EP2190612A1 - Method and device for the electromagnetic stirring of electrically conductive fluids - Google Patents
Method and device for the electromagnetic stirring of electrically conductive fluidsInfo
- Publication number
- EP2190612A1 EP2190612A1 EP08801098A EP08801098A EP2190612A1 EP 2190612 A1 EP2190612 A1 EP 2190612A1 EP 08801098 A EP08801098 A EP 08801098A EP 08801098 A EP08801098 A EP 08801098A EP 2190612 A1 EP2190612 A1 EP 2190612A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic field
- liquid
- solidification
- container
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/02—Use of electric or magnetic effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/45—Magnetic mixers; Mixers with magnetically driven stirrers
- B01F33/451—Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
- B22D27/045—Directionally solidified castings
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/06—Constructional features of mixers for pig-iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D27/00—Stirring devices for molten material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0391—Affecting flow by the addition of material or energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
Definitions
- the invention relates to a method and a device for the electromagnetic stirring of electrically conductive liquids in the liquid state and / or during the solidification of the liquids using a horizontal magnetic field generating a Lorentz force, rotating magnetic field. Due to their contactless interaction with electrically conductive liquids, time-dependent electromagnetic fields open up a possibility for mixing, for example, molten metal melts.
- the magnetic field amplitude and frequency parameters allow the electromagnetic field to be controlled directly and accurately in a simple manner.
- the present invention relates to magnetic, mostly in the horizontal direction rotating traveling fields, also referred to as rotating magnetic fields.
- a major problem with the use of a rotating magnetic field for electromagnetic stirring is that the majority of the kinetic energy of the melt is for the primary azimuthal Rotational movement is applied, but only contributes to a small extent to the mixing of the melt.
- An intensification of the mixing process is possible primarily by an enhancement of the secondary meridional flow.
- An increase in magnetic field strength or magnetic field frequency causes a widening of the secondary flow, ie an increase in the speed values in the axial and radial directions and the generation of additional turbulence, eg the occurrence of Taylor-Görtler-vortexes, as in the publications PA Nikrityuk, K. Eckert, R Grundmann: Magnetohydrodynamics, 2004, 40, pp. 127-146.
- a method for stirring the molten steel during continuous casting is also described in the publication US 2003/0106667, in which two superimposed and counter-rotating magnetic fields are used. While the lower magnetic field takes over the actual function of the stirrer, the task of the upper magnetic field is to decelerate the rotating melt in the area of the free surface to very low velocity values in order to compensate for the negative effects of stirring - a deflection and turbulence of the free surface .
- One problem is that it works with two magnetic stirrers - a lower magnetic stirrer and an upper magnetic stirrer. This means in comparison to the use of only one magnetic system a higher apparatus and control engineering effort. At the same time, such a method has an unfavorable energy balance.
- each method for electromagnetic stirring in continuous casting molds are described in which a periodic change of the current is made in the coil assembly.
- the document DE 2 401 145 describes that the formation of secondary white bands and secondary dendrites can be avoided with this method.
- a calming of the free bath surface is achieved. It is assumed that the resulting magnetic field inside the melt simultaneously maintains an intense stirring motion.
- very wide ranges, in particular between one second and 30 seconds, are specified for the cycle times in which the current direction is to be changed.
- the cycle time also called period duration, or the frequency of the sign change of the current is an important parameter with a large influence on the forming flow.
- period duration also called the frequency of the sign change of the current
- the invention has for its object to provide a method and a device for electromagnetic stirring of electrically conductive liquids, which are designed so suitable that an intense three-dimensional flow inside the liquid for mixing in the liquid state reaches into the immediate vicinity of solidification fronts and at the same time an undisturbed, free surface of the liquid can be ensured.
- a three-phase alternating current current I 0 can be applied to at least three pairs of induction coils placed on a cylindrical container containing the liquid.
- the container can be filled as electrically conductive liquids metallic or semiconductor melts.
- the amplitude B 0 of the magnetic field is to be increased so that at least the maximum of the two values
- B ⁇ ⁇ . ⁇ (, v) and is reached, where v is the kinematic viscosity of the melt, V SO
- the respective period durations are interrupted during mixing Tp M and at the beginning of solidification T P E, in which the magnetic field is applied by interrupting the pause duration Tp au se, in which no magnetic field is applied to the melt, wherein the pause duration T PaUse to the respective period T P is set with Tpause ⁇ 0.5 Tp.
