[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2182179A1 - Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie - Google Patents

Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie Download PDF

Info

Publication number
EP2182179A1
EP2182179A1 EP08160520A EP08160520A EP2182179A1 EP 2182179 A1 EP2182179 A1 EP 2182179A1 EP 08160520 A EP08160520 A EP 08160520A EP 08160520 A EP08160520 A EP 08160520A EP 2182179 A1 EP2182179 A1 EP 2182179A1
Authority
EP
European Patent Office
Prior art keywords
working fluid
storage medium
thermal storage
hot
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08160520A
Other languages
English (en)
French (fr)
Other versions
EP2182179B1 (de
Inventor
Christian Ohler
Mehmet Mercangoez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP08160520A priority Critical patent/EP2182179B1/de
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to ES08160520T priority patent/ES2363455T3/es
Priority to DE602008005898T priority patent/DE602008005898D1/de
Priority to AT08160520T priority patent/ATE503915T1/de
Priority to PL08160520T priority patent/PL2182179T3/pl
Priority to DK08160520.6T priority patent/DK2182179T3/da
Priority to PCT/EP2009/058475 priority patent/WO2010006942A2/en
Priority to CN200980128185.1A priority patent/CN102099551B/zh
Priority to RU2011105632/06A priority patent/RU2476686C2/ru
Publication of EP2182179A1 publication Critical patent/EP2182179A1/de
Priority to US13/005,249 priority patent/US20110100611A1/en
Application granted granted Critical
Publication of EP2182179B1 publication Critical patent/EP2182179B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators

Definitions

  • the present invention relates generally to the storage of electric energy. It relates in particular to a system and method for storing electric energy in the form of thermal energy in thermal energy storage.
  • Base load generators such as nuclear power plants and generators with stochastic, intermittent energy sources such as wind turbines and solar panels, generate excess electrical power during times of low power demand.
  • Large-scale electrical energy storage systems are a means of diverting this excess energy to times of peak demand and balance the overall electricity generation and consumption.
  • thermoelectric energy storage TEES
  • a TEES converts excess electricity to heat, stores the heat, and converts the heat back to electricity, when necessary.
  • Such an energy storage system is robust, compact, site independent and is suited to the storage of electrical energy in large amounts.
  • Thermal energy can be stored in the form of sensible heat via a change in temperature or in the form of latent heat via a change of phase or a combination of both.
  • the storage medium for the sensible heat can be a solid, liquid, or a gas.
  • the storage medium for the latent heat occurs via a change of phase and can involve any of these phases or a combination of them in series or in parallel.
  • thermoelectric energy storage is limited for various reasons rooted in the second law of thermodynamics. Firstly, the conversion of heat to mechanical work is limited to the Carnot efficiency. Secondly, the coefficient of performance of any heat pump declines with increased temperature difference between input level and output level. Thirdly, any heat flow from a working fluid to a thermal storage and vice versa requires a temperature difference in order to happen. This fact inevitably degrades the temperature level and thus the capability of the heat to do work.
  • a heat pump requires work to move thermal energy from a cold source to a warmer heat sink. Since the amount of energy deposited at the hot side is greater than the work required by an amount equal to the energy taken from the cold side, a heat pump will "multiply" the heat as compared to resistive heat generation.
  • the ratio of heat output to work input is called coefficient of performance, and it is a value larger than one. In this way, the use of a heat pump will increase the round-trip efficiency of a thermoelectric energy storage system.
  • the round-trip efficiency is the amount of electricity provided from the storage divided by the amount of electricity provided to the storage.
  • US Patent 4089744 discloses a method of thermal energy storage by means of reversible heat pumping. Excess electrical output is stored in the form of sensible heat by using it to raise the temperature level of a heat storage fluid. In this scheme, the source of low level heat is stored hot water, which also serves as the working fluid in the heat pump and the turbine cycles.
  • a thermodynamic analysis such as the type of analysis shown in Figure 6 , shows that the efficiency of schemes equivalent to that of US 4089744 is limited to about 50%.
  • thermoelectric energy storage having a round-trip efficiency of, preferably, greater than 55%.
  • thermoelectric energy storage system for converting electrical energy into thermal energy to be stored and converted back to electrical energy with an improved round-trip efficiency.
  • This objective is achieved by a thermoelectric energy storage system according to claim 1 and a method according to claim 7. Preferred embodiments are evident from the dependent claims.
  • thermoelectric energy storage system which comprises a hot storage unit which is in connection with a heat exchanger and contains a thermal storage medium, a working fluid circuit for circulating a working fluid through the heat exchanger for heat transfer with the thermal storage medium, and wherein the temperature difference between the working fluid and the thermal storage medium in the hot storage unit is minimized during heat transfer.
  • thermodynamic machine When the thermoelectric energy storage system is in a charging (or “heat pump”) cycle, the thermodynamic machine includes a turbine, and when the thermoelectric energy storage system is in a discharging (or “turbine”) cycle, the thermodynamic machine includes a compressor.
  • the hot storage unit comprises at least two hot storage units, each hot storage unit is in connection with a heat exchanger and contains a thermal storage medium.
  • the heat exchanger or heat exchangers are common to both the charging and discharging cycles. However, it is also possible that there are separate heat exchangers for the charging and discharging cycles. Two or more heat exchangers utilized in series are preferably connected hydraulically.
  • the thermal storage medium may be a liquid and a flow rate of the thermal storage medium may be modified such that the temperature difference between the working fluid and the thermal storage medium in each hot storage unit is minimized during heat transfer.
  • the thermal storage medium of the present invention may be a solid or a liquid.
  • the particular embodiment illustrated in Figures 3 and 4 of the accompanying description shows a version wherein the thermal storage medium is a liquid.
  • a single working fluid circuit containing a single type of working fluid is utilized for both the charging and discharging cycles.
  • each separate working fluid circuit may contain a different type of working fluid.
  • the temperature of the thermal storage medium at entry and exit points of each connected heat exchanger is modified such that the temperature difference between the working fluid and the thermal storage medium in each hot storage unit is minimized during heat transfer.
  • At least one of the hot storage units may contain a different type of thermal storage medium such that the temperature difference between the working fluid and the thermal storage medium in each hot storage unit is minimized during heat transfer.
  • the hot storage unit or units comprise a thermal storage medium for sensible heat storage and a phase change storage medium for latent heat storage, which are arranged such that the temperature difference between the working fluid and the thermal storage medium in each heat exchanger unit is minimized during heat transfer.
  • the temperature difference between the working fluid and the thermal storage medium in each hot storage unit is less than 50 °C during heat transfer.
  • thermoelectric energy storage system comprising charging a hot storage unit by providing heat via a heat exchanger to a thermal storage medium by compressing a working fluid, discharging the hot storage unit by expanding the working fluid heated via the heat exchanger from the thermal storage medium through a thermodynamic machine, and modifying the thermal storage media parameters to ensure the temperature difference between the working fluid and the thermal storage medium is minimized during charging and discharging.
  • the step of modifying the thermal storage media parameters comprises modifying the flow rate of the thermal storage medium.
  • the step of modifying the thermal storage media parameters may comprise modifying the initial temperature and final temperature of the thermal storage medium.
  • the step of modifying the thermal storage media parameters comprises modifying the type of thermal storage medium.
  • FIG. 1 depicts a schematic diagram of a TEES system 10 in accordance with the present invention which comprises a hot storage 12 and a cold storage 14 which are coupled to each other by means of a heat pump cycle system 16 and a turbine cycle system 18.
  • the hot storage 12 contains a thermal storage medium
  • the cold storage 14 is a heat sink
  • both the heat pump cycle and the turbine cycle contain a working fluid.
  • the heat pump cycle system 16 comprises, in the flow direction of the working fluid, an evaporator 20, a compressor train 22, a heat exchanger 24, and an expansion valve 26.
  • the turbine cycle system 18 comprises, in the flow direction of the working fluid, a feed pump 28, a heat exchanger 30, a turbine 32, and a condenser 34.
  • the heat exchangers 24, 30 in both the heat pump cycle system and the turbine cycle system are located to exchange heat with the hot storage 12.
