[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2183409B1 - Method for operating copper electrolysis cells - Google Patents

Method for operating copper electrolysis cells Download PDF

Info

Publication number
EP2183409B1
EP2183409B1 EP08782805A EP08782805A EP2183409B1 EP 2183409 B1 EP2183409 B1 EP 2183409B1 EP 08782805 A EP08782805 A EP 08782805A EP 08782805 A EP08782805 A EP 08782805A EP 2183409 B1 EP2183409 B1 EP 2183409B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
copper
cell
feed
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08782805A
Other languages
German (de)
French (fr)
Other versions
EP2183409A2 (en
Inventor
Andreas Filzwieser
Iris Filzwieser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mettop GmbH
Original Assignee
Mettop GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mettop GmbH filed Critical Mettop GmbH
Priority to PL08782805T priority Critical patent/PL2183409T3/en
Publication of EP2183409A2 publication Critical patent/EP2183409A2/en
Application granted granted Critical
Publication of EP2183409B1 publication Critical patent/EP2183409B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the invention relates to a method for operating copper electrolysis cells, which comprise a plurality of vertically and mutually parallel anode and cathode plates, a longitudinal electrolyte inlet and an electrolyte effluent, and a novel copper electrolysis cell.
  • m is the mass of copper produced in g
  • M the molar mass of copper in g / mol
  • i the current density in A / m 2
  • A the electrode surface in m 2
  • t the time in s
  • z the valence of the reaction ions involved
  • F the Faraday constant in As / mol.
  • the currently technically feasible current densities are, for example, in a copper refining electrolysis at a maximum of 350 A / m 2 . This value results from the fact that in a technical electrolysis cell only about 30-40% of the theoretical limiting current density can be driven.
  • This theoretical limiting current density i limit (equation 2) is a function of the copper ion concentration in the electrolyte (c °) and the diffusion layer thickness ⁇ N at the electrode. N, the number of ions involved in the process, F, the Faraday constant and D, the diffusion coefficient, are constant.
  • i border n ⁇ F ⁇ D ⁇ c 0 ⁇ N
  • the types of refining electrolysis cells used today are distinguished by the fact that the electrolyte is fed in on the front side and removed again on the opposite end side.
  • the main flow therefore takes place between the cell wall and the electrodes or the cell bottom and the lower edges of the electrodes.
  • This externally applied flow also called forced convection
  • the flow between the electrodes is determined by the natural convection that results from the density difference of the electrolyte in front of the cathodes (lighter electrolyte due to depletion of copper ions) and before the anodes (heavier electrolyte due to the accumulation of copper ions).
  • containers for electrolytic metal extraction are known in which, to achieve a parallel flow, the electrolyte inlet and outlet into or out of the electrode space is effected by perforated plates arranged parallel to the longitudinal walls.
  • a parallel partition with openings for the passage of electrolyte into the electrode space is arranged only on one longitudinal wall.
  • the passage openings are distributed over the entire electrode height and are aligned with the electrode interstices.
  • a relatively simple means of achieving parallel flow in conventional electrolysis cells is the provision of tubular electrolyte supply and drainage devices which direct the electrolyte in opposite directions between the bath longitudinal walls and the electrode side edges in the two free spaces. Due to the larger cathode width, a jam of the electrolyte occurs in front of the cathode side edges, as a result of which the latter partially flows into the respective electrode gap.
  • electrolytic bath in which the parallel flow is achieved by an inlet of the electrolyte from the bath floor.
  • an electrolysis cell is described with longitudinal electrolyte inlet, in which on one or both longitudinal sides extending over the entire length of the bath extending to just below the cathode lower edge, down and closed at the sides, above the electrolyte level open electrolyte inlet box is attached to the the electrodes facing horizontal and parallel to the electrodes aligned through openings, which in the region of the lower cathode edges over a extend certain area of the cathode spaces.
  • the cross-sectional area of all the passage openings is smaller than the open horizontal cross-sectional area at the top of the electrolyte inlet box in order to achieve a slight overpressure.
  • the channel cell requires a large pump capacity to achieve the high flow rates.
  • To separate the entrained anode sludge continuous electrolyte filtration is required.
  • Leiteinbauten as a flow straightener and the arrangement of appropriately shaped partitions is associated with a very large material and manufacturing effort.
  • the hanging of these baths with the electrodes requires great care, since the desired electrolyte circulation is guaranteed only if the required geometric conditions are precisely met.
  • the present invention aims to avoid the above-mentioned disadvantages and problems of the prior art and has as its object to provide a method for operating (conventional) copper electrolysis cells and a copper electrolysis cell with which higher current densities and thus higher current yields than in State of the art are possible, the cathode quality, for example but not affected by fluidization of the anode sludge, disturbance of anode sludge deposition, or poor inhibitor distribution. Likewise, extensive changes to and complex installations in the cell should be avoided.
  • This object is achieved in a first aspect in a method of the type mentioned above in that the electrolyte via the electrolyte inlet horizontally and parallel to the electrodes in each electrode gap at the level of the lower third of the electrodes at a speed of 0.3 to 1, 0 m / s is flowed, wherein the cathode plates are arranged stationary relative to the inflow direction.
  • the electrolyte is flowed into the cell at a rate of 0.3 to 0.6 m / s.
  • a further improvement of the method is possible if the electrolyte is not applied as usual and applied in the examples on the front side of the cell but longitudinally drained.
  • the method according to the invention has the additional advantage that it can be carried out even with existing electrolysis cells without great effort with few changes to the existing facilities.
  • a copper electrolytic cell comprising a plurality of vertically and parallelly disposed anode and cathode plates, a longitudinal electrolyte inlet, and an electrolyte drain, characterized in that the electrolyte inlet is located on a longitudinal wall thereof Cell which extends into the region of the electrode lower edge and comprises a closed feed box which can be attached to the end faces of the cell and can be connected to an electrolyte source and means for stationary arrangement of each cathode plate and in the lower third of the electrode height extending and respectively corresponding to the electrode gap Regions with at least one opening, in particular nozzle, for the directed supply of electrolyte is provided.
  • the means for the fixed arrangement of the cathode plates are designed as means for vertical guidance.
  • the means for vertical guidance are formed as circular discs or wheels, wherein the cathode plates are each centered between two adjacently arranged and spaced discs or wheels.
  • the electrolyte drain is arranged on the front side.
  • it can also advantageously be arranged longitudinally.
  • the electrolyte feed box used in the cell according to the invention can also be used advantageously in already existing conventional electrolysis cells.
  • Fig. 2 shows a schematic representation of a copper electrolysis cell according to the present invention, in which, for reasons of better visibility of the inventive electrolyte feed box in relation to the electrolytic cell itself has been highlighted graphically.
  • the closed inlet box 1 extends along a side wall 3 of the bath 2 and is attached to the end walls 4 of the bath 2 fastened in the cell, wherein the Einh brieflyen 5 simultaneously serve the supply and discharge of the electrolyte in the actual feed box.
  • the inlet box 1 with an electrolyte source for example via a flange 6, connectable.
  • the inlet box 1 is arranged so deep in the cell that it extends into the region of the electrode lower edge.
  • openings in particular nozzles 7, are arranged, wherein at least one opening is located in each region corresponding to the electrode gap and extending over the lower third of the electrode height ( Fig. 3 ).
  • the electrolyte is flowed into the cell in the lower area of the electrode gap at a speed of 0.3 to 1.0 m / s in order to achieve the advantageous flow guidance mentioned above.
  • the fixed arrangement is achieved by means for the vertical guidance of the cathode plates, which are formed as circular disks or wheels 8, wherein the cathode plates 9 are respectively centered between two adjacently arranged and spaced disks or wheels ( Fig. 4 ).
  • the cathode plates which are formed as circular disks or wheels 8
  • the cathode plates 9 are respectively centered between two adjacently arranged and spaced disks or wheels ( Fig. 4 ).
  • a conventional industrial copper electrolysis cell was equipped with an electrolyte inlet according to the invention, comprising a feed box as described above.
  • Table 1 gives the operating conditions and results of further experiments.
  • Table 1 Experiment No. i Q v ⁇ 1 trip ⁇ 2 trip in A / m 2 in l / min in m / s in % in % 1 407 75 0.75 93.92 95.01 2 407 75 0.5 97.24 98,15 3 407 75 0.5 99.46 98.35 4 407 75 0.5 97.49 96.27 4a 407 75 0.5 92.1 93.77 5 498 150 1 98.99 93.47 6 498 75 0.5 99.55 99.28 7 498 100 0.67 99.53 99.13 8th 543 100 0.67 98.18 97.59