- the device for the electromagnetic stirring of electrically conductive liquids in the liquid state and / or in the state of the beginning of the solidification of the liquid using a horizontal plane Lorentz force FL generating, rotating magnetic field and under control of the temperature profile of the liquid by means of the method according to the invention contains at least
- a cylindrical container a centrally symmetrical arrangement of at least three pairs of induction coils surrounding the container for forming a rotating magnetic field generating a low-force force FL,
- At least one temperature sensor for measuring the temperature of the liquid in the container, wherein according to the characterizing part of claim 9, the pairs of induction coils are in communication with a control and regulating unit, which forwards a rotary current I 0 to the pairs of induction coils via a connected power supply unit, wherein the Phase angle of the pairs of induction coils feeding three-phase current ID at regular, time intervals and according to the predetermined period TP M for mixing in the liquid state or T PE for the mixing is shifted from the beginning of solidification by 180 ° and thus a reversal of the direction of rotation the magnetic field and the Lorentkraft F L driving the flow is achieved, wherein the control unit is in communication with the temperature sensor whose temperature data at the time of solidification start the switching of the period from T PM to T PE .
- the three-phase current I 0 may be a three-phase alternating current.
- the container with the electrically conductive liquid which may in particular be a melt, may preferably be arranged concentrically within the induction coils.
- the container may be provided with a heating device and / or cooling device, which may be in communication with a fixed metal body.
- the container bottom can be in direct contact with a solid metal body, which is flowed through by a cooling medium in the interior.
- the side walls of the container may be thermally insulated.
- the heat sink can communicate with a thermostat.
- Between the heat sink and the container may be a liquid metal film to achieve a stable heat transfer with low contact resistance.
- the liquid metal film may be made of a gallium alloy.
- At least one temperature sensor e.g. be positioned in the form of a thermocouple, which provides an information signal about the time of the onset of solidification and is connected to the control unit.
- the use of the device according to the invention for the electromagnetic stirring of electrically conductive liquids can according to claims 9 to 18 in the form of metallic melts in metallurgical processes or in the form of semiconductor melts in the crystal growth, for the purification of molten metal, in continuous casting or in the solidification of metallic works. Substances by means of the method according to claim 1 to 8 take place.
- the direction of the rotating magnetic field is reversed at quite specific, regular time intervals.
- the reversal is carried out by means of the control means for shifting the phases of a three-phase alternating current, whereby the direction of rotation of the rotating phases of a three-phase alternating current and thus reverses the direction of rotation of the rotating magnetic field.
- an intense meridional secondary flow at the same time mitigated pronounced azimuthal rotational movement, which is carried out by the constantly recurring directional change intensive mixing.
- the efficient adjustment of the duration of the period T P between two changes of direction plays the decisive role.
- the parameter t, a represents an adjustment time (English, initial adjustment time), in which, after an abrupt connection of a rotating magnetic field in a melt, which was previously in the rest state, the double vortex typical of the meridional secondary flow has developed.
- the characteristic response time t, a is calculated according to a formula from the variables electrical conductivity of the melt, density of the melt and frequency and amplitude of the magnetic field.
- An associated constant takes into account the influence of size and shape of the melt volume and can assume numerical values between three and five. This is compared to the prior art, in particular with respect to the document DE 3 730 300 before a defined range for the period T P , in which the direction of rotation change is adjustable.
- An essential feature of the invention is that the direction of the rotating magnetic field is reversed at regular time intervals, with the period T P of the change of direction an important parameter exists, which can be specified in order to intensify the stirring. Stalten.
- An essential criterion for the success of the process is the possibility of a targeted control of the secondary flow. Different flow patterns are advantageous for different objectives.
- the present invention can be used advantageously for the efficient stirring of melts and for the directed solidification of multicomponent melts.
- the objective in an application of the method in the directional solidification of metallic alloys is that in addition to a thermal homogenization of the melt, the direction of the flow in the immediate vicinity of the solidification front over time should be varied so that a time average for the radial velocity component close to zero results.
- the present invention shows that the meridional secondary flow rate field is clearly and comprehensibly dependent on variations in the parameter T p .
