. After a predefined residence time for the lifting device movement to the bulk material receiving area the drive device is switched on again. During the dwell time, the load handling device is emptied. This offers the advantage that no time delays caused by a compensation of the load-receiving means in a rest position.
  • the control program according to the invention can be loaded into a main memory of a computer and has at least one code section, in the execution of which method steps described above are executed when the computer program runs in the computer.
  • the crane automation system according to the invention comprises a controller for at least one drive device of the crane for moving the bulk material load with at most a predefinable deviation along a time-optimized trajectory.
  • the trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area.
  • a control means for emptying a load receiving the bulk material load is provided at least one overshoot point within the bulk material discharge area.
  • a time-optimized trajectory for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area is first determined, taking into account a vibration model of the bulk material load guided by the crane (step 101).
  • the time-optimized trajectory is determined in the present exemplary embodiment by minimizing a quadratic quality measure for a state variable controller coupled to the at least one drive device.
  • the state variable controller is a Ricatti controller, as will be explained in more detail below.
  • a load-receiving means receiving the bulk material load is in a critical area in which load objects could damage other objects in the surroundings of the load-receiving means (step 102). This is to be avoided, for example, that a loading wall in a ship or hatch edges is damaged by a swinging in acceleration of a crane crane gripper. Is the load handler still in a critical Area, it is further raised (step 103). Otherwise, at least one drive device of the crane, for example a cat drive and / or a linear actuator, is controlled by a crane controller such that the bulk material load is moved along the determined trajectory with at most one predeterminable deviation (step 104). In this case, it is continuously checked whether a limit of the bulk material discharge area has been reached (step 105). When the bulk material discharge area is reached, a dwell time starts to run, the sequence of which is checked (step 106).
  • the load receiving means is also emptied at least one overshoot point by utilizing a pendulum movement of the load receiving means within the bulk material discharge area (step 107). Since no compensation of the bulk material load is carried out in a rest position before a settling, this results in a significant reduction in turnover times between loading and unloading. The fact that the bulk material load is guided within a predetermined tolerance range along the determined trajectory, although load oscillations are not completely eliminated, but at least limited to a non-critical measure.
  • step 108 a return to the bulk material receiving area takes place (step 108).
  • the crane controller is switched from a target position above the bulk material discharge area to a target position above the bulk material receiving area.
  • a target position above the bulk material receiving area As a result, crane trolleys and load handling devices are accelerated in the direction of the bulk material receiving area.
  • a final setpoint for a crane cable adjustment is activated and the load-carrying means is switched to a desired one Lowered position. This completes a work cycle of a bulk material unloading operation.
  • FIG. 2a-c schematically illustrated crane set and gripper kinematics used to derive a control engineering modeling of a crane system, which forms the basis for a controller design described below.
  • a trolley gripper system with a crane trolley 201 and a crane gripper 202 connected thereto via a crane cable 203 represents, from a control engineering point of view, a pendulum to be controlled.
  • FIG. 3 is a control engineering block diagram for a linearized modeling of crane set and gripper kinematics and shown for a crane control.
  • the block diagram includes a controlled system 301, which the above a kitten drive means 302 for moving the crane trolley 201 in the x direction, a lifting drive means 303 for moving the crane gripper 202 in the z direction, a state size controller 311, a controller 321 and a pre-filter 322 for the cat propulsion device and a controller 331 for the Hubantriebs heard (see also Figures 2a-c ).
  • the controller 321 and the pre-filter 322 provide as a manipulated variable for the Katzantriebs issued 302 a torque setpoint on a cable drum of the Katzantriebs announced.
  • This torque command value is compared with a torque value for the cat drive device 302 provided by the state variable controller 311. Based on a comparison result, a manipulated variable for the cat drive device 302 is specified.
  • a torque on a cable drum of the lifting drive device 303 is manipulated variable for a control of the rope length r, which in turn adaptively affects the state size controller 311.
  • a position control of the crane gripper 202 is divided into a position control of the crane trolley 201 and a control of the cable length.
  • the position control of the trolley is performed by a position controller with a subordinate speed control.
  • the position controller is in the present embodiment, a proportional controller with gain K P and additional control variable limit in terms of magnitude and slope.
  • the output of the position controller is setpoint for a subordinate state variable control of a cat speed, for which the pre-filter 322 is also provided.
  • a desired pole position for the state variable controller 311 is achieved by optimization according to Ricatti for a medium rope length and a mean grip mass.
  • cat speed, pendulum angle, pendulum angular velocity and manipulated variable for the cat driver 302 are considered by weighting matrices Q and R for a quadratic quality measure J.
  • the state variable controller 311 is initially designed for constant pitch and gripper mass using linearized crane-and-crane kinematics modeling. An optimum pole position determined for the state variable controller 311 then serves as the basis for a controller design according to Ackermann, in which the rope length and gripper mass are carried along as open parameters. This results in an adaptive controller with respect to the cable length.
  • K 1 r K 2 r K 3 r m K G ⁇ p 0 ⁇ r m K + m G ⁇ G - m K ⁇ p 1 ⁇ r m K G ⁇ p 0 ⁇ r 2 - m K ⁇ p 2 ⁇ r .
  • p 0 , p 1 , p 2 are coefficients of a characteristic polynomial determined by minimizing the above measure of merit J.
  • M K SHOULD v K SHOULD ⁇ K 1 r ,
  • the controller 331 for the lifting drive device 303 for adjusting the cable length is a time-optimal position controller.
  • a feedforward control is additionally provided. This feedforward control does not release setpoints for set position and rope length until collision risk no longer exists.
  • the setpoint for the cat position at an in FIG. 4 schematically shown bulk material transport from a starting point within a bulk material receiving area 404 to a predetermined bulk material emptying area 405 along a time-optimized trajectory 421 is only released when the crane gripper 402 is lifted, for example, from a ship. Likewise, the crane gripper 402 is lowered only at the level of a ship hatch when it is above the open ship hatch.
  • a release of a trolley travel from the bulk material receiving area 404 in the ship to the bulk material emptying area 405 and a release of a lifting of the crane gripper 402 takes place only when the following condition is met: z L - r - 2 ⁇ x L - x K a K Max ⁇ r ⁇ > 0th
  • the crane trolley 401 can thus no longer reach the ship's hatch edge before the crane gripper 402 is led out of the ship's hatch when it is raised further at a constant lifting speed.
  • the crane gripper 402 does not reach the height of the ship's hatch edge before it is above it when the crane trolley 401 continues to move at the current speed.
  • a freely selectable time for a residence time over the bulk material emptying area 405 begins to run. During this time, the crane gripper 402 moves further towards the center of the bulk material discharge area 405 or remains above the bulk material discharge area 405. After the residence time has elapsed, a return journey to the bulk goods receiving area takes place 404 triggered. For this purpose, set values for the cat position and cable length corresponding to a gripper position over or in the bulk material receiving area 404 are specified.
  • FIG. 5 shown mounted on a crane system sensor arrangement for detecting load oscillations comprises an active marker 521 on the crane gripper 502 and a moving with the trolley 501 the marker 521 detecting camera 511.
  • Signals detected by the camera 511 signals via a wireless connection 561, such as a W-LAN Connection, to a receiver station 506 on a bulk goods receiving area side crane boom end 504 and transmitted from there via a wired connection to an evaluation device 507.
  • the evaluation device 507 can be arranged, for example, in an electric room of a crane.
  • the camera 511 is powered by at least one generator connected to a pulley of the trolley 501.
  • 502 load swayings are determined by means of a control-technical observer model for the crane gripper.
  • a radio receiver station 505 can also be installed on a bulk goods unloading area-side crane boom end, which establishes a radio link to the camera 511 by means of a handover mechanism and forwards the signal received by the camera 511 to the evaluation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

In a process to dampen the pendulum motion of a crane load consisting of bulk aggregate solids, a regulator sets a value for the motor power output setting the load in motion. The value initiates the motion along a predetermined time-optimised trajectory. This trajectory is determined by an oscillation model relating to the aggregate solid load, from a starting point within the load take-up point towards a predetermined discharge point. The load is discharged while still in motion over the release point. Further claimed are a control program and an automated crane system.

