EP2195633A1 - Procédé pour déterminer la robustesse aux chocs thermiques et la résistance de matériaux à rupture de fragilité - Google Patents
Procédé pour déterminer la robustesse aux chocs thermiques et la résistance de matériaux à rupture de fragilitéInfo
- Publication number
- EP2195633A1 EP2195633A1 EP08775373A EP08775373A EP2195633A1 EP 2195633 A1 EP2195633 A1 EP 2195633A1 EP 08775373 A EP08775373 A EP 08775373A EP 08775373 A EP08775373 A EP 08775373A EP 2195633 A1 EP2195633 A1 EP 2195633A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sample
- thermal shock
- fluid
- material sample
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/60—Investigating resistance of materials, e.g. refractory materials, to rapid heat changes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
- G01M99/002—Thermal testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0062—Crack or flaws
Definitions
- the present invention relates to a method for determining the thermal shock robustness and the material strength of brittle-failing materials, in particular of ceramic materials, as well as an apparatus for carrying out this method.
- Ceramic materials have already proven themselves in a variety of applications where high hardness, high wear resistance, high corrosion resistance, good high temperature stability combined with a low specific weight are required.
- the properties of ceramic materials are not only determined by the chemical composition, but also significantly by the respective structure and microstructure.
- the targeted adjustment of certain microstructures, the so-called microstructure design, enables the influencing of mechanical and physical characteristics.
- New ceramic materials must meet the respective requirements and technical problems. If the characteristic values of the material are known, it is possible, taking into account the thermal, mechanical and chemical stresses, before the manufacture of a component
- Ceramic materials are identified that have particularly suitable properties. Similarly, ceramic materials can be sorted out which suitable for a particular application profile. An important consideration in the use of ceramic materials is their brittleness and thermal shock sensitivity. Thermal shock is the rapid, shock-like change in the temperature of a material or workpiece. This leads to mechanical stresses between the outer and inner
- EP 0 992 784 B1 describes an apparatus and a method for measuring the strength and the thermal shock behavior of material samples.
- a locally narrowly limited area of a material sample is shock-like heated, for example with a lamp or a laser.
- a pyrometer and a thermal camera Using a pyrometer and a thermal camera, a local temperature profile is recorded and its chronological progression is monitored. The mechanical processes in the sample are observed via a microscope and a video camera. The heat energy input is increased until, due to the thermal stresses, a break occurs in the material sample. Knowing the temperature distribution at break time and a variety of material characteristics, such as Young's modulus, Poisson's ratio and coefficient of thermal expansion, can be used to calculate the stress ratios at break time and thus the strength of the material sample. Disclosure of the invention
- a method for measuring the thermal shock robustness and the material strength of brittle-failing, in particular ceramic materials comprising the following steps is proposed (a) homogeneous heating of at least one material sample to a desired temperature,
- step (D) optionally, the steps a) to c) are repeated with the material sample wherein in step a) a higher target temperature level is set.
- the measuring method according to the invention makes it possible to characterize brittle-failing materials, in particular ceramic materials, with regard to thermal shock robustness and mechanical, temperature-dependent material strength.
- other brittle-failing materials such as glasses or powder-metallized metallic materials can be characterized according to the invention.
- Thermal shock robustness is also called thermal shock resistance.
- the material strength and the thermal shock resistance are determined here as material characteristic values.
- the evaluation of the measured values obtained for the thermal shock resistance can advantageously be carried out without the knowledge of further material parameters, such as the modulus of elasticity, Poisson's ratio or thermal expansion coefficient.
- the measurement can also be performed as a material test.
- thermo shock robustness in the run-up to the sometimes very complex and costly production of components, an examination of the mechanical properties of the materials, in particular the thermo shock robustness, can take place. Thus, it can be judged whether the respective material is fundamentally suitable for a particular application due to its identified thermal shock robustness and material strength.
- the fluid used according to the invention has a Weber number of W e > 130.
- the Weber number is a measure of the drop deformation and is characterized by the following
- the material sample may have a maximum thickness of 0.5 mm, preferably of not more than 0.3 mm.
- the induced cooling by the fluid can in this case be carried out particularly advantageously over the entire thickness of the sample, thus producing particularly favorable stress ratios in the sample.
- step b) the diameter d 1 of the induced local cooling by the fluid for
- Material sample diameter Dl may have a ratio of at least 1: 4. This means that according to the invention preferably the diameter of the material sample (Dl) can be selected at least 4 times as large as the diameter of the induced local cooling by the fluid (dl). As a result, particularly favorable stress ratios are achieved for the material test according to the invention.