- T P the proper adjustment of the period T P is crucial in view of the objective of the particular application.
- Tp the strength of the magnetic field, the dimensions and shape of the melt volume and the material properties of the melt must be taken into account.
- Fig. 1 is a schematic representation of a device according to the invention for the electromagnetic stirring for mixing a liquid Melt in conjunction with the inventive method, wherein
- FIG. 1a is a schematic structure of the device in front view
- Fig. 1b is a plan view of the device according to Fig. 1a
- Fig. 1c is a schematic representation of the flow modes in a rotating magnetic field in the horizontal plane
- Fig. 1d a period duration (Tp) -Temperatur (T) representation of the melt in the liquid state and in the transition to solidification, wherein T SO ⁇ the Temperature of the container bottom too
- Fig. 2 shows two schematic cylindrical container with liquid metal melts, wherein
- FIG. 2 a shows a liquid melt of a metal and FIG. 2 b shows two superimposed melts of two different metals at rest (in the unmixed state), FIG.
- Fig. 5 Presentation of the results of numerical simulations for mixing the tin concentration in the lower half of the container: time evolution of the volume-averaged Sn concentration in the lower container volume for different scenarios.
- FIG. 6 solidification of an Al-Si alloy under magnetic field influence
- FIG. 1, 1a, 1b is a schematic representation of an inventive device 1 for stirring a liquid in the liquid state in the form of a metallic melt 2 using a horizontal plane in a Lorentz force FL generating, rotating magnetic field, wherein the device 1 comprises at least one cylindrical container 13 with the liquid melt 2 therein, as shown in Fig. 2a, or 21, 22 as shown in Fig. 2b, - A surrounding the container 13 centrally symmetrical arrangement 3 of at least three pairs 31, 32,33 of induction coils for forming a Lorentz force F L generating, rotating magnetic field and
- At least one temperature sensor 10 for measuring the temperature of the liquid 2,21, 22 in the container 13.
- the pairs 31, 32, 33 of the induction coils are connected to a control / regulation unit 12, which transmits a three-phase current b to the pairs 31, 32, 33 of induction coils via a connected power supply unit 11, the phase position of the pairs 31, 32, 33 of the induction coils feeding three-phase current ID at regular time intervals corresponding to the predetermined period T PM for mixing in the liquid state or T PE for mixing from the beginning of solidification is shifted by 180 ° and thus a reversal of the direction of rotation of the magnet field and the Lorentkraft F L driving the flow is achieved, wherein the control unit 12 is in communication with the temperature sensor 10 whose temperature data at the time of solidification start the switching of the period from T PM to TPE.
- the cylindrical container 13 is filled with the liquid, electrically conductive first melt 2.
- the container 13 is located centrally symmetrically in the middle of the arrangement 3 of the induction coil pairs 31, 32, 33, as shown in FIG. 1 b.
- the induction coil pairs 31, 32, 33 are fed by a power supply unit 11 with a three-phase current I 0 in the form of a three-phase alternating current and generate a magnetic field rotating around the axis of symmetry 14 of the container 13 and oriented horizontally with the direction of rotation 15 (arrow direction).
- the temporal change in the magnetic field strength generates a Lorentz force F L with a dominant azimuthal component which causes the melt 2 in FIG. 2 a or 21, 22 in FIG. 2 b to rotate.
- the power supply unit 11 of the induction coil pairs 31, 32, 33 is connected to the control / regulating unit 12, which causes a displacement of the phases of the three-phase alternating current ID at predetermined time intervals.
- the phase shift has the consequence that the direction of rotation 15 of the horizontally oriented Magnetic field during the phase change in the direction of rotation 16 reverses, as shown in Fig. 1b.
- the method can be used, for example, to homogenize the temperature distribution in a one-component melt 2, as shown in FIG. 2 a, or to balance the concentration in demixed multicomponent melts 21, 22, as shown in FIG. 2 b. cause the higher density melt 22 to be in the lower part of the container 13 prior to mixing and to be covered by the lighter melt 21.
- FIG. 1 The operation of the device 1 is explained in more detail according to FIG. 1 and FIG. 2a, 2b.
- the electromagnetic stirring method is based on a periodic reversal of the direction of the Lorentz force F L driving the flow.