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

In a method for operating copper electrolysis cells which comprise a plurality of anode and cathode plates positioned perpendicularly and parallel to each other, an electrolyte inlet on the longitudinal side and an electrolyte outlet, the electrolyte flows in through the electrolyte inlet horizontally and parallel to the electrodes in each electrode gap at the level of the lower third of the electrodes at a rate of 0.3 to 1.0 m/s, wherein the cathode plates are in a fixed position with respect to the inlet direction. Thus, an optimum flow control of the electrolyte is achieved with respect to the electrodes, which results in an increase in the limiting current density.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben von Kupfer-Elektrolysezellen, welche eine Vielzahl von senkrecht und parallel zueinander angeordneten Anoden- und Kathodenplatten, einen längsseitigen Elektrolytzulauf und einen Elektrolytablauf umfassen, sowie eine neuartige Kupfer-Elektrolysezelle.The invention relates to a method for operating copper electrolysis cells, which comprise a plurality of vertically and mutually parallel anode and cathode plates, a longitudinal electrolyte inlet and an electrolyte effluent, and a novel copper electrolysis cell.

Prinzipiell wird in einer Kupferelektrolyse anodisch Kupfer in Form von Kupfer(II)ionen in Lösung gebracht, welches sich an der Kathode wieder zu metallischem Kupfer abscheidet.

  • Anode:

            Cu →7 Cu2+ + 2 e-

  • Kathode:

            Cu2+ + 2 e- → Cu

In principle, in a copper electrolysis anodic copper in the form of copper (II) ions is brought into solution, which is deposited at the cathode back to metallic copper.
  • Anode:

    Cu → 7 Cu 2+ + 2 e -

  • Cathode:

    Cu 2+ + 2 e - → Cu

Die Menge an metallischem Kupfer kann über das Faraday'sche Gesetz (Gleichung 1) ermittelt werden: m = M i A t z F

Figure imgb0001
The amount of metallic copper can be determined by Faraday's law (Equation 1): m = M i A t z F
Figure imgb0001

Dabei ist m die Masse an produziertem Kupfer in g, M die Molmasse von Kupfer in g/mol, i die Stromdichte in A/m2, A die Elektrodenfläche in m2, t die Zeit in s, z die Wertigkeit der an der Reaktion beteiligten Ionen und F die Faraday Konstante in As/mol. Will man nun bei gegebener Anlagengröße (A) die Menge an produziertem Kupfer erhöhen, kann man nur die Stromdichte i erhöhen.Here, m is the mass of copper produced in g, M the molar mass of copper in g / mol, i the current density in A / m 2 , A the electrode surface in m 2 , t the time in s, z the valence of the reaction ions involved and F the Faraday constant in As / mol. If one now wants to increase the amount of produced copper for a given plant size (A), one can only increase the current density i.

Die heute technisch machbaren Stromdichten liegen z.B. in einer Cu-Raffinationselektrolyse bei maximal 350 A/m2. Dieser Wert ergibt sich daraus, dass in einer technischen Elektrolysezelle nur rund 30 - 40 % der theoretischen Grenzstromdichte gefahren werden kann. Diese theoretische Grenzstromdichte iGrenz (Gleichung 2) ist eine Funktion der Kupferionenkonzentration im Elektrolyten (c°) und der Diffusionsschichtdicke δN an der Elektrode. N, die Anzahl der am Prozess beteiligten Ionen, F, die Faraday Konstante und D, der Diffusionskoeffizient, sind konstant. i Grenz = n F D c 0 δ N

Figure imgb0002
The currently technically feasible current densities are, for example, in a copper refining electrolysis at a maximum of 350 A / m 2 . This value results from the fact that in a technical electrolysis cell only about 30-40% of the theoretical limiting current density can be driven. This theoretical limiting current density i limit (equation 2) is a function of the copper ion concentration in the electrolyte (c °) and the diffusion layer thickness δ N at the electrode. N, the number of ions involved in the process, F, the Faraday constant and D, the diffusion coefficient, are constant. i border = n F D c 0 δ N
Figure imgb0002

Die Berechnung der theoretische Stromdichte ergibt, bei den heutigen Bauformen, Werte von rund 1000 A/m2 und daher technische Stromdichten von maximal 350 A/m2.The calculation of the theoretical current density results in today's designs, values of about 1000 A / m 2 and therefore technical current densities of 350 A / m 2 maximum.