Description

Große Hubhöhen von mit einem Kran transportierten Lasten bergen Sicherheitsrisiken und erfordern bei einem Transport ohne Pendeldämpfung sehr viel Erfahrung eines Kranführers. Kritisch sind außerdem lange Auspendelvorgänge, woraus auch für einen Schüttguttransport eine deutlich schlechtere Umschlagsleistung resultiert. Erschwerend kommt bei Schüttgut hinzu, daß eine unregelmäßige Schüttgutverteilung in einem Lastaufnahmemittel, beispielsweise in einem Greifer, ohne Regelungseingriffe zu einem ungleichmäßigen Hebevorgang führen kann, durch welchen weitere Lastpendelungen verursacht werden. Speziell bei einem Entladen von Schiffen können ohne wirksame Pendeldämpfungsmaßnahme schwere Beschädigungen an Wänden von Schiffsladeräumen durch einen Krangreifer verursacht werden. Aufgrund dieser Problematik kommt eine voll- oder teilautomatisierte Entladung von Schiffen mit Schüttgut bisher nicht in Betracht.Large lifting heights of loads transported by a crane involve safety risks and require a great deal of crane operator experience for transport without pendulum suspension. Also critical are long Auspendelvorgänge, which also results in a bulk transport significantly worse handling performance. To make matters worse comes in bulk, that an irregular distribution of bulk material in a load handling device, for example in a gripper, without control intervention can lead to an uneven lifting process, which are caused by further load oscillations. Especially when unloading ships can be caused by a crane gripper without effective pendulum damping action severe damage to walls of ship holds. Due to this problem, a fully or partially automated unloading of ships with bulk material is not yet considered.

Versuche, Pendeldämpfungssystem für Containerkräne auf Schüttgutkräne zu adaptieren, sind bisher an erheblich zu langsamen Positionierungsvorgängen gescheitert, aus denen nicht akzeptable Umschlagsleistungen resultieren. Insbesondere erweisen sich Pendeldämpfungssysteme für Containerkräne als wenig geeignet, kontrollierte Lastpendelungen zur Steigerung der Umschlagleistung zuzulassen. Ein kontrolliertes Zulassen von Lastpendelungen sollte dabei insbesondere Randbedingungen einer Schiffsladeraumgeometrie Rechnung tragen, insbesondere im Hinblick auf Laderaumluken und Frachtraummaβe.Attempts to adapt pendulum damping system for container cranes to bulk cranes have hitherto failed at significantly slow positioning operations, resulting in unacceptable turnover rates. In particular, pendulum damping systems for container cranes prove to be less suitable for allowing controlled load oscillations to increase the handling capacity. Controlled permitting of load oscillations should take into account, in particular, boundary conditions of a ship cargo hold geometry, in particular with regard to load compartment hatches and cargo spaces.

In DE 32 33 899 A1 ist ein Verfahren entsprechend dem Oberbegriff des Anspruchs 1 offenbart, das bei der Entladung von Schüttgut unter Seitenverschiebung der Last durch eine Laufkatze eine zeitoptimierte Pendelbewegung während der Katzfahrt ermöglicht, indem das Verfahren der Laufkatze automatisiert wird. Dazu wird die Pendelbewegung des Lastaufnahmemittels in verschiedene Zeitabschnitte unterteilt und den verschiedenen Zeitabschnitten werden positive bzw. negative Beschleunigungen der Laufkatze zugeordnet. Dies dient einem zeitoptimierten Entladen des Lastaufnahmemittels durch Steuerung der Bewegung der Laufkatze. Die Steuerung bewirkt einen immer gleichbleibenden Bewegungsablauf bzw. eine konstante den Zeitabschnitten zugeordnete Beschleunigung der Laufkatze. Eventuell auf das Lastaufnahmemittel wirkende Änderungen der Verfahrens- und Umgebungsbedingungen bleiben weitestgehend unberücksichtigt. Eine interaktive Optimierung durch eine geregelte Schwingungsdämpfung zur Kollisionsvermeidung bei gleichzeitig zeitoptimierter Trajektorie findet nicht statt.In DE 32 33 899 A1 a method according to the preamble of claim 1 is disclosed, which allows for the discharge of bulk material with lateral displacement of the load by a trolley a time-optimized pendulum motion during Katzfahrt by the process of the trolley is automated. For this purpose, the pendulum movement of the lifting device is divided into different time periods and the different time periods are associated with positive or negative accelerations of the trolley. This serves a time-optimized unloading of the load-receiving means by controlling the movement of the trolley. The control causes an always constant movement or a constant time intervals associated acceleration of the trolley. Any changes in the process and ambient conditions that affect the load handler are largely disregarded. An interactive optimization by a controlled vibration damping for collision avoidance with simultaneous time-optimized trajectory does not take place.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast anzugeben, das kritische Lastpendelungen unterdrückt und schnelle Umschlagzeiten beim Be- und Entladen von Schüttgutlasten bei gleichzeitiger Kollisionsvermeidung ermöglicht, sowie eine geeignete Implementierung des Verfahrens zu schaffen.The present invention has for its object to provide a method for damping oscillations of a guided by a crane bulk load, which suppresses critical load oscillations and fast turnaround times when loading and unloading bulk loads while collision avoidance allows, as well as to provide a suitable implementation of the method.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen, durch ein Steuerungsprogramm mit den in Anspruch 11 angegebenen Merkmalen und durch ein Kranautomatisierungssystem mit den in Anspruch 12 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a method with the features specified in claim 1, by a control program with the features specified in claim 11 and by a crane automation system with the features specified in claim 12. Advantageous developments of the present invention are specified in the dependent claims.

