[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2173928B1 - Plant and process for the electrolytic tinning of steel strips, using an insoluble anode - Google Patents

Plant and process for the electrolytic tinning of steel strips, using an insoluble anode Download PDF

Info

Publication number
EP2173928B1
EP2173928B1 EP08827122A EP08827122A EP2173928B1 EP 2173928 B1 EP2173928 B1 EP 2173928B1 EP 08827122 A EP08827122 A EP 08827122A EP 08827122 A EP08827122 A EP 08827122A EP 2173928 B1 EP2173928 B1 EP 2173928B1
Authority
EP
European Patent Office
Prior art keywords
acid
electrolytic solution
zone
electrodialysis
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08827122A
Other languages
German (de)
French (fr)
Other versions
EP2173928A1 (en
Inventor
Philippe Barbieri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Original Assignee
Siemens VAI Metals Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies SAS filed Critical Siemens VAI Metals Technologies SAS
Publication of EP2173928A1 publication Critical patent/EP2173928A1/en
Application granted granted Critical
Publication of EP2173928B1 publication Critical patent/EP2173928B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0628In vertical cells

Definitions

  • the invention generally relates to the insoluble anode electrolytic tinning of steel strips, and more particularly to an insoluble anode electrolytic tinning process and the installation for its implementation.
  • tinplate tin-plated mild steel in the field of food packaging where it is known under the name of "tinplate”.
  • the manufacture of tinplate is generally made from coils ("coils") of mild steel or ultra-soft, which previously undergo a hot rolling operation, followed by a cold rolling operation. At the end of these rolling operations, steel strips of a few tenths of a millimeter thick are obtained. These strips are then annealed, passed after annealing in a cold rolling mill ("skin passed"), degreased, etched and tinned by an electrolytic tinning process (or “electro-tinning”). Tinning is typically followed by finishing operations such as coating remelting, passivation, and oiling.
  • Electro-tinning is a method of electroplating tin on a metal substrate, which consists in establishing the transfer of stannous Sn 2+ ions to the band to be coated according to the equilibrium: Sn 2+ + 2 e - ⁇ Sn deposited
  • This reaction involves the availability of stannous ions in the bath.
  • the bath has an acid for lowering the pH and increasing the electrical conductivity. It also contains additives that contribute, inter alia, to stabilize the stannous ions by preventing them from oxidizing, and to prevent the formation of stannic oxide sludge caused by the oxidation of these stannous ions.
  • the first category of processes includes processes using a soluble anode, or so-called “soluble anode” processes
  • the second category of processes includes processes using a insoluble anode, or so-called “insoluble anode” processes.
  • soluble anode electro-tinning processes are used in electrolytic tinning installations which mainly use high purity tin anodes (that is to say anodes comprising at least 99.85% by weight of tin), which dissolve during the electrolysis and charge the bath in stannous Sn 2+ ions.
  • FIG. figure 1 An example of a "soluble anode” electro-tinning installation known to those skilled in the art is shown in FIG. figure 1 . It is a vertical electro-tinning installation 1, in which a strip to be coated 2 is immersed in a coating tank 3 (or else an electroplating tank) by winding on two conducting rolls 41, 42 and a bottom roll 5, thus forming a downstream strand 21 and a rising strand 22. The two conducting rollers 41, 42 feed the strip 2 with electrical current.
  • the tin soluble anodes 61, 62 are disposed on either side of the falling 21 and up 22 strands of the steel strip 2 to be coated.
  • This steel strip 2 is connected to the negative pole (represented by the symbol “-” on the figure 1 ) an electric power generator (not shown on the figure 1 ), and the soluble anodes 61, 62 are connected to the positive pole (represented by the symbol “+” on the figure 1 ) of this generator, thus constituting the anode.
  • the anodes 61, 62 and the descending 21 and 22 strands of the steel strip 2 are partially immersed in an electrolyte solution 7 (or electrolyte).
  • insoluble anode electro-tinning processes are therefore distinguished from those called “soluble anode” in that they lead to the formation of acid in the electrolytic bath correlatively to its depletion of tin. These continuous changes therefore require regeneration, the bath also continues.
  • the patent US5,312,539 proposes another "insoluble anode" tinning process, which uses an anionic membrane dialysis cell and a separate tin dissolution unit in which tin is supplied as an oxide directly dissolved in the acid, or as a tin anode, which is dissolved electrolytically.
  • Such a method has certain disadvantages, and especially the cost of tin oxide and the need to create a strong concentration gradient across the membrane, which requires the implementation of a concentration unit.
  • the necessary membrane surface (of the order of several thousand m 2 for continuous tinning installations of steel strips) makes the industrial application very problematic. .
  • the subject of the present invention is therefore an electro-tinning method and an installation for its implementation which remedy the drawbacks of the prior art, by the use of a specific electrodialysis cell, connected to the electroplating tray. on the one hand and the dissolution reactor on the other.
  • cationic electrodialysis membrane is meant, in the sense of the present invention, a cation permeable membrane and which is typically used in an electrodialysis process.
  • cationic electrolysis membrane is meant, in the sense of the present invention, a cation-permeable membrane typically used in a membrane electrolysis process, but which can advantageously be used in the electrodialysis process according to the invention. because of its robustness and ability to withstand higher current densities than a cationic electrodialysis membrane.
  • a cationic electrodialysis membrane for separation electrolysis is understood to mean a membrane that is not permeable. anions and is able to withstand high current densities.
  • cationic membrane electrodialysis or selective electrolysis is meant, in the sense of the present invention, a membrane that is not permeable to anions and retains majority Sn 2+ cations.
  • an anionic membrane for electrolytic electrodialysis is intended to mean a membrane which is permeable to anions.
  • the electrodialysis cell of the installation according to the invention makes it possible to considerably reduce the required membrane area and to overcome a concentration gradient between the compartments.
  • the amount of acid to be recovered can be more easily and quickly controlled by acting on the electrodialysis current.
  • the presence of an anionic electrodialysis or electrolysis membrane in the dissolving reactor between the soluble anode of tin and the insoluble cathode allows the A - ions to pass through this membrane from the cathode zone to the cathode. the anodic zone, while the Sn 2+ ions produced at the anode remain totally in the anode zone of the reactor.
  • the electrolytic solution contained therein is then recharged with stannous ions, and can then be directed back to the coating tank.
  • the first and second recirculation circuits of the electrolytic solution comprise a common oxygen degassing tank, which is disposed upstream of the dissolution reactor in the direction of flow of the electrolyte in this recirculation circuit.
  • This degassing tank makes it possible to eliminate the gaseous oxygen formed at the insoluble anode of the coating tank.
  • the acid AH is advantageously chosen from sulphonic acids.
  • sulphonic acids that may be used according to the present invention, mention may be made especially of methanesulfonic acid and phenol-sulphonic acid.
  • the preferred sulfonic acid is methanesulfonic acid.
  • the SnA 2 compound will therefore advantageously be a tin sulphonate corresponding to the preferred sulphonic acids according to US Pat. invention: tin phenol sulphonate or tin methane sulphonate.
  • the electro-tinning installation (or electrolytic tinning installation) represented on the figure 1 is a soluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.
  • the electro-tinning installation (or electrolytic tinning installation) represented on the figure 2 is an insoluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.
  • FIG 3 1 is a schematic diagram of an example installation according to the invention, in which the strip to be coated 20 and an insoluble anode 60 are partially immersed in an electroplating tank 30 (or coating tank) containing a solution.
  • electrolyte or electrolyte
  • Sn 2+ stannous ions in the form of a SnA 2 compound and an AH acid, A being an acid anion.
  • the compound SnA 2 comes from a tin dissolution reactor 10, which comprises an insoluble cathode 120 and a soluble tin anode 160, which are immersed in a tank 130 also containing the same electrolytic solution as the coating tank 30
  • An anionic electrodialysis or electrolysis membrane 140 is disposed between the electrodes 120, 160 of the reactor 10, so that the reservoir 130 of the reactor 10 is divided into a zone cathode 1200 containing the insoluble cathode 120 and anode zone 1600 containing the soluble anode 160.
  • the anode 160 of the reactor 10 is constituted by tin granules 161 contained in a basket 162 (called “tin dissolution basket”).
  • This basket 162 filled with granules 161 is connected to the positive pole (represented by the symbol “+” on the figure 3 ) a source of electrical power (not shown on the figure 3 ), the tin aggregates 161 playing the role of soluble anode.
  • the insoluble cathode 120 of the tin dissolution reactor 10 is connected to the negative pole (represented by the symbol "-" on the figure 3 ) from the same source of electrical power.
  • a soluble anode 160 it is also possible to use, in the tin dissolution reactor 10 of the plant according to the invention, an anode in massive form (not shown).
  • the figure 3 shows that the electroplating tank 30 and the anode zone 1600 of the tin dissolution reactor 10 are connected by a first circuit 200 for recirculating the electrolyte.
  • the plating tank 30 is also part of a second recirculation circuit 300 of the electrolyte, which connects it to the plurality of acid donor compartments 4400 of the electrodialysis cell 40, while the plurality of receiver compartments acid 4500 of the electrodialysis cell 40 are part of a third recirculation circuit 400 of the electrolyte.
  • cathode compartments 4200 and anodic 4600 may be part of a fourth closed loop circulation circuit of an acidic solution, for example sulfuric acid (not shown in FIG. figure 3 )
  • the electro-tinning installation shown on the figure 3 further comprises an oxygen degassing tank 210 and a hydrogen degassing tank 410.
  • This oxygen degassing tank 210 which here is for example common to the first and second circuits 200 and 300, is disposed downstream of the tank 30 in the direction of flow of the electrolytic solution in these circuits 200, 300, or in other words, upstream of the reactor 10 in the first circuit 200 and upstream of the electrodialysis cell 40 in the second circuit 300.
  • the hydrogen degassing tank 410 is part of the third circuit 400 connecting the cathode zone 1200 of the dissolution reactor 10 to the plurality of acid receiving compartments 4500 of the electrodialysis cell 40, the hydrogen degassing tank 410 being disposed upstream of the electrodialysis cell 40 in the direction of flow of the electrolyte in the third circuit 400.
  • the Sn 2+ stannous ions present in the electrolyte in the form of SnA 2 compound are deposited on the strip to be coated. according to the reaction: SnA 2 + 2e - ⁇ Sn + 2A -
  • An electrolyte depleted of stannous ions is thus obtained, part of which is taken from the coating tank 30, and is then subjected to degassing of the oxygen gas in the degassing tank 210 before being introduced into the anode zone 1600 of the reactor dissolution 10 on the one hand, and in the plurality of acid donor compartments 4400 on the other hand.
  • a potential difference is applied simultaneously between the electrodes 420, 460 of the electrodialysis cell 40.
  • the electrolyte coming from the coating tank 30 is introduced into the plurality of donor compartments.
  • the Sn 2+ ions of the electrolyte remain predominantly in the acid donor compartments while the acidic Aions - migrate to the acid recipient compartments 4500 through the anionic membranes and the H + ions migrate to the recipient compartments. 4500 acid through cationic membranes.
  • CMX-S a selective cationic membrane 440 that can be used according to the invention
  • the membrane marketed by the company TOKUYAMA SODA under the name CMX-S is recommended.
  • a cationic separation membrane 470 that can be used according to the invention, the membrane marketed by the company TOKUYAMA SODA under the name C66 is recommended.
  • the cationic membrane 440 has a selective permeability which allows the transfer of H + ions to the adjacent acid-receiving compartment and the maintenance of the majority of Sn 2+ ions in the acid-donor compartment as shown in FIG. figure 4 .
  • the electrolytic dissolution of the tin granules 161 ensures the production of Sn 2+ stannous ions, which thanks to the impermeability of the Anionic membrane 140 remain largely in the vicinity of the anode.
  • the A- ions which are released at the cathode of the reactor 10 pass from the cathode zone 1200 to the anode zone 1600 through the anionic membrane.
  • the electrolyte of the anodic zone 1600 of the reactor 10 thus recharged with stannous ions can then be recovered and directed again towards the coating tank.
  • the electrolyte contained in the cathode zone 1200 of the reactor 10 is directed by the recirculation circuit 400 to the hydrogen degassing tank 410 and is introduced into the plurality of acid recipient compartments 4500 of the electrodialysis cell 40. .
  • the electrodialysis cell 40 makes it possible to recover the excess electrolyte acid produced in the coating tank 30.
  • the number of donor and acid recipient compartments and therefore the total membrane area required is a function of the amount of acid to be used. recover and applied current density.
  • a dissolution reactor 10 comprising a tank 130 of cylindrical shape filled with electrolyte, and separated in two by an anionic electrodialysis membrane 140, also of a shape cylindrical, thus defining a central anode zone 1600 comprising the soluble anode 160, and an external cathode zone 1200 comprising the cathode 120.
  • the cylindrical shape of the reservoir 130 and the cationic membrane 140 is given here by way of example. But, the reservoir 130 and the cationic membrane 140 may also be of parallelepipedal shape.
  • the cathode 120 is connected to the negative pole of a source of electric current (represented by the symbol "-" on the figure 5 ) and the anode 160 is connected, in its upper part, to the positive pole (represented by the symbol “+” on the figure 5 ) from the same source of electrical power.
  • the lower 1621 and middle 1622 areas of the dissolution basket 162 of the anode 160 are both made of non-electrically conductive material.
  • an electrically nonconductive material usable according to the invention for producing the lower zones 1621 and median 1622 of the basket 162 of the soluble anode 160 plastics, and composites such as the polyester resins and the polyesters, are recommended. polymers coated steels.
  • the upper region 1623 for supplying tin granules 161 is made of an electrically conductive material.
  • an electrically conductive material that can be used according to the invention to produce the basket 162 of the soluble anode 160, mention may notably be made of stainless steel.
  • the lower zone 1621 immersed in the electrolyte comprises a mesh 163 comprising a plastic mesh net adapted to retain the tin granules, ie between 0.05 and 0.50 mm, and preferably between 0.1 and 0, 30 mm.
  • This net is supported by the envelope of the basket which has openings for contacting the electrolyte, which are at least 50 times wider than the mesh of the net openings (dashed on the figure 5 ) are formed in the casing of the basket 162.
  • the median zone 1622 includes a recovery trough 164 of the regenerated electrolyte, this trough being supplied via a trellis 165 (identical to that 163 of the lower zone 1621) and openings (in dashed lines on the trunk). figure 5 ) formed in the envelope of the basket 162 (identical to those of the lower zone 1621).
  • the upper zone 1623 comprises a filling hopper 166 in tin granules 161, which is connected to the positive pole of the power supply.
  • the lower zone 1621 of the basket 162, which is immersed in the electrolyte, is surrounded by a cationic membrane 140 of circular shape.
  • This cationic membrane 140 is advantageously supported by at least one plastic net, which makes it possible to ensure the rigidity of the membrane 140.
  • the electrolyte to be treated is introduced into the lower zone 1621 of the basket by intake pipes 201 at a pressure sufficient to allow it to overflow into the recovery trough 164 of the median zone 1622.
  • the electric current ensures the dissolution of said granules 161 and the acid is charged with Sn ++ ions which remain close to the anode 160.
  • the electrolyte and reloaded tin is recovered at the level of the trough 164, before being returned to the coating tank 30 via the return lines 202.
  • dissolution reactor 10 which comprises a plurality of soluble anodes 160 each having a basket 162 filled with tin granules 161, each basket 162 being surrounded by a membrane anionic 140 circular.
  • a feed device 400 in granules 161 serves hoppers 166 of all baskets 162 of the dissolution reactor 10.
  • This device 400 may be a treadmill or vibrating, or non-electrically conductive pipes.
  • the device 400 acts intermittently as a function of a signal given by a device for detecting the level of granules in the hoppers 166, so as to maintain a constant level of granules 161 in the basket 162.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The present invention relates to a plant (1) for the electrolytic tinning of a steel strip (2) travelling continuously in at least one electrodeposition tank (30) containing an acid electrolyte. The plant (1) comprises, in addition, a tin-dissolving reactor (10) and an electrodialysis cell (40), that ensures the recovery of the acid produced in the electrodeposition tank (30). The present invention also relates to an electrolytic tinning process using such a plant (1).