Bei höheren Stromdichten kommt es vermehrt zu Dendritenbildung und letztendlich zu elektrischen Kurzschlüssen zwischen Anode und Kathode, was den Wirkungsgrad zur Abscheidung von Kathodenkupfer herabsetzt und die Kathodenqualität ebenso. Um eine wesentlich höhere Stromdichte einstellen zu können, muss die Grenzstromdichte erhöht werden. Dies ist im wesentlichen nur durch eine Verringerung der nemstschen Diffusionsschichtdicke möglich. Diese Verringerung kann durch eine höhere Relativbewegung zwischen Elektrolyt und Elektrode erreicht werden.At higher current densities, dendrite formation and, ultimately, electrical short circuits between the anode and the cathode occur, which reduces the efficiency of deposition of cathode copper and the cathode quality as well. In order to set a much higher current density, the limiting current density must be increased. This is possible essentially only by reducing the nemstschen diffusion layer thickness. This reduction can be achieved by a higher relative movement between the electrolyte and the electrode.

Die heute verwendeten Bauformen von Raffinationselektrolysezellen zeichnen sich dadurch aus, dass der Elektrolyt stirnseitig zu- und auf der gegenüberliegenden Stirnseite wieder abgeführt wird. Die Hauptströmung erfolgt daher zwischen der Zellenwand und den Elektroden bzw. dem Zellenboden und den Unterkanten der Elektroden. Diese von außen aufgebrachte Strömung (auch erzwungene Konvektion genannt) hat nur geringen Einfluss auf die Strömungsverhältnisse zwischen den Elektroden. Die Strömung zwischen den Elektroden ist von der natürlichen Konvektion, die sich aufgrund des Dichteunterschiedes des Elektrolyten vor den Kathoden (leichterer Elektrolyt aufgrund der Verarmung an Kupferionen) beziehungsweise vor den Anoden (schwererer Elektrolyt aufgrund der Anreicherung der Kupferionen) ergibt, bestimmt.The types of refining electrolysis cells used today are distinguished by the fact that the electrolyte is fed in on the front side and removed again on the opposite end side. The main flow therefore takes place between the cell wall and the electrodes or the cell bottom and the lower edges of the electrodes. This externally applied flow (also called forced convection) has little effect on the flow conditions between the electrodes. The flow between the electrodes is determined by the natural convection that results from the density difference of the electrolyte in front of the cathodes (lighter electrolyte due to depletion of copper ions) and before the anodes (heavier electrolyte due to the accumulation of copper ions).

Neben Elektrolysezellen mit Querströmungsprinzip sind daher auch Zellen vorgeschlagen worden, in denen der Elektrolyt hauptsächlich parallel zu den Oberflächen der Elektroden strömt.In addition to electrolysis cells with cross-flow principle, therefore, cells have also been proposed in which the electrolyte flows mainly parallel to the surfaces of the electrodes.

Es wurden sogenannte Kanalzellen entwickelt, in denen eine Parallelströmung mit relativ hoher Geschwindigkeit angewandt wird, wobei zur Gewährleistung einer gleichmäßigen Strömungsverteilung über den gesamten Kanalquerschnitt im Elektrolytzulaufteil vor den Elektrodengruppen siebförmige Durchflusseinbauten erforderlich sind.So-called channel cells have been developed, in which a parallel flow is applied at a relatively high speed, wherein to ensure a uniform flow distribution over the entire channel cross-section in the electrolyte feed section in front of the electrode groups sieve flow-through structures are required.

Ebenfalls bekannt sind Parallelstromzellen mit doppelwandigen Zwischenwänden, wobei die eine Wand mit dem oberen Badrand abschließt, jedoch nicht bis zum Badboden reicht, während die andere Wand am Badboden beginnt, jedoch nicht bis zum oberen Rand reicht. In einem anderen bekannten Elektrolysebad ( DD 87 665 ) sind doppel- oder auch mehrfachwandige Zwischenwände mit über die gesamte Breite verteilten Öffnungen angeordnet, die sich auf der einen Seite in Höhe der Kathodenunterkante und/oder etwas aufwärts und auf der anderen Seite in Höhe des Elektrolytniveaus und/oder etwas abwärts befinden.Also known are parallel flow cells with double-walled partitions, which closes a wall with the upper edge of the bath, but does not reach to the bathroom floor, while the other wall starts at the bathroom floor, but does not reach to the top. In another known electrolysis bath ( DD 87 665 ) are arranged double- or multi-walled partitions with openings distributed over the entire width, which are located on one side at the level of the cathode lower edge and / or slightly upwards and on the other side in the amount of the electrolyte level and / or slightly downwards.

Ferner sind Behälter zu elektrolytischen Metallgewinnung bekannt, in denen zur Erzielung einer Parallelströmung der Elektrolytzu- und -ablauf in bzw. aus dem Elektrodenraum durch parallel zu den Längswänden angeordnete Lochplatten erfolgt.Furthermore, containers for electrolytic metal extraction are known in which, to achieve a parallel flow, the electrolyte inlet and outlet into or out of the electrode space is effected by perforated plates arranged parallel to the longitudinal walls.

Bei einer anderen Zellenkonstruktion ist nur an einer Längswand eine parallele Trennwand mit Öffnungen für den Elektrolytdurchtritt in den Elektrodenraum angeordnet. Die Durchtrittsöffnungen verteilen sich über die gesamte Elektrodenhöhe und sind auf die Elektrodenzwischenräume ausgerichtet.In another cell construction, a parallel partition with openings for the passage of electrolyte into the electrode space is arranged only on one longitudinal wall. The passage openings are distributed over the entire electrode height and are aligned with the electrode interstices.

Zur Erzielung einer Parallelströmung sind weiters Leiteinbauten an den Längswänden der Zelle vorgeschlagen worden, durch die der Elektrolyt serpentinenartig um die Elektroden gelenkt wird.In order to achieve a parallel flow further Leiteinbauten have been proposed on the longitudinal walls of the cell through which the electrolyte is directed serpentine manner around the electrodes.

Eine relativ einfache Maßnahme zur Erzielung einer Parallelströmung in herkömmlichen Elektrolysezellen besteht in der Anordnung von röhrenförmigen Elektrolytzu- und - ablaufvorrichtungen, durch die der Elektrolyt in den beiden freien Räumen zwischen den Badlängswänden und den Elektrodenseitenkanten in entgegengesetzten Richtungen gelenkt wird. Aufgrund der größeren Kathodenbreite kommt es vor den Kathodenseitenkanten zu einem Stau des Elektrolyten, wodurch dieser zum Teil in den betreffenden Elektrodenzwischenraum strömt.A relatively simple means of achieving parallel flow in conventional electrolysis cells is the provision of tubular electrolyte supply and drainage devices which direct the electrolyte in opposite directions between the bath longitudinal walls and the electrode side edges in the two free spaces. Due to the larger cathode width, a jam of the electrolyte occurs in front of the cathode side edges, as a result of which the latter partially flows into the respective electrode gap.