- different types of material samples in particular ceramic film samples, can be used, which have a plane stress state in which, therefore, substantially no buckling takes place until the fracture limit is reached.
- Particularly preferred circular discs can be used.
- the material sample in step a) can be heated without contact, particularly preferably by a high-power lamp, to the desired temperature.
- a high-power lamp particularly preferably by a high-power lamp
- the heating process can be particularly homogeneous and fast.
- a plurality of samples can be heated simultaneously.
- step d) the temperature.
- Smaller temperature increase increments can also be selected to further increase accuracy. However, this may increase the duration of the procedure.
- a larger temperature increment may also be initially selected for a rough determination. In the temperature range in which cracking is then determined, a fine determination with smaller temperature increments can subsequently be carried out, which then improves the accuracy of the characteristic determination.
- the fluid may be a liquid, preferably an aqueous medium.
- aqueous media media which are at least 80
- Wt .-% consist of water.
- substances or substance mixtures which have surface-active properties can be added to the water.
- surfactants or surfactant mixtures which improve the wetting properties of the water.
- the substances or substance mixtures are preferably added to the water in amounts of 5 to 10% by weight.
- Aqueous media also have the advantage that they can be reused and are also environmentally friendly in disposal and also inexpensive.
- the cracking test in step c) can be performed visually, preferably with a fluorescent liquid under UV light.
- the test can be carried out automatically or semi-automatically directly by an operator or even with known means and methods. For example, by an automatic camera the course of the
- Other methods are based, for example, on the acoustic detection as in the ultrasonic resonance or on X-rays.
- the measuring method according to the invention can be carried out at least partially automated. This - -
- an apparatus for carrying out the above-described method and its various embodiments for determining the thermal shock robustness and material strength of brittle-failing materials comprising at least one sample tray for material samples, a means for non-contact homogeneous heating of the material sample / s, a means for Non-contact temperature measurement, a metering device for applying a defined in shape and volume of fluid to a material sample, a device for detecting cracks and an evaluation has.
- the device is operated semi-automatically or fully automatically, so that advantageously no intervention by an operator is necessary until the end of the test.
- the test is completed when all the samples used show cracking or the maximum temperature of the device according to the invention for the test is reached.
- a means for non-contact homogeneous heating of the material sample / n can preferably be used a high-power lamp.
- the heating process can thus be particularly gentle on the samples and thereby particularly fast.
- a pyrometer can be used as a means for non-contact temperature measurement.
- the metered application of a defined in shape and volume of fluid to a sample of material can be realized in the device according to the invention by a corresponding dropper.
- the evaluation unit of the device may include a computer-aided control and a corresponding software program. All necessary parameters such as the sample thickness, the fluid shape and the temperature increments to be observed can be defined and stored in the controller and all data required for the evaluation can be recorded. After the end of the test, the evaluation can then advantageously be carried out automatically.
- the device can have a sample plate which can hold at least 30 material samples. This can be done on the one hand, a high and fast throughput of samples. On the other hand, advantageously the results of the material characteristic characterization can be statistically verified.
- inventive method can be positioned on a sample round plate of a device according to the invention for testing a plurality of samples, in particular ceramic sample films.
- samples may preferably be in the form and
- the samples may have, for example, a maximum thickness of 0.3 mm and a minimum of 4 times the diameter.
- the maximum diameter should not exceed 16 mm. This procedure allows a high and fast throughput of material samples as well as a statistical validation of the measured material characteristics.
- Each sample can be heated without contact by means of a high-power lamp to a predetermined target temperature homogeneous.
- the heating of the entire sample volume used by the high-power lamp can take place simultaneously, which in turn promotes speedy implementation of the method.
- a temperature control can also be done without contact, for example via a pyrometer. After reaching the desired temperature, the samples can be left for a remaining time at this temperature, so that a homogeneous temperature control of the entire sample / s is particularly ensured.
- the retention time may preferably be for a period of 5 seconds. to 3 min., more preferably for a duration of 10 sec. to 60 sec., to be selected.
- a fluid defined in shape and volume is brought to the center of the sample (s), thus inducing a local thermal shock.
- a liquid preferably an aqueous fluid can be applied, for example, by a dropper as a metering device. According to the invention, a ratio of the
- the fluid has a Weber number We> 130.
- a visual check for cracking of the samples may preferably be carried out.