Description

L'invention concerne de manière générale l'étamage électrolytique à anode insoluble de bandes d'acier, et plus particulièrement un procédé d'étamage électrolytique à anode insoluble et l'installation pour sa mise en oeuvre.The invention generally relates to the insoluble anode electrolytic tinning of steel strips, and more particularly to an insoluble anode electrolytic tinning process and the installation for its implementation.

L'absence de toxicité de l'étain et l'excellente protection contre la corrosion qu'il apporte à l'acier ont depuis longtemps conduit à l'utilisation d'acier doux étamé dans le domaine de l'emballage alimentaire où il est connu sous le nom de « fer blanc ». La fabrication du fer blanc est généralement réalisée à partir de bobines (« coils ») d'acier doux ou ultra-doux, qui subissent préalablement une opération de laminage à chaud, suivie d'une opération de laminage à froid. A l'issue de ces opérations de laminage, on obtient des bandes d'acier de quelques dixièmes de millimètres d'épaisseur. Ces bandes sont ensuite recuites, passées après recuit dans un laminoir à froid (« skin passées »), dégraissées, décapées puis étamées selon un procédé d'étamage électrolytique (ou encore « électro-étamage »). L'étamage est typiquement suivi d'opérations de finition telles que la refusion du revêtement, la passivation, et l'huilage.The lack of toxicity of tin and the excellent protection against corrosion it brings to steel have long led to the use of tin-plated mild steel in the field of food packaging where it is known under the name of "tinplate". The manufacture of tinplate is generally made from coils ("coils") of mild steel or ultra-soft, which previously undergo a hot rolling operation, followed by a cold rolling operation. At the end of these rolling operations, steel strips of a few tenths of a millimeter thick are obtained. These strips are then annealed, passed after annealing in a cold rolling mill ("skin passed"), degreased, etched and tinned by an electrolytic tinning process (or "electro-tinning"). Tinning is typically followed by finishing operations such as coating remelting, passivation, and oiling.

L'électro-étamage est un procédé d'électrodéposition de l'étain sur un substrat métallique, qui consiste à établir le transfert d'ions stanneux Sn2+ vers la bande à revêtir suivant l'équilibre :

        Sn2+ + 2 e- → Sn déposé

Electro-tinning is a method of electroplating tin on a metal substrate, which consists in establishing the transfer of stannous Sn 2+ ions to the band to be coated according to the equilibrium:

Sn 2+ + 2 e - → Sn deposited

Cette réaction implique la disponibilité d'ions stanneux dans le bain. Outre ces ions stanneux, le bain comporte un acide destiné à abaisser le pH et à augmenter la conductivité électrique. Il comporte aussi des additifs qui concourent, entre autre, à stabiliser les ions stanneux en les empêchant de s'oxyder, et d'éviter la formation de boues d'oxydes stanniques causées par l'oxydation de ces ions stanneux.This reaction involves the availability of stannous ions in the bath. In addition to these stannous ions, the bath has an acid for lowering the pH and increasing the electrical conductivity. It also contains additives that contribute, inter alia, to stabilize the stannous ions by preventing them from oxidizing, and to prevent the formation of stannic oxide sludge caused by the oxidation of these stannous ions.

Il existe deux grandes catégories de procédés d'électro-étamage: la première catégorie de procédés regroupe les procédés mettant en oeuvre une anode soluble, ou procédés dits « à anode soluble », et la deuxième catégorie de procédés regroupe les procédés mettant en oeuvre une anode insoluble, ou procédés dits « à anode insoluble ».There are two main categories of electro-tinning processes: the first category of processes includes processes using a soluble anode, or so-called "soluble anode" processes, and the second category of processes includes processes using a insoluble anode, or so-called "insoluble anode" processes.

Les procédés d'électro-étamage dits « à anode soluble » sont mis en oeuvre dans des installations d'étamage électrolytique qui font majoritairement appel à des anodes en étain de haute pureté (c'est-à-dire à des anodes comprenant au moins 99,85% en poids d'étain), qui se dissolvent au cours de l'électrolyse et chargent le bain en ions stanneux Sn2+.The so-called "soluble anode" electro-tinning processes are used in electrolytic tinning installations which mainly use high purity tin anodes (that is to say anodes comprising at least 99.85% by weight of tin), which dissolve during the electrolysis and charge the bath in stannous Sn 2+ ions.