Bekannt ist auch ein Elektrolysebad, in welchem die Parallelströmung durch einen Zulauf des Elektrolyten vom Badboden her erreicht wird. Hierbei befinden sich die Elektrolytzulauföffnungen unter den Anoden und sind senkrecht nach oben gerichtet.Also known is an electrolytic bath, in which the parallel flow is achieved by an inlet of the electrolyte from the bath floor. Here are the electrolyte inlet openings under the anodes and are directed vertically upwards.

In der DD 109 031 ist eine Elektrolysezelle mit längsseitigem Elektrolytzulauf beschrieben, bei der an einer oder beiden Längsseiten ein über die gesamte Badlänge reichender, sich bis kurz unter die Kathodenunterkante erstreckender, unten und an den Seiten geschlossener, oberhalb des Elektrolytniveaus offener Elektrolytzulaufkasten angebracht ist, der an der den Elektroden zugewandten Seite horizontal und parallel zu den Elektroden ausgerichtete Durchtrittsöffnungen aufweist, die sich im Bereich der Kathodenunterkanten über einen bestimmten Bereich der Kathodenzwischenräume erstrecken. Gemäß einer Ausführungsform ist die Querschnittsfläche aller Durchtrittsöffnungen kleiner als die offene horizontale Querschnittsfläche an der Oberseite des Elektrolytzulaufkastens, um einen geringen Überdruck zu erzielen.In the DD 109 031 an electrolysis cell is described with longitudinal electrolyte inlet, in which on one or both longitudinal sides extending over the entire length of the bath extending to just below the cathode lower edge, down and closed at the sides, above the electrolyte level open electrolyte inlet box is attached to the the electrodes facing horizontal and parallel to the electrodes aligned through openings, which in the region of the lower cathode edges over a extend certain area of the cathode spaces. According to one embodiment, the cross-sectional area of all the passage openings is smaller than the open horizontal cross-sectional area at the top of the electrolyte inlet box in order to achieve a slight overpressure.

Die oben genannten Parallelstromzellen haben jedoch zahlreiche Nachteile, weshalb sie sich gegenüber den Querstromzellen bislang nicht durchsetzen konnten.However, the above-mentioned parallel current cells have numerous disadvantages, which is why they could not prevail over the cross-flow cells so far.

So erfordert die Kanalzelle zur Erzielung der hohen Strömungsgeschwindigkeiten eine große Pumpenkapazität. Zur Abtrennung des mitgerissenen Anodenschlamms ist eine laufende Elektrolytfiltration erforderlich.Thus, the channel cell requires a large pump capacity to achieve the high flow rates. To separate the entrained anode sludge continuous electrolyte filtration is required.

Ebenso sind wegen der Gefahr der Aufwirbelung von Anodenschlamm Elektrolytzulauföffnungen im Badboden nicht geeignet.Likewise, due to the risk of fluidization of anode sludge electrolyte inlet openings in the bathroom floor are not suitable.

Auch in Parallelstromzellen mit einfachen Zwischenwänden können trotz geringerer Strömungsgeschwindigkeiten noch erhebliche Stromverzweigungen auftreten. Die Anordnung des Elektrolytab- bzw. -zulaufes am Badboden birgt zudem ebenfalls die Gefahr einer Aufwirbelung von Anodenschlamm und damit der Verschlechterung der Kathodenqualität. Eine solche Gefahr besteht auch bei der Anordnung doppelwandiger Zwischenwände, von denen eine jeweils nicht bis zum Badboden reicht. Außerdem ergeben sich ungünstige Bedingungen für die Vermischung von Bad- und Frischelektrolyt. Ein weiterer Nachteil ist die Belastung solcher doppelwandigen Zwischenwände. So müssen diese Wände zur Aufnahme der Anodenlasten besonders stabil ausgeführt sein, was jedoch mit erheblichen Werkstoffproblemen verbunden ist.Even in parallel flow cells with simple dividing walls, considerable flow branches can still occur despite lower flow velocities. The arrangement of the electrolyte drain or inlet on the bath floor also entails the risk of fluidization of anode sludge and thus the deterioration of the cathode quality. Such a risk also exists in the arrangement of double-walled partition walls, one of which does not extend to the bathroom floor. In addition, unfavorable conditions for the mixing of bath and fresh electrolyte arise. Another disadvantage is the burden of such double-walled partitions. Thus, these walls must be made particularly stable for receiving the anode loads, but this is associated with significant material problems.

In den Parallelstrombädern mit doppel- oder mehrfachwandigen Zwischenwänden werden durch die Anordnung von reihenförmigen Öffnungen in Höhe der Kathodenunterkante und etwas darüber sowie in Höhe des Elektrolytniveaus und etwas darunter zwar verbesserte Strömungsverhältnisse erzielt, es bestehen jedoch die selben Werkstoffprobleme wie oben. In den doppel- oder mehrfachwandigen Zwischenwänden sind außerdem Bereiche mit nur geringer Elektrolytbewegung vorhanden, in denen es zu Inkrustierungen kommen kann.In the parallel flow baths with double- or multi-walled partitions improved flow conditions are achieved by the arrangement of row-shaped openings at the level of the cathode lower edge and slightly above and in the amount of electrolyte level and slightly below, but there are the same material problems as above. In the double- or multi-walled partitions also areas with little electrolyte movement are present, in which it can lead to encrustations.

Von den bekannten Parallelstromzellen mit separatem Elektrolytzu- und -ablauf ist der mit Lochplatten ausgerüstete Behälter nicht einsetzbar, da die angestrebte Parallelströmung sich aufgrund der Dichteunterschiede zwischen dem Badelektrolyten und dem wärmeren Zulaufelektrolyten nicht realisieren lässt und die Voraussetzungen für eine ausreichende Sedimentation von Anodenschlamm nicht gegeben sind.Of the known parallel flow cells with separate Elektrolytzu- and the equipped with perforated plates container can not be used, since the desired parallel flow due to the density differences between the bath electrolyte and the warmer Feed electrolyte can not realize and the conditions for a sufficient sedimentation of anode sludge are not given.

In dem vorgeschlagenen Elektrolysebad mit nur noch einer perforierten Trennwand auf der Elektrolytzulaufseite sind die Strömungsverhältnisse aus den gleichen Gründen nicht befriedigend. Durch die relativ stark ausgeführte selbständige Trennwand vergrößert sich die Badbreite erheblich, was mit einem größeren Platzbedarf verbunden ist.In the proposed electrolytic bath with only one perforated partition on the electrolyte inlet side, the flow conditions are not satisfactory for the same reasons. Due to the relatively strong self-contained partition, the bath width increases considerably, which is associated with a larger footprint.