Entsprechend dem erfindungsgemäßen Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast stellt ein Regler zumindest eine Stellgröße für zumindest eine Antriebseinrichtung des Krans zur Bewegung der Schüttgutlast mit einer vorgegebenen Abweichung entlang einer zeitoptimierten Trajektorie bereit. Die zeitoptimierte Trajektorie ist unter Berücksichtigung eines Schwingungsmodells der durch den Kran geführten Schüttgutlast für eine Bewegung der Schüttgutlast von einem Startpunkt innerhalb eines Schüttgutaufnahmebereichs zu einem vorgebbaren Schüttgutentleerungsbereich ermittelt. Ein die Schüttgutlast aufnehmendes Lastaufnahmemittel wird an zumindest einem Überschwingpunkt innerhalb des Schüttgutentleerungsbereichs entleert. Die Abweichung, mit welcher die Schüttgutlast entlang der zeitoptimierten Trajektorie bewegt wird, kann beispielsweise durch Wahl eines Gütemaßes für einen Reglerentwurf, durch Festlegung von Gewichtungsfaktoren für das Gütemaß oder durch vorgebbare Reglerparameter beeinflußt werden.According to the method according to the invention for damping oscillations of a bulk material load guided by a crane, a controller provides at least one manipulated variable for at least one drive device of the crane for moving the bulk material load with a predetermined deviation along a time-optimized trajectory. Taking into account a vibration model of the bulk material load guided by the crane, the time-optimized trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material unloading area. A load-receiving means receiving the bulk material load is emptied at at least one overshoot point within the bulk material discharge area. The deviation with which the bulk material load is moved along the time-optimized trajectory can be influenced, for example, by selecting a quality measure for a controller design, by establishing weighting factors for the quality measure or by predeterminable controller parameters.

Darüber hinaus werden Sollwerte für eine Krankatzenposition und für eine Kranseillänge erst auf eine Freigabe durch ein Kollisionserkennungssystem zur Überwachung des Schüttgutaufnahme- und/oder -entleerungsbereichs freigegeben. Hierdurch wird zumindest eine Teilautomatisierung eines Schüttgutumschlags ermöglicht, die entsprechend bisherigen Lösungen nicht realisiert ist.In addition, setpoints for a crane paw position and for a crane rope length are only released for clearance by a collision detection system for monitoring the bulk material intake and / or unloading area. As a result, at least a partial automation of a bulk material handling is possible, which is not realized according to previous solutions.

Vorzugsweise ist die zeitoptimierte Trajektorie durch Minimierung eines quadratischen Gütemaßes für einen mit der zumindest einen Antriebseinrichtung gekoppelten Zustandsgrößenregler ermittelt. Zur Vereinfachung eines Reglerentwurfs kann der Zustandsgrößenregler für eine konstante Kranseillänge und eine vorgegebene durchschnittliche Schüttgutmasse entworfen sein. Auf diese Weise können robuste, verhältnismäßig einfach handhabbare Reglungssysteme realisiert werden.The time-optimized trajectory is preferably determined by minimizing a quadratic quality measure for a state-variable controller coupled to the at least one drive device. To simplify a controller design, the state variable controller can be designed for a constant crane pitch and a given average bulk mass be. In this way, robust, relatively easy to handle control systems can be realized.

Vorteilhafterweise wird zumindest eine Antriebseinrichtung des Krans abgeschaltet, sobald die Schüttgutlast den Schüttgutentleerungsbereich erreicht. Die Antriebseinrichtung kann beispielsweise ein Motor für eine Kranseilwinde und/oder für einen Krankatzenantrieb sein. Nach einer vorgebbaren Verweilzeit zur Lastaufnahmemittelbewegung zum Schüttgutaufnahmebereich wird die Antriebseinrichtung wieder zugeschaltet. Während der Verweilzeit wird das Lastaufnahmemittel entleert. Dies bietet den Vorteil, daß keine Zeitverzögerungen durch eine Ausregelung des Lastaufnahmemittels in eine Ruheposition entstehen.Advantageously, at least one drive device of the crane is switched off as soon as the bulk material load reaches the bulk material discharge area. The drive device can be, for example, a motor for a crane winch and / or for a crane-drive. After a predefined residence time for the lifting device movement to the bulk material receiving area the drive device is switched on again. During the dwell time, the load handling device is emptied. This offers the advantage that no time delays caused by a compensation of the load-receiving means in a rest position.

Das erfindungsgemäße Steuerungsprogramm ist in einen Arbeitsspeicher eines Rechners ladbar und weist zumindest einen Codeabschnitt auf, bei dessen Ausführung vorstehend beschriebene Verfahrensschritte ausgeführt werden, wenn das Computerprogramm im Rechner abläuft. Das erfindungsgemäße Kranautomatisierungssystem umfaßt einen Regler für zumindest eine Antriebseinrichtung des Krans zur Bewegung der Schüttgutlast mit höchstens einer vorgebbaren Abweichung entlang einer zeitoptimierten Trajektorie. Dabei ist die Trajektorie unter Berücksichtigung eines Schwingungsmodells der durch den Kran geführten Schüttgutlast für eine Bewegung der Schüttgutlast von einem Startpunkt innerhalb eines Schüttgutaufnahmebereichs zu einem vorgebbaren Schüttgutentleerungsbereich ermittelt. Außerdem ist ein Steuerungsmittel zur Entleerung eines die Schüttgutlast aufnehmenden Lastaufnahmemittels an zumindest einem Überschwingpunkt innerhalb des Schüttgutentleerungsbereichs vorgesehen.The control program according to the invention can be loaded into a main memory of a computer and has at least one code section, in the execution of which method steps described above are executed when the computer program runs in the computer. The crane automation system according to the invention comprises a controller for at least one drive device of the crane for moving the bulk material load with at most a predefinable deviation along a time-optimized trajectory. In this case, taking into account a vibration model of the bulk material load guided by the crane, the trajectory is determined for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area. In addition, a control means for emptying a load receiving the bulk material load is provided at least one overshoot point within the bulk material discharge area.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt

Figur 1
ein Ablaufdiagramm für ein Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast,
Figur 2a-c
eine schematische Darstellung von Krankatz- und -greiferkinematik zur Erläuterung einer regelungstechnischen Modellierung eines Kransystems
Figur 3
ein regelungstechnisches Blockschaltbild für eine linearisierte Modellierung von Krankatz- und-greiferkinematik und für eine Kranregelung,
Figur 4
eine schematische Darstellung eines Kransystems zur Schüttgutbe- und -entladung,
Figur 5
eine an einer Krananlage montierte Sensoranordnung zur Erfassung von Lastpendelungen.
The invention will be explained in more detail using an exemplary embodiment with reference to the drawing. It shows
FIG. 1
a flow chart for a method for damping oscillations of a guided by a crane bulk load,
Figure 2a-c
a schematic representation of crane set and gripper kinematics for explaining a control engineering modeling of a crane system
FIG. 3
a control-engineering block diagram for a linearized modeling of crane-tackle and gripper kinematics and for crane control,
FIG. 4
a schematic representation of a crane system for bulk material loading and unloading,
FIG. 5
a mounted on a crane system sensor arrangement for detecting load oscillations.

Entsprechend dem in Figur 1 dargestellten Ablaufdiagramm Verfahren zur Dämpfung von Pendelungen einer durch einen Kran geführten Schüttgutlast wird zunächst unter Berücksichtigung eines Schwingungsmodells der durch den Kran geführten Schüttgutlast eine zeitoptimierte Trajektorie für eine Bewegung der Schüttgutlast von einem Startpunkt innerhalb eines Schüttgutaufnahmebereichs zu einem vorgebbaren Schüttgutentleerungsbereich ermittelt (Schritt 101). Die zeitoptimierte Trajektorie wird im vorliegenden Ausführungsbeispiel durch Minimierung eines quadratischen Gütemaßes für einen mit der zumindest einen Antriebseinrichtung gekoppelten Zustandsgrößenregler ermittelt. Bei dem Zustandsgrößenregler handelt es sich, wie nachstehend noch detaillierter ausgeführt wird, um einen Ricatti-Regler.According to the in FIG. 1 A time-optimized trajectory for a movement of the bulk material load from a starting point within a bulk material receiving area to a predefinable bulk material emptying area is first determined, taking into account a vibration model of the bulk material load guided by the crane (step 101). The time-optimized trajectory is determined in the present exemplary embodiment by minimizing a quadratic quality measure for a state variable controller coupled to the at least one drive device. The state variable controller is a Ricatti controller, as will be explained in more detail below.