Un exemple d'installation d'électro-étamage « à anode soluble » connue de l'homme de l'art est représenté sur la figure 1. Il s'agit d'une installation d'électro-étamage 1 verticale, dans laquelle une bande à revêtir 2 plonge dans un bac de revêtement 3 (ou encore bac d'électrodéposition) en s'enroulant sur deux rouleaux conducteurs 41, 42 et un rouleau de fond 5, formant ainsi un brin descendant 21 et un brin montant 22. Les deux rouleaux conducteurs 41, 42 alimentent la bande 2 en courant électrique. Les anodes solubles en étain 61, 62 sont disposées de part et d'autre des brins descendant 21 et montant 22 de la bande d'acier 2 à revêtir. Cette bande d'acier 2 est reliée au pôle négatif (représenté par le symbole " - " sur la figure 1) d'un générateur de courant électrique (non représenté sur la figure 1), et les anodes solubles 61, 62 sont reliées au pôle positif (représenté par le symbole " + " sur la figure 1) de ce générateur, constituant ainsi l'anode. Les anodes 61, 62 et les brins descendant 21 et montant 22 de la bande d'acier 2 sont immergés partiellement dans une solution électrolytique 7 (ou électrolyte).An example of a "soluble anode" electro-tinning installation known to those skilled in the art is shown in FIG. figure 1 . It is a vertical electro-tinning installation 1, in which a strip to be coated 2 is immersed in a coating tank 3 (or else an electroplating tank) by winding on two conducting rolls 41, 42 and a bottom roll 5, thus forming a downstream strand 21 and a rising strand 22. The two conducting rollers 41, 42 feed the strip 2 with electrical current. The tin soluble anodes 61, 62 are disposed on either side of the falling 21 and up 22 strands of the steel strip 2 to be coated. This steel strip 2 is connected to the negative pole (represented by the symbol "-" on the figure 1 ) an electric power generator (not shown on the figure 1 ), and the soluble anodes 61, 62 are connected to the positive pole (represented by the symbol "+" on the figure 1 ) of this generator, thus constituting the anode. The anodes 61, 62 and the descending 21 and 22 strands of the steel strip 2 are partially immersed in an electrolyte solution 7 (or electrolyte).

Il existe plusieurs procédés d'électro-étamage « à anode soluble », qui diffèrent les uns des autres en fonction de l'électrolyte utilisé. Mais, dans tous les procédés d'électro-étamage « à anode soluble », le revêtement électrolytique d'étain de la bande d'acier 2 se déroule selon les réactions suivantes :

  • ■ à la cathode : SnA2 + 2e- → Sn + 2A-
  • ■ à l'anode : Sn + 2A- → SnA2 + 2e-
There are several methods of electro-tinning "soluble anode", which differ from each other depending on the electrolyte used. However, in all "soluble anode" electro-tinning processes, the electrolytic tin coating of the steel strip 2 takes place according to the following reactions:
  • ■ at the cathode: SnA 2 + 2e - → Sn + 2A -
  • ■ at the anode: Sn + 2A - → SnA 2 + 2e -

Dans les procédés d'électro-étamage dits « à anode insoluble », on remplace l'anode en étain par une anode non soluble, par exemple une anode en titane avec un revêtement d'un métal (par exemple un métal de la famille du platine) ou d'un oxyde métallique. Dans ce type de procédé, les ions d'étain nécessaires au revêtement sont, dans ce cas, issus du bain d'électrolyte lui-même sous la forme d'un composé de formule SnA2, A étant un radical acide. Les réactions se déroulant à l'anode et à la cathode sont évidemment différentes :

  • ■ à la cathode : SnA2 + 2e- → Sn + 2A-
  • ■ à l'anode : H2O → ½ O2 + 2H+ + 2e-
In so-called "insoluble anode" electro-tinning processes, the tin anode is replaced by an insoluble anode, for example a titanium anode with a coating of a metal (for example a metal of the family of platinum) or a metal oxide. In this type of process, the tin ions required for the coating are, in this case, derived from the electrolyte bath itself in the form of a compound of formula SnA 2 , A being an acid radical. The reactions taking place at the anode and at the cathode are obviously different:
  • ■ at the cathode: SnA 2 + 2e - → Sn + 2A -
  • ■ at the anode: H 2 O → ½ O 2 + 2H + + 2e -

Les procédés d'électro-étamage dits « à anode insoluble » se distinguent donc de ceux dits « à anode soluble » en ce qu'ils conduisent à la formation d'acide dans le bain électrolytique corrélativement à son appauvrissement en étain. Ces modifications continues nécessitent donc une régénération, du bain elle aussi continue.So-called "insoluble anode" electro-tinning processes are therefore distinguished from those called "soluble anode" in that they lead to the formation of acid in the electrolytic bath correlatively to its depletion of tin. These continuous changes therefore require regeneration, the bath also continues.

L'homme de l'art connaît des procédés d'électro-étamage « à anode insoluble » dans lesquels une partie de l'électrolyte est mis en recirculation en vue de la régénération en continu du bain électrolytique. Ainsi, par exemple, le brevet américain US 4,181,580 décrit une installation d'électro-étamage illustrée sur la figure 2, qui met en oeuvre des anodes non solubles 61, 62, un circuit de recirculation 8 de l'électrolyte 7, et un réacteur à lit fluidisé 9, dans lequel sont introduits l'électrolyte 7, des granulats d'étain 91, et un courant gazeux 92 riche en oxygène. Ce procédé présente toutefois l'inconvénient d'induire la formation d'ions d'étain quadrivalents selon les réactions :

        Sn + O2 + 4H+ → Sn4+ + 2H2O

        2Sn2+ + O2 + 4H+ → 2Sn4+ + 2H2O

Those skilled in the art know "insoluble anode" electro-tinning processes in which part of the electrolyte is recirculated for the continuous regeneration of the electrolytic bath. So, for example, the US patent US 4,181,580 describes an electro-tinning installation illustrated on the figure 2 which employs non-soluble anodes 61, 62, a recirculation circuit 8 of the electrolyte 7, and a fluidized bed reactor 9, into which the electrolyte 7, tin granules 91, and a gas stream 92 rich in oxygen. However, this method has the disadvantage of inducing the formation of quadrivalent tin ions according to the reactions:

Sn + O 2 + 4H + → Sn 4+ + 2H 2 O

2Sn 2+ + O 2 + 4H + → 2Sn 4+ + 2H 2 O

Ces ions Sn4+, peu solubles, se précipitent sous forme de boues qui nécessitent d'être régulièrement récupérées, ce qui diminue fortement l'intérêt d'un tel procédé.These Sn 4+ ions, poorly soluble, precipitate in the form of sludge which need to be regularly recovered, which greatly reduces the interest of such a process.

Par ailleurs, le brevet US 5,312,539 propose un autre procédé d'étamage « à anode insoluble », qui met en oeuvre une cellule de dialyse à membrane anionique et une unité de dissolution d'étain séparée dans laquelle l'étain est apporté sous forme d'oxyde directement dissous dans l'acide, ou sous forme d'anode en étain, qui est dissoute électrolytiquement. Un tel procédé présente certains inconvénients, et notamment le coût de l'oxyde d'étain et la nécessité de créer un fort gradient de concentration à travers la membrane, ce qui impose la mise en oeuvre d'une unité de concentration. D'autre part, même avec un fort gradient de concentration, la surface de membrane nécessaire (de l'ordre de plusieurs milliers de m2 pour les installations d'étamage en continu de bandes d'acier) rend l'application industrielle très problématique. Une variante de ce procédé est proposée par la demande de brevet japonais JP 51-71499 qui regroupe les fonctions de dissolution de l'étain et de dialyse dans un même bac équipé de deux membranes anioniques. L'installation moins complexe que celle de US 5,314,539 , ne résout pas pour autant les problèmes de surface de membrane ni de gradient de concentration.Moreover, the patent US5,312,539 proposes another "insoluble anode" tinning process, which uses an anionic membrane dialysis cell and a separate tin dissolution unit in which tin is supplied as an oxide directly dissolved in the acid, or as a tin anode, which is dissolved electrolytically. Such a method has certain disadvantages, and especially the cost of tin oxide and the need to create a strong concentration gradient across the membrane, which requires the implementation of a concentration unit. On the other hand, even with a strong concentration gradient, the necessary membrane surface (of the order of several thousand m 2 for continuous tinning installations of steel strips) makes the industrial application very problematic. . A variant of this process is proposed by the Japanese patent application JP 51-71499 which combines the functions of dissolving tin and dialysis in the same tank equipped with two anionic membranes. The installation is less complex than that of US5,314,539 does not solve the problems of membrane surface or concentration gradient.

La présente invention a donc pour objet un procédé d'électro-étamage et une installation pour sa mise en oeuvre qui remédient aux inconvénients de l'art antérieur, par le recours à une cellule d'électrodialyse spécifique, reliée au bac d'électrodéposition d'une part et au réacteur de dissolution d'autre part.The subject of the present invention is therefore an electro-tinning method and an installation for its implementation which remedy the drawbacks of the prior art, by the use of a specific electrodialysis cell, connected to the electroplating tray. on the one hand and the dissolution reactor on the other.