  • the evaporator 20 and the condenser 34 in the heat pump cycle system 16 and the turbine cycle system 18 respectively, are located to exchange heat with the cold storage 14.
  • the cold storage 14 is a heat reservoir at any temperature lower than the hot storage temperature.
  • the cold storage temperature may be higher or lower the ambient temperature.
  • the cold storage may be another heat sink such as cooling water or air from the ambient.
  • the turbine and compressor train may be thermodynamic machines based on positive displacement such as reciprocating or rotary expanders or compressors.
  • the compressor train 22 may comprise one or several individual compressors with possible intercooling (not shown).
  • the turbine 32 may comprise one or several individual turbines with possible reheating (not shown).
  • the evaporator 20, the condenser 34, the feed pump 28 and the expansion valve 26 may comprise one or multiple units.
  • the working fluid flows around the TEES system 10 in the following manner.
  • the working fluid in the compressor 22 is initially in vapour form and surplus electrical energy is utilized to compress and heat the working fluid.
  • the working fluid is fed through the heat exchanger 24 where the working fluid discards heat into the hot storage medium.
  • the compressed working fluid exits the heat exchanger and enters the expansion valve 26.
  • the working fluid is expanded to the lower pressure of the evaporator.
  • the working fluid flows from the expansion valve into the evaporator 20 where the working fluid is heated to evaporation. This is realized using available heat from the cold storage.
  • working fluid is condensed by exchanging heat with the cold storage 14.
  • the condensed working fluid exits the condenser via the outlet and is pumped into the heat exchanger 30 at the hot storage via the feed pump 28.
  • the working fluid is heated, evaporated, and overheated from the stored heat from the hot storage medium.
  • the working fluid exits the heat exchanger 30 and enters the turbine 32 where the working fluid is expanded thereby causing the turbine to generate electrical energy.
  • the expansion valve 26, the evaporator 20, and the compressor 22 are in operation during a period of charging, or the "heat pump cycle”.
  • the turbine 32, the condenser 34 and the feed pump 28 are in operation during a period of discharging or the "turbine cycle”.
  • the hot storage 12 is in operation at all times; during charging, storage, and discharging.
  • the solid-line cycle shown in Figure 2 represents the heat pump cycle that is charging the hot storage and the heat pump cycle follows a counter-clockwise direction as indicated by the arrows.
  • the working fluid is assumed to be water for this exemplary embodiment.
  • the heat pump cycle starts in the evaporator at point A where steam is evaporated to form vapor using heat from the cold storage (transition A ⁇ B1 in Figure 2 ).
  • the vapor is compressed utilising electrical energy in two stages from point B1 to C1 and B2 to C2. Where compression occurs in two stages this is a consequence of the compressor train comprising two individual units. In between these two compression stages, the working fluid is cooled from point C1 to B2.
  • the hot, compressed, overheated vapor exits the compression train at point C2 where it is cooled down to the saturation temperature at D1, condensed at D2, and further cooled down to point D3.
  • This cooling down and condensation is realized by transferring the heat from the working fluid into the hot storage thereby storing the heat energy.
  • the cooled working fluid is returned to its initial low pressure state at point A via the expansion valve.
  • the dotted-line cycle shown in Figure 2 represents the Rankine turbine cycle that is discharging the hot storage and the cycle follows a clockwise direction as indicated by the arrows.
  • the Rankine turbine cycle starts at point E, where the pump is utilized to pump the working fluid in its liquid state from point E to F1.
  • the working fluid receives the heat from the thermal storage medium.
  • the heat is transferred from the thermal storage medium to the working fluid causing the working fluid to heat up at F2, to boil at F3, and attain a certain degree of superheat at G.
  • the superheated working fluid vapor at point G is expanded down to point H in a mechanical device such as a turbine to generate electricity.
  • the working fluid enters the condenser where it is condensed to its initial state at point E by exchanging heat with the cold storage.
  • the roundtrip efficiency of the complete energy storage process is calculated in the following manner; the work provided by the turbine expansion divided by the work used in the heat pump compressor: h G - h H / h C ⁇ 2 - h B ⁇ 2 + h C ⁇ 1 - h B ⁇ 1 , where the letter h denotes the enthalpy of the corresponding point.
  • the roundtrip efficiency is 50.8%. It is not possible from the enthalpy-pressure diagram alone to judge if this is a particularly efficient TEES system, or how it could be improved in efficiency.
  • the heat exchanger 24 in the heat pump cycle components 16 and the heat exchanger 30 in the turbine cycle components 18 may comprise several individual heat exchangers arranged in series, as illustrated in Figures 3 and 4 , respectively.
  • FIG. 3 depicts a simplified schematic diagram of the heat pump cycle components 16 in a thermoelectric energy storage system 10 of the present invention.
  • three individual hot storage units x, y, z are arranged in series.
  • Each hot storage unit x, y, z comprises a heat exchanger 36, 38, 40 in connection with a storage tank pair 42, 44, 46.
  • Each storage tank pair comprises a cold tank and a hot tank wherein the flow of the thermal storage medium is from the cold tank to the hot tank via the associated heat exchanger.
  • the three hot storage units in Figure 3 are denoted x, y and z from left to right in the diagram.
  • the heat exchangers are counterflow heat exchangers, and the working fluid of the cycle is water.
  • the heat pump cycle components 16 of Figure 3 perform essentially in a similar manner as heat pump cycle components 16 of the TEES system described in respect of Figures 1 and 2 .
  • the working fluid flows through the further two separate heat exchangers.
  • the initial and final temperatures of the working fluid as it passes through heat exchanger 40 are 510°C and 270°C
  • through heat exchanger 38 are 270°C and 270°C
  • through heat exchanger 36 are 270°C and 100°C.
  • an overall temperature drop of 410°C is achieved.
  • the characteristics of the working fluid (shown as a solid line) and thermal storage medium (shown as a dashed line) of each of the three heat exchangers 36, 38, 40 and associated storage tank pair 42, 44, 46 during charging are shown in Figure 5 in the enthalpy-temperature graphs a), b) and c), respectively.
  • the temperature of the thermal storage medium in each stage is increasing, whilst the temperature of the working fluid decreases only in stages a) and c).
  • FIG 4 depicts a simplified schematic diagram of the turbine cycle components 18 in a thermoelectric energy storage system 10 of the present invention.
  • the arrangement of three individual hot storage units x, y, z, arranged in series, are the same units shown in Figure 3 .
  • each storage tank pair 42, 44, 46 comprises a hot tank and a cold tank, however the flow of the thermal storage medium is from the hot tank to the cold tank via the heat exchanger.
  • the turbine cycle components 18 of Figure 4 perform essentially in a similar manner as turbine cycle components of the TEES system described in respect of Figures 1 and 2 .
  • the working fluid flows through the further two separate heat exchangers.
  • the initial and final temperatures of the working fluid as it passes through heat exchanger 36 are 80°C and 240°C
  • through heat exchanger 38 are 240°C and 240°C
  • through heat exchanger 40 are 240°C and 490°C.
  • an overall temperature increase of 410°C is achieved.
  • the working fluid conduit for the heat pump cycle is coupled to the hot storage units x, y, z.
  • the turbine pump cycle components 18 are in operation, then the working fluid conduit for the turbine cycle coupled to the hot storage units x, y, z, instead. In this way, the turbine cycle obtains thermal energy from the hot storage units that was deposited by the heat pump cycle.