- the character of the flow is determined by a periodic change of the direction of rotation 15-16, 16-15 of the magnetic field B 0 .
- the flow is slowed down and the melt 2, 21, 22 accelerates in the opposite direction.
- the Lorentz force FL varies in the axial direction with the associated force component and has a maximum in the center plane 17 of the container 13.
- the melt 2, 21, 22 braked more in the vicinity of the center plane 17 and in the Counter direction 16 accelerates as this is near the bottom 4 of the container 13 and the free surface 5 of the case.
- the setting of the period Tp plays a crucial role. If the period T P is too long, the primary azimuthal rotational movement 19 significantly increases in intensity as compared to the secondary meridional flow 18. A shorter period T P is advantageous because more frequent changes of direction 15-16, 16-15 increase the secondary flow 18. However, if the period Tp is too small, the melt 2, 21, 22 can not be sufficiently accelerated, both primary rotational movement 19 and secondary flow 18 lose their intensity. Thus, as shown in Fig. 1e, there exists a certain optimum value of the period T P) which depends on the magnetic field strength B 0 , the size and shape of the volume and the material properties of the melt 2, 21, 22.
- the parameter t i a. is the so-called adjustment time (English, initial adjustment time) and denotes the time scale, in which, after an abrupt connection of a rotating magnetic field in a melt 2, 21, 22, which was previously at rest, the double vortex typical of the meridional secondary flow 18 out forms.
- the response time tj .a is defined by the following equation where the variables ⁇ , p, ⁇ and B 0 denote the electrical conductivity and the density of the melt, the frequency and the amplitude of the magnetic field, while the constant C 9 describes the influence of size and shape of the melt volume and assume numbers between three and five can.
- the experimental results prove the existence of a certain period Tp at which the intensity of the secondary meridional flow 18 reaches a maximum.
- the position of the maximum U zma ⁇ 2 varies with the magnetic field strength and corresponds to the respective adjustment time tj .a ..
- the representation is characterized by the temporal evolution of the tin concentration 21 in the lower container half (R 0 - radius, H 0 - height of the container) confirmed, which is shown in Fig. 4b.
- Particularly noteworthy in this context is that when setting an inappropriate value of the period Tp with respect to a homogenization of the melt volume worse results are achieved than when using a continuously rotating magnetic field.
- the device 1 shown in FIG. 2 of the cylindrical container 13 filled with an electrically conductive melt 2 in the arrangement 3 of induction coil pairs 31, 32, 33 as shown in FIGS. 1, 1 a, 1 b can be replaced by a cooling device 23 be supplemented for the solidification of metallic melts 2.
- the cooling device 23 contains a metal block 6, in the interior of which cooling channels 7 are present.
- the container 13 stands on the metal block 6.
- the cooling channels 7 located in the interior of the metal block 6 are flowed through by a coolant during the solidification process.
- the melt 2 is removed from the heat down.
- a thermal insulation 8 of the container 13 prevents heat losses in the radial direction.
- At the bottom 4 and the side walls 20 of the container 13 is at least one temperature sensor 10, for example mounted in the form of a thermocouple.
- the temperature measurements make it possible to monitor the beginning and the course of the state of solidification and to enable a timely adaptation of the magnetic field parameters (eg B 0 and Tp) by the power supply unit 11 controlled by the control unit 12 to the individual stages of the solidification process.
- the periodic reversal of the direction of the Lorentz force F L driving the flow is continued.
- the period T PE is, as shown in Fig.id, set such that the melt 2 is well mixed and the direction of the secondary meridional flow 18 in the vicinity of the solidification front undergoes a constant change of direction.
- Al-Si alloys 21, 22 may directionally solidify directionally controlled temperature in the device 1 according to the invention shown in FIG. The microstructural properties obtained are explained in more detail with reference to FIGS. 6a, 6b, 6c, 7a, 7b and 8 with regard to the formation of columnar dendrites, grain refining and demixing.
- FIG. 6 shows the macrostructure in longitudinal section of cylindrical blocks of an Al-7wt% Si alloy, eg with a diameter of 50 mm and a height of 60 mm, which were directionally solidified under the action of a rotating magnetic field at a field strength B 0 of 6.5 mT ,
- the magnetic field was switched on with a time delay of 30 s after the start of solidification on the container bottom.
