[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2185873B1 - Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante - Google Patents

Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante Download PDF

Info

Publication number
EP2185873B1
EP2185873B1 EP08827838.7A EP08827838A EP2185873B1 EP 2185873 B1 EP2185873 B1 EP 2185873B1 EP 08827838 A EP08827838 A EP 08827838A EP 2185873 B1 EP2185873 B1 EP 2185873B1
Authority
EP
European Patent Office
Prior art keywords
fluid
cooling
interface
stage
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08827838.7A
Other languages
German (de)
English (en)
Other versions
EP2185873A2 (fr
Inventor
Pierre Briend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2185873A2 publication Critical patent/EP2185873A2/fr
Application granted granted Critical
Publication of EP2185873B1 publication Critical patent/EP2185873B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Definitions

  • the invention relates to a cryogenic refrigeration process of a fluid, for example helium, for supplying a fluid consumer, as well as a corresponding installation.
  • the fluid cyclically circulates successively through a compression stage, a pre-cooling stage and / or fluid cooling stage, and an interface for supplying the consumer with fluid. and collect fluid from the consumer.
  • This type of process is particularly suitable when the consumer needs a substantially constant heat load, that is to say when the thermal power to be supplied by the refrigeration process is almost constant over time.
  • a reactor used in the field of controlled fusion comprises superconducting elements cooled with liquid helium.
  • a pulsed thermal load varying substantially sinusoidal in time, is necessary in order not to damage the aforementioned superconducting elements.
  • the document FR 1540391 discloses a method for maintaining very low temperature electrical appliances using a fluid subjected to a compression stage, an expansion and cooling stage to be partially liquefied in a reservoir for maintaining a phase equilibrium of the fluid to a target temperature.
  • the tank supplies electrical appliances for cooling. This system is unsuited to applications undergoing thermal load variations required by the consumer since the flow rates are subject to significant variations (to the compression stage and the expansion and cooling stage).
  • the invention aims to overcome this drawback by proposing a method of refrigerating a fluid to adapt to thermally variable loads over time.
  • the invention relates to a refrigeration method according to claim 1.
  • the accumulator can store cold fluid when the thermal load to be supplied is low, that is to say to store in the accumulation means a specific thermal load and to deliver, by heat exchange, at least a portion of this charge stored in fluid for the interface.
  • Such a method therefore makes it possible to use an installation for its implementation which is simply dimensioned according to the average power to be delivered, the method making it possible to adapt to the peaks of thermal load to be supplied to the consumer.
  • the amount of fluid returned to the pre-cooling and / or cooling stage is adjusted by at least one controlled bypass valve, for example by means of a pressure sensor.
  • the amount of cold fluid supplied to the interface is therefore adjusted dynamically by the bypass valve according to the needs of the user.
  • the documents JP9170834 A and JP61005586 A describe cryogenic refrigeration processes and installations that do not adapt sufficiently satisfactorily to variable heat loads.
  • the fluid from the pre-cooling and / or cooling stage circulates through an expansion turbine.
  • the first part of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid delivered by the accumulator.
  • the fluid from the pre-cooling and / or cooling stage exchanges the heat energy with the fluid coming from the interface and / or with the second fluid part coming from the pre-cooling stage and / or cooling.
  • the second and / or third portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with the fluid coming from the interface.
  • the second fluid portion from the pre-cooling stage and / or cooling is expanded through an expansion valve.
  • the first portion of the fluid from the pre-cooling and / or cooling stage exchanges heat energy with a first fraction of the fluid from the expansion valve.
  • a second fraction of the fluid from the expansion valve is intended to supply the accumulator.
  • the fluid delivered by the accumulator is returned to the pre-cooling and / or cooling stage.
  • the invention furthermore relates to a refrigeration installation of a fluid, for example helium, for implementing the method according to the invention, comprising an interface equipped with fluid inlet and outlet members intended respectively for supplying a consumer with fluid and collecting fluid from the consumer, a fluid compression stage coming from the interface, at least one pre-cooling stage and / or cooling the fluid coming from the interface and / or fluid from the compression stage, characterized in that it comprises a damping stage comprising a supply pipe connecting the pre-cooling and / or cooling stage to the fluid inlet members of the interface, a delivery pipe connecting the fluid outlet members of the interface to the pre-cooling stage and / or cooling, and a first branch line connecting upstream of the interface the supply line to the discharge pipe via at least one bypass, the damping stage further comprising a second bypass pipe, connecting upstream of the interface the supply pipe to the discharge pipe, and equipped with accumulator, a first heat exchanger being arranged so as to exchanging heat energy between the fluid from the accumulator and the fluid flowing in the supply
  • the supply pipe is equipped with an expansion turbine, arranged upstream of the first bypass pipe.
  • the supply pipe is equipped with a second heat exchanger disposed upstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the supply pipe is equipped with a third heat exchanger disposed downstream of the expansion turbine, so as to exchange heat energy between the discharge pipe and the supply pipe.
  • the first bypass line connects the supply line, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the third heat exchanger and the second heat exchanger.
  • the first bypass pipe connects the supply pipe, at a point between the expansion turbine and the third heat exchanger, to the discharge pipe at a point between the second heat exchanger and the pre-cooling stage and / or cooling, the first bypass line passing through the second heat exchanger, the bypass valve being disposed downstream of the second heat exchanger.
  • the first branch pipe connects the supply pipe, at a point situated downstream of the third heat exchanger, to the discharge pipe at a point situated between the second heat exchanger and the pre-cooling and / or cooling stage, the first bypass pipe successively passing through the third heat exchanger and the second heat exchanger and being equipped with a first bypass valve located upstream of the third heat exchanger and a second bypass valve located downstream of the second heat exchanger.
  • the second bypass pipe is equipped with an expansion valve disposed between the third exchanger and the accumulator.
  • the damping stage comprises a third bypass pipe designed to deflect a portion of the fluid from the expansion valve, the third pipe passing through the first heat exchanger and being connected to the discharge pipe.
  • the accumulator inside which the first heat exchanger is arranged so as to exchange heat energy between the fluid passing through the first exchanger and the fluid contained in the accumulator.
  • the interface comprises an enclosure equipped with fluid inlet and outlet means, the supply pipe being equipped with a controlled valve arranged upstream of the fluid inlet members, the valve being controlled, for example via a fluid level sensor inside the enclosure.
  • the first, second and third portions of fluid from the pre-cooling and / or cooling stage are obtained by selective branching of at least a portion of the fluid assembly from the pre-cooling stage. and / or cooling.