Der Einsatz von Leiteinbauten als Strömungsrichter sowie die Anordnung entsprechend geformter Trennwände ist mit einem sehr großen materiellen und fertigungstechnischen Aufwand verbunden. Außerdem verlangt das Behängen dieser Bäder mit den Elektroden große Sorgfalt, da die gewünschte Elektrolytzirkulation nur bei genauer Einhaltung der geforderten geometrischen Bedingungen gewährleistet ist.The use of Leiteinbauten as a flow straightener and the arrangement of appropriately shaped partitions is associated with a very large material and manufacturing effort. In addition, the hanging of these baths with the electrodes requires great care, since the desired electrolyte circulation is guaranteed only if the required geometric conditions are precisely met.

Die vorliegende Erfindung bezweckt die Vermeidung der oben genannten Nachteile und Probleme des Standes der Technik und stellt sich die Aufgabe, ein Verfahren zum Betreiben von (herkömmlichen) Kupfer-Elektrolysezellen sowie eine Kupfer-Elektrolysezelle bereitzustellen, mit denen höhere Stromdichten und damit höhere Stromausbeuten als im Stand der Technik möglich sind, die Kathodenqualität z.B. durch Aufwirbelung des Anodenschlamms, Störung der Anodenschlammabscheidung oder eine schlechte Inhibitorverteilung, aber nicht beeinträchtigt wird. Ebenso sollen umfangreiche Änderungen an und aufwändige Einbauten in der Zelle vermieden werden.The present invention aims to avoid the above-mentioned disadvantages and problems of the prior art and has as its object to provide a method for operating (conventional) copper electrolysis cells and a copper electrolysis cell with which higher current densities and thus higher current yields than in State of the art are possible, the cathode quality, for example but not affected by fluidization of the anode sludge, disturbance of anode sludge deposition, or poor inhibitor distribution. Likewise, extensive changes to and complex installations in the cell should be avoided.

Diese Aufgabe wird in einem ersten Aspekt bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass der Elektrolyt über den Elektrolytzulauf horizontal und parallel zu den Elektroden in jedem Elektrodenzwischenraum jeweils in Höhe des unteren Drittels der Elektroden mit einer Geschwindigkeit von 0,3 bis 1,0 m/s eingeströmt wird, wobei die Kathodenplatten gegenüber der Einströmrichtung ortsfest angeordnet werden.This object is achieved in a first aspect in a method of the type mentioned above in that the electrolyte via the electrolyte inlet horizontally and parallel to the electrodes in each electrode gap at the level of the lower third of the electrodes at a speed of 0.3 to 1, 0 m / s is flowed, wherein the cathode plates are arranged stationary relative to the inflow direction.

Hierdurch wird eine Optimierung der Strömungsführung in der Elektrolysezelle bezogen auf eine maximale Relativbewegung von Elektrolyt zur Elektrode erzielt, was vorteilhafterweise in einer Verkleinerung der hydrodynamischen Grenzschicht, einer Vergleichmäßigung der Konzentration und Temperatur des Elektrolyten, einer besseren Verteilung der Inhibitoren und vor allem einer Erhöhung der Grenzstromdichte resultiert.In this way, an optimization of the flow guidance in the electrolysis cell based on a maximum relative movement of electrolyte to the electrode is achieved, which advantageously in a reduction of the hydrodynamic boundary layer, a homogenization of the concentration and temperature of the electrolyte, a better distribution of the inhibitors and especially an increase in the limiting current density results.

Zwischen Anode und Kathode kommt es durch die natürliche Konvektion in Kathodennähe zu einer Aufwärtsbewegung und in Anodennähe zu einer Abwärtsbewegung des Elektrolyts. Zwischen den Elektroden besteht eine Geschwindigkeitsverteilung wie in Fig. 1 gezeigt. Die höhere Elektrolytgeschwindigkeit in unmittelbarer Nähe der Kathodenoberfläche führt zu einer verbesserten bzw. vermehrten Abscheidung von Kupfer an der Kathode, während die verminderte Geschwindigkeit an der Anodenoberfläche gleichzeitig das Absinken des Anodenschlamms begünstigt.Due to the natural convection in the vicinity of the cathode, an upward movement takes place between anode and cathode, and a downward movement of the electrolyte near the anode. There is a velocity distribution between the electrodes as in Fig. 1 shown. The higher electrolyte velocity in the immediate vicinity of the cathode surface leads to an improved deposition of copper at the cathode, while the reduced velocity at the anode surface at the same time favors the sinking of the anode sludge.

In einer bevorzugten Ausführungsform wird der Elektrolyt mit einer Geschwindigkeit von 0,3 bis 0,6 m/s in die Zelle eingeströmt.In a preferred embodiment, the electrolyte is flowed into the cell at a rate of 0.3 to 0.6 m / s.

Eine weitere Verbesserung des Verfahrens ist möglich, wenn der Elektrolyt nicht wie üblich und in den Beispielen angewandt an der Stirnseite der Zelle sondern längsseitig ablaufen gelassen wird.A further improvement of the method is possible if the electrolyte is not applied as usual and applied in the examples on the front side of the cell but longitudinally drained.

Das erfindungsgemäße Verfahren weist insbesondere den zusätzlichen Vorteil auf, dass es auch bei bereits bestehenden Elektrolysezellen ohne großen Aufwand mit wenigen Änderungen an den bestehenden Einrichtungen durchgeführt werden kann.In particular, the method according to the invention has the additional advantage that it can be carried out even with existing electrolysis cells without great effort with few changes to the existing facilities.

Gemäß einem anderen Aspekt der Erfindung wird eine Kupfer-Elektrolysezelle, umfassend eine Vielzahl von senkrecht und parallel zueinander angeordneten Anoden- und Kathodenplatten, einen längsseitigen Elektrolytzulauf und einen Elektrolytablauf, bereitgestellt, welche dadurch gekennzeichnet ist, dass der Elektrolytzulauf einen, sich an einer Längswand der Zelle bis in den Bereich der Elektrodenunterkante erstreckenden, geschlossenen Zulaufkasten umfasst, welcher an den Stirnseiten der Zelle einhängbar und mit einer Elektrolytquelle verbindbar ist und mit Mitteln zur ortsfesten Anordnung jeder Kathodenplatte sowie in den sich über das untere Drittel der Elektrodenhöhe erstreckenden und jeweils dem Elektrodenzwischenraum entsprechenden Bereichen mit mindestens einer Öffnung, insbesondere Düse, zur gerichteten Zuführung von Elektrolyt versehen ist.According to another aspect of the invention, there is provided a copper electrolytic cell comprising a plurality of vertically and parallelly disposed anode and cathode plates, a longitudinal electrolyte inlet, and an electrolyte drain, characterized in that the electrolyte inlet is located on a longitudinal wall thereof Cell which extends into the region of the electrode lower edge and comprises a closed feed box which can be attached to the end faces of the cell and can be connected to an electrolyte source and means for stationary arrangement of each cathode plate and in the lower third of the electrode height extending and respectively corresponding to the electrode gap Regions with at least one opening, in particular nozzle, for the directed supply of electrolyte is provided.