Nachfolgend wird überprüft, ob ein die Schüttgutlast aufnehmendes Lastaufnahmemittel in einem kritischen Bereich ist, in dem durch Lastpendelungen andere Gegenstände in Umgebung des Lastaufnahmemittels beschädigt werden könnten (Schritt 102). Hierdurch soll beispielsweise vermieden werden, daß eine Ladewand in einem Schiff oder Ladelukenkanten durch einen bei Beschleunigung einer Krankatze pendelnden Krangreifer beschädigt wird. Ist das Lastaufnahmemittel noch in einem kritischen Bereich, so wird es weiter angehoben (Schritt 103). Andernfalls wird zumindest eine Antriebseinrichtung des Krans, beispielsweise ein Katzantrieb und/oder ein Hubantrieb, durch einen Kranregler derart geregelt, daß die Schüttgutlast mit höchstens einer vorgebbaren Abweichung entlang der ermittelten Trajektorie bewegt wird (Schritt 104). Hierbei wird fortlaufend überprüft, ob eine Grenze des Schüttgutentleerungsbereichs erreicht ist (Schritt 105). Ist der Schüttgutentleerungsbereich erreicht, beginnt eine Verweilzeit zu laufen, deren Ablauf überprüft wird (Schritt 106).Subsequently, it is checked whether a load-receiving means receiving the bulk material load is in a critical area in which load objects could damage other objects in the surroundings of the load-receiving means (step 102). This is to be avoided, for example, that a loading wall in a ship or hatch edges is damaged by a swinging in acceleration of a crane crane gripper. Is the load handler still in a critical Area, it is further raised (step 103). Otherwise, at least one drive device of the crane, for example a cat drive and / or a linear actuator, is controlled by a crane controller such that the bulk material load is moved along the determined trajectory with at most one predeterminable deviation (step 104). In this case, it is continuously checked whether a limit of the bulk material discharge area has been reached (step 105). When the bulk material discharge area is reached, a dwell time starts to run, the sequence of which is checked (step 106).

Ist die Verweilzeit noch nicht abgelaufen, wird das Lastaufnahmemittel auch an zumindest einem Überschwingpunkt unter Ausnutzung einer Pendelbewegung des Lastaufnahmemittels innerhalb des Schüttgutentleerungsbereichs entleert (Schritt 107). Da keine Ausregelung der Schüttgutlast in eine Ruheposition vor einem Absetzvorgang vorgenommen wird, ergibt sich hieraus eine erhebliche Verkürzung von Umschlagzeiten zwischen Be- und Entladung. Dadurch daß die Schüttgutlast innerhalb eines vorgebbaren Toleranzbereichs entlang der ermittelten Trajektorie geführt wird, werden Lastpendelungen zwar nicht völlig eliminiert, jedoch zumindest auf ein sicherheitsunkritisches Maß begrenzt.If the dwell time has not yet expired, the load receiving means is also emptied at least one overshoot point by utilizing a pendulum movement of the load receiving means within the bulk material discharge area (step 107). Since no compensation of the bulk material load is carried out in a rest position before a settling, this results in a significant reduction in turnover times between loading and unloading. The fact that the bulk material load is guided within a predetermined tolerance range along the determined trajectory, although load oscillations are not completely eliminated, but at least limited to a non-critical measure.

Ist die Verweilzeit abgelaufen, erfolgt eine Rückfahrt zum Schüttgutaufnahmebereich (Schritt 108). Hierzu wird der Kranregler von einer Ziellage über dem Schüttgutentleerungsbereich auf eine Ziellage über dem Schüttgutaufnahmebereich umgeschaltet. Dadurch werden Krankatze und Lastaufnahmemittel in Richtung Schüttgutaufnahmebereich beschleunigt. Hat das Lastaufnahme sich obigem kritischen Bereich weit genug genähert, wird ein endgültiger Sollwert für eine Kranseilverstellung aufgeschaltet und das Lastaufnahmemittel auf eine gewünschte Position abgesenkt. Damit ist ein Arbeitszyklus eines Schüttgutentladevorgangs beendet.If the residence time has expired, a return to the bulk material receiving area takes place (step 108). For this purpose, the crane controller is switched from a target position above the bulk material discharge area to a target position above the bulk material receiving area. As a result, crane trolleys and load handling devices are accelerated in the direction of the bulk material receiving area. If the load pick-up has approached the above critical range far enough, a final setpoint for a crane cable adjustment is activated and the load-carrying means is switched to a desired one Lowered position. This completes a work cycle of a bulk material unloading operation.

Die in den Figuren 2a-c schematisch dargestellte Krankatz- und -greiferkinematik dient zur Ableitung einer regelungstechnischen Modellierung eines Kransystems, das Grundlage für einen nachfolgend beschriebenen Reglerentwurf bildet. Ein Laufkatzen-Greifer-System mit einer Krankatze 201 und einem über ein Kranseil 203 mit dieser verbundenen Krangreifer 202 stellt aus regelungstechnischer Sicht stellt ein zu regelndes Pendel dar.The in the Figures 2a-c schematically illustrated crane set and gripper kinematics used to derive a control engineering modeling of a crane system, which forms the basis for a controller design described below. A trolley gripper system with a crane trolley 201 and a crane gripper 202 connected thereto via a crane cable 203 represents, from a control engineering point of view, a pendulum to be controlled.

Für die Krankatze 201 ergibt sich in x-Richtung - also in Verfahrrichtung - folgende Bewegungsgleichung (siehe Figur 2b): m K x ¨ K = F K + S sin ϑ

Figure imgb0001

mit Krankatzenmasse mK, Krankatzenkoordinate xK, Krankatzenantriebskraft FK, Seilzugkraft S und Krangreiferauslenkung ϑ.For crane trolley 201, the following equation of motion results in the x-direction, ie in the direction of travel (see FIG. 2b ): m K x ¨ K = F K + S sin θ
Figure imgb0001

with crane paw mass m K , crane set coordinate x K , crane paw drive force F K , cable pull force S and crane grab deflection θ.

Für den Krangreifer 202 ergeben sich entsprechend Figur 2c zwei Kraftbeziehungen. In x-Richtung gilt: m K x ¨ K = F K + S sin ϑ .

Figure imgb0002

In z-Richtung - also in Lasthubrichtung - ergibt sich: m G z ¨ G = m G x ¨ G - S cosϑ
Figure imgb0003

mit Krangreifermasse mG und Krangreiferkoordinaten xG, zG.For the crane gripper 202 arise accordingly Figure 2c two power relations. In the x-direction applies: m K x ¨ K = F K + S sin θ ,
Figure imgb0002

In z-direction - ie in load direction - results: m G z ¨ G = m G x ¨ G - S cos
Figure imgb0003

with crane gripper mass m G and crane gripper coordinates x G , z G.