  • the second part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of fluid coming from the pre-cooling and / or cooling stage intended for selectively supplying the interface (first part of the fluid) and / or the accumulator (third part of the fluid) (that is to say that the second fluid part is removed from all the fluid coming from the stage compression).
  • the third part of the fluid coming from the pre-cooling and / or cooling stage is obtained by a selective bypass of a part of the fluid coming from the pre-cooling stage and / or cooling for selectively directly supplying the interface (1) (that is, the third portion of the fluid is withdrawn from the first fluid portion).
  • a helium refrigeration plant according to the invention is described in figure 1 .
  • this installation comprises an interface 1 in the form of a cold box or an enclosure equipped with an inlet and a fluid outlet 2, 3 intended respectively to supply a consumer with fluid and to collect fluid from the consumer.
  • the cold box 1 makes it possible to exchange a heat load with a fluid intended for a consumer constituted, for example, by a cooling circuit for superconducting elements of a controlled fusion reactor.
  • the installation comprises a compression stage 4 of the fluid coming from the interface 1, a pre-cooling stage 5 and a cooling stage 6 of the fluid.
  • the compression stage 4 compresses the helium from the lower stage, namely the pre-cooling stage 5 and bring the helium to a room temperature.
  • Helium at high pressure that is to say at a pressure of between 15 and 20 bar is fed to the precooling stage 5 where it is cooled, in brazed aluminum plate exchangers 7, 8, by the cold helium from the lower stage, that is to say the cooling stage 6.
  • Pre-cooling is supplemented by heat exchange with liquid nitrogen.
  • the cooling of the helium continues in the cooling stage 6, via a plurality of exchangers of the aforementioned type and by cryogenic expansion turbines 9 arranged in parallel.
  • each expansion turbine 9 part of the high-pressure helium flow is withdrawn and relaxed at the average pressure of the cycle.
  • the number of expansion turbines 9 varies between 2 or 4 for a refrigerator of high power.
  • the pre-cooling stage brings the helium to the lower stage, that is to say to a damping stage 10, at a temperature of about 20 Kelvin.
  • This stage 10 includes a supply pipe 11 in which the cold fluid flows from the cooling stage 6 to the interface 1, and a discharge pipe 12 for bringing the hot fluid from the interface 1 to the cooling stage 6.
  • the helium flowing in the feed pipe 11 passes successively, in the direction of flow, a second heat exchanger 13, a control valve 14, an expansion turbine 15, a third heat exchanger 16, a first heat exchanger 17 and a valve 18 controlled, for example by means of a sensor 19 of the helium level within the chamber 1.
  • the helium flowing in the discharge pipe 12 passes successively in the direction of flow, the third heat exchanger 16 and the second heat exchanger 13, and is then returned to the cooling stage 6.
  • the damping stage 10 further comprises a first bypass pipe 21 for directing the fluid from the expansion turbine 15 to the discharge pipe 12, between the second and third heat exchangers 13, 16.
  • the first pipe branch 21 is equipped with a bypass valve 22 controlled, for example by means of a pressure sensor 23. The pressure measurement is performed by this sensor 23 at a point in the supply line 11, downstream of the expansion turbine 15 and upstream of the third heat exchanger 16.
  • a second bypass pipe 24 makes it possible to deflect a part of the fluid coming from the third heat exchanger 16.
  • the helium circulating in the second channel passes through an expansion valve 25, part of the helium stream coming from this valve 25 then being directed into an accumulator 26, another part passing through the first heat exchanger 17 and then being brought back into the discharge pipe 12, into a point located between the valve 20 and the third heat exchanger 16.
  • the fluid stored in the accumulator 26 is also directed towards the first heat exchanger 17 and then directed towards the discharge pipe 12, at a point situated between the valve 20 and the third heat exchanger 16.
  • the accumulator 26 is likely to contain helium both in liquid form but also in gaseous form.
  • An exhaust pipe 27 makes it possible to evacuate the gases towards the discharge pipe 12, at a point thereof located upstream of the third heat exchanger 16.
  • the heat exchangers 13, 16, 17 make it possible to cool or heat the fluids passing through them, the hot fluids and the cold fluids being arranged to flow countercurrently relative to each other in each of the exchangers.
  • the helium flowing in the supply line 11 is cooled successively as it passes through the second, third and first exchangers 13, 16, 17.
  • the temperature of the helium flowing in the discharge pipe 12 increases as it passes through the second and third heat exchangers 13, 16, and that of the helium from the second bypass pipe 24 or the other.
  • accumulator 26 increases as it passes through the first exchanger 17.
  • the operation of the damping stage 10 is as follows.
  • the controlled bypass valve 22 is mainly open so that a large part of the fluid coming from the expansion turbine 15 is sent back to the cooling stage 6.
  • a small portion of the cold helium flow is supplied to the interface 1 by the supply line 11.
  • a certain amount of helium from the part of the aforementioned flow is stored in the accumulator 26, the rest being directed to the discharge pipe 12.
  • the bypass valve 22 When the heat load absorbed by the consumer is large, the bypass valve 22 is mainly closed so that the majority of the fluid is directed towards the interface 1. This has the effect to increase the heat load available to the consumer at the interface 1.
  • the cold fluid stored by the accumulator 26 is delivered and passes through the first heat exchanger 17, so as to cool the fluid of the pipe d supply 11 directed to the interface 1, thereby increasing the heat load supplied to the consumer.
  • FIG. 3 An alternative embodiment of the invention is shown in figure 3 only the positions of the first branch line 21 and the bypass valve 22 having been modified.
  • the first bypass pipe 21 connects the supply pipe 11, at a point located between the expansion turbine 15 and the third heat exchanger 16, to the discharge pipe 12 at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing through the second heat exchanger 13, the bypass valve 22 being disposed downstream of the second heat exchanger 13.
  • This embodiment avoids a reduction in the efficiency of the second heat exchanger 13.
  • the efficiency of a heat exchanger may be reduced during the passage of a fluid having a liquid phase and a phase gas.
  • the bypass valve 22 generating an expansion and, therefore, a cooling of the fluid passing through it, the fluid disposed behind the bypass valve 22 may be in two-phase form, depending on the operating conditions.
  • the valve 22 thus disposed downstream of the heat exchanger 13 makes it possible not to modify the state of the fluid before passing through this exchanger.
  • the first bypass pipe 21 connects the supply pipe 11, at a point situated downstream of the third heat exchanger 16, to the discharge pipe 12, at a point situated between the second heat exchanger 13 and the cooling stage 6, the first bypass pipe 21 passing successively through the third heat exchanger 16 and the second heat exchanger 13 and being equipped with a first bypass valve 28 located upstream of the third heat exchanger 16 and a second bypass valve 29 located downstream of the second heat exchanger 13.
  • the second and third exchangers 13, 16 are generally grouped together in one and the same heat exchange block. Such a provision bypass valves allows to connect these valves 28, 29 outside the heat exchange block, which is more convenient installation, while ensuring that the fluid passing through each of the exchangers 13, 16 is not two-phase.
  • bypass valve could be controlled by a temperature sensor or by any means making it possible to measure a parameter representative of the consumer's needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Description