Plus particulièrement, la présente invention a pour objet une installation pour l'étamage électrolytique d'une bande d'acier en défilement continu dans au moins un bac d'électrodéposition rempli d'une solution électrolytique qui comprend un acide AH et des ions stanneux Sn2+ sous forme d'un composé SnA2 avec A désignant un anion acide, ledit bac d'électrodéposition comprenant une anode insoluble immergée dans la solution électrolytique du bac d'électrodéposition et une cathode constituée par la bande en défilement continu dans la solution électrolytique du bac d'électrodéposition, ladite installation comprenant en outre un réacteur de dissolution d'étain qui comprend une cathode insoluble et au moins une anode d'étain soluble, et une cellule d'électrodialyse,
caractérisée en ce que :

  • la cellule d'électrodialyse est une cellule d'électrodialyse comprenant un compartiment cathodique intégrant une cathode insoluble, un compartiment anodique intégrant une anode insoluble, au moins deux compartiments donneurs d'acide et au moins deux compartiments receveurs d'acide, un premier compartiment receveur d'acide étant adjacent au compartiment anodique en en étant séparé par une membrane d'électrolyse ou d'électrodialyse cationique de séparation, un premier compartiment donneur d'acide étant adjacent au compartiment cathodique en en étant séparé par une autre membrane d'électrolyse ou d'électrodialyse cationique de séparation, un deuxième compartiment donneur d'acide étant adjacent au premier compartiment receveur d'acide en en étant séparé par une membrane anionique d'électrodialyse ou d'électrolyse, et un deuxième compartiment receveur d'acide étant adjacent d'une part au deuxième compartiment donneur d'acide en en étant séparé par une membrane cationique d'électrodialyse ou d'électrolyse sélective, et d'autre part au premier ou à un troisième compartiment donneur d'acide en en étant séparé par une membrane d'électrodialyse ou d'électrolyse sélective,
  • dans le réacteur de dissolution d'étain, l'anode d'étain et la cathode insoluble sont séparées par une membrane anionique d'électrodialyse définissant une zone cathodique intégrant la cathode et une zone anodique intégrant l'anode d'étain,
  • un premier circuit de recirculation de la solution électrolytique relie le bac d'électrodéposition (30) et la zone anodique du réacteur de dissolution d'étain,
  • un deuxième circuit de recirculation de la solution électrolytique relie les compartiments donneurs d'acide de la cellule d'électrodialyse et le bac d'électrodéposition, et
  • un troisième circuit de recirculation de la solution électrolytique relie les compartiments receveurs d'acide de la cellule d'électrodialyse et la zone cathodique du réacteur de dissolution d'étain.
More particularly, the present invention relates to an installation for the electrolytic tinning of a continuous strip of steel in at least one plating tank filled with an electrolytic solution which comprises an acid AH and Sn stannous ions 2+ in the form of a compound SnA 2 with A denoting an acid anion, said electrodeposition tank comprising an insoluble anode immersed in the solution electrolytic electrode of the electroplating tank and a cathode constituted by the web in continuous travel in the electrolytic solution of the electroplating tank, said installation further comprising a tin dissolution reactor which comprises an insoluble cathode and at least one anode of soluble tin, and an electrodialysis cell,
characterized in that
  • the electrodialysis cell is an electrodialysis cell comprising a cathode compartment incorporating an insoluble cathode, an anode compartment incorporating an insoluble anode, at least two acid-donor compartments and at least two acid-receiving compartments, a first receiving compartment acid being adjacent to the anode compartment separated therefrom by an electrolysis membrane or cationic electrodialysis separation, a first acid donor compartment being adjacent to the cathode compartment separated therefrom by another electrolysis membrane or cation-separating electrodialysis unit, a second acid-donor compartment being adjacent to the first acid-receiving compartment separated therefrom by an anionic electrodialysis or electrolysis membrane, and a second acid-receiving compartment being adjacent to the first acid-receiving compartment part of the second acid donor compartment by being separated by a membrane cationic electrodialysis or selective electrolysis, and secondly to the first or third acid donor compartment being separated by an electrodialysis membrane or selective electrolysis,
  • in the tin dissolution reactor, the tin anode and the insoluble cathode are separated by an anionic electrodialysis membrane defining a cathode zone integrating the cathode and an anode zone incorporating the tin anode,
  • a first recirculation circuit of the electrolytic solution connects the electroplating tank (30) and the anode zone of the tin dissolution reactor,
  • a second recirculation circuit of the electrolytic solution connects the acid donor compartments of the electrodialysis cell and the electroplating tank, and
  • a third recirculation circuit of the electrolyte solution connects the acid recipient compartments of the electrodialysis cell and the cathode zone of the tin dissolution reactor.

Par membrane cationique d'électrodialyse, on entend, au sens de la présente invention, une membrane perméable aux cations et qui est typiquement utilisée dans un procédé d'électrodialyse.By cationic electrodialysis membrane is meant, in the sense of the present invention, a cation permeable membrane and which is typically used in an electrodialysis process.

Par membrane cationique d'électrolyse, on entend, au sens de la présente invention, une membrane perméable aux cations typiquement utilisée dans un procédé d'électrolyse à membrane, mais qui peut avantageusement être utilisée dans le procédé d'électrodialyse selon l'invention en raison de sa robustesse et de sa capacité à supporter des densités de courant plus élevées qu'une membrane cationique d'électrodialyse.By cationic electrolysis membrane is meant, in the sense of the present invention, a cation-permeable membrane typically used in a membrane electrolysis process, but which can advantageously be used in the electrodialysis process according to the invention. because of its robustness and ability to withstand higher current densities than a cationic electrodialysis membrane.

Par membrane cationique d'électrodialyse d'électrolyse de séparation, on entend, au sens de la présente invention, une membrane qui n'est pas perméable aux anions et qui est capable de supporter des densités de courant élevées.For the purposes of the present invention, a cationic electrodialysis membrane for separation electrolysis is understood to mean a membrane that is not permeable. anions and is able to withstand high current densities.

Par membrane cationique d'électrodialyse ou d'électrolyse sélective, on entend, au sens de la présente invention, une membrane qui n'est pas perméable aux anions et qui retient majoritairement les cations Sn2+.By cationic membrane electrodialysis or selective electrolysis is meant, in the sense of the present invention, a membrane that is not permeable to anions and retains majority Sn 2+ cations.

Par membrane anionique d'électrodialyse d'électrolyse, on entend, au sens de la présente invention, une membrane qui est perméable aux anions.For the purposes of the present invention, an anionic membrane for electrolytic electrodialysis is intended to mean a membrane which is permeable to anions.

Comparativement avec une installation d'étamage intégrant une cellule de dialyse classique, telle que celle du brevet américain US 5,312,539 , la cellule d'électrodialyse de l'installation selon l'invention permet de réduire considérablement la surface de membranes nécessaire et de s'affranchir d'un gradient de concentration entre les compartiments. D'autre part, la quantité d'acide à récupérer peut être plus facilement et rapidement contrôlée en agissant sur le courant d'électrodialyse.Compared with a tinning installation incorporating a conventional dialysis cell, such as that of the US patent US5,312,539 the electrodialysis cell of the installation according to the invention makes it possible to considerably reduce the required membrane area and to overcome a concentration gradient between the compartments. On the other hand, the amount of acid to be recovered can be more easily and quickly controlled by acting on the electrodialysis current.

Par ailleurs, la présence d'une membrane anionique d'électrodialyse ou d'électrolyse dans le réacteur de dissolution entre l'anode soluble d'étain et la cathode insoluble permet aux ions A- de transiter à travers cette membrane de la zone cathodique vers la zone anodique, tandis que les ions Sn2+ produits à l'anode restent totalement dans la zone anodique du réacteur. La solution électrolytique qui y est contenue est alors rechargée en ions stanneux, et peut alors être dirigée de nouveau vers le bac de revêtement.Moreover, the presence of an anionic electrodialysis or electrolysis membrane in the dissolving reactor between the soluble anode of tin and the insoluble cathode allows the A - ions to pass through this membrane from the cathode zone to the cathode. the anodic zone, while the Sn 2+ ions produced at the anode remain totally in the anode zone of the reactor. The electrolytic solution contained therein is then recharged with stannous ions, and can then be directed back to the coating tank.

Avantageusement, les premier et deuxième circuits de recirculation de la solution électrolytique comprennent un bac commun de dégazage de l'oxygène, qui est disposé en amont du réacteur de dissolution dans le sens de circulation de l'électrolyte dans ce circuit de recirculation.Advantageously, the first and second recirculation circuits of the electrolytic solution comprise a common oxygen degassing tank, which is disposed upstream of the dissolution reactor in the direction of flow of the electrolyte in this recirculation circuit.

Ce bac de dégazage permet d'éliminer l'oxygène gazeux formé à l'anode insoluble du bac de revêtement.This degassing tank makes it possible to eliminate the gaseous oxygen formed at the insoluble anode of the coating tank.

L'acide AH est avantageusement choisi parmi les acides sulfoniques.The acid AH is advantageously chosen from sulphonic acids.

A titre d'acides sulfoniques utilisables selon la présente invention, on peut notamment citer l'acide méthane-sulfonique et l'acide phénol-sulfonique.As sulphonic acids that may be used according to the present invention, mention may be made especially of methanesulfonic acid and phenol-sulphonic acid.

L'acide sulfonique préféré est l'acide méthane sulfonique.The preferred sulfonic acid is methanesulfonic acid.

Si l'on utilise un acide sulfonique, et notamment un acide choisi par parmi l'acide méthane-sulfonique, et l'acide phénol-sulfonique, le composé SnA2 sera donc avantageusement un sulfonate d'étain correspondant aux acides sulfoniques préférés selon l'invention: phénol sulfonate d'étain ou méthane-sulfonate d'étain.If a sulphonic acid, and in particular an acid selected from among methanesulfonic acid and phenol sulphonic acid, is used, the SnA 2 compound will therefore advantageously be a tin sulphonate corresponding to the preferred sulphonic acids according to US Pat. invention: tin phenol sulphonate or tin methane sulphonate.