Als kinematische Bedingungen ergeben sich: x G = x K + r sin ϑ

Figure imgb0004
z G = r cos ϑ
Figure imgb0005

mit Kranseillänge r.As kinematic conditions result: x G = x K + r sin θ
Figure imgb0004
z G = r cos θ
Figure imgb0005

with crane rope length r.

Für die kinetische Energie von Krankatze 201 und Krangreifer 202 gilt: W = 1 2 m K x ˙ K 2 + 1 2 m G x ˙ G 2 + z ˙ G 2 .

Figure imgb0006
For the kinetic energy of crane crane 201 and crane crane 202, the following applies: W = 1 2 m K x ˙ K 2 + 1 2 m G x ˙ G 2 + z ˙ G 2 ,
Figure imgb0006

Entsprechend folgendem Ansatz werden aus der kinetischen Energie die Lagrange'schen Bewegungsgleichungen abgeleitet: Q K = d dt W q ˙ K - W q K .

Figure imgb0007
According to the following approach, the Lagrange equations of motion are derived from the kinetic energy: Q K = d dt W q ˙ K - W q K ,
Figure imgb0007

Hierin sind QK verallgemeinerte Kräfte und qK verallgemeinerte Koordinaten. Als verallgemeinerte Koordinaten werden im vorliegenden Ausführungsbeispiel x und ϑ verwendet, während Krankatzenantriebskraft FK und Kraft Fϑ auf den Krangreifer 202 in Richtung Koordinate ϑ als verallgemeinerte Kräfte ausgewählt werden. Für die Kraft Fϑ ergibt sich: F ϑ = - m G g r sin ϑ .

Figure imgb0008
Herein Q K generalized forces and q K are generalized coordinates. As generalized coordinates, x and θ are used in the present embodiment, while crane-post driving force F K and force F θ are selected on the crane gripper 202 in the coordinate θ direction as generalized forces. For the force F θ results: F θ = - m G G r sin θ ,
Figure imgb0008

Damit ergeben sich folgende Bewegungsgleichungen für die Koordinaten x und ϑ: F K = m K + m G x ¨ K + m G r ϑ ¨ cos ϑ - m G r ϑ ˙ 2 sin ϑ + 2 m G r ˙ ϑ ˙ cos ϑ + m G r ¨ sin ϑ - g sin ϑ = x ¨ K cos ϑ + r ϑ ¨ + 2 r ˙ ϑ ˙

Figure imgb0009
This results in the following equations of motion for the coordinates x and θ: F K = m K + m G x ¨ K + m G r θ ¨ cos θ - m G r θ ˙ 2 sin θ + 2 m G r ˙ θ ˙ cos θ + m G r ¨ sin θ - G sin θ = x ¨ K cos θ + r θ ¨ + 2 r ˙ θ ˙
Figure imgb0009

Die Bewegungsgleichungen lassen sich für kleine Auslenkungswinkel ϑ mit folgenden Näherungen linearisieren: sin ϑ ϑ cos ϑ 1 ϑ ˙ 2 0.

Figure imgb0010
The equations of motion can be linearized for small deflection angles θ with the following approximations: sin θ θ cos θ 1 θ ˙ 2 0th
Figure imgb0010

Damit ergeben sich folgende linearisierte Bewegungsgleichungen: F K = m K + m G x ¨ K + m G r ϑ ¨ + 2 m G r ˙ ϑ ˙ + m G r ¨ ϑ - g ϑ = x ¨ K + r ϑ ¨ + 2 r ˙ ϑ ˙

Figure imgb0011
This results in the following linearized equations of motion: F K = m K + m G x ¨ K + m G r θ ¨ + 2 m G r ˙ θ ˙ + m G r ¨ θ - G θ = x ¨ K + r θ ¨ + 2 r ˙ θ ˙
Figure imgb0011

In Figur 3 ist ein regelungstechnisches Blockschaltbild für eine linearisierte Modellierung von Krankatz- und -greiferkinematik und für eine Kranregelung dargestellt. Das Blockschaltbild umfaßt eine Regelstrecke 301, welche die obigen linearisierten Bewegungsgleichungen für Krankatz- und -greiferkinematik wiederspiegelt, eine Katzantriebseinrichtung 302 zur Bewegung der Krankatze 201 in x-Richtung, eine Hubantriebseinrichtung 303 zur Bewegung des Krangreifers 202 in z-Richtung, einen Zustandsgrößenregler 311, einen Regler 321 sowie einen Vorfilter 322 für die Katzantriebseinrichtung und einen Regler 331 für die Hubantriebseinrichtung umfaßt (siehe auch Figuren 2a-c).In FIG. 3 is a control engineering block diagram for a linearized modeling of crane set and gripper kinematics and shown for a crane control. The block diagram includes a controlled system 301, which the above a kitten drive means 302 for moving the crane trolley 201 in the x direction, a lifting drive means 303 for moving the crane gripper 202 in the z direction, a state size controller 311, a controller 321 and a pre-filter 322 for the cat propulsion device and a controller 331 for the Hubantriebseinrichtung (see also Figures 2a-c ).

Der Regler 321 und der Vorfilter 322 geben als Stellgröße für die Katzantriebseinrichtung 302 einen Drehmomentsollwert an einer Seiltrommel der Katzantriebseinrichtung vor. Dieser Drehmomentsollwert wird mit einem durch den Zustandsgrößenregler 311 bereitgestellten Drehmomentwert für die Katzantriebseinrichtung 302 verglichen. Basierend auf einem Vergleichsergebnis wird eine Stellgröße für die Katzantriebseinrichtung 302 vorgegeben. Ein Drehmoment an einer Seiltrommel der Hubantriebseinrichtung 303 ist Stellgröße für eine Regelung der Seillänge r, die wiederum adaptiv den Zustandsgröβenregler 311 beeinflußt.The controller 321 and the pre-filter 322 provide as a manipulated variable for the Katzantriebseinrichtung 302 a torque setpoint on a cable drum of the Katzantriebseinrichtung. This torque command value is compared with a torque value for the cat drive device 302 provided by the state variable controller 311. Based on a comparison result, a manipulated variable for the cat drive device 302 is specified. A torque on a cable drum of the lifting drive device 303 is manipulated variable for a control of the rope length r, which in turn adaptively affects the state size controller 311.

Eine Positionsregelung des Krangreifers 202 wird in eine Positionsregelung der Krankatze 201 und eine Regelung der Seillänge aufgeteilt. Die Positionsregelung der Krankatze erfolgt durch einen Positionsregler mit einer unterlagerten Geschwindigkeitsregelung. Der Positionsregler ist im vorliegenden Ausführungsbeispiel ein Proportionalregler mit Verstärkungsfaktor KP sowie zusätzlicher Stellgrößenbegrenzung hinsichtlich Betrag und Steigung.A position control of the crane gripper 202 is divided into a position control of the crane trolley 201 and a control of the cable length. The position control of the trolley is performed by a position controller with a subordinate speed control. The position controller is in the present embodiment, a proportional controller with gain K P and additional control variable limit in terms of magnitude and slope.