  • L'invention se rapporte à un procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante.
  • Dans un procédé classique, le fluide circule de manière cyclique successivement au travers d'un étage de compression, d'un étage de pré-refroidissement et/ou de refroidissement du fluide, et d'une interface permettant d'alimenter en fluide le consommateur et de recueillir du fluide issu du consommateur.
  • Ce type de procédé est particulièrement adapté lorsque le consommateur a besoin d'une charge thermique sensiblement constante, c'est-à-dire lorsque la puissance thermique à fournir par le procédé de réfrigération est quasiment constante dans le temps.
  • Un tel procédé reste toutefois inadapté en cas de charge thermique variable dans le temps.
  • Un réacteur utilisé dans le domaine de la fusion contrôlée comprend des éléments supraconducteurs refroidis à l'aide d'hélium liquide. Dans le cas de ce type de réacteur, une charge thermique puisée, variant de manière sensiblement sinusoïdale dans le temps, est nécessaire afin de ne pas endommager les éléments supraconducteurs précités.
  • Il apparaît donc que, dans cette application notamment, le procédé classique précité ne peut être utilisé sans un surdimensionnement important des différents composants de l'installation permettant de le mettre en oeuvre.
  • Le document FR 1540391 décrit un procédé de maintien à très basse température d'appareils électriques utilisant un fluide soumis à un étage de compression, un étage de détente et de refroidissement afin d'être liquéfié en partie dans un réservoir destiné à maintenir un équilibre de phase du fluide à une température cible.
  • Le réservoir alimente les appareils électriques en vue de leur refroidissement. Ce système est inadapté aux applications subissant des variations de charge thermiques nécessitée par le consommateur puisque les débits de fluides subissent des variations importantes (vers l'étage de compression et l'étage de détente et de refroidissement).
  • L'invention vise à remédier à cet inconvénient en proposant un procédé de réfrigération d'un fluide permettant de s'adapter à des charges thermiques variables dans le temps.
  • A cet effet, l'invention concerne un procédé de réfrigération selon la revendication 1.
  • De cette manière, il est possible d'ajuster la quantité de fluide froid fourni à l'interface, et par conséquent la charge thermique disponible pour le consommateur.
  • En outre, l'accumulateur permet de stocker du fluide froid lorsque la charge thermique à fournir est faible, c'est-à-dire de stocker au sein des moyens d'accumulation une charge thermique déterminée et de délivrer, par échange de chaleur, au moins une partie de cette charge stockée au fluide destiné à l'interface.
  • Un tel procédé permet donc d'utiliser une installation pour sa mise en oeuvre qui soit simplement dimensionnée en fonction de la puissance moyenne à délivrer, le procédé permettant de s'adapter aux pics de charge thermique à fournir au consommateur.
  • Selon une caractéristique de l'invention, la quantité de fluide renvoyé vers l'étage de pré-refroidissement et/ou de refroidissement est ajustée par au moins une vanne de dérivation commandée, par exemple par l'intermédiaire d'un capteur de pression.
  • La quantité de fluide froid fourni à l'interface est donc ajustée de manière dynamique par la vanne de dérivation en fonction des besoins de l'utilisateur.
  • Les documents JP9170834 A et JP61005586 A décrivent des procédés et des installations de réfrigération cryogénique ne s'adaptant pas de façon suffisamment satisfaisante à des charges thermiques variables. Avantageusement, le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement circule au travers d'une turbine de détente.
  • Selon une possibilité de l'invention, la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec le fluide délivré par l'accumulateur.
  • Préférentiellement, le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange l'énergie calorifique avec le fluide issu de l'interface et/ou avec la deuxième partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement.
  • Avantageusement, la deuxième et/ou la troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec le fluide issu de l'interface.
  • Selon une possibilité de l'invention, la deuxième partie de fluide issue de l'étage de pré-refroidissement et/ou de refroidissement est détendue par l'intermédiaire d'une vanne de détente.
  • Préférentiellement, la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement échange de l'énergie calorifique avec une première fraction du fluide issu de la vanne de détente.
  • Selon une caractéristique de l'invention, une deuxième fraction du fluide issu de la vanne de détente est destinée à alimenter l'accumulateur.
  • Avantageusement, le fluide délivré par l'accumulateur est renvoyé à l'étage de pré-refroidissement et/ou de refroidissement.
  • L'invention concerne en outre une installation de réfrigération d'un fluide, par exemple d'hélium, pour la mise en oeuvre du procédé selon l'invention, comportant une interface équipée d'organes d'entrée et de sortie de fluide destinés respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur, un étage de compression du fluide issu de l'interface, au moins un étage de pré-refroidissement et/ou de refroidissement du fluide issu de l'interface et/ou du fluide issu de l'étage de compression, caractérisée en ce qu'elle comporte un étage d'amortissement comportant une canalisation d'alimentation reliant l'étage de pré-refroidissement et/ou de refroidissement aux organes d'entrée de fluide de l'interface, une canalisation de refoulement reliant les organes de sortie de fluide de l'interface à l'étage de pré-refroidissement et/ou de refroidissement, et une première canalisation de dérivation reliant en amont de l'interface la canalisation d'alimentation à la canalisation de refoulement par l'intermédiaire d'au - moins une vanne de dérivation, l'étage d'amortissement comportant en outre une deuxième canalisation de dérivation, reliant en amont de l'interface la canalisation d'alimentation à la canalisation de refoulement, et équipée d'accumulateur, un premier échangeur thermique étant disposé de manière à échanger de l'énergie calorifique entre le fluide issu de l'accumulateur et le fluide circulant dans la canalisation d'alimentation.
  • Selon une caractéristique de l'invention, la canalisation d'alimentation est équipée d'une turbine de détente, disposée en amont de la première canalisation de dérivation.
  • Avantageusement, la canalisation d'alimentation est équipée d'un deuxième échangeur thermique disposé en amont de la turbine de détente, de manière à échanger de l'énergie calorifique entre la canalisation de refoulement et la canalisation d'alimentation.