- a coarse columnar structure grows parallel to the symmetry axis of the container.
- FIG. 7a first of all a modified columnar structure is formed, as shown in FIG. 7a, ie the columnar grains become finer and grow inclined to the side.
- FIGS. 6 to 8 show that in the case of electromagnetic stirring with a change of direction of the magnetic field when the magnetic field is switched on, a direct transition to equiaxial grain growth can be achieved.
- the periodic change of the direction of rotation of the magnetic field leads in each case to an can, as shown in Fig. 7b ner reduction of segregation, which is also completely avoided with a suitable choice of the pulse duration T P almost be.
- the frequency of the periodic reversal of the direction of the secondary meridional flow 18 determined according to the invention makes it possible to determine definable values for mixing or directional solidification
- the application of the invention may be used for the mixing of molten metals 2, 21, 22, for continuous casting, for the directed solidification of mixed metallic alloys and for the directed solidification of semiconductor melts, among others. be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Continuous Casting (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710037340 DE102007037340B4 (en) | 2007-08-03 | 2007-08-03 | Method and device for the electromagnetic stirring of electrically conductive liquids |
PCT/DE2008/001260 WO2009018809A1 (en) | 2007-08-03 | 2008-08-01 | Method and device for the electromagnetic stirring of electrically conductive fluids |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2190612A1 true EP2190612A1 (en) | 2010-06-02 |
EP2190612B1 EP2190612B1 (en) | 2017-12-20 |
Family
ID=40120237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08801098.8A Not-in-force EP2190612B1 (en) | 2007-08-03 | 2008-08-01 | Method and device for the electromagnetic stirring of electrically conductive fluids |
Country Status (5)
Country | Link |
---|---|
US (2) | US20110297239A1 (en) |
EP (1) | EP2190612B1 (en) |
JP (1) | JP5124863B2 (en) |
DE (1) | DE102007037340B4 (en) |
WO (1) | WO2009018809A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8397760B2 (en) * | 2010-10-06 | 2013-03-19 | The Invention Science Fund I, Llc | Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid |
US8584692B2 (en) * | 2010-10-06 | 2013-11-19 | The Invention Science Fund I, Llc | Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid |
US8453330B2 (en) | 2010-10-06 | 2013-06-04 | The Invention Science Fund I | Electromagnet flow regulator, system, and methods for regulating flow of an electrically conductive fluid |
US9008257B2 (en) | 2010-10-06 | 2015-04-14 | Terrapower, Llc | Electromagnetic flow regulator, system and methods for regulating flow of an electrically conductive fluid |
US8781056B2 (en) | 2010-10-06 | 2014-07-15 | TerraPower, LLC. | Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid |
CN102980415A (en) * | 2012-11-20 | 2013-03-20 | 中国科学院研究生院 | Method for driving periodic flow of metal melt on basis of spiral magnetic field of electrified coil |
DE102013009773B4 (en) * | 2013-06-05 | 2016-02-11 | Technische Universität Dresden | Device and method for increasing the binding efficiency of binding capable target structures |
AT515244A2 (en) | 2013-12-30 | 2015-07-15 | Inteco Special Melting Technologies Gmbh | Method for producing long ingots of large cross section |
JP6234841B2 (en) * | 2014-02-24 | 2017-11-22 | 株式会社神戸製鋼所 | Continuous casting equipment for ingots made of titanium or titanium alloy |
JP6379515B2 (en) * | 2014-02-25 | 2018-08-29 | 新日鐵住金株式会社 | Steel continuous casting method |
JP6033807B2 (en) * | 2014-03-27 | 2016-11-30 | 高橋 謙三 | Metal melt stirring device and metal melt transfer device |
KR102423560B1 (en) * | 2014-07-28 | 2022-07-20 | 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 | Phononic materials used to control flow behavior |
CN104826533B (en) * | 2015-05-11 | 2016-11-09 | 兰州大学 | Combined annular stereo magnetic stirring apparatus |
US10898949B2 (en) | 2017-05-05 | 2021-01-26 | Glassy Metals Llc | Techniques and apparatus for electromagnetically stirring a melt material |