Der Ausgang des Positionsreglers ist Sollwert für eine unterlagerte Zustandsgrößenreglung einer Katzgeschwindigkeit, für die auch der Vorfilter 322 vorgesehen ist. Eine gewünschte Pollage für den Zustandsgrößenregler 311 wird durch eine Optimierung nach Ricatti für eine mittlere Seillänge und eine mittlere Greifermasse ermittelt. Bei der Optimierung werden Katzgeschwindigkeit, Pendelwinkel, Pendelwinkelgeschwindigkeit und Stellgröße für die Katzantriebseinrichtung 302 durch Gewichtungsmatrizen Q und R für ein quadratisches Gütemaß J berücksichtigt. Das Gütemaß J hat folgende Form: J = 1 2 0 x ˙ K ϑ ϑ ˙ Q x ˙ K ϑ ϑ ˙ + M K STELL R M K STELL dt

Figure imgb0012

mit Stellgröße MK STELL.The output of the position controller is setpoint for a subordinate state variable control of a cat speed, for which the pre-filter 322 is also provided. A desired pole position for the state variable controller 311 is achieved by optimization according to Ricatti for a medium rope length and a mean grip mass. In the optimization, cat speed, pendulum angle, pendulum angular velocity and manipulated variable for the cat driver 302 are considered by weighting matrices Q and R for a quadratic quality measure J. The quality measure J has the following form: J = 1 2 0 x ˙ K θ θ ˙ Q x ˙ K θ θ ˙ + M K PARKING R M K PARKING dt
Figure imgb0012

with manipulated variable M K STELL .

Durch das Gütemaß J wird dabei Anforderungen Rechnung getragen, daß einerseits ein Übergang eines beliebigen Anfangszustands in einen gewünschten Endzustand nicht zu langsam erfolgen soll und Überschwingungen nicht zu stark sein sollen, und daß andererseits eine für den Übergang erforderliche Stellenenergie im Sinne eines Stellgrößenverbrauchs möglichst klein sein soll.By the quality measure J requirements are taken into account that on the one hand a transition of any initial state should not be too slow in a desired final state and overshoots should not be too strong, and that on the other hand be required for the transition point energy in terms of manipulated variable consumption as small as possible should.

Der Zustandsgrößenregler 311 wird mit Hilfe der linearisierten Modellierung von Krankatz- und -greiferkinematik zunächst für eine konstante Seillänge und eine mittlere Greifermasse entworfen. Eine dabei ermittelte optimale Pollage für den Zustandsgrößenregler 311 dient dann als Basis für einen Reglerentwurf nach Ackermann, bei dem Seillänge und Greifermasse als offene Parameter mitgeführt werden. Dadurch ergibt sich ein bezüglich der Seillänge adaptiver Regler. Eine den Zustandsgrößenregler 311 beschreibende Zustandsrückführung K(r) für das Drehmoment MK der Katzantriebseinrichtung 302 lautet damit: M K = - K 1 r K 2 r K 3 r x ˙ K ϑ ϑ ˙

Figure imgb0013

mit K 1 r K 2 r K 3 r = m K g p 0 r m K + m G g - m K p 1 r m K g p 0 r 2 - m K p 2 r ,
Figure imgb0014

wobei p0, p1, p2 Koeffizienten eines durch Minimierung des obigen Gütemaßes J bestimmten charakteristischen Polynoms sind.The state variable controller 311 is initially designed for constant pitch and gripper mass using linearized crane-and-crane kinematics modeling. An optimum pole position determined for the state variable controller 311 then serves as the basis for a controller design according to Ackermann, in which the rope length and gripper mass are carried along as open parameters. This results in an adaptive controller with respect to the cable length. A state feedback K (r) for the torque M K of the cat drive device 302 describing the state variable controller 311 is thus: M K = - K 1 r K 2 r K 3 r x ˙ K θ θ ˙
Figure imgb0013

With K 1 r K 2 r K 3 r = m K G p 0 r m K + m G G - m K p 1 r m K G p 0 r 2 - m K p 2 r .
Figure imgb0014

where p 0 , p 1 , p 2 are coefficients of a characteristic polynomial determined by minimizing the above measure of merit J.

Weiterhin gilt für den Vorfilter 322 folgende Beziehung, um mit dem Zustandsgrößenregler 311 eine stationäre Genauigkeit zu erreichen: M K SOLL = v K SOLL K 1 r .

Figure imgb0015
Furthermore, the following relationship applies to the pre-filter 322 in order to achieve a steady state accuracy with the state variable controller 311: M K SHOULD = v K SHOULD K 1 r ,
Figure imgb0015

Der Regler 331 für die Hubantriebseinrichtung 303 zur Einstellung der Seillänge ist ein zeitoptimaler Positionsregler.The controller 331 for the lifting drive device 303 for adjusting the cable length is a time-optimal position controller.

Da sich der Krangreifer nur innerhalb eines bestimmten Bereichs bewegen sollte, beispielsweise sollte er nicht gegen eine Kaimauer oder eine Schiffsluke schlagen, ist zusätzlich eine Vorsteuerung vorgesehen. Diese Vorsteuerung gibt Sollwerte Sollwerte für Katzposition und Seillänge erst dann freigibt, wenn keine Kollisionsgefahr mehr besteht. Der Sollwert für die Katzposition bei einem in Figur 4 schematisch dargestellten Schüttguttransport von einem Startpunkt innerhalb eines Schüttgutaufnahmebereichs 404 zu einem vorgebbaren Schüttgutentleerungsbereich 405 entlang einer zeitoptimierten Trajektorie 421 wird erst dann freigegeben, wenn der Krangreifer 402 beispielsweise aus einem Schiff herausgehoben ist. Ebenso wird der Krangreifer 402 erst dann auf Höhe einer Schiffsluke abgesenkt, wenn er sich über der offenen Schiffsluke befindet. Zur Realisierung einer derartigen Freihubfunktion werden Position einer Schiffslukenkante xL, Höhe der Schiffslukenkante zL, maximale Beschleunigung aK max der Krankatze 401 und maximale Absenkgeschwindigkeit vSENK max des Kranseils 403 erfaßt.Since the crane grab should only move within a certain range, for example, should it not hit a quay wall or a ship hatch, a feedforward control is additionally provided. This feedforward control does not release setpoints for set position and rope length until collision risk no longer exists. The setpoint for the cat position at an in FIG. 4 schematically shown bulk material transport from a starting point within a bulk material receiving area 404 to a predetermined bulk material emptying area 405 along a time-optimized trajectory 421 is only released when the crane gripper 402 is lifted, for example, from a ship. Likewise, the crane gripper 402 is lowered only at the level of a ship hatch when it is above the open ship hatch. To realize such a free-lift function, the position of a ship's hatch edge x L , height of the Schiffslukenkante z L , maximum acceleration a K max of the trolley 401 and maximum lowering speed v SENK max of the crane rope 403 detected.

Eine Freigabe einer Katzfahrt vom Schüttgutaufnahmebereich 404 im Schiff zum Schüttgutentleerungsbereich 405 und eine Freigabe eines Anhebens des Krangreifers 402 erfolgen erst dann, wenn folgende Bedingung erfüllt ist: z L - r - 2 x L - x K a K max r ˙ > 0.