  • Selon une possibilité de l'invention, la canalisation d'alimentation est équipée d'un troisième échangeur thermique disposé en aval de la turbine de détente, de manière à échanger de l'énergie calorifique entre la canalisation de refoulement et la canalisation d'alimentation.
  • Préférentiellement, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé entre la turbine de détente et le troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le troisième échangeur thermique et le deuxième échangeur thermique.
  • Selon une variante de réalisation de l'invention, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé entre la turbine de détente et le troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le deuxième échangeur thermique et l'étage de pré-refroidissement et/ou de refroidissement, la première canalisation de dérivation traversant le deuxième échangeur thermique, la vanne de dérivation étant disposée en aval du deuxième échangeur thermique.
  • Selon une autre variante de réalisation de l'invention, la première canalisation de dérivation relie la canalisation d'alimentation, en un point situé en aval du troisième échangeur thermique, à la canalisation de refoulement, en un point situé entre le deuxième échangeur thermique et l'étage de pré-refroidissement et/ou de refroidissement, la première canalisation de dérivation traversant successivement le troisième échangeur thermique et le deuxième échangeur thermique et étant équipée d'une première vanne de dérivation située en amont du troisième échangeur thermique et d'une seconde vanne de dérivation située en aval du deuxième échangeur thermique.
  • Selon une possibilité de l'invention, la seconde canalisation de dérivation est équipée d'une vanne de détente disposée entre le troisième échangeur et l'accumulateur.
  • Préférentiellement, l'étage d'amortissement comporte une troisième canalisation de dérivation conçue pour dévier une partie du fluide issu de la vanne de détente, la troisième canalisation traversant le premier échangeur thermique et étant reliée à la canalisation de refoulement.
  • Selon une caractéristique de l'invention, l'accumulateur à l'intérieur duquel est disposé le premier échangeur thermique de manière à échanger de l'énergie calorifique entre le fluide traversant le premier échangeur et le fluide contenu dans l'accumulateur.
  • Avantageusement, l'interface comporte une enceinte équipée des moyens d'entrée et de sortie de fluide, la canalisation d'alimentation étant équipée d'une vanne commandée disposée en amont des organes d'entrée de fluide, la vanne étant commandée, par exemple par l'intermédiaire d'un capteur de niveau de fluide à l'intérieur de l'enceinte.
  • De toute façon, l'invention sera bien comprise à l'aide de la description qui suit en référence au dessin schématique annexé représentant, à titre d'exemple, trois formes de réalisation de ce procédé et cette installation de réfrigération d'un fluide.
  • Les première, seconde et troisième partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement sont obtenues par des dérivations sélectives d'au moins une partie de l'ensemble de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement.
  • La seconde partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est obtenue par une dérivation (bypass) sélective d'une partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement l'interface (première partie du fluide) et/ou l'accumulateur (troisième partie du fluide) (c'est-à-dire que la seconde partie de fluide est retranchée à l'ensemble du fluide issu de l'étage de compression).
  • La troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est obtenue par une dérivation (bypass) sélective d'une partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement directement l'interface (1) (c'est-à-dire que la troisième partie du fluide est retranchée à la première partie de fluide).
  • L'accumulateur comprend par exemple un réservoir cryogénique isolé sous vide, par exemple logé dans l'étage de pré-refroidissement et/ou de refroidissement.
    • Figure 1 est une vue schématique d'ensemble de l'installation ;
    • Figure 2 est une vue schématique de l'étage d'amortissement de l'installation ;
    • Figures 3 et 4 sont des vues correspondant à la figure 1, de deux variantes de réalisation.
  • Une installation de réfrigération d'hélium selon l'invention est décrite en figure 1.
  • Comme cela est représentée plus particulièrement en figure 2, cette installation comporte une interface 1 se présentant sous la forme d'une boite froide ou d'une enceinte équipée d'une entrée et d'une sortie de fluide 2, 3 destinées respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur.
  • La boîte froide 1 permet d'échanger une charge thermique avec un fluide destiné à un consommateur constitué par exemple par un circuit de refroidissement d'éléments supraconducteurs d'un réacteur à fusion contrôlée.
  • L'installation comporte un étage de compression 4 du fluide issu de l'interface 1, un étage de pré-refroidissement 5 et un étage de refroidissement 6 du fluide.
  • Ces étages sont connus de l'art antérieur et seront, par conséquent, décrit sommairement ci-après.
  • L'étage de compression 4 permet de comprimer l'hélium provenant de l'étage inférieur, à savoir de l'étage de pré-refroidissement 5 et d'amener l'hélium à une température ambiante.
  • L'hélium à haute pression, c'est-à-dire à une pression comprise entre 15 et 20 bars est amené à l'étage de pré-refroidissement 5 où il est refroidi, dans des échangeurs à plaques aluminium brasé 7, 8, par l'hélium froid en provenance de l'étage inférieur, c'est-à-dire de l'étage de refroidissement 6.
  • Le pré-refroidissement est complété par un échange de chaleur avec de l'azote liquide.
  • Le refroidissement de l'hélium se poursuit dans l'étage de refroidissement 6, par l'intermédiaire d'une pluralité d'échangeurs du type précité et par des turbines cryogéniques de détente 9 disposées en parallèles. Pour chaque turbine de détente 9, une partie du débit d'hélium haute pression est prélevée et détendue à la moyenne pression du cycle. Selon une possibilité de l'invention, le nombre de turbines de détente 9 varie entre 2 ou 4 pour un réfrigérateur de forte puissance. L'étage de pré-refroidissement amène l'hélium à l'étage inférieur, c'est-à-dire à un étage d'amortissement 10, à une température d'environ 20 Kelvins.
  • L'étage d'amortissement 10 va maintenant être décrit plus en détail, en référence aux figures 2 à 4.
  • Cet étage 10 comporte une canalisation d'alimentation 11 dans laquelle le fluide froid circule depuis l'étage de refroidissement 6 jusqu'à l'interface 1, ainsi qu'une canalisation de refoulement 12 permettant d'amener le fluide chaud issu de l'interface 1 jusqu'à l'étage de refroidissement 6.
  • L'hélium circulant dans la canalisation d'alimentation 11 traverse successivement, dans le sens de l'écoulement, un deuxième échangeur thermique 13, une vanne de contrôle 14, une turbine de détente 15, un troisième échangeur thermique 16, un premier échangeur thermique 17 et une vanne 18 commandée, par exemple par l'intermédiaire d'un capteur 19 du niveau d'hélium au sein de l'enceinte 1.