  • the characteristics of the working fluid (shown as a solid line) and thermal storage medium (shown as a dashed line) of each of the three heat exchangers 36, 38, 40 and associated storage tank pairs 42, 44, 46 during discharging are shown in Figure 5 in the enthalpy-temperature graphs d), e) and f), respectively.
  • the temperature of the thermal storage medium in each stage is decreasing, whilst the temperature of the working fluid increases only in stages d) and f).
  • Figure 6 shows the isobars, ie. lines of constant pressure, from Figure 5 a) - f) on a single temperature-enthalpy graph for a particular system embodiment. Further, the capital letters used are consistent with Figure 2 . Thus, Figure 6 illustrates the heat transfer process at the three separate hot storage units x, y, z during the charging and discharging of the TEES system 10.
  • the solid line isobars C2 to D3 represent the heat pump cycle
  • the dotted line isobars F1 to G represent the Rankine turbine cycle
  • the dashed line isobars X1 to X2, Y1 to Y2, Z1 to Z2 represent the thermal storage media in the three hot storage units x, y, z, respectively.
  • the slope of these characteristic isobars is defined by the product of the massflow (kg/s) and heat capacity (J/kg/K) of each thermal storage medium relative to the massflow of the working fluid. This product is different for each of the three heat transfer subsections; heating/cooling of liquid water in hot storage unit x, boiling/condensation in hot storage unit y, and providing/extracting heat to the supersaturation region in hot storage unit z.
  • the temperature profiles are stationary in time due to the sensible heat storage in the thermal storage media.
  • the volume of thermal storage media in each heat exchanger remains constant, the volume of hot and cold thermal storage media stored in the hot and cold tanks changes. Also, the temperature distribution in the heat exchangers remains constant.
  • the present invention determines that the smaller the average temperature difference between the working fluid and the heat storage media during heat transfer, the greater the efficiency of the TEES system.
  • this feature is observed as a relatively closer positioning of the characteristic isobars of the charging and discharging cycles, as shown in Figure 7 .
  • the present invention determines that the thermal storage media may be the same or a different fluid in each hot storage unit x, y and z. Further, the present invention determines that the thermal storage media may be at a different temperature in each hot storage unit x, y and z. Also, the flow-rate of the thermal storage media within each hot storage unit may differ. Specifically, in order to achieve an optimized roundtrip efficiency of the TEES system various combinations of the thermal storage media, the initial and final temperature of the thermal storage media and the thermal storage media flow-rates may be utilized.
  • the flow-rate of the thermal storage medium through heat exchanger 38 of hot storage unit y is increased by a factor of three in comparison with the scenario in Figure 6 .
  • the flow rate in heat exchanger 38, in Figure 6 was set to an arbitrary rate that was relatively larger than the flow rate in heat exchangers 36 and 40, but the flow rate was not optimized as in Figure 7 .
  • a decrease in average temperature differences between the thermal storage medium and the working fluid during heat transfer in heat exchanger 38 of hot storage unit y can be noted.
  • a resultant TEES system design has a higher saturation temperature in heat exchanger 38 in the turbine cycle than before (denoted as F2' and F3' in Figure 7 in comparison with F2 and F3 in Figure 6 ). This equates to a temperature of 230 °C in Figure 7 , in comparison with 200 °C in Figure 6 . Consequently, the roundtrip efficiency of the TEES system in the embodiment of Figure 7 is 61.1% in comparison to an efficiency of 50.8% in Figure 2 .
  • the present invention requires the temperature difference between the working fluid of the heat pump cycle and the heat storage media, as well as the temperature difference between the working fluid of the turbine cycle and the heat storage media to be relatively small (for example, smaller than 50 °C on average). This is achieved through modification of certain TEES parameters as specified above.
  • the three thermal storage media are fluids.
  • these may be three different liquid sensible heat storage media such as water, oil, or molten salts.
  • the heat exchangers are counterflow heat exchangers, having a minimal approach temperature 10 K (ie. the minimal temperature difference between the two fluids exchanging heat is 10 K) and the expansion device is preferably a thermostatic expansion valve.
  • the heat at the boiling/condensation heat exchanger 38 is transferred to the latent heat of a phase transition of a storage medium enabling an even closer match of the temperature profiles in the boiling/condensation region.
  • a preferred embodiment uses steam as the working fluid for both the heat pump cycle and the turbine cycle.
  • evaporator and condenser instead use heat from the ambient as an (infinitely large) reservoir for the cold side of the heat pump cycle and the turbine cycle.
  • the cold storage of Figure 1 which is a second heat storage reservoir, has latent heat storage at temperatures around 100 °C at the cold side of the heat pump cycle and the turbine cycle. Because of the temperature dependence of the saturation pressure of working fluids such as water, such an additional heat storage reservoir may result in greater economy in respect of the compressor and the turbine. It is envisaged that this economy would more than compensate for the additional cost for this reservoir at moderately long storage times.
  • the hot storage can consist of:
  • thermodynamic machine capable of achieving both tasks.
  • the preferred working fluid for the instant invention is water; mainly due to the higher efficiencies of a water-based heat pump cycle and turbine cycle, and the amiable properties of water as a working fluid i.e. no global warming potential, no ozone depletion potential, no health hazards etc.
  • a commercial refrigerant can be chosen as the heat pump working fluid, or a second bottoming heat pump cycle can be cascaded with the water-based cycle to provide the heat of evaporation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Electromechanical Clocks (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Central Heating Systems (AREA)
EP08160520A 2008-07-16 2008-07-16 Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie Active EP2182179B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES08160520T ES2363455T3 (es) 2008-07-16 2008-07-16 Sistema de almacenamiento de nergía termoeléctrica y método de almacenamiento de energía termoeléctrica.
DE602008005898T DE602008005898D1 (de) 2008-07-16 2008-07-16 Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie
AT08160520T ATE503915T1 (de) 2008-07-16 2008-07-16 Thermoelektrisches energiespeichersystem und verfahren zur speicherung von thermoelektrischer energie
PL08160520T PL2182179T3 (pl) 2008-07-16 2008-07-16 Układ do magazynowania energii termoelektrycznej i sposób magazynowania energii termoelektrycznej
DK08160520.6T DK2182179T3 (da) 2008-07-16 2008-07-16 Termoelektrisk energioplagringssystem samt fremgangsmåde til oplagring af termoelektrisk energi
EP08160520A EP2182179B1 (de) 2008-07-16 2008-07-16 Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie
PCT/EP2009/058475 WO2010006942A2 (en) 2008-07-16 2009-07-06 Thermoelectric energy storage system and method for storing thermoelectric energy
CN200980128185.1A CN102099551B (zh) 2008-07-16 2009-07-06 热电能量存储系统和用于储存热电能量的方法
RU2011105632/06A RU2476686C2 (ru) 2008-07-16 2009-07-06 Система аккумулирования термоэлектрической энергии и способ аккумулирования термоэлектрической энергии
US13/005,249 US20110100611A1 (en) 2008-07-16 2011-01-12 Thermoelectric energy storage system and method for storing thermoelectric energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08160520A EP2182179B1 (de) 2008-07-16 2008-07-16 Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie

Publications (2)

Publication Number Publication Date
EP2182179A1 true EP2182179A1 (de) 2010-05-05
EP2182179B1 EP2182179B1 (de) 2011-03-30

Family

ID=41550763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08160520A Active EP2182179B1 (de) 2008-07-16 2008-07-16 Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie

Country Status (10)

Country Link
US (1) US20110100611A1 (de)
EP (1) EP2182179B1 (de)
CN (1) CN102099551B (de)
AT (1) ATE503915T1 (de)
DE (1) DE602008005898D1 (de)
DK (1) DK2182179T3 (de)
ES (1) ES2363455T3 (de)
PL (1) PL2182179T3 (de)
RU (1) RU2476686C2 (de)
WO (1) WO2010006942A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698506A1 (de) 2012-08-17 2014-02-19 ABB Research Ltd. Elektrothermisches Energiespeichersystem und Verfahren zur Speicherung elektrothermischer Energie
DE102012217142A1 (de) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Verfahren zum Laden und Entladen eines Speichermediums in einem Wärmespeicher und Anlage zur Durchführung dieses Verfahrens
DE102013019756B4 (de) * 2013-11-25 2015-07-09 Bernhard Peter Kreuter Energieversorgungssystem sowie Energieversorgungsmodul zur Verwendung in einem solchen Energieversorgungssystem
DE102014202275A1 (de) * 2014-02-07 2015-08-27 Siemens Aktiengesellschaft Energiespeicher zur Zwischenspeicherung elektrischer Energie