Figure imgb0016
A release of a trolley travel from the bulk material receiving area 404 in the ship to the bulk material emptying area 405 and a release of a lifting of the crane gripper 402 takes place only when the following condition is met: z L - r - 2 x L - x K a K Max r ˙ > 0th
Figure imgb0016

Auch bei maximaler Beschleunigung kann die Krankatze 401 somit die Schiffslukenkante nicht mehr erreichen, bevor der Krangreifer 402 aus der Schiffsluke herausgeführt ist, wenn er mit konstanter Hubgeschwindigkeit weiter angehoben wird.Even with maximum acceleration, the crane trolley 401 can thus no longer reach the ship's hatch edge before the crane gripper 402 is led out of the ship's hatch when it is raised further at a constant lifting speed.

Ein Absenken des Krangreifers 402 im Schüttgutaufnahmebereich 404 nach einer Rückfahrt zum Schiff wird erst freigegeben, wenn folgende Bedingung erfüllt ist: r - z L v SENK max x ˙ K - x L - x K + r sinϑ > 0.

Figure imgb0017
A lowering of the crane gripper 402 in the bulk goods receiving area 404 after a return to the ship is not released until the following condition is met: r - z L v SENK Max x ˙ K - x L - x K + r sinθ > 0th
Figure imgb0017

Auch bei Absenken des Krangreifers 402 mit maximaler Geschwindigkeit erreicht der Krangreifer 402 somit nicht die Höhe der Schiffslukenkante, bevor er sich darüber befindet, wenn die Krankatze 401 mit momentaner Geschwindigkeit weiterfährt.Thus, even when the crane gripper 402 is lowered at maximum speed, the crane gripper 402 does not reach the height of the ship's hatch edge before it is above it when the crane trolley 401 continues to move at the current speed.

Erreicht der Krangreifer 402 den Schüttgutentleerungsbereich 405, so beginnt eine frei wählbare Zeit für eine Verweildauer über dem Schüttgutentleerungsbereich 405 zu laufen. Während dieser Zeit bewegt sich der Krangreifer 402 weiter in Richtung Mittelpunkt des Schüttgutentleerungsbereichs 405 bzw. verharrt über dem Schüttgutentleerungsbereich 405. Nach Ablauf der Verweildauer wird eine Rückfahrt zum Schüttgutaufnahmebereich 404 ausgelöst. Hierzu werden Sollwerte für Katzposition und Seillänge entsprechend einer Greiferposition über bzw. im Schüttgutaufnahmebereich 404 vorgegeben.If the crane gripper 402 reaches the bulk material emptying area 405, a freely selectable time for a residence time over the bulk material emptying area 405 begins to run. During this time, the crane gripper 402 moves further towards the center of the bulk material discharge area 405 or remains above the bulk material discharge area 405. After the residence time has elapsed, a return journey to the bulk goods receiving area takes place 404 triggered. For this purpose, set values for the cat position and cable length corresponding to a gripper position over or in the bulk material receiving area 404 are specified.

Die in Figur 5 dargestellte an einer Krananlage montierte Sensoranordnung zur Erfassung von Lastpendelungen umfaßt einen aktiven Marker 521 am Krangreifer 502 und eine mit der Krankatze 501 bewegte den Marker 521 erfassende Kamera 511. Von der Kamera 511 erfaßte Signale werden über eine Funkverbindung 561, beispielsweise eine W-LAN-Verbindung, zu einer Empfängerstation 506 an einem schüttgutaufnahmebereichsseitigen Kranauslegerende 504 und von dort über eine leitungsgebundene Verbindung zu einer Auswerteeinrichtung 507 übermittelt. Die Auswerteeinrichtung 507 kann beispielsweise in einem Elektroraum eines Krans angeordnet sein. Die Kamera 511 wird durch zumindest einen mit einer Seilrolle der Krankatze 501 verbundenen Generator mit Energie versorgt. Zusätzlich werden mittels eines regelungstechnischen Beobachtermodells für den Krangreifer 502 Lastpendelungen ermittelt. Auf diese Weise ist auch eine Erfassung von Lastpendelungen für Zeitintervalle sichergestellt, in denen die Kamera 521 keine Meßwerte oder Meßwerte in geringer Abtastdichte liefert. Bei Bedarf kann auch an einem schüttgutentleerungsbereichsseitigen Kranauslegerende 505 eine Funk-Empfängerstation installiert werden, welche mittels eines Handover-Mechanismus eine Funkverbindung zur Kamera 511 aufbaut und von der Kamera 511 empfangene Signal an die Auswerteeinrichtung weiterleitet.In the FIG. 5 shown mounted on a crane system sensor arrangement for detecting load oscillations comprises an active marker 521 on the crane gripper 502 and a moving with the trolley 501 the marker 521 detecting camera 511. Signals detected by the camera 511 signals via a wireless connection 561, such as a W-LAN Connection, to a receiver station 506 on a bulk goods receiving area side crane boom end 504 and transmitted from there via a wired connection to an evaluation device 507. The evaluation device 507 can be arranged, for example, in an electric room of a crane. The camera 511 is powered by at least one generator connected to a pulley of the trolley 501. In addition, 502 load swayings are determined by means of a control-technical observer model for the crane gripper. In this way, a detection of load oscillations for time intervals is ensured in which the camera 521 does not provide measured values or measured values in low sampling density. If required, a radio receiver station 505 can also be installed on a bulk goods unloading area-side crane boom end, which establishes a radio link to the camera 511 by means of a handover mechanism and forwards the signal received by the camera 511 to the evaluation device.

Die Anwendung der vorliegenden Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt.The application of the present invention is not limited to the described embodiment.

Claims (12)