La présente invention a également pour objet un procédé d'étamage électrolytique d'une bande d'acier en défilement continu dans au moins un bac d'électrodéposition rempli d'une solution électrolytique qui comprend un acide AH et des ions stanneux Sn2+ sous forme d'un composé SnA2 avec A désignant un anion acide, ledit procédé d'étamage mettant en oeuvre une anode non soluble et la bande métallique constituant une cathode qui sont immergées dans la solution électrolytique et entre lesquelles on applique une différence de potentiel, le composé SnA2 provenant d'un réacteur de dissolution d'étain, qui comprend une cathode insoluble et une anode d'étain, entre lesquelles on applique une différence de potentiel,
caractérisé en ce que l'on maintient constante la concentration en acide AH dans la solution électrolytique du bac en réalisant les étapes suivantes :

  • a) on dispose dans le réacteur de dissolution d'étain une membrane anionique d'électrodialyse ou d'électrolyse entre l'anode d'étain et la cathode insoluble, définissant ainsi une zone cathodique intégrant la cathode insoluble et une zone anodique, intégrant l'anode soluble d'étain ;
  • b) on fournit une cellule d'électrodialyse comprenant un compartiment cathodique intégrant une cathode insoluble, un compartiment anodique intégrant une anode insoluble, au moins deux compartiments donneurs d'acide et au moins deux compartiments receveurs d'acide, un premier compartiment receveur d'acide étant adjacent au compartiment anodique en en étant séparé par une membrane d'électrolyse ou d'électrodialyse cationique de séparation, un premier compartiment donneur d'acide étant adjacent au compartiment cathodique en en étant séparé par une membrane d'électrolyse ou d'électrodialyse cationique de séparation, un deuxième compartiment donneur d'acide étant adjacent au premier compartiment receveur d'acide en en étant séparé par une membrane anionique d'électrodialyse ou d'électrolyse sélective, et un deuxième compartiment receveur d'acide étant adjacent d'une part au deuxième compartiment donneur d'acide en en étant séparé par une membrane cationique d'électrodialyse ou d'électrolyse sélective, et d'autre part au premier ou à un troisième compartiment donneur d'acide en en étant séparé par une membrane anionique d'électrodialyse ou d'électrolyse sélective ;
  • c) on met en circulation une partie de la solution électrolytique du bac d'électrodéposition entre le bac d'électrodéposition et la zone anodique du réacteur de dissolution d'étain ;
  • d) on met en circulation une autre partie de la solution électrolytique entre le bac d'électrodéposition et les compartiments donneurs d'acide de la cellule d'électrodialyse ; et
  • e) on met en circulation une partie de la solution électrolytique entre les compartiments receveurs d'acide de la cellule d'électrodialyse et la zone cathodique du réacteur de dissolution d'étain.
The present invention also relates to a process for the electrolytic tinning of a continuous steel strip in at least one plating tank filled with an electrolytic solution which comprises an acid AH and stannous Sn 2+ ions under form of a compound SnA 2 with A designating an acid anion, said tinning process using a non-soluble anode and the metal strip constituting a cathode which are immersed in the electrolytic solution and between which a potential difference is applied, the SnA 2 compound from a tin dissolution reactor, which comprises an insoluble cathode and an anode of tin, between which a potential difference is applied,
characterized in that the concentration of acid AH is kept constant in the electrolytic solution of the tank by carrying out the following steps:
  • a) an anionic electrodialysis or electrolysis membrane is placed in the tin dissolution reactor between the tin anode and the insoluble cathode, thus defining a cathode zone integrating the insoluble cathode and an anode zone, integrating the soluble tin anode;
  • b) there is provided an electrodialysis cell comprising a cathode compartment incorporating an insoluble cathode, an anode compartment incorporating an insoluble anode, at least two acid-donor compartments and at least two acid-receiving compartments, a first receiving compartment of acid being adjacent to the anode compartment by being separated by an electrolysis membrane or cationic electrodialysis separation, a first acid donor compartment being adjacent to the cathode compartment separated therefrom by an electrolysis membrane or electrodialysis a second acid-donor compartment being adjacent to the first acid-receiving compartment separated therefrom by an anionic electrodialysis or selective electrolysis membrane, and a second acid-receiving compartment being adjacent to an part of the second acid donor compartment by being separated by a cationic membrane of electrodialysis or selective electrolysis, and secondly to the first or third acid donor compartment while being separated by an anionic membrane electrodialysis or selective electrolysis;
  • c) circulating a part of the electrolytic solution of the electroplating tank between the electroplating tank and the anode zone of the tin dissolution reactor;
  • d) circulating another part of the electrolytic solution between the electroplating tank and the acid donor compartments of the electrodialysis cell; and
  • e) a part of the electrolytic solution is circulated between the acid-receiving compartments of the electrodialysis cell and the cathode zone of the tin dissolution reactor.

D'autres caractéristiques avantageuses de l'invention apparaîtront dans la description suivante de certains modes de réalisation donnés à titre de simple exemple et représentés sur les dessins annexes :

  • la figure 1 est un schéma de principe en coupe d'un exemple d'installation d'électro-étamage à anode soluble selon l'état de la technique,
  • la figure 2 est un schéma de principe en coupe d'un exemple d'installation d'électro-étamage à anode insoluble selon l'état de la technique,
  • la figure 3 est en schéma de principe en coupe d'un exemple d'installation d'électro-étamage selon l'invention,
  • la figure 4 représente un schéma de principe en coupe de la cellule d'électrodialyse de l'installation d'électro-étamage représentée sur la figure 3,
  • la figure 5 représente un schéma de principe en coupe d'un exemple de réacteur de dissolution d'une installation d'électro-étamage selon l'invention,
  • la figure 6 est une vue de dessus d'un autre exemple de réacteur de dissolution d'une installation d'électro-étamage selon l'invention.
Other advantageous features of the invention will appear in the following description of certain embodiments given as a simple example and shown in the accompanying drawings:
  • the figure 1 is a block diagram in section of an example of electro-tinning installation with soluble anode according to the state of the art,
  • the figure 2 is a block diagram in section of an example of electro-tinning installation with insoluble anode according to the state of the art,
  • the figure 3 is in cross-sectional diagram of an example of an electro-tinning installation according to the invention,
  • the figure 4 represents a block diagram in section of the electrodialysis cell of the electro-tinning installation shown in FIG. figure 3 ,
  • the figure 5 represents a block diagram in section of an example of a dissolution reactor of an electro-tinning installation according to the invention,
  • the figure 6 is a top view of another example of a dissolution reactor of an electro-tinning installation according to the invention.

L'installation d'électro-étamage (ou installation d'étamage électrolytique) représentée sur la figure 1 est une installation d'électro-étamage 1 à anode soluble de l'état de la technique, qui a été précédemment décrite dans la référence à l'art antérieur qui précède.The electro-tinning installation (or electrolytic tinning installation) represented on the figure 1 is a soluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.

L'installation d'électro-étamage (ou installation d'étamage électrolytique) représentée sur la figure 2 est une installation d'électro-étamage 1 à anode insoluble de l'état de la technique, qui a été précédemment décrite dans la référence à l'art antérieur qui précède.The electro-tinning installation (or electrolytic tinning installation) represented on the figure 2 is an insoluble anode electro-tinning installation 1 of the state of the art, which was previously described in the reference to the prior art which precedes.

Sur la figure 3, est représenté un schéma de principe d'un exemple d'installation selon l'invention, dans laquelle la bande à revêtir 20 et une anode insoluble 60 sont partiellement immergées dans un bac d'électrodéposition 30 (ou bac de revêtement) contenant une solution électrolytique (ou électrolyte) contenant des ions stanneux Sn2+ sous forme d'un composé SnA2 et un acide AH, A étant un anion acide. Le composé SnA2 provient d'un réacteur de dissolution d'étain 10, qui comprend une cathode insoluble 120 et une anode soluble d'étain 160, qui sont immergées dans un réservoir 130 contenant également la même solution électrolytique que le bac de revêtement 30. Une membrane anionique d'électrodialyse ou d'électrolyse 140 est disposée entre les électrodes 120, 160 du réacteur 10, de sorte que le réservoir 130 du réacteur 10 est divisé en une zone cathodique 1200 contenant la cathode insoluble 120 et une zone anodique 1600 contenant l'anode soluble 160.On the figure 3 1 is a schematic diagram of an example installation according to the invention, in which the strip to be coated 20 and an insoluble anode 60 are partially immersed in an electroplating tank 30 (or coating tank) containing a solution. electrolyte (or electrolyte) containing Sn 2+ stannous ions in the form of a SnA 2 compound and an AH acid, A being an acid anion. The compound SnA 2 comes from a tin dissolution reactor 10, which comprises an insoluble cathode 120 and a soluble tin anode 160, which are immersed in a tank 130 also containing the same electrolytic solution as the coating tank 30 An anionic electrodialysis or electrolysis membrane 140 is disposed between the electrodes 120, 160 of the reactor 10, so that the reservoir 130 of the reactor 10 is divided into a zone cathode 1200 containing the insoluble cathode 120 and anode zone 1600 containing the soluble anode 160.

Dans le mode de réalisation de l'installation d'étamage 1 selon l'invention représenté sur la figure 3, l'anode 160 du réacteur 10 est constituée par des granules d'étain 161 contenus dans un panier 162 (dit « panier de dissolution d'étain »). Ce panier 162 rempli de granules 161 est relié au pôle positif (représenté par le symbole « + » sur la figure 3) d'une source de courant électrique (non représentée sur la figure 3), les granulats d'étain 161 jouant le rôle d'anode soluble. La cathode insoluble 120 du réacteur de dissolution d'étain 10 est reliée au pôle négatif (représenté par le symbole «-» sur la figure 3) de la même source de courant électrique.In the embodiment of the tinning installation 1 according to the invention shown in the figure 3 the anode 160 of the reactor 10 is constituted by tin granules 161 contained in a basket 162 (called "tin dissolution basket"). This basket 162 filled with granules 161 is connected to the positive pole (represented by the symbol "+" on the figure 3 ) a source of electrical power (not shown on the figure 3 ), the tin aggregates 161 playing the role of soluble anode. The insoluble cathode 120 of the tin dissolution reactor 10 is connected to the negative pole (represented by the symbol "-" on the figure 3 ) from the same source of electrical power.

A titre d'anode soluble 160, il est également possible d'utiliser, dans le réacteur de dissolution d'étain 10 de l'installation selon l'invention, une anode sous forme massive (non représentée).As a soluble anode 160, it is also possible to use, in the tin dissolution reactor 10 of the plant according to the invention, an anode in massive form (not shown).