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656712B2 (en) * 2007-10-03 2014-02-25 Isentropic Limited Energy storage
US9181930B2 (en) * 2008-09-23 2015-11-10 Skibo Systems, LLC Methods and systems for electric power generation using geothermal field enhancements
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
WO2011119409A2 (en) 2010-03-22 2011-09-29 Skibo Systems Llc Systems and methods for an artificial geothermal energy reservoir created using hot dry rock geothermal resources
WO2011119413A2 (en) * 2010-03-22 2011-09-29 Skibo Systems Llc Systems and methods for integrating concentrated solar thermal and geothermal power plants using multistage thermal energy storage
JP2013128333A (ja) * 2010-03-31 2013-06-27 Tokyo Institute Of Technology 蒸気発生装置及びこれを用いたエネルギ供給システム
EP2390473A1 (de) * 2010-05-28 2011-11-30 ABB Research Ltd. Thermoelektrisches Energiespeichersystem und Verfahren zum Speichern von thermoelektrischer Energie
EP2400120A1 (de) * 2010-06-23 2011-12-28 ABB Research Ltd. Thermoelektrisches Energiespeichersystem
US8931277B2 (en) 2010-09-20 2015-01-13 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University System and method for storing energy and purifying fluid
EP2441925A1 (de) * 2010-10-14 2012-04-18 ABB Research Ltd. Abwärmerückgewinnungssystem
CN103814257A (zh) * 2011-01-03 2014-05-21 亮源工业(以色列)有限公司 储热系统和方法
ES2364311B2 (es) * 2011-06-22 2011-12-26 Universidad Politécnica de Madrid Almacenamiento de energía térmica mediante condensador-generador de vapor reversible.
US9038387B2 (en) 2011-08-31 2015-05-26 Brightsource Industries (Israel) Ltd Solar thermal electricity generating systems with thermal storage
EP2574740A1 (de) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Anlage zur Speicherung thermischer Energie
EP2574738A1 (de) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Anlage zur Speicherung thermischer Energie
DE102011086374A1 (de) * 2011-11-15 2013-05-16 Siemens Aktiengesellschaft Hochtemperatur-Energiespeicher mit Rekuperator
EP2594753A1 (de) * 2011-11-21 2013-05-22 Siemens Aktiengesellschaft Wärmeenergiespeicher- und -rückgewinnungssystem mit einer Speicheranordnung und einer Lade-/Entladeanordnung, die über einen Wärmetauscher miteinander verbunden sind
EP2602443A1 (de) * 2011-12-08 2013-06-12 Alstom Technology Ltd Stromspeicher
ITRM20110658A1 (it) * 2011-12-11 2012-03-11 Silvano Mattioli Sistema per l'accumulazione di energia elettrica tramite il serbatoi di accumulazione caldi e freddi e generazione efficiente di energia da sorgenti a bassa entalpia
DE102012204081A1 (de) * 2012-03-15 2013-09-19 Siemens Aktiengesellschaft Energiespeicherkraftwerk
FR2991439A1 (fr) * 2012-05-29 2013-12-06 Datanewtech Installation de transformation d'energie thermique
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US9322295B2 (en) * 2012-10-17 2016-04-26 General Electric Company Thermal energy storage unit with steam and gas turbine system
US9541071B2 (en) 2012-12-04 2017-01-10 Brightsource Industries (Israel) Ltd. Concentrated solar power plant with independent superheater
US9376962B2 (en) * 2012-12-14 2016-06-28 General Electric Company Fuel gas heating with thermal energy storage
EP2759679A1 (de) * 2013-01-23 2014-07-30 Siemens Aktiengesellschaft Thermische Speichereinrichtung zur Nutzung von Niedertemperaturwärme
BR112015021396A2 (pt) 2013-03-04 2017-08-22 Echogen Power Systems Llc Sistemas de motor de calor com circuitos de dióxido de carbono supercrítico de alto potência útil
EP2796671A1 (de) * 2013-04-26 2014-10-29 Siemens Aktiengesellschaft Kraftwerkssystem mit thermochemischem Speicher
DE102013208973A1 (de) * 2013-05-15 2014-11-20 Siemens Aktiengesellschaft Hochleistungslatentwärmespeicher
FR3011626B1 (fr) * 2013-10-03 2016-07-08 Culti'wh Normands Systeme thermodynamique de stockage/production d'energie electrique
ES2742297T3 (es) * 2014-03-10 2020-02-13 Alfa Laval Corp Ab Control de un flujo de fluido a través de un intercambiador de calor
TR201815498T4 (tr) * 2014-05-05 2018-11-21 General Electric Technology Gmbh Elektrik enerjisi depolama ve boşaltma sistemi.
GB2528449B (en) * 2014-07-21 2017-06-14 Willoughby Essex Coney Michael A compressed air energy storage and recovery system
CN105569754B (zh) * 2014-09-26 2017-11-03 余义刚 利用环境热能对外做功的方法及环境热能做功系统
BR112017008367B1 (pt) * 2014-10-21 2021-12-14 Bright Energy Storage Technologies, Llp Arranjo de captura, armazenamento e troca de calor térmico
JP6566860B2 (ja) * 2014-12-22 2019-08-28 日本碍子株式会社 ケミカルヒートポンプ
SG11201704461RA (en) * 2014-12-26 2017-07-28 Daikin Ind Ltd Thermal storage air conditioner
US10371013B2 (en) * 2015-03-20 2019-08-06 Siemens Gamesa Renewable Energy A/S Thermal energy storage plant
CH710944A1 (de) 2015-04-08 2016-10-14 Freepan Company Holdings Ltd Prozesssystem für die Rekuperation von Wärme und Verfahren zu dessen Betrieb.
FR3034813B1 (fr) * 2015-04-13 2019-06-28 IFP Energies Nouvelles Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
AT516385B1 (de) * 2015-06-23 2016-05-15 Avl List Gmbh Temperiereinheit für ein gasförmiges oder flüssiges Medium
US9845998B2 (en) * 2016-02-03 2017-12-19 Sten Kreuger Thermal energy storage and retrieval systems
CH712513A1 (de) * 2016-05-18 2017-11-30 Synhelion Sa C/O Avv Luca Tenchio Prozesssystem für die Rekuperation von Wärme und Verfahren zu dessen Betrieb.
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
PT3379040T (pt) * 2017-03-20 2021-04-15 Lumenion Gmbh Central de produção de energia elétrica e método de funcionamento de uma central de produção de energia elétrica
EP3444448A1 (de) * 2017-08-18 2019-02-20 General Electric Technology GmbH System und verfahren zur umwandlung von elektrischer energie in thermische energie und zur speicherung von thermischer energie
WO2019139633A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
AU2019288461A1 (en) 2018-06-20 2021-01-28 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN110159380B (zh) * 2019-06-14 2024-06-07 国家电投集团科学技术研究院有限公司 单罐闭式循环储能发电系统
CN116557092A (zh) 2019-11-16 2023-08-08 马耳他股份有限公司 具有冷的热储存介质流的双动力系统泵送热电储存
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
WO2022036122A1 (en) 2020-08-12 2022-02-17 Malta Inc. Pumped heat energy storage system with district heating integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
CA3189001A1 (en) 2020-08-12 2022-02-17 Mert Geveci Pumped heat energy storage system with modular turbomachinery
AU2021397292A1 (en) 2020-12-09 2023-07-06 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
DE102022105052B4 (de) * 2022-03-03 2024-10-24 Man Energy Solutions Se System zur Wasserdampf- und/oder Wärmeerzeugung und Verfahren zum Betreiben desselben
US12037990B2 (en) 2022-09-08 2024-07-16 Sten Kreuger Energy storage and retrieval systems and methods
NL2034609B1 (en) 2023-04-18 2024-10-28 Wilgenhaege Invest B V Energy storage system and method with working fluid
NL2034610B1 (en) 2023-04-18 2024-10-28 Wilgenhaege Invest B V Energy storage system and method with hot-side thermal storage medium
NL2034611B1 (en) 2023-04-18 2024-10-28 Wilgenhaege Invest B V Energy storage system and method with cold-side thermal storage medium
NL2034612B1 (en) 2023-04-18 2024-10-28 Wilgenhaege Invest B V Energy storage system and method having a thermal storage reservoir