  • L'hélium circulant dans la canalisation de refoulement 12 traverse successivement, dans le sens de l'écoulement, le troisième échangeur thermique 16 et le deuxième échangeur thermique 13, puis est renvoyé vers l'étage de refroidissement 6.
  • L'étage d'amortissement 10 comporte de plus une première canalisation de dérivation 21 permettant de diriger le fluide issu de la turbine de détente 15 vers la canalisation de refoulement 12, entre le deuxième et le troisième échangeurs thermiques 13, 16. La première canalisation de dérivation 21 est équipée d'une vanne de dérivation 22 commandée, par exemple par l'intermédiaire d'un capteur de pression 23. La mesure de pression est réalisée par ce capteur 23 en un point situé dans la canalisation d'alimentation 11, en aval de la turbine de détente 15 et en amont du troisième échangeur thermique 16.
  • Une seconde canalisation de dérivation 24 permet de dévier une partie du fluide issu du troisième échangeur thermique 16. L'hélium circulant dans la seconde canalisation traverse une vanne de détente 25, une partie du flux d'hélium issu de cette vanne 25 étant alors dirigée dans un accumulateur 26, une autre partie traversant le premier échangeur thermique 17 et étant ensuite ramenée dans la canalisation de refoulement 12, en un point situé entre la vanne 20 et le troisième échangeur thermique 16.
  • Le fluide stocké dans l'accumulateur 26 est également dirigé vers le premier échangeur thermique 17 puis dirigé vers la canalisation de refoulement 12, en un point situé entre la vanne 20 et le troisième échangeur thermique 16.
  • L'accumulateur 26 est susceptible de contenir de l'hélium à la fois sous forme liquide mais également sous forme gazeuse. Une canalisation d'échappement 27 permet d'évacuer les gaz vers la canalisation de refoulement 12, en un point de celle-ci située en amont du troisième échangeur thermique 16.
  • Les échangeurs thermiques 13, 16, 17 permettent de refroidir ou de chauffer les fluides les traversant, les fluides chauds et les fluides froids étant agencés de manière à circuler à contre-courant les uns par rapport aux autre dans chacun des échangeurs. C'est ainsi que l'hélium circulant dans la canalisation d'alimentation 11 est refroidi successivement lorsqu'il traverse le deuxième, le troisième et le premier échangeurs 13,16,17. De la même manière, la température de l'hélium circulant dans la canalisation de refoulement 12 augmente lorsqu'il traverse le deuxième et le troisième échangeurs 13,16, et celle de l'hélium issu de la seconde canalisation de dérivation 24 ou de l'accumulateur 26 augmente lorsqu'il traverse le premier échangeur 17.
  • Le fonctionnement de l'étage d'amortissement 10 est le suivant.
  • Lorsque la charge thermique absorbée par le consommateur est faible, la vanne de dérivation commandée 22 est majoritairement ouverte de sorte qu'une grande partie du fluide issu de la turbine de détente 15 est renvoyée vers l'étage de refroidissement 6.
  • Une faible partie du flux d'hélium froid est amenée vers l'interface 1 par la canalisation d'alimentation 11. Une certaine quantité d'hélium provenant de la partie du flux précitée est stockée dans l'accumulateur 26, le reste étant dirigé vers la canalisation de refoulement 12.
  • Lorsque la charge thermique absorbée par le consommateur est importante, la vanne de dérivation 22 est majoritairement fermée de sorte que la majorité du fluide est dirigée en direction de l'interface 1. Ceci a pour effet d'augmenter la charge thermique disponible pour le consommateur au niveau de l'interface 1. En outre, le fluide froid stocké par l'accumulateur 26 est délivré et traverse le premier échangeur thermique 17, de manière à refroidir le fluide de la canalisation d'alimentation11 dirigé vers l'interface 1, augmentant d'autant la charge thermique fournie au consommateur.
  • Une variante de réalisation de l'invention est représentée en figure 3, seules les positions de la première canalisation de dérivation 21 et de la vanne de dérivation 22 ayant été modifiées. Dans cette variante, la première canalisation de dérivation 21 relie la canalisation d'alimentation 11, en un point situé entre la turbine de détente 15 et le troisième échangeur thermique 16, à la canalisation de refoulement 12, en un point situé entre le deuxième échangeur thermique 13 et l'étage de refroidissement 6, la première canalisation de dérivation 21 traversant le deuxième échangeur thermique 13, la vanne de dérivation 22 étant disposée en aval du deuxième échangeur thermique 13.
  • Cette forme de réalisation permet d'éviter une réduction de l'efficacité du deuxième échangeur thermique 13. En effet, l'efficacité d'un échangeur thermique risque d'être réduite lors du passage d'un fluide présentant une phase liquide et une phase gazeuse. Or, la vanne de dérivation 22 engendrant une détente et, par conséquent, un refroidissement du fluide qui la traverse, le fluide disposé en arrière de la vanne de dérivation 22 peut être sous forme diphasique, en fonction des conditions de fonctionnement. La vanne 22 ainsi disposée en aval de l'échangeur thermique 13 permet de ne pas modifier l'état du fluide avant de traverser cet échangeur.
  • Une autre variante de réalisation est représentée en figure 4. Dans ce cas, la première canalisation de dérivation 21 relie la canalisation d'alimentation 11, en un point situé en aval du troisième échangeur thermique 16, à la canalisation de refoulement 12, en un point situé entre le deuxième échangeur thermique 13 et l'étage de refroidissement 6, la première canalisation de dérivation 21 traversant successivement le troisième échangeur thermique 16 et le deuxième échangeur thermique 13 et étant équipée d'une première vanne de dérivation 28 située en amont du troisième échangeur 16 et d'une seconde vanne de dérivation 29 située en aval du deuxième échangeur thermique 13.
  • Le deuxième et le troisième échangeurs 13, 16 sont généralement regroupés en un seul et même bloc d'échange de chaleur. Une telle disposition des vannes de dérivation permet de pourvoir raccorder ces vannes 28, 29 à l'extérieur du bloc d'échange de chaleur, ce qui est d'installation plus commode, tout en assurant que le fluide traversant chacun des échangeurs 13, 16 n'est pas diphasique.
  • Comme il va de soi l'invention ne se limite pas aux seules formes de ce procédé de réfrigération de fluide ou de cette installation, décrites ci-dessus à titre d'exemples, mais elle embrasse au contraire toutes les variantes. C'est ainsi notamment que la vanne de dérivation pourrait être commandée par un capteur de température ou par tout moyens permettant de mesurer un paramètre représentatif des besoins du consommateur.