Par ailleurs, l'installation d'électro-étamage représentée sur la figure 3 comporte, outre le bac de revêtement 30 et le réacteur de dissolution d'étain 10, au moins une cellule d'électrodialyse 40 comportant :

  • un compartiment cathodique 4200 intégrant une cathode insoluble 420,
  • un compartiment anodique 4600 intégrant une anode insoluble 460,
  • une pluralité de compartiments donneurs d'acide 4400,
  • une pluralité de compartiments receveurs d'acide 4500,
  • deux membranes d'électrodialyse cationiques 470 de séparation, l'une étant disposée entre le compartiment cathodique 4200 et le compartiment donneur d'acide 4400 qui lui est immédiatement adjacent, et l'autre étant disposée entre le compartiment anodique 4600 et le compartiment receveur d'acide 4500 qui lui est immédiatement adjacent,
  • une pluralité de membranes d'électrodialyse ou d'électrolyse anioniques 450 et une pluralité de membranes d'électrodialyse ou d'électrolyse cationiques sélectives 440, qui sont disposées de manière alternée de manière à partager l'espace compris entre les deux membranes 470 en une alternance de compartiments donneurs d'acide 4400 et de compartiments receveurs d'acide 4500.
Moreover, the electro-tinning installation represented on the figure 3 comprises, in addition to the coating tank 30 and the tin dissolution reactor 10, at least one electrodialysis cell 40 comprising:
  • a cathode compartment 4200 incorporating an insoluble cathode 420,
  • an anode compartment 4600 incorporating an insoluble anode 460,
  • a plurality of acid donor compartments 4400,
  • a plurality of acid recipient compartments 4500,
  • two separation cationic electrodialysis membranes 470, one being disposed between the cathode compartment 4200 and the acid donor compartment 4400 immediately adjacent thereto, and the other being disposed between the anode compartment 4600 and the receiver compartment d acid 4500 immediately adjacent to it,
  • a plurality of anionic electrodialysis or electrolysis membranes 450 and a plurality of selective cationic electrodialysis or electrolysis membranes 440, which are arranged alternately so as to divide the space between the two membranes 470 into one. alternation of acid donor compartments 4400 and acid recipient compartments 4500.

La figure 3 montre que le bac d'électrodéposition 30 et la zone anodique 1600 du réacteur de dissolution d'étain 10 sont reliés par un premier circuit 200 de recirculation de l'électrolyte. Le bac d'électrodéposition 30 fait également partie d'un deuxième circuit de recirculation 300 de l'électrolyte, qui le relie à la pluralité de compartiments donneurs d'acide 4400 de la cellule d'électrodialyse 40, tandis que la pluralité de compartiments receveurs d'acide 4500 de la cellule d'électrodialyse 40 font partie d'un troisième circuit de recirculation 400 de l'électrolyte. En outre, les compartiments cathodique 4200 et anodique 4600 peuvent faire partie d'un quatrième circuit de circulation en boucle fermée d'une solution acide, par exemple de l'acide sulfurique (non représenté sur la figure 3)The figure 3 shows that the electroplating tank 30 and the anode zone 1600 of the tin dissolution reactor 10 are connected by a first circuit 200 for recirculating the electrolyte. The plating tank 30 is also part of a second recirculation circuit 300 of the electrolyte, which connects it to the plurality of acid donor compartments 4400 of the electrodialysis cell 40, while the plurality of receiver compartments acid 4500 of the electrodialysis cell 40 are part of a third recirculation circuit 400 of the electrolyte. In addition, cathode compartments 4200 and anodic 4600 may be part of a fourth closed loop circulation circuit of an acidic solution, for example sulfuric acid (not shown in FIG. figure 3 )

L'installation d'électro-étamage représenté sur la figure 3 comprend en outre un bac de dégazage de l'oxygène 210 et un bac de dégazage de l'hydrogène 410. Ce bac de dégazage de l'oxygène 210, qui, ici est par exemple commun aux premier et deuxième circuits 200 et 300, est disposé en aval du bac 30 dans le sens de circulation de la solution électrolytique dans ces circuits 200, 300, ou en d'autres termes, en amont du réacteur 10 dans le premier circuit 200 et en amont de la cellule d'électrodialyse 40 dans le deuxième circuit 300. Par ailleurs, le bac de dégazage d'hydrogène 410 fait partie du troisième circuit 400 reliant la zone cathodique 1200 du réacteur de dissolution 10 à la pluralité de compartiments receveurs d'acide 4500 de la cellule d'électrodialyse 40, le bac de dégazage de l'hydrogène 410 étant disposé en amont de la cellule d'électrodialyse 40 dans le sens de circulation de l'électrolyte dans le troisième circuit 400.
En fonctionnement, lorsqu'on applique une différence de potentiel entre les électrodes 20, 60 plongeant dans le bac de revêtement 30, les ions stanneux Sn2+ présents dans l'électrolyte sous forme de composé SnA2 se déposent su la bande à revêtir 20 selon la réaction :

        SnA2 + 2e- → Sn + 2A-

The electro-tinning installation shown on the figure 3 further comprises an oxygen degassing tank 210 and a hydrogen degassing tank 410. This oxygen degassing tank 210, which here is for example common to the first and second circuits 200 and 300, is disposed downstream of the tank 30 in the direction of flow of the electrolytic solution in these circuits 200, 300, or in other words, upstream of the reactor 10 in the first circuit 200 and upstream of the electrodialysis cell 40 in the second circuit 300. Furthermore, the hydrogen degassing tank 410 is part of the third circuit 400 connecting the cathode zone 1200 of the dissolution reactor 10 to the plurality of acid receiving compartments 4500 of the electrodialysis cell 40, the hydrogen degassing tank 410 being disposed upstream of the electrodialysis cell 40 in the direction of flow of the electrolyte in the third circuit 400.
In operation, when a potential difference is applied between the electrodes 20, 60 immersed in the coating tank 30, the Sn 2+ stannous ions present in the electrolyte in the form of SnA 2 compound are deposited on the strip to be coated. according to the reaction:

SnA 2 + 2e - → Sn + 2A -

On observe en parallèle à l'anode la réaction suivante :

        2H2O → O2 + 4H+ + 4 e-

The following reaction is observed in parallel with the anode:

2H 2 O → O 2 + 4H + + 4 e -

On obtient donc un électrolyte appauvri en ions stanneux, dont une partie est prélevée dans le bac de revêtement 30, puis est soumise à un dégazage de l'oxygène gazeux dans le bac de dégazage 210 avant d'être introduit dans la zone anodique 1600 du réacteur de dissolution 10 d'une part, et dans la pluralité de compartiments donneurs d'acide 4400 d'autre part.An electrolyte depleted of stannous ions is thus obtained, part of which is taken from the coating tank 30, and is then subjected to degassing of the oxygen gas in the degassing tank 210 before being introduced into the anode zone 1600 of the reactor dissolution 10 on the one hand, and in the plurality of acid donor compartments 4400 on the other hand.

De même que dans le bac de revêtement 30, on applique simultanément une différence de potentiel entre les électrodes 420, 460 de la cellule d'électrodialyse 40. L'électrolyte provenant du bac de revêtement 30 est introduit dans la pluralité de compartiments donneurs d'acide 4400, délimitée par une membrane cationique et une membrane anionique. Les ions Sn2+ de l'électrolyte restent majoritairement dans les compartiments donneurs d'acide tandis que les anions acide A- migrent vers les compartiments receveurs d'acide 4500 à travers les membranes anioniques et que les ions H+ migrent vers les compartiments receveurs d'acide 4500 à travers les membranes cationiques.As in the coating tank 30, a potential difference is applied simultaneously between the electrodes 420, 460 of the electrodialysis cell 40. The electrolyte coming from the coating tank 30 is introduced into the plurality of donor compartments. acid 4400 delimited by a cationic membrane and an anionic membrane. The Sn 2+ ions of the electrolyte remain predominantly in the acid donor compartments while the acidic Aions - migrate to the acid recipient compartments 4500 through the anionic membranes and the H + ions migrate to the recipient compartments. 4500 acid through cationic membranes.

A titre de membrane cationique sélective 440 utilisable selon l'invention, on conseille la membrane commercialisée par la société TOKUYAMA SODA sous la dénomination CMX-S.As a selective cationic membrane 440 that can be used according to the invention, the membrane marketed by the company TOKUYAMA SODA under the name CMX-S is recommended.

A titre de membrane cationique de séparation 470 utilisable selon l'invention, on conseille la membrane commercialisée par la société TOKUYAMA SODA sous la dénomination C66.As a cationic separation membrane 470 that can be used according to the invention, the membrane marketed by the company TOKUYAMA SODA under the name C66 is recommended.

La membrane cationique 440 présente une perméabilité sélective qui permet le transfert des ions H+ vers le compartiment receveur d'acide adjacent et le maintien de la majorité des ions Sn2+ dans le compartiment donneur d'acide ainsi que le montre la figure 4.The cationic membrane 440 has a selective permeability which allows the transfer of H + ions to the adjacent acid-receiving compartment and the maintenance of the majority of Sn 2+ ions in the acid-donor compartment as shown in FIG. figure 4 .

Par ailleurs, de même que dans le bac de revêtement 30 et dans la cellule d'électrodialyse 40, on applique simultanément une différence de potentiel entre les électrodes 120, 160 du réacteur de dissolution d'étain 10, ce qui conduit à la dissolution électrolytique de l'anode soluble 160 d'étain selon la réaction :

        Sn + 2A- → SnA2 + 2e-

Furthermore, as in the coating tank 30 and in the electrodialysis cell 40, a potential difference is applied simultaneously between the electrodes 120, 160 of the tin dissolution reactor. 10, which leads to the electrolytic dissolution of the soluble anode 160 of tin according to the reaction:

Sn + 2A - → SnA 2 + 2e -

En parallèle, on observe à la cathode du réacteur 10 la réaction suivante :

        2AH + 2e- → H2 + 2A-

In parallel, the following is observed at the cathode of the reactor 10:

2AH + 2e - → H 2 + 2A -

La dissolution électrolytique des granules d'étain 161 assure la production d'ions stanneux Sn2+, qui grâce à l'imperméabilité de la membrane Anionique 140 restent très majoritairement au voisinage de l'anode.
Les ions A- qui sont libérés à la cathode du réacteur 10 transitent de la zone cathodique 1200 vers la zone anodique 1600 à travers la membrane anionique.
The electrolytic dissolution of the tin granules 161 ensures the production of Sn 2+ stannous ions, which thanks to the impermeability of the Anionic membrane 140 remain largely in the vicinity of the anode.
The A- ions which are released at the cathode of the reactor 10 pass from the cathode zone 1200 to the anode zone 1600 through the anionic membrane.