Vorzugsweise sind die Mittel zur ortsfesten Anordnung der Kathodenplatten als Mittel zur senkrechten Führung ausgebildet.Preferably, the means for the fixed arrangement of the cathode plates are designed as means for vertical guidance.

Gemäß einer bevorzugten Ausführungsform sind die Mittel zur senkrechten Führung als Kreisscheiben oder Räder ausgebildet, wobei die Kathodenplatten jeweils zwischen zwei benachbart angeordneten und beabstandeten Scheiben bzw. Rädern zentriert werden.According to a preferred embodiment, the means for vertical guidance are formed as circular discs or wheels, wherein the cathode plates are each centered between two adjacently arranged and spaced discs or wheels.

Gemäß einer möglichen Ausbildung der Elektrolysezelle ist der Elektrolytablauf stirnseitig angeordnet. Er kann jedoch auch vorteilhafterweise längsseitig angeordnet sein.According to a possible embodiment of the electrolytic cell, the electrolyte drain is arranged on the front side. However, it can also advantageously be arranged longitudinally.

Der in der erfindungsgemäßen Zelle eingesetzte Elektrolytzulaufkasten ist auch in bereits bestehenden herkömmlichen Elektrolysezellen vorteilhaft verwendbar.The electrolyte feed box used in the cell according to the invention can also be used advantageously in already existing conventional electrolysis cells.

Die Erfindung wird nachfolgend anhand von Beispielen sowie der Zeichnung näher erläutert.The invention will be explained in more detail with reference to examples and the drawing.

Fig. 2 zeigt eine schematische Darstellung einer Kupfer-Elektrolysezelle gemäß der vorliegenden Erfindung, bei welcher aus Gründen der besseren Erkennbarkeit der erfindungsgemäße Elektrolytzulaufkasten im Verhältnis zur Elektrolysezelle selbst zeichnerisch hervorgehoben wurde. Der geschlossene Zulaufkasten 1 erstreckt sich entlang einer Seitenwand 3 des Bades 2 und ist an den Stirnwänden 4 des Bades 2 befestigbar in die Zelle eingehängt, wobei die Einhängvorrichtungen 5 gleichzeitig der Zu- und Abfuhr des Elektrolyten in den eigentlichen Zulaufkasten dienen. Am Ende einer Einhängvorrichtung 5 ist der Zulaufkasten 1 mit einer Elektrolytquelle, z.B. über eine Flanschverbindung 6, verbindbar. Fig. 2 shows a schematic representation of a copper electrolysis cell according to the present invention, in which, for reasons of better visibility of the inventive electrolyte feed box in relation to the electrolytic cell itself has been highlighted graphically. The closed inlet box 1 extends along a side wall 3 of the bath 2 and is attached to the end walls 4 of the bath 2 fastened in the cell, wherein the Einhängvorrichtungen 5 simultaneously serve the supply and discharge of the electrolyte in the actual feed box. At the end of a suspension device 5, the inlet box 1 with an electrolyte source, for example via a flange 6, connectable.

Der Zulaufkasten 1 ist derart tief in der Zelle angeordnet, dass er sich bis in den Bereich der Elektrodenunterkante erstreckt. Im unteren Bereich des Zulaufkastens 1 sind, den Elektroden zugewandt, Öffnungen, insbesondere Düsen 7, angeordnet, wobei sich mindestens eine Öffnung in jedem dem Elektrodenzwischenraum entsprechenden und sich über das untere Drittel der Elektrodenhöhe erstreckenden Bereich befindet (Fig. 3). Durch diese Öffnungen wird der Elektrolyt mit einer Geschwindigkeit von 0,3 bis 1,0 m/s in die Zelle in den unteren Bereich des Elektrodenzwischenraums eingeströmt, um zu der weiter oben genannten vorteilhaften Strömungsführung zu gelangen. Da dieser Effekt jedoch nur bei einer definierten und auch tatsächlich eingehaltenen Anordnung der Elektroden gegenüber der Einströmungsrichtung erzielt wird, was beim gewöhnlichen Einhängen der Elektroden in das Bad kaum zu bewerkstelligen ist, ist es wesentlich, die Kathodenplatten gegenüber der Einströmrichtung ortsfest anzuordnen. Zu diesem Zweck sind in der Elektrolysezelle, genauer am Zulaufkasten 1, Mittel zur ortsfesten Anordnung jeder Kathodenplatte vorgesehen.The inlet box 1 is arranged so deep in the cell that it extends into the region of the electrode lower edge. In the lower region of the inlet box 1, facing the electrodes, openings, in particular nozzles 7, are arranged, wherein at least one opening is located in each region corresponding to the electrode gap and extending over the lower third of the electrode height ( Fig. 3 ). Through these openings, the electrolyte is flowed into the cell in the lower area of the electrode gap at a speed of 0.3 to 1.0 m / s in order to achieve the advantageous flow guidance mentioned above. However, since this effect is achieved only with a defined and actually maintained arrangement of the electrodes with respect to the direction of flow, which is difficult to accomplish when mounting the electrodes in the bath, it is essential to arrange the cathode plates with respect to the inflow direction in a fixed manner. For this purpose, means for the stationary arrangement of each cathode plate are provided in the electrolytic cell, more precisely at the inlet box 1.

Bei der in Fig. 3 dargestellten Ausführungsform wird die ortsfeste Anordnung durch Mittel zur senkrechten Führung der Kathodenplatten erzielt, die als Kreisscheiben oder Räder 8 ausgebildet sind, wobei die Kathodenplatten 9 jeweils zwischen zwei benachbart angeordneten und beabstandeten Scheiben bzw. Rädern zentriert werden (Fig. 4). Dem Fachmann sind jedoch zahlreiche andere Ausführungsformen bekannt oder aufgrund seines Fachwissens leicht auffindbar.At the in Fig. 3 In the embodiment shown, the fixed arrangement is achieved by means for the vertical guidance of the cathode plates, which are formed as circular disks or wheels 8, wherein the cathode plates 9 are respectively centered between two adjacently arranged and spaced disks or wheels ( Fig. 4 ). The skilled person, however, numerous other embodiments are known or easy to find due to his expertise.

Beispiele:Examples:

Für die nachfolgenden Beispiele wurde eine herkömmliche industrielle Kupfer-Elektrolysezelle mit einem erfindungsgemäßen Elektrolytzulauf, umfassend einen wie oben beschriebenen Zulaufkasten, ausgestattet.For the following examples, a conventional industrial copper electrolysis cell was equipped with an electrolyte inlet according to the invention, comprising a feed box as described above.