CN109261939B (en) * | 2017-07-17 | 2023-11-24 | 中国科学院大学 | Device and method for additive manufacturing by utilizing liquid metal |
DE102018105700A1 (en) | 2018-03-13 | 2019-09-19 | Technische Universität Ilmenau | Apparatus and method for non-invasively stirring an electrically conductive fluid |
CN109482844A (en) * | 2019-01-02 | 2019-03-19 | 江苏大学 | Complex precise casting fine grain casting device and method |
KR20220016680A (en) | 2020-08-03 | 2022-02-10 | 삼성전자주식회사 | Thermal interface material, method of manufacturing the same, and semiconductor package including the same |
US20220252091A1 (en) * | 2021-02-05 | 2022-08-11 | Arizona Board of Regents on behalf Arizona State Univernity | Robotic devices using magnetic fields for three-dimensional control of fluids |
CN114559002B (en) * | 2022-04-06 | 2024-09-20 | 上海大学 | Control method for secondary flow of rotating magnetic field |
CN115645968B (en) * | 2022-10-11 | 2023-06-30 | 浙江佳人新材料有限公司 | DMT capturing and recycling process |
CN115647335A (en) * | 2022-10-26 | 2023-01-31 | 山东大学 | Metal solidification device and method with multi-physical-field coupling effect |
CN116329530B (en) * | 2023-05-12 | 2023-08-04 | 山西昌鸿电力器材有限公司 | Intelligent casting process for hardware fitting |
CN118028620B (en) * | 2024-02-20 | 2024-07-09 | 南通泰德电子材料科技有限公司 | Method for extracting ultrahigh-purity aluminum by directional solidification under electromagnetic stirring |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1962341B2 (en) | 1969-12-12 | 1971-06-24 | Aeg Elotherm Gmbh | ARRANGEMENT OF A MULTI-PHASE ELECTROMAGNETIC WINDING ON THE STRAND GUIDE FRAMEWORK OF A CONTINUOUS CASTING PLANT |
JPS5252895Y2 (en) | 1973-04-18 | 1977-12-01 | ||
DE3730300A1 (en) | 1987-09-10 | 1989-03-23 | Aeg Elotherm Gmbh | Method and apparatus for the electromagnetic stirring of metal melts in a continuous casting mould |
US4969501A (en) * | 1989-11-09 | 1990-11-13 | Pcc Airfoils, Inc. | Method and apparatus for use during casting |
JP3247265B2 (en) * | 1994-12-06 | 2002-01-15 | 昭和電工株式会社 | Metal casting method and apparatus |
JPH09182941A (en) * | 1995-12-28 | 1997-07-15 | Nippon Steel Corp | Electromagnetic-stirring method for molten steel in continuous casting mold |
EP1726383B1 (en) * | 1997-12-08 | 2016-05-25 | Nippon Steel & Sumitomo Metal Corporation | Cast slab and method for casting molten metal, apparatus for the same |
US6402367B1 (en) * | 2000-06-01 | 2002-06-11 | Aemp Corporation | Method and apparatus for magnetically stirring a thixotropic metal slurry |
SE519840C2 (en) | 2000-06-27 | 2003-04-15 | Abb Ab | Method and apparatus for continuous casting of metals |
JP2005066613A (en) * | 2003-08-21 | 2005-03-17 | Yaskawa Electric Corp | Electromagnetic stirring apparatus |
US7063127B2 (en) * | 2003-09-18 | 2006-06-20 | International Business Machines Corporation | Method and apparatus for chip-cooling |
DE102004017443B3 (en) | 2004-04-02 | 2005-04-21 | Technische Universität Dresden | Device for stirring electrically conducting liquids in a container to control material and heat exchange comprises a control/regulating unit with an interrupting unit and a computer |
DE102007038281B4 (en) * | 2007-08-03 | 2009-06-18 | Forschungszentrum Dresden - Rossendorf E.V. | Method and device for the electromagnetic stirring of electrically conductive liquids |
-
2007
- 2007-08-03 DE DE200710037340 patent/DE102007037340B4/en not_active Expired - Fee Related
-
2008
- 2008-08-01 EP EP08801098.8A patent/EP2190612B1/en not_active Not-in-force
- 2008-08-01 US US12/672,036 patent/US20110297239A1/en not_active Abandoned
- 2008-08-01 WO PCT/DE2008/001260 patent/WO2009018809A1/en active Application Filing
- 2008-08-01 JP JP2010518494A patent/JP5124863B2/en not_active Expired - Fee Related
-
2013
- 2013-12-02 US US14/094,350 patent/US8944142B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2009018809A1 * |
Also Published As
Publication number | Publication date |
---|---|
US8944142B2 (en) | 2015-02-03 |
JP5124863B2 (en) | 2013-01-23 |
EP2190612B1 (en) | 2017-12-20 |
WO2009018809A1 (en) | 2009-02-12 |
DE102007037340B4 (en) | 2010-02-25 |