L'électrolyte de la zone anodique 1600 du réacteur 10 ainsi rechargé en ions stanneux peut alors être récupéré et dirigé de nouveau vers le bac de revêtement. L'électrolyte contenu dans la zone cathodique 1200 du réacteur 10 est dirigé par le circuit de recirculation 400 vers le bac de dégazage de l'hydrogène 410 puis est introduit dans la pluralité de compartiments receveurs d'acide 4500 de la cellule d'électrodialyse 40.The electrolyte of the anodic zone 1600 of the reactor 10 thus recharged with stannous ions can then be recovered and directed again towards the coating tank. The electrolyte contained in the cathode zone 1200 of the reactor 10 is directed by the recirculation circuit 400 to the hydrogen degassing tank 410 and is introduced into the plurality of acid recipient compartments 4500 of the electrodialysis cell 40. .

La cellule d'électrodialyse 40 permet de récupérer l'acide électrolyte en excès produit dans le bac de revêtement 30. Le nombre de compartiments donneurs et receveurs d'acide et donc la surface totale de membranes nécessaire est fonction de la quantité d'acide à récupérer et de la densité de courant appliquée.The electrodialysis cell 40 makes it possible to recover the excess electrolyte acid produced in the coating tank 30. The number of donor and acid recipient compartments and therefore the total membrane area required is a function of the amount of acid to be used. recover and applied current density.

Sur la figure 5, est représenté un exemple de réacteur de dissolution 10 selon l'invention, comportant un réservoir 130 de forme cylindrique rempli d'électrolyte, et séparé en deux par une membrane d'électrodialyse anionique 140, également de forme cylindrique, définissant ainsi une zone anodique 1600 centrale comportant l'anode soluble 160, et une zone cathodique 1200 externe comportant la cathode 120.On the figure 5 , there is shown an example of a dissolution reactor 10 according to the invention, comprising a tank 130 of cylindrical shape filled with electrolyte, and separated in two by an anionic electrodialysis membrane 140, also of a shape cylindrical, thus defining a central anode zone 1600 comprising the soluble anode 160, and an external cathode zone 1200 comprising the cathode 120.

La forme cylindrique du réservoir 130 et de la membrane cationique 140 est donnée ici à titre d'exemple. Mais, le réservoir 130 et la membrane cationique 140 peuvent également être de forme parallélépipédique.The cylindrical shape of the reservoir 130 and the cationic membrane 140 is given here by way of example. But, the reservoir 130 and the cationic membrane 140 may also be of parallelepipedal shape.

La cathode 120 est reliée au pôle négatif d'une source de courant électrique (représentée par le symbole « - » sur la figure 5) et l'anode 160 est reliée, dans sa partie supérieure, au pôle positif (représentée par le symbole « + » sur la figure 5) de la même source de courant électrique.The cathode 120 is connected to the negative pole of a source of electric current (represented by the symbol "-" on the figure 5 ) and the anode 160 is connected, in its upper part, to the positive pole (represented by the symbol "+" on the figure 5 ) from the same source of electrical power.

La figure 5 montre que l'anode soluble d'étain 160 comprend un panier de dissolution 162 comprenant des granules d'étain 161. Ce panier 162 est divisé en trois parties superposées distinctes :

  • une zone inférieure 1621 immergée dans l'électrolyte contenu dans le réservoir 130 ;
  • une zone médiane 1622 de récupération de l'électrolyte, qui est située au-dessus de la zone inférieure 1621 en lui étant contigüe et qui n'est pas immergée dans l'électrolyte contenu dans le réservoir 130, mais qui est mouillée par la solution électrolytique lorsqu'elle est mise en circulation dans le circuit 200, et
  • une zone supérieure 1623 sèche pour l'alimentation en granules d'étain 161 secs et la transmission du courant électrique de dissolution.
The figure 5 shows that the soluble anode tin 160 comprises a dissolution basket 162 comprising tin granules 161. This basket 162 is divided into three distinct superposed parts:
  • a lower zone 1621 immersed in the electrolyte contained in the reservoir 130;
  • a median 1622 electrolyte recovery zone, which is located above the lower zone 1621 by being contiguous thereto and which is not immersed in the electrolyte contained in the reservoir 130, but which is wetted by the solution electrolytic when circulated in circuit 200, and
  • a dry upper zone 1623 for the supply of dry tin granules 161 and the transmission of the dissolution electric current.

Les zones inférieure 1621 et médiane 1622 du panier de dissolution 162 de l'anode 160 sont toutes deux réalisées en un matériau non conducteur d'électricité.The lower 1621 and middle 1622 areas of the dissolution basket 162 of the anode 160 are both made of non-electrically conductive material.

A titre de matériau non conducteur d'électricité utilisable selon l'invention pour réaliser les zones inférieures 1621 et médiane 1622 du panier 162 de l'anode soluble 160, on conseille les matières plastiques, et les composites tels que les résines polyesters armées et les aciers revêtus de polymères.As an electrically nonconductive material usable according to the invention for producing the lower zones 1621 and median 1622 of the basket 162 of the soluble anode 160, plastics, and composites such as the polyester resins and the polyesters, are recommended. polymers coated steels.

Par contre, la zone supérieure 1623 d'alimentation en granules d'étain 161 est réalisée en un matériau conducteur d'électricité.On the other hand, the upper region 1623 for supplying tin granules 161 is made of an electrically conductive material.

A titre de matériau conducteur d'électricité utilisable selon l'invention pour réaliser le panier 162 de l'anode soluble 160, on peut notamment citer l'acier inoxydable.As an electrically conductive material that can be used according to the invention to produce the basket 162 of the soluble anode 160, mention may notably be made of stainless steel.

La zone inférieure 1621 immergée dans l'électrolyte comporte un treillis 163 comprenant un filet en plastique de maille adaptée à la rétention des granules d'étain, soit entre 0,05 et 0,50 mm, et préférentiellement entre 0,1 et 0,30 mm. Ce filet est supporté par l'enveloppe du panier qui présente des ouvertures de mise en contact avec l'électrolyte, qui sont au moins 50 fois plus larges que les mailles du filet Des ouvertures (en pointillés sur la figure 5) sont formées dans l'enveloppe du panier 162.The lower zone 1621 immersed in the electrolyte comprises a mesh 163 comprising a plastic mesh net adapted to retain the tin granules, ie between 0.05 and 0.50 mm, and preferably between 0.1 and 0, 30 mm. This net is supported by the envelope of the basket which has openings for contacting the electrolyte, which are at least 50 times wider than the mesh of the net openings (dashed on the figure 5 ) are formed in the casing of the basket 162.

La zone médiane 1622 comporte une auge de récupération 164 de l'électrolyte régénéré, cette auge étant alimentée par l'intermédiaire d'un treillis 165 (identique à celui 163 de la zone inférieure 1621) et d'ouvertures (en pointillés sur la figure 5) formées dans l'enveloppe du panier 162 (identiques à celles de la zone inférieure 1621).The median zone 1622 includes a recovery trough 164 of the regenerated electrolyte, this trough being supplied via a trellis 165 (identical to that 163 of the lower zone 1621) and openings (in dashed lines on the trunk). figure 5 ) formed in the envelope of the basket 162 (identical to those of the lower zone 1621).

La zone supérieure 1623 comporte une trémie de remplissage 166 en granules d'étain 161, qui est raccordée au pôle positif de la source d'alimentation en courant électrique.The upper zone 1623 comprises a filling hopper 166 in tin granules 161, which is connected to the positive pole of the power supply.

La zone inférieure 1621 du panier 162, qui est immergée dans l'électrolyte, est entourée par une membrane cationique 140 de forme circulaire. Cette membrane cationique 140 est avantageusement supportée par au moins un filet en matière plastique, qui permet d'assurer la rigidité de la membrane 140.The lower zone 1621 of the basket 162, which is immersed in the electrolyte, is surrounded by a cationic membrane 140 of circular shape. This cationic membrane 140 is advantageously supported by at least one plastic net, which makes it possible to ensure the rigidity of the membrane 140.

L'électrolyte à traiter est introduit dans la zone inférieure 1621 du panier par des conduites d'admission 201 à une pression suffisante pour permettre son débordement dans l'auge de récupération 164 de la zone médiane 1622. Au cours du parcours des granules d'étain 161 à travers le panier 162, le courant électrique assure la dissolution desdits granules 161 et l'acide se charge en ions Sn++ qui restent à proximité de l'anode 160. L'électrolyte ainsi rechargé en étain est récupéré au niveau de l'auge 164, avant d'être retourné au bac de revêtement 30 par l'intermédiaire des conduites de retour 202.The electrolyte to be treated is introduced into the lower zone 1621 of the basket by intake pipes 201 at a pressure sufficient to allow it to overflow into the recovery trough 164 of the median zone 1622. During the course of the granules tin 161 through the basket 162, the electric current ensures the dissolution of said granules 161 and the acid is charged with Sn ++ ions which remain close to the anode 160. The electrolyte and reloaded tin is recovered at the level of the trough 164, before being returned to the coating tank 30 via the return lines 202.

Sur la figure 6, est représenté en vue de dessus un autre exemple de réacteur de dissolution 10 selon l'invention, qui comprend une pluralité d'anodes solubles 160 comportant chacune un panier 162 rempli de granules d'étain 161, chaque panier 162 étant entouré par une membrane anionique 140 circulaire.On the figure 6 , is shown in plan view another example of dissolution reactor 10 according to the invention, which comprises a plurality of soluble anodes 160 each having a basket 162 filled with tin granules 161, each basket 162 being surrounded by a membrane anionic 140 circular.

Un dispositif d'alimentation 400 en granules 161 dessert les trémies 166 de tous les paniers 162 du réacteur de dissolution 10. Ce dispositif 400 peut être un tapis roulant ou vibrant, ou des tuyauteries non conductrices de l'électricité. Le dispositif 400 agit de manière intermittente en fonction d'un signal donné par un dispositif de détection du niveau de granules dans les trémies 166, de manière à maintenir un niveau constant de granules 161 dans le panier 162.A feed device 400 in granules 161 serves hoppers 166 of all baskets 162 of the dissolution reactor 10. This device 400 may be a treadmill or vibrating, or non-electrically conductive pipes. The device 400 acts intermittently as a function of a signal given by a device for detecting the level of granules in the hoppers 166, so as to maintain a constant level of granules 161 in the basket 162.