  1. Method for damping oscillations of a bulk goods load guided by a crane, in which
    - a control unit (321) supplies at least one actuating variable for at least one drive mechanism of the crane for moving the bulk goods load with a predefined deviation along a time-optimized trajectory (421), which trajectory is determined, with due regard to a vibration model of the bulk goods load guided by the crane, for a movement of the bulk goods load from a starting point within a bulk goods receiving region (404) to a predefinable bulk goods emptying region (405),
    - a bulk-carrying load-receiving means (202, 402, 502) is emptied at at least one swing-over point within the bulk goods emptying region (405),
    characterized in that
    - desired values for a crane trolley position and for a crane cable length are enabled only when approved by a collision detection system for monitoring the bulk goods receiving and/or emptying region (404, 405),
    - a check is made as to whether the bulk-carrying load-receiving means (202, 402, 502) is in a critical region in which other objects in the surroundings of the load-receiving means (202, 402, 502) could be damaged by load oscillations,
    - the drive mechanism of the crane is controlled by a crane control unit such that the bulk goods load is moved with at most a predefinable deviation along the determined trajectory (421) once the load instrument is no longer in the critical region.
  2. Method according to Claim 1,
    in which the time-optimized trajectory (421) is determined by minimization of a quadratic quality measure for a state variable control unit coupled to the at least one drive mechanism.
  3. Method according to Claim 2,
    in which the state variable control unit is a Ricatti control unit.
  4. Method according to one of Claims 2 or 3,
    in which the state variable control unit is designed for a constant crane cable length and a predefined average bulk goods mass.
  5. Method according to one of Claims 1 to 4,
    in which the at least one drive mechanism is switched off as soon as the bulk goods load reaches the bulk goods emptying region (405), and after a predefinable dwell time is switched on again for movement of the load-receiving means to the bulk goods receiving region (404), and in which the load-receiving means (202, 402, 502) is emptied during the dwell time.
  6. Method according to one of Claims 1 to 5,
    in which the at least one drive mechanism of the crane is a motor for a crane cable winch and/or for a crane trolley drive.
  7. Method according to one of Claims 1 to 6,
    in which the load oscillations are determined by means of an active marker on the load-receiving means and by means of a camera which is moved with a crane trolley (201, 401, 501) and registers the marker (511).
  8. Method according to Claim 7,
    in which signals registered by the camera (511) are transmitted via a radio link (561) to a receiver station (506) on a crane jib end (504) situated on the bulk goods receiving region side, and from there via a cable-bound link to an evaluating device (507).
  9. Method according to one of Claims 7 or 8,
    in which the camera is powered by at least one generator connected to a cable pulley of the crane trolley (201, 401, 501).
  10. Method according to one of Claims 7 to 9,
    in which load oscillations are additionally determined by means of a control engineering observer model for the load-receiving means (202, 402, 502).
  11. Control program, which is loadable into a main memory of a computer and has at least one code portion and in the embodiment whereof:
    - a control unit (321) supplies at least one actuating variable for at least one drive mechanism of the crane for moving the bulk goods load with a predefined deviation along a time-optimized trajectory (421), which trajectory is determined, with due regard to a vibration model of the bulk goods load guided by the crane, for a movement of the bulk goods load from a starting point within a bulk goods receiving region (404) to a predefinable bulk goods emptying region (405),
    - a bulk-carrying load-receiving means is emptied at at least one swing-over point within the bulk goods emptying region (405),
    when the computer program is running in the computer,
    characterized in that
    - desired values for a crane trolley position and for a crane cable length are enabled only when approved by a collision detection system for monitoring the bulk goods receiving and/or emptying region (404, 405),
    - a check is made as to whether a bulk-carrying load-receiving means (202, 402, 502) is in a critical region in which other objects in the surroundings of the load-receiving means (202, 402, 502) could be damaged by load oscillations,
    - the drive mechanism of the crane is controlled by a crane control unit such that the bulk goods load is moved with at most a predefinable deviation along the determined trajectory (421) once the load instrument is no longer in the critical region.
  12. Crane automation system for damping oscillations of a bulk goods load guided by a crane, comprising
    - a control unit for at least one drive mechanism of the crane for moving the bulk goods load with at most a predefinable deviation along a time-optimized trajectory, which trajectory is determined, with due regard to a vibration model of the bulk goods load guided by the crane, for a movement of the bulk goods load from a starting point within a bulk goods receiving region to a predefinable bulk goods emptying region,
    - a control means for emptying of a bulk-carrying load-receiving means at at least one swing-over point within the bulk goods emptying region,
    characterized by
    - a collision detection system for monitoring the bulk goods receiving and/or emptying region (404, 405), as well as for approving desired values for a crane trolley position and for a crane cable length.
EP08007630A 2008-04-18 2008-04-18 Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system Not-in-force EP2110357B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08007630A EP2110357B1 (en) 2008-04-18 2008-04-18 Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system
AT08007630T ATE488466T1 (en) 2008-04-18 2008-04-18 METHOD FOR DAMPING SWINGS OF A BULK LOAD CARRIED BY A CRANE, CONTROL PROGRAM AND CRANE AUTOMATION SYSTEM
DE502008001820T DE502008001820D1 (en) 2008-04-18 2008-04-18 Method for damping oscillations of a bulk material load guided by a crane, control program and crane automation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08007630A EP2110357B1 (en) 2008-04-18 2008-04-18 Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system

Publications (2)

Publication Number Publication Date
EP2110357A1 EP2110357A1 (en) 2009-10-21
EP2110357B1 true EP2110357B1 (en) 2010-11-17

Family

ID=39711940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08007630A Not-in-force EP2110357B1 (en) 2008-04-18 2008-04-18 Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system

Country Status (3)

Country Link
EP (1) EP2110357B1 (en)
AT (1) ATE488466T1 (en)
DE (1) DE502008001820D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202019102393U1 (en) 2019-03-08 2020-06-09 Liebherr-Werk Biberach Gmbh Crane and device for its control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2637696A1 (en) * 1976-08-21 1978-02-23 Licentia Gmbh Gantry crab position regulation system - has detector-regulator generating control voltage for crab driving motor
SE429748B (en) * 1981-09-21 1983-09-26 Asea Ab KEEP LOADING GOODS DURING SIDE MOVEMENT BY A GOOD PREVENTING TRUCK
DE202005002315U1 (en) * 2005-02-11 2005-06-16 Isam Ag Bulk grain cargo loading/unloading system has bucket grab position continually monitored by sensor

Also Published As

Publication number Publication date
DE502008001820D1 (en) 2010-12-30
EP2110357A1 (en) 2009-10-21
ATE488466T1 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
EP3461783B1 (en) Lifting device and method for controlling a lifting device
EP3619111B1 (en) Method and device for lifting a load
EP1958915B1 (en) Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space
EP2636632B1 (en) Crane controls with drive restriction
EP3409636A1 (en) Method for damping torsional vibrations of a load-bearing element of a lifting device
EP2636635B1 (en) Crane controls with rope force mode
EP2272786B1 (en) Crane control for controlling a crane's hoisting gear
EP3653562A1 (en) Method and oscillating regulator for regulating oscillations of an oscillatory technical system
Ngo et al. Skew control of a quay container crane
EP2110357B1 (en) Method for damping oscillations of a bulk goods load led by a crane, control program and crane automation system
DE10029579B4 (en) Method for orienting the load in crane installations
EP3487803A1 (en) Operating method for a crane installation, in particular for a container crane
DE4025749A1 (en) Automatic operation of revolving crane without load swings - involves controlled timing of grab acceleration and retardation adjusted to period of natural frequency of oscillation
DE69432653T2 (en) Control and control system for the speed of a moving, oscillating load and lifting device with such a system
EP3652104B1 (en) Control equipment for a hoisting gear and method for operating the same
JPH0228493A (en) Control for swing suppressing operation for suspended load
EP4174013A1 (en) Method for moving a load with a crane
DE102005002192B4 (en) Method for operating a crane installation, in particular a container crane, and crane installation, in particular a container crane
EP2546185B1 (en) Vibration absorber
EP4186847B1 (en) Trajectory planning with flexible reordering functionality - modified endpoint
KR20050063440A (en) Automated overhead cranes and motion control method for the same
EP4211069A1 (en) Tower crane, method and control unit for operating a tower crane, trolley and trolley travel unit
EP3762324B1 (en) Method for controlling and in particular monitoring an actuator, in particular of a winch, a hoist or a crane, and system for carrying out such a method
EP4406905A1 (en) Method and device for operating a boom slewing crane and boom slewing crane
WO2004016540A1 (en) Method for controlling the operation of a trolley

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008001820

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101117

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110818

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001820

Country of ref document: DE

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 488466

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200619

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001820

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103