Claims (14)

  1. Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, le fluide circulant de manière cyclique successivement au travers d'un étage de compression (4), d'un étage de pré-refroidissement et/ou de refroidissement (5, 6) du fluide, et d'une interface (1) permettant d'alimenter en fluide le consommateur et de recueillir du fluide issu du consommateur, une première partie du fluide Issu de l'étage de pré-refroidissement et/ou de refroidissement étant dirigée vers l'interface (1), caractérisé en ce qu' une deuxième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement est renvoyée sélectivement vers l'étage de pré-refroidissement et/ou de refroidissement (5, 6) en amont de l'interface (1) selon que la charge thermique nécessitée par le consommateur est faible ou élevée, une troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement en amont de l'interface (1) étant sélectivement refroidie et dirigée vers un accumulateur (26) conçu pour sélectivement stocker ce fluide ou pour délivrer, selon que la charge thermique nécessitée par le consommateur est faible ou élevée, une quantité de fluide déjà stockée afin de refroidir la première partie de fluide dirigée vers l'interface (1), la première partie du fluide alimentant directement l'interface sans transiter par l'accumulateur (26), la seconde partie du fluide issu de l'étage de pré-refroidissement et/ ou de refroidissement étant obtenue par une dérivation sélective d'une partie de fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement l'interface et/ou l'accumulateur, c'est-à-dire que la seconde partie de fluide est retranchée à l'ensemble du fluide issu de l'étage de compression, la troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement étant obtenue par une dérivation sélective d'une partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement destiné à alimenter sélectivement directement l'interface (1), c'est-à-dire que la troisième partie du fluide est retranchée à la première partie de fluide. (1), la première partie du fluide alimentant directement l'interface sans transiter
  2. Procédé selon la revendication 1, caractérisé en ce que la quantité de fluide renvoyé vers l'étage de pré-refroidissement et/ou de refroidissement (5, 6) est ajustée par au moins une vanne de dérivation (22) commandée, par exemple par l'intermédiaire d'un capteur de pression (23).
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le fluide issu de l'étage de pré-refroidissement et/ou de refroidissement (5, 6) circule au travers d'une turbine de détente (15).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la première partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement (5, 6) échange de l'énergie calorifique avec le fluide délivré par l'accumulateur (26).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la deuxième et/ou la troisième partie du fluide issu de l'étage de pré-refroidissement et/ou de refroidissement (5, 6) échange de l'énergie calorifique avec le fluide issu de l'interface (1).
  6. Procédé selon l'une des revendications 4 ou 5, caractérisé en ce que l'accumulateur (26) est alimenté sélectivement en fluide détendu par une vanne de détente (25) prélevant une fraction de la première partie de fluide, ladite vanne (25) étant située en aval de la ligne de renvoi sélectif de la deuxième partie de fluide.
  7. Procédé selon la revendication 1 à 6, caractérisé en ce que le fluide délivré par l'accumulateur (26) peut être renvoyé sélectivement à l'étage de pré-refroidissement et/ou de refroidissement (5, 6).
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la charge thermique nécessitée par le consommateur diminue ou est relativement faible, la première partie du fluide dirigée vers l'interface est diminuée au profit d'une part de la deuxième partie de fluide renvoyée vers l'étage de pré-refroidissement et/ou refroidissement et, d'autre part, de la troisième partie de fluide dirigée vers l'accumulateur, lorsque la charge thermique nécessitée par le consommateur augmente ou est relativement élevée, les deuxième et troisième parties de fluide renvoyées respectivement vers l'étage de pré-refroidissement et/ou refroidissement et vers l'accumulateur, sont diminuées au profit de la première partie de fluide dirigée vers l'interface, et en ce que la première partie de fluide est augmentée sélectivement par du fluide délivré via l'accumulateur (26).