Beispiel 1:Example 1:

In einer industriellen Elektrolysezelle wurden mit einer Einströmgeschwindigkeit von 0,75 m/s und einer Stromdichte von 407 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 97 %.In an industrial electrolysis cell copper sheets were produced with an inflow rate of 0.75 m / s and a current density of 407 A / m 2 . The cathodic current efficiency during the whole anode travel was more than 97%.

Beispiel 2:Example 2:

In einer industriellen Elektrolysezelle wurden mit einer Einströmgeschwindigkeit von 1,0 m/s und einer Stromdichte von 498 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 93 %.In an industrial electrolysis cell copper sheets were produced with an inflow rate of 1.0 m / s and a current density of 498 A / m 2 . The cathodic current efficiency during the whole anode travel was more than 93%.

Beispiel 3:Example 3:

In einer industriellen Elektrolysezelle wurde mit einer Einströmgeschwindigkeit von 0,5 m/s und einer Stromdichte von 498 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 98 %.In an industrial electrolysis cell copper sheets were produced with an inflow rate of 0.5 m / s and a current density of 498 A / m 2 . The cathodic current efficiency during the whole anode travel was more than 98%.

Beispiel 4:Example 4:

In einer industriellen Elektrolysezelle wurden mit einer Einströmgeschwindigkeit von 0,67 m/s und einer Stromdichte von 543 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 95 %.In an industrial electrolysis cell copper sheets were produced with an inflow rate of 0.67 m / s and a current density of 543 A / m 2 . The cathodic current efficiency was more than 95% throughout the anode travel.

In Tabelle 1 sind die Betriebsbedingungen und Ergebnisse weiterer Versuche angeführt. Tabelle 1 Versuch Nr. i Q v η 1 Reise η 2 Reise in A/m2 in l/min in m/s in % in % 1 407 75 0,75 93,92 95,01 2 407 75 0,5 97,24 98,15 3 407 75 0,5 99,46 98,35 4 407 75 0,5 97,49 96,27 4a 407 75 0,5 92,1 93,77 5 498 150 1 98,99 93,47 6 498 75 0,5 99,55 99,28 7 498 100 0,67 99,53 99,13 8 543 100 0,67 98,18 97,59 Table 1 gives the operating conditions and results of further experiments. Table 1 Experiment No. i Q v η 1 trip η 2 trip in A / m 2 in l / min in m / s in % in % 1 407 75 0.75 93.92 95.01 2 407 75 0.5 97.24 98,15 3 407 75 0.5 99.46 98.35 4 407 75 0.5 97.49 96.27 4a 407 75 0.5 92.1 93.77 5 498 150 1 98.99 93.47 6 498 75 0.5 99.55 99.28 7 498 100 0.67 99.53 99.13 8th 543 100 0.67 98.18 97.59

Claims (9)

  1. A method for operating electrolytic cells of copper, comprising a plurality of anode and cathode plates arranged vertically and in parallel to each other, a longitudinal electrolyte feed and an electrolyte discharge, characterized in that the electrolyte is fed via the electrolyte feed horizontally and in parallel to the electrodes into each interstice between the electrodes, each at the height of the lower third of the electrodes, with a rate of 0.3 to 1.0 m/s, wherein the cathode plates are arranged in a stationary way with reference to the feed direction.
  2. The method according to claim 1, characterized in that the electrolyte is fed into the cell with a rate of 0.3 to 0.6 m/s.
  3. The method according to claim 1 or 2, characterized in that the electrolyte is run off in a longitudinal direction.
  4. An electrolytic cell of copper, comprising a plurality of anode and cathode plates arranged vertically and in parallel to each other, a longitudinal electrolyte feed and an electrolyte discharge, characterized in that the electrolyte feed comprises a closed feed box extending alongside the longitudinal wall of the cell as far as the region of the bottom edge of the electrode, which feed box may be mounted at the front faces of the cells and attached to an electrolyte source and which is provided with means for the stationary arrangement of each cathode plate as well as with at least one opening, in particular a nozzle, for the oriented feed of electrolyte, with the opening being provided in the regions extending across the lower third of the electrode height and corresponding to each electrode interstice.
  5. The electrolytic cell of copper according to claim 4, characterized in that the means for the stationary arrangement of the cathode plates are formed as means for vertical guidance.
  6. The electrolytic cell of copper according to claim 5, characterized in that the means for vertical guidance are formed by circular discs or wheels, wherein each cathode plate is centered between two discs or wheels, respectively, which are arranged adjacently and spaced apart from each other.
  7. The electrolytic cell of copper according to any of claims 4 to 6, characterized in that the electrolyte discharge is arranged at the front face.
  8. The electrolytic cell of copper according to any of claims 4 to 6, characterized in that the electrolyte discharge is arranged longitudinally.
  9. An electrolyte feed box for an electrolytic cell of copper, with the feed box being closed and extending alongside the longitudinal wall of the cell as far as the region of the bottom edge of the electrode, characterized in that it may be mounted at the front faces of the cell and attached to an electrolyte source and that it is provided with means for the stationary arrangement of each cathode plate as well as with at least one opening, in particular a nozzle, for the oriented feed of electrolyte, with the opening being provided in the regions extending across the lower third of the electrode height and corresponding to each electrode interstice.
EP08782805A 2007-08-27 2008-08-07 Method for operating copper electrolysis cells Active EP2183409B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08782805T PL2183409T3 (en) 2007-08-27 2008-08-07 Method for operating copper electrolysis cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0133707A AT505700B1 (en) 2007-08-27 2007-08-27 METHOD OF OPERATING COPPER ELECTROLYSIS CELLS
PCT/AT2008/000277 WO2009026598A2 (en) 2007-08-27 2008-08-07 Method for operating copper electrolysis cells

Publications (2)

Publication Number Publication Date
EP2183409A2 EP2183409A2 (en) 2010-05-12
EP2183409B1 true EP2183409B1 (en) 2011-04-20

Family

ID=40377687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08782805A Active EP2183409B1 (en) 2007-08-27 2008-08-07 Method for operating copper electrolysis cells

Country Status (11)