JP2010535105A (en) | 2010-11-18 |
DE102007037340A1 (en) | 2009-02-19 |
US20140290433A1 (en) | 2014-10-02 |
US20110297239A1 (en) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2190612B1 (en) | Method and device for the electromagnetic stirring of electrically conductive fluids | |
DE102007038281B4 (en) | Method and device for the electromagnetic stirring of electrically conductive liquids | |
DE60111943T2 (en) | DEVICE FOR MAGNETIC STIRING OF A THIXOTROPIC METAL MELT | |
DE69012090T2 (en) | Method and device for producing thixotropic metallic products by means of continuous casting and electromagnetic stirring. | |
DE2853202A1 (en) | IMPROVED PROCESS FOR MANUFACTURING THIXOTROPIC SLURRY | |
DE3006588C2 (en) | ||
DE69224170T2 (en) | Method and device for producing homogeneous alloys | |
DE69710808T2 (en) | Continuous casting method and apparatus using multiple electromagnetic stirrers | |
WO1997007911A1 (en) | Electromagnetic device for use with a continuous-casting mould | |
DE2911842A1 (en) | PROCEDURE FOR STIRRING IN CONTINUOUS CASTING | |
DE69702268T2 (en) | CONTINUOUS CASTING PLANT | |
DE102004017443B3 (en) | Device for stirring electrically conducting liquids in a container to control material and heat exchange comprises a control/regulating unit with an interrupting unit and a computer | |
EP1877209B1 (en) | Method for the production of pigs, and pigs | |
DE2007230A1 (en) | ||
WO2011076157A1 (en) | Method and arrangement for influencing the melting convection in the production of a solid body from an electrically conductive melt | |
DE3116792C2 (en) | Process for obtaining granules from an alloy melt and apparatus for carrying out the same | |
DE102004044539B4 (en) | Device for moving electrically conductive liquid media | |
DE102005009326B4 (en) | Method and pouring device for the production of micro castings | |
DE102020116143A1 (en) | ACTUATOR FOR A MOLD FOR THE MANUFACTURE OF METALLIC COMPONENTS | |
DE102004044635B4 (en) | Electro-magnetic mixer for e.g. chemical industry, molten metals or sales has magnetic coil around chamber with anode and cathode electrodes | |
DE102004044637B3 (en) | Controlled solidification plant for melts of electrically conductive material includes an annular cathode and several annular part anodes spaced out from each other | |
DE112021008084T5 (en) | DEVICE FOR CONTACTLESS INDUCTION OF CURRENTS IN ELECTRICALLY CONDUCTIVE LIQUIDS | |
WO1999044773A1 (en) | Method and device for casting a molten mass, and the cast parts produced according to said method | |
DE102010022691A1 (en) | Continuous casting apparatus with an arrangement of electromagnetic coils | |
DE102018105700A1 (en) | Apparatus and method for non-invasively stirring an electrically conductive fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100224 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TECHNISCHE UNIVERSITAET DRESDEN Owner name: HELMHOLTZ-ZENTRUM DRESDEN - ROSSENDORF E.V. |
|
17Q | First examination report despatched |
Effective date: 20120926 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170718 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 955913 Country of ref document: AT Kind code of ref document: T Effective date: 20180115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008015807 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20171220 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180321 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180420 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008015807 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080801 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210823 Year of fee payment: 14 Ref country code: AT Payment date: 20210818 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210824 Year of fee payment: 14 Ref country code: DE Payment date: 20210831 Year of fee payment: 14 Ref country code: NO Payment date: 20210820 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008015807 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 955913 Country of ref document: AT Kind code of ref document: T Effective date: 20220801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 |