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le débit de fluide circulant de manière cyclique est maintenu sensiblement constant dans le circuit et notamment dans l'étage de compression.
  10. Installation de réfrigération cryogénique d'un fluide, par exemple d'hélium, pour la mise en oeuvre du procédé selon l'une des revendications 1 à 9, comportant une interface (1) équipée d'organes d'entrée et de sortie (2, 3) de fluide destinés respectivement à alimenter un consommateur en fluide et à recueillir du fluide issu du consommateur, un étage de compression (4) du fluide issu de l'interface (1), au moins un étage de pré-refroidissement et/ou de refroidissement (5, 6) du fluide issu de l'interface (1) et/ou du fluide issu de l'étage de compression (4), l'installation comportant un étage d'amortissement (10) comportant une canalisation d'alimentation (11) reliant l'étage de pré-refroidissement et/ou de refroidissement (5, 6) aux organes d'entrée (2) de fluide de l'interface (1), une canalisation de refoulement (12) reliant les organes de sortie (3) de fluide de l'interface (1) à l'étage de pré-refroidissement et/ou de refroidissement (5, 6), et une première canalisation de dérivation (21) reliant la canalisation d'alimentation (11) à la canalisation de refoulement (12) par l'intermédiaire d'au moins une vanne de dérivation (22), l'étage d'amortissement (10) comportant une canalisation d'alimentation (11) reliant l'étage de pré-refroidissement et/ou de refroidissement (5, 6) aux organes d'entrée (2) de fluide de l'interface (1), une canalisation de refoulement (12) reliant les organes de sortie (3) de fluide de l'interface (1) à l'étage de pré-refroidissement et/ou de refroidissement (5, 6), et une première canalisation de dérivation (21) reliant en amont de l'interface (1) la canalisation d'alimentation (11) à la canalisation de refoulement (12) par l'intermédiaire d'au moins une vanne de dérivation (22), l'étage d'amortissement (10) comporte en outre une deuxième canalisation de dérivation (24), reliant en amont de l'interface (1) la canalisation d'alimentation (11) à la canalisation de refoulement (12), et équipée d'un accumulateur (26), un premier échangeur thermique (17) étant disposé de manière à échanger de l'énergie calorifique entre le fluide issu de l'accumulateur (26) et le fluide circulant dans la canalisation d'alimentation (11).
  11. Installation selon la revendication 10, caractérisée en ce que la première canalisation de dérivation (21) relie la canalisation d'alimentation (11), en un point situé entre une turbine de détente (15) et un troisième échangeur thermique (16), à la canalisation de refoulement (12), en un point situé entre un deuxième échangeur thermique (13) et l'étage de pré-refroidissement et/ou de refroidissement (5, 6), la première canalisation de dérivation (21) traversant un deuxième échangeur thermique (13), une vanne de dérivation (22) étant disposée en aval du deuxième échangeur thermique (13).
  12. Installation selon la revendication 11, caractérisée en ce que la seconde canalisation de dérivation (24) est équipée d'une vanne de détente (25) disposée entre le troisième échangeur thermique (16) et l'accumulateur (26).
  13. Installation selon la revendication 12, caractérisée en ce que l'étage d'amortissement (10) comporte une troisième canalisation de dérivation conçue pour dévier une partie du fluide issu de la vanne de détente (25), la troisième canalisation traversant le premier échangeur thermique (17) et étant reliée à la canalisation de refoulement (12).
  14. Installation selon l'une des revendications 10 à 13, caractérisée en ce que l'interface comporte une enceinte (1) équipée des organes d'entrée et de sortie de fluide (2, 3), la canalisation d'alimentation (11) étant équipée d'une vanne commandée (18) disposée en amont des organes d'entrée de fluide (2), la vanne (18) étant commandée, par exemple par l'intermédiaire d'un capteur de niveau (19) de fluide à l'intérieur de l'enceinte (1).
EP08827838.7A 2007-08-03 2008-07-28 Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante Active EP2185873B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756926A FR2919713B1 (fr) 2007-08-03 2007-08-03 Procede de refrigeration d'un fluide, par exemple d'helium, destine a alimenter un consommateur de fluide, ainsi qu'a une installation correspondante
PCT/FR2008/051415 WO2009024705A2 (fr) 2007-08-03 2008-07-28 Procédé de réfrigération d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante

Publications (2)

Publication Number Publication Date
EP2185873A2 EP2185873A2 (fr) 2010-05-19
EP2185873B1 true EP2185873B1 (fr) 2018-12-26

Family

ID=39358379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08827838.7A Active EP2185873B1 (fr) 2007-08-03 2008-07-28 Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante

Country Status (4)

Country Link
EP (1) EP2185873B1 (fr)
JP (1) JP5149381B2 (fr)
FR (1) FR2919713B1 (fr)
WO (1) WO2009024705A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943768B1 (fr) 2009-03-24 2011-04-29 Commissariat Energie Atomique Systeme cryogenique pour le refroidissement d'un consommateur presentant une charge thermique variable dans le temps.
FR2957406A1 (fr) 2010-03-12 2011-09-16 Air Liquide Procede et installation de refrigeration en charge pulsee
FR2958025A1 (fr) * 2010-03-23 2011-09-30 Air Liquide Procede et installation de refrigeration en charge pulsee
FR2959558B1 (fr) 2010-04-29 2014-08-22 Ecolactis Procede de migration de la charge en fluide frigorigene d'un systeme de refrigeration a charge reduite et dispositif mettant en oeuvre ledit procede
FR2963090B1 (fr) * 2010-07-20 2012-08-17 Commissariat Energie Atomique Procede d'estimation de la charge thermique imposee a un refrigerateur cryogenique, produit programme associe et procede de regulation du refrigerateur
KR102035787B1 (ko) * 2011-07-01 2019-10-23 브룩스 오토메이션, 인크. 콤팩트하고 효율적인 냉장과, 적응형 전력 관리를 위해, 초저온 열교환기 어레이를 예열하는 시스템 및 방법
FR2983947B1 (fr) 2011-12-12 2014-01-10 Commissariat Energie Atomique Procede de regulation d'un systeme de refroidissement cryogenique.
FR2999693B1 (fr) * 2012-12-18 2015-06-19 Air Liquide Dispositif de refrigeration et/ou de liquefaction et procede correspondant
FR3000541B1 (fr) * 2013-01-03 2015-01-23 Air Liquide Dispositif de refrigeration et/ou de liquefaction et procede correspondant
FR3014544A1 (fr) 2013-12-06 2015-06-12 Air Liquide Procede de refrigeration, boite froide et installation cryogenique correspondantes
FR3014546B1 (fr) * 2013-12-09 2018-11-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Lissage de la charge d'un procede de production de froid par l'utilisation de moyens de stockage du fluide frigorigene

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1540391A (fr) * 1967-05-24 1968-09-27 Air Liquide Procédé de maintien à très basse température d'appareils électriques
GB2069119B (en) * 1980-02-13 1983-09-21 Petrocarbon Dev Ltd Refrigeration process
JPH0738464B2 (ja) * 1984-02-10 1995-04-26 日本原子力研究所 冷凍制御方法
JPH0718611B2 (ja) * 1986-11-25 1995-03-06 株式会社日立製作所 極低温液化冷凍装置の減量運転方法
JPH06101919A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 極低温冷凍装置
JPH06147667A (ja) * 1992-11-09 1994-05-27 Kobe Steel Ltd 液化冷凍装置の運転制御方法及び装置
JPH06265230A (ja) * 1993-03-11 1994-09-20 Kobe Steel Ltd 液化冷凍装置の運転制御方法及び装置
JPH08285395A (ja) * 1995-04-10 1996-11-01 Kobe Steel Ltd ヘリウム液化冷凍装置
JPH09170834A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd ヘリウム冷凍システム
US8511100B2 (en) * 2005-06-30 2013-08-20 General Electric Company Cooling of superconducting devices by liquid storage and refrigeration unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2009024705A2 (fr) 2009-02-26
WO2009024705A4 (fr) 2009-07-02
EP2185873A2 (fr) 2010-05-19
JP5149381B2 (ja) 2013-02-20
FR2919713B1 (fr) 2013-12-06
FR2919713A1 (fr) 2009-02-06
JP2010536002A (ja) 2010-11-25
WO2009024705A3 (fr) 2009-05-14

Similar Documents

Publication Publication Date Title
EP2185873B1 (fr) Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante
EP0940624B1 (fr) Poste et procédé de distribution d'un gaz détendu
WO2004085810A2 (fr) Systeme de refroidissement a basse temperature d’un equipement, notamment d’un equipement de vehicule automobile, et echangeurs de chaleur associes
EP1953479A2 (fr) Dispositif de refroidissement d'un équipement électrique dans une turbomachine
WO2021240114A2 (fr) Installation d'alimentation en carburant cryogénique de la chambre de combustion d'une turbomachine
EP2941602B1 (fr) Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant
EP4158169A1 (fr) Installation de réchauffement d'un carburant cryogénique
EP2936006B1 (fr) Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant
EP0644390A1 (fr) Procédé et ensemble de compression d'un gaz
EP0968387A1 (fr) Procede et installation de remplissage d'un reservoir sous pression
EP0940821A1 (fr) Procédé pour le maintien à basse température d' une cryoliaison supraconductrice
FR2520131A1 (fr) Dispositif de regulation d'un refrigerateur a effet joule-thomson
EP3077736B1 (fr) Procédé de réfrigération, boîte froide et installation cryogénique correspondantes
FR2775518A1 (fr) Procede et installation de production frigorifique a partir d'un cycle thermique d'un fluide a bas point d'ebullition
EP2665979B1 (fr) Installation et procédé de production d'hélium liquide
CH683287A5 (fr) Installation de réfrigération.
WO2022022920A1 (fr) Installation et procédé de réfrigération d'un fluide
WO2023088607A1 (fr) Système de pompage cryogénique et intégration innovante pour la cryogénie sub kelvin inférieure à 1,5k
FR3145599A1 (fr) Installation et procédé de réfrigération cryogénique
FR2811712A1 (fr) Installation de distillation d'air et de production d'electricite et procede correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100303

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100628

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008058502

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. GEVERS SA, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RUE DES NOYERS 11, 2000 NEUCHATEL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1081959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008058502

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080728

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240801

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240722

Year of fee payment: 17