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080706A (en) 1960-02-18 1963-03-12 Gen Motors Corp Heat storage operated stirling cycle engine
US4089744A (en) 1976-11-03 1978-05-16 Exxon Research & Engineering Co. Thermal energy storage by means of reversible heat pumping
US4192144A (en) * 1977-01-21 1980-03-11 Westinghouse Electric Corp. Direct contact heat exchanger with phase change of working fluid
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage
EP1577549A1 (de) * 2004-03-16 2005-09-21 Abb Research Ltd. Vorrichtung zur Speicherung thermischer Energie und Erzeugung von Elektrizität
EP1577548A1 (de) 2004-03-16 2005-09-21 Abb Research Ltd. Vorrichtung und Verfahren zur Speicherung thermischer Energie und Erzeugung von Elektrizität
WO2007134466A1 (en) 2006-05-24 2007-11-29 Abb Research Ltd Thermoelectric energy storage system and method for storing thermoelectric energy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977197A (en) * 1975-08-07 1976-08-31 The United States Of America As Represented By The United States National Aeronautics And Space Administration Thermal energy storage system
US5419135A (en) * 1992-02-21 1995-05-30 Wiggs; B. Ryland Space-based power generator
US7421846B2 (en) * 2004-08-18 2008-09-09 Ice Energy, Inc. Thermal energy storage and cooling system with gravity fed secondary refrigerant isolation
DK1703201T3 (da) * 2005-03-09 2009-11-23 Gea Ecoflex Gmbh Fremgangsmåde til varmeenergioverförsel
RU2287743C1 (ru) * 2005-03-29 2006-11-20 Александр Глебович Аничхин Система снабжения здания теплом и холодной водой (система 3 т)
RU2292000C1 (ru) * 2005-04-20 2007-01-20 Федеральное государственное унитарное предприятие "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ФГУП НПЦ "Недра") Устройство для энергообеспечения помещений с использованием низкопотенциальных энергоносителей