Country Link
US (1) US8454818B2 (en)
EP (1) EP2183409B1 (en)
JP (1) JP5227404B2 (en)
CN (1) CN101376990B (en)
AT (2) AT505700B1 (en)
AU (1) AU2008291662B2 (en)
CA (1) CA2696635C (en)
DE (1) DE502008003297D1 (en)
ES (1) ES2365376T3 (en)
PL (1) PL2183409T3 (en)
WO (1) WO2009026598A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201112606D0 (en) 2011-07-22 2011-09-07 Johnson Matthey Plc Desulphurisation materials
JP5632340B2 (en) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 Electrolytic production apparatus and production method of indium hydroxide and compound containing indium hydroxide
CN103255443B (en) * 2013-05-06 2015-11-25 阳谷祥光铜业有限公司 Superhigh-current-density electrolysis or Winning cell
CN104018191B (en) * 2014-06-16 2017-01-11 南华大学 electrolytic cell with flow control tube
JP6410131B2 (en) * 2014-07-31 2018-10-24 佐々木半田工業株式会社 High current density electrolytic purification of tin
CN104831319A (en) * 2015-05-28 2015-08-12 杭州三耐环保科技股份有限公司 Top-feeding bidirectional parallel flowing type electrolyzer and application method thereof
CN105506670B (en) * 2015-12-18 2018-03-23 阳谷祥光铜业有限公司 A kind of device and operation method of cupric electrolysis or copper electrodeposition
GB201603224D0 (en) 2016-02-24 2016-04-06 Barker Michael H And Grant Duncan A Equipment for a metal electrowinning or liberator process and way of operating the process
JP7150768B2 (en) * 2020-01-30 2022-10-11 Jx金属株式会社 Electrolysis apparatus and electrolysis method
JP7150769B2 (en) * 2020-01-30 2022-10-11 Jx金属株式会社 Electrolysis apparatus and electrolysis method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558466A (en) * 1968-03-04 1971-01-26 Kennecott Copper Corp Electrolytic cell
JPS4919003Y1 (en) * 1970-01-22 1974-05-21
US3682809A (en) * 1970-02-24 1972-08-08 Kennecott Copper Corp Electrolytic cell constructed for high circulation and uniform flow of electrolyte
BE771215A (en) * 1970-06-24 1971-12-16 Mansfeld Kom Wilhelm Veb Copper electrorefining bath - comprising several units with hollow connecting walls
JPS5237602Y2 (en) * 1972-05-29 1977-08-26
DD109031A1 (en) * 1973-11-22 1974-10-12
US3966567A (en) * 1974-10-29 1976-06-29 Continental Oil Company Electrolysis process and apparatus
DD125714A1 (en) 1976-04-21 1977-05-11
EP0146732B1 (en) * 1983-11-08 1988-02-03 Holzer, Walter, Senator h.c. Dr.h.c.Ing. Process and apparatus for separating, for example, copper from a liquid electrolyte introduced into a pluricellular electrolyser
JPH0768629B2 (en) * 1987-07-06 1995-07-26 三菱マテリアル株式会社 Electrolytic method using unitized plates
JPH0389166U (en) * 1989-12-25 1991-09-11
US5066379A (en) * 1990-06-14 1991-11-19 Corrosion Technology, Inc. Container for corrosive material
US5492608A (en) * 1994-03-14 1996-02-20 The United States Of America As Represented By The Secretary Of The Interior Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction
US5855756A (en) * 1995-11-28 1999-01-05 Bhp Copper Inc. Methods and apparatus for enhancing electrorefining intensity and efficiency
JP2002105684A (en) * 2000-09-29 2002-04-10 Dowa Mining Co Ltd Electrolytic method, and electrolytic tank used therefor

Also Published As

Publication number Publication date
CA2696635C (en) 2014-10-07
AT505700A1 (en) 2009-03-15
AU2008291662B2 (en) 2011-10-06
ES2365376T3 (en) 2011-10-03
CA2696635A1 (en) 2009-03-05
AT505700B1 (en) 2009-12-15
JP2010537051A (en) 2010-12-02
US8454818B2 (en) 2013-06-04
WO2009026598A2 (en) 2009-03-05
CN101376990A (en) 2009-03-04
WO2009026598A3 (en) 2009-08-13
JP5227404B2 (en) 2013-07-03
CN101376990B (en) 2012-09-05
DE502008003297D1 (en) 2011-06-01
US20110056842A1 (en) 2011-03-10
AU2008291662A1 (en) 2009-03-05
EP2183409A2 (en) 2010-05-12
PL2183409T3 (en) 2011-11-30
ATE506467T1 (en) 2011-05-15

Similar Documents

Publication Publication Date Title
EP2183409B1 (en) Method for operating copper electrolysis cells
DE4444114C2 (en) Electrochemical half cell with pressure compensation
DE10153544B4 (en) Device for controlling the flow in a galvanizing process
DE2039422A1 (en) Device for settling particles out of a liquid
DE19713647C2 (en) Device for the galvanic deposition of a one- or both-sided metal or alloy coating on a metal band
DE2640801C3 (en) Process for electrolyte circulation in an electrolytic cell for the electrical refining and electrowinning of copper as well as an electrolytic cell for carrying out the process
DE19715429A1 (en) Electrochemical half cell
DE3889187T2 (en) Insoluble electrode.
DE4225961C5 (en) Apparatus for electroplating, in particular copper plating, flat plate or arched objects
DE2619821A1 (en) METHOD AND DEVICE FOR CONTINUOUS ELECTROLYTIC TREATMENT OF A METAL STRIP
DE3017079A1 (en) DEVICE FOR ELECTROPLATING
DE2041250C3 (en) Grid anode for an electrolytic cell
DE2259020C3 (en) Flotation cell with electrolytic gas bubble generation
DE2949495C2 (en) Electrode for electrolytic cells
DE1496357B2 (en) SEAWATER BATTERY IN WHICH THE LID AND THE BOTTOM OF EACH CELL HAS ENTRY CHANNELS FOR THE ELECTROLYTE FLUID THROUGH THE CELL
EP0150019B1 (en) Method of electrolyzing using liquid electrolytes and porous electrodes
AT392090B (en) DEVICE FOR ELECTROPLATING
DE2507492C3 (en) Method and device for the electrolytic removal of metal ions from a solution
EP1015667A2 (en) Method and device for regulating the concentration of substances in electrolytes
DE4438692C2 (en) Process for the electrochemical extraction of the metals copper, zinc, lead, nickel or cobalt
WO2005100640A1 (en) Electrochemical cell
DE3024696C2 (en) Electrolysis cell for carrying out refining electrolysis
DE4224492C1 (en) Apparatus for the electrolytic treatment of liquids with an anode and a cathode chamber and their use
DE3340360C2 (en) Electrolysis tank
DE10235117B3 (en) Plant for the cataphoretic dip painting of objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008003297

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003297

Country of ref document: DE

Effective date: 20110601

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110420

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110420

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2365376

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110721

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

26N No opposition filed

Effective date: 20120123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003297

Country of ref document: DE

Effective date: 20120123

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20230818

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230822

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240820

Year of fee payment: 17

Ref country code: DE

Payment date: 20240819

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240918

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240819

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240821

Year of fee payment: 17