- a fluorescent liquid can be applied to the material samples and the test under UV light can be performed.
- the cracking test may preferably be automated by known methods. For the samples in which no cracking is determined, then automatically set a next higher temperature level and the inventive method with steps a) to c) are repeated.
- Fig. 1 is a schematic sectional view of a material sample according to the invention.
- FIG. 1 shows a schematic sectional view of a material sample 1 according to the invention made of a material which is a failure of friability.
- the material sample 1 is preferably made of a ceramic material.
- the material sample 1 may have at least one diameter D 1, which is four times as large as the diameter d 1 of the region of the local cooling 3, which is effected by a fluid 2 defined in shape and volume.
- the fluid 2 has a Weber number of W e > 130 and induces a thermal shock in the material sample 1.
- the material strengths were determined according to the standard DIN EN 843-1. According to the invention, there is thus provided a method and an apparatus for carrying out this method, with which a characterization of brittle-failing materials, in particular of ceramic materials, in terms of thermal shock robustness and mechanical, temperature-dependent material strength is made possible in a simple manner.
- the material strength and thermal shock resistance can be determined as material characteristics. In contrast to the previously known methods, the characterization can advantageously take place without the knowledge of further material parameters.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
L'invention concerne un procédé pour déterminer la robustesse aux chocs thermiques et la résistance de matériaux à rupture de fragilité, notamment de matériaux céramiques, ce procédé comprenant les étapes suivantes : (a) chauffage homogène d'au moins un échantillon de matériau à une température de consigne ; (b) induction d'un choc thermique local par refroidissement avec un fluide de forme et de volume définis, le fluide présentant un indice de Weber We ≥ 130 ; (c) contrôle de la fissuration de l'échantillon de matériau ; (d) optionnellement, on répète les étapes a) à c) avec l'échantillon de matériau, en réglant à l'étape a) un niveau plus élevé de température de consigne. L'invention concerne en outre un dispositif pour la mise en œuvre du procédé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710045636 DE102007045636A1 (de) | 2007-09-25 | 2007-09-25 | Verfahren zur Ermittlung der Thermoschockrobustheit und Materialfestigkeit von sprödversagenden Materialien |
PCT/EP2008/060005 WO2009040168A1 (fr) | 2007-09-25 | 2008-07-30 | Procédé pour déterminer la robustesse aux chocs thermiques et la résistance de matériaux à rupture de fragilité |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2195633A1 true EP2195633A1 (fr) | 2010-06-16 |
Family
ID=39865760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08775373A Withdrawn EP2195633A1 (fr) | 2007-09-25 | 2008-07-30 | Procédé pour déterminer la robustesse aux chocs thermiques et la résistance de matériaux à rupture de fragilité |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2195633A1 (fr) |
DE (1) | DE102007045636A1 (fr) |
TW (1) | TW200925600A (fr) |
WO (1) | WO2009040168A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201111774A (en) * | 2009-09-18 | 2011-04-01 | Dragon Steel Corp | Non-destructive strength testing method for refractory materials |
DE102010017351B4 (de) * | 2010-06-14 | 2021-12-23 | Saint-Gobain Industriekeramik Rödental GmbH | Verfahren zum Testen von thermisch hochbelastbaren, keramischen Bauelementen |
AT516082B1 (de) * | 2014-08-11 | 2018-02-15 | Mat Center Leoben Forschung Gmbh | Verfahren zur Prüfung eines Körpers mit sprödem Materialverhalten |
CN111024746A (zh) * | 2019-11-27 | 2020-04-17 | 中山市海明润超硬材料有限公司 | 一种金刚石复合片耐热性能的测试方法及测试装置 |
CN111721643B (zh) * | 2020-07-03 | 2023-05-12 | 浙商检测集团有限公司 | 一种防水卷材的低温柔性检测仪 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3544391B2 (ja) * | 1994-06-29 | 2004-07-21 | 本田技研工業株式会社 | 金型材の特性検査装置 |