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080706A (en) 1960-02-18 1963-03-12 Gen Motors Corp Heat storage operated stirling cycle engine
US4089744A (en) 1976-11-03 1978-05-16 Exxon Research & Engineering Co. Thermal energy storage by means of reversible heat pumping
US4192144A (en) * 1977-01-21 1980-03-11 Westinghouse Electric Corp. Direct contact heat exchanger with phase change of working fluid
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage
EP1577549A1 (de) * 2004-03-16 2005-09-21 Abb Research Ltd. Vorrichtung zur Speicherung thermischer Energie und Erzeugung von Elektrizität
EP1577548A1 (de) 2004-03-16 2005-09-21 Abb Research Ltd. Vorrichtung und Verfahren zur Speicherung thermischer Energie und Erzeugung von Elektrizität
WO2007134466A1 (en) 2006-05-24 2007-11-29 Abb Research Ltd Thermoelectric energy storage system and method for storing thermoelectric energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698506A1 (de) 2012-08-17 2014-02-19 ABB Research Ltd. Elektrothermisches Energiespeichersystem und Verfahren zur Speicherung elektrothermischer Energie
WO2014027093A1 (en) 2012-08-17 2014-02-20 Abb Research Ltd Electro-thermal energy storage system and method for storing electro-thermal energy
DE102012217142A1 (de) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Verfahren zum Laden und Entladen eines Speichermediums in einem Wärmespeicher und Anlage zur Durchführung dieses Verfahrens
DE102013019756B4 (de) * 2013-11-25 2015-07-09 Bernhard Peter Kreuter Energieversorgungssystem sowie Energieversorgungsmodul zur Verwendung in einem solchen Energieversorgungssystem
DE102014202275A1 (de) * 2014-02-07 2015-08-27 Siemens Aktiengesellschaft Energiespeicher zur Zwischenspeicherung elektrischer Energie

Also Published As

Publication number Publication date
WO2010006942A2 (en) 2010-01-21
EP2182179B1 (de) 2011-03-30
ES2363455T3 (es) 2011-08-04
RU2011105632A (ru) 2012-08-27
WO2010006942A3 (en) 2010-06-17
DK2182179T3 (da) 2011-07-11
CN102099551B (zh) 2017-09-22
RU2476686C2 (ru) 2013-02-27
CN102099551A (zh) 2011-06-15
US20110100611A1 (en) 2011-05-05
ATE503915T1 (de) 2011-04-15
DE602008005898D1 (de) 2011-05-12
PL2182179T3 (pl) 2011-10-31

Similar Documents

Publication Publication Date Title
EP2182179B1 (de) Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie
EP2157317B1 (de) Thermoelektrisches Energiespeichersystem und Verfahren zum Speichern von thermoelektrischer Energie
EP2275649B1 (de) Thermoelektrisches Energiespeichersystem mit einem Zwischenspeichertank und Verfahren zum Speichern der thermoelektrischen Energie
EP2241737B1 (de) System zur Speicherung von thermoelektrischem Strom mit zwei Wärmebädern und Verfahren zum Speichern von thermoelektrischem Strom
EP2390473A1 (de) Thermoelektrisches Energiespeichersystem und Verfahren zum Speichern von thermoelektrischer Energie
EP2312129A1 (de) System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie
EP3054155A1 (de) System zum Speichern und Abgeben von elektrischer Energie
EP2400120A1 (de) Thermoelektrisches Energiespeichersystem
Li et al. Entransy dissipation/loss-based optimization of two-stage organic Rankine cycle (TSORC) with R245fa for geothermal power generation
WO2016004414A1 (en) Apparatus and method for producing and storing electricity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100709

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602008005898

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008005898

Country of ref document: DE

Effective date: 20110512

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2363455

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110804

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110730

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E011671

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

26N No opposition filed

Effective date: 20120102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008005898

Country of ref document: DE

Effective date: 20120102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER(S): ABB RESEARCH LTD., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ABB SCHWEIZ AG; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: ABB RESEARCH LTD.

Effective date: 20191024

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ABB SCHWEIZ AG

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008005898

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008005898

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200206 AND 20200212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240719

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 17

Ref country code: IE

Payment date: 20240722

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240726

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240828

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240704

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240719

Year of fee payment: 17

Ref country code: IT

Payment date: 20240725

Year of fee payment: 17