RU2117274C1 (ru) * | 1997-03-05 | 1998-08-10 | Открытое акционерное общество "Научно-исследовательский и конструкторско-технологический институт асбестовых технических изделий - фирма ТИИР" | Способ испытания материалов на термостойкость |
DE19845594A1 (de) * | 1998-10-05 | 2000-04-06 | Bosch Gmbh Robert | Vorrichtung und Verfahren zur Messung der Festigkeit und des Thermoschockverhaltens von Materialproben |
DE10053112A1 (de) * | 2000-10-26 | 2002-05-16 | Bosch Gmbh Robert | Vorrichtung und Verfahren zur thermografischen Analyse von Prüflingen |
DE102006009465B4 (de) * | 2006-03-01 | 2009-08-27 | Siemens Ag | Verfahren zum Testen der Beständigkeit eines Schichtsystems, insbesondere eines Wärmedämmschicht-Systems, und Testvorrichtung |
-
2007
- 2007-09-25 DE DE200710045636 patent/DE102007045636A1/de not_active Withdrawn
-
2008
- 2008-07-30 WO PCT/EP2008/060005 patent/WO2009040168A1/fr active Application Filing
- 2008-07-30 EP EP08775373A patent/EP2195633A1/fr not_active Withdrawn
- 2008-09-23 TW TW97136418A patent/TW200925600A/zh unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2009040168A1 * |
Also Published As
Publication number | Publication date |
---|---|
TW200925600A (en) | 2009-06-16 |
DE102007045636A1 (de) | 2009-04-02 |
WO2009040168A1 (fr) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010041461B4 (de) | Prüfverfahren für ein additives Fertigungsverfahren | |
WO2009040168A1 (fr) | Procédé pour déterminer la robustesse aux chocs thermiques et la résistance de matériaux à rupture de fragilité | |
DE3686414T2 (de) | Verfahren zur bewertung von restermuedungsdauer mechanischer teile. | |
DE202008009006U1 (de) | Temperaturempfindliche Farbe für einen erweiterten Temperaturbereich | |
DE102019124344B4 (de) | Verfahren und Vorrichtung für eine Überprüfung der inneren Beschaffenheit eines Prüfobjektes mittels eines aufgeprägten Wärmeflusses | |
EP3180610A1 (fr) | Procédé de test d'un corps dont la matière est fragile | |
DE3785411T2 (de) | Verfahren zur Voraussagung der übrigbleibenden Lebensdauer eines Metallmaterials. | |
EP3027570B1 (fr) | Procédé permettant de charger en hydrogène une ébauche en verre de quartz, élément de lentille et objectif de projection | |
EP3182582A1 (fr) | Procede et dispositif de controle de la resistance au vieillissement de cellules solaires ou de panneaux solaires | |
DE69629945T2 (de) | Verfahren zur Überwachung von Nylon 11-Teilen | |
DE3825541C2 (de) | Verfahren zur Bewertung der Reststandzeit von wärmebeständigem Stahl | |
DE102015200648A1 (de) | Verfahren zur Bestimmung des Vernetzungsgrads einer Polyethylenverbindung | |
DE102015214292A1 (de) | Vorrichtung und Verfahren zur thermo-optischen Untersuchung von Proben | |
DE102018219231A1 (de) | Verfahren zum Prüfen der Hafteigenschaften einer Schicht, insbesondere einer Verschleißschutzschicht | |
DE102006059791A1 (de) | Verfahren und Vorrichtung zum Bestimmen einer Anfälligkeit eines Werkstoffes gegen dynamische Reckalterung | |
DE102014215727B4 (de) | Verfahren zur Überwachung des Betriebszustands eines Oberflächen-Inspektionssystems zum Nachweis von Defekten auf der Oberfläche von Halbleiterscheiben | |
DE102016201647A1 (de) | Verfahren zur Prüfung einer keramischen Komponente | |
EP2176649A1 (fr) | Procédé de détermination de propriétés d'objets tridimensionnels | |
DE102009041967A1 (de) | Vorrichtung zur Analyse von Körperflüssigkeiten | |
EP3244192B1 (fr) | Procede de commande d'une chambre de test | |
DE102005034475A1 (de) | Vorrichtung | |
DE10338582B4 (de) | Verfahren zum Messen eines Parameters einer Beschichtung | |
EP2645088A1 (fr) | Procédé d'évaluation de défauts à la surface d'un composant | |
DE102019217470B3 (de) | Verfahren zum Ermitteln eines Istwerts und/oder eines Istwertbereichs wenigstens einer Zustandsgröße eines Fluids in einer Fluidströmung mittels wenigstens eines Indikatorpartikels, Verfahren zum Betreiben einer fluidführenden Einrichtung, Indikatorpartikel sowie Einrichtung zum Ermitteln des Istwerts der wenigstens einen Zustandsgröße | |
DE102011002057A1 (de) | Verfahren und Vorrichtung zum prüfen eines Thermoelements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130201 |