Claims (16)

  1. Plant (1) for the electrolytic tinning of a steel strip (2) travelling continuously in at least one electrodeposition tank (30) filled with an electrolytic solution that includes an acid AH and stannous ions Sn2+ in the form of a compound SnA2 where A represents an acid anion, said electrodeposition tank (30) having at least one insoluble anode (60) immersed in the electrolytic solution of the electrodeposition tank (30) and one cathode (20) constituted by the strip (2) travelling continuously in the electrolytic solution of the electrodeposition tank (30), said plant (1) also having at least one tin-dissolving reactor (10) that includes an insoluble cathode (120) and at least one soluble tin anode (160), and one electrodialysis cell (40)
    characterised in that:
    - the electrodialysis cell (40) is an electrodialysis cell comprising a cathodic compartment (4200) with an insoluble cathode (420), an anodic compartment (4600) with an insoluble anode (4600), at least two acid supply compartments (4400) and at least two acid receiving compartments (4500), a first acid receiving compartment (4500) being adjacent to the anodic compartment (4600) being separated from it by an electrolysis or electrodialysis cationic separation membrane (470), a first acid supply compartment (4400) being adjacent to the cathodic compartment (4200) being separated from it by an electrolysis or electrodialysis cationic separation membrane (470), a second acid supply compartment (4400) being adjacent to the first acid receiving compartment (4500) being separated from it by an anionic electrodialysis or electrolysis membrane (450), and a second acid receiving compartment (4500) being adjacent on one side to the second acid supply compartment (4400) being separated from it by a selective electrodialysis or electrolysis cationic membrane (440), and on the other side to the first or to a third acid supply compartment (4400) being separated from it by an anionic electrodialysis or electrolysis membrane (450),
    - in the tin-dissolving reactor (10), the tin anode (160) and the insoluble cathode (120) are separated by an anionic electrodialysis or electrolysis membrane (140) defining a cathodic zone (1200) containing the cathode (120) and an anodic zone (1600) containing the tin anode (160),
    - a first recirculation circuit (200) of the electrolytic solution links the electrodeposition tank (30) and the anodic zone (1600) of the tin-dissolving reactor (10),
    - a second recirculation circuit (300) of the electrolytic solution links the plurality of dilution acid supply compartments (4400) of the electrodialysis cell and the electrodeposition tank (30), and
    - a third recirculation circuit (400) of the electrolytic solution links the plurality of acid receiving compartments (4500) of the electrodialysis cell (40) and the cathodic zone (1200) of the tin-dissolving reactor (10).
  2. Plant (1) according to claim 1, characterised in that said first (200) and second (300) recirculation circuits of the electrolytic solution include an oxygen degassing tank (210) placed downstream of the electrodeposition tank (30) in the flow direction of the electrolytic solution in each of the first (200) and second (300) recirculation circuits.
  3. Plant (1) according to claim 1 or 2, characterised in that the third circulation circuit (400) of the electrolytic solution includes a hydrogen degassing tank (410).
  4. Plant (1) according to any one of the preceding claims, characterised in that the soluble tin anode (160) is present in the form of tin granules (161) contained in a basket (162).
  5. Plant (1) according to claim 4, characterised in that the basket (162) has three distinct superposed parts:
    - a lower zone (1621) that is immersed in the electrolytic solution contained in the deposit (130) of the dissolving reactor (10),
    - a middle electrolyte-recovery zone (1622), which is located above said lower zone (1621) and contiguous to it, said middle zone (1622) not being immersed in the electrolytic solution contained in the deposit (130) of the dissolving reactor (10), but being wetted by the electrolytic solution when it begins to flow in the circuit 200,
    - a dry upper zone (1623) for supplying tin granules (161) and transmitting dissolving electrical current, said upper zone (1623) being above said middle zone (1622) and contiguous to it.
  6. Plant (1) according to claim 5, characterised in that the lower (1621) and middle (1622) zones of the basket (162) are made of an electrically non-conductive material.
  7. Plant (1) according to claim 6, characterised in that the electrically non-conductive material of the lower (1621) and middle (1622) zones of the basket (162) is a plastic material or a composite material taken from the group of reinforced polyester resins or polymer-coated steels.
  8. Plant (1) according to one of claims 5 to 7, characterised in that the upper zone (1623) of the basket (162) is made of an electrically conductive material.
  9. Plant (1) according to any one of claims 5 to 8, characterised in that the lower zone (1621) of the basket (162) includes:
    - a mesh (163) of plastic wire and a mesh size between 0.05 mm and 0.5 mm, and
    - an envelope to support said mesh (163) having one or more apertures to bring the granules (161) into contact with the electrolytic solution.
  10. Plant (1) according to any one of claims 5 to 10, characterised in that the middle zone (1622) of the basket (162) includes:
    - a mesh (165) of plastic wire with a mesh size of between 0.05 mm and 0.5 mm, and
    - a recovery trough (164) for the electrolytic solution, said trough (164) being supplied with electrolytic solution via the mesh (165).
  11. Plant (1) according to any one of the preceding claims, characterised in that the dissolving reactor (10) includes a plurality of soluble anodes (160), each of these anodes (160) having a hopper (166) and being surrounded by an anionic electrodialysis or electrolysis membrane (140).
  12. Plant (1) according to claim 11, characterised in that it includes a granule supply device (400) that intermittently serves the hoppers (166) of the anodes (160).
  13. Plant (1) according to claim 12, characterised in that the device (400) for supplying granules (161) is a vibrating or conveyor belt, or a set of electrically non-conductive pipes.
  14. Method for the electrolytic tinning of a steel strip (20) travelling continuously in at least one electrodeposition tank (30) filled with an electrolytic solution that includes an acid AH and stannous ions Sn2+ in the form of a compound SnA2 where A represents an acid anion, said tinning method implementing at least one insoluble anode (60) and the metal strip (20) constituting a cathode that are immersed in the electrolytic solution and between which a potential difference is applied, the compound SnA2 coming from a tin-dissolving reactor (10), which includes an insoluble cathode (120) and a tin anode (1602), between which a potential difference is applied,
    characterised in that the concentration of the acid AH is kept constant in the electrolytic solution of the tank (30) by means of the following steps:
    a) an anionic electrodialysis or electrolysis membrane (140) is placed between the tin anode (160) and the insoluble cathode (120) in the tin-dissolving reactor (10), thus creating a cathodic zone (1200) containing the insoluble cathode (120) and an anodic zone (1600), containing the soluble tin anode (160);
    b) an electrodialysis cell (40) is provided including a cathodic compartment (4200) including an insoluble cathode (420), an anodic compartment (4600) including an insoluble anode (4600), at least two acid supply compartments (4400) and at least two acid receiving compartments (4500), a first acid receiving compartment (4500) being adjacent to the anodic compartment (4600) being separated from it by an electrolysis or electrodialysis cationic separation membrane (470), a first acid supply compartment (4400) being adjacent to the cathodic compartment (4200) being separated from it by an electrolysis or electrodialysis cationic separation membrane (470), a second acid supply compartment (4400) being adjacent to the first acid receiving compartment (4500) being separated from it by an anionic electrodialysis or electrolysis membrane (450), and a second acid receiving compartment (4500) being adjacent on one side to the second acid supply compartment (4400) being separated from it by a selective electrolysis or electrodialysis cationic membrane (440), and on the other side to the first or to a third acid supply compartment (4400) being separated from it by an anionic electrodialysis or electrolysis membrane (450);
    c) one part of the electrolytic solution is put into circulation between the electrodeposition tank (30) and the anodic zone (1600) of the tin-dissolving reactor (10);
    d) another part of the electrolytic solution is put into circulation between the electrodeposition tank (30) and the acid supply compartments (4400) of the electrodialysis cell (40); and
    e) one part of the electrolytic solution is put into circulation between the acid receiving compartments (4500) of the electrodialysis cell (40) and the cathodic zone (1200) of the tin-dissolving reactor (10).
  15. Method according to claim 14, characterised in that the electrolytic solution taken from the coating tank (30) is subject to oxygen degassing before being injected either into the anodic zone (1600) of the dissolving reactor (10), or into the acid supply compartments (4400) of the electrodialysis cell (40).
  16. Method according to claim 14 or 15, characterised in that the electrolytic solution taken from the cathodic zone (1200) of the dissolving reactor (10) is subjected to hydrogen degassing, before being injected into the acid receiving compartments (4500) of the electrodialysis cell (40).
EP08827122A 2007-07-30 2008-06-09 Plant and process for the electrolytic tinning of steel strips, using an insoluble anode Not-in-force EP2173928B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705563A FR2919619B1 (en) 2007-07-30 2007-07-30 INSTALLATION AND METHOD FOR THE ELECTROLYTIC SHIELDING OF STEEL BANDS USING AN INSOLUBLE ANODE
PCT/FR2008/000791 WO2009019333A1 (en) 2007-07-30 2008-06-09 Plant and process for the electrolytic tinning of steel strips, using an insoluble anode

Publications (2)

Publication Number Publication Date
EP2173928A1 EP2173928A1 (en) 2010-04-14
EP2173928B1 true EP2173928B1 (en) 2011-01-12

Family

ID=39253879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08827122A Not-in-force EP2173928B1 (en) 2007-07-30 2008-06-09 Plant and process for the electrolytic tinning of steel strips, using an insoluble anode

Country Status (4)

Country Link
EP (1) EP2173928B1 (en)
ES (1) ES2359293T3 (en)
FR (1) FR2919619B1 (en)
WO (1) WO2009019333A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011919B2 (en) * 2015-05-29 2018-07-03 Lam Research Corporation Electrolyte delivery and generation equipment
CN105908247A (en) * 2016-05-16 2016-08-31 中国钢研科技集团有限公司 Electrolysis tin dissolving device, system and method for supplementing stannous ions in electrotinning solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318168B2 (en) * 1973-11-28 1978-06-13
US4181580A (en) * 1973-11-28 1980-01-01 Nippon Steel Corporation Process for electro-tin plating
JP2559935B2 (en) * 1991-12-20 1996-12-04 日本リーロナール株式会社 Method and apparatus for tin or tin-lead alloy electroplating using insoluble anode
US5312539A (en) * 1993-06-15 1994-05-17 Learonal Inc. Electrolytic tin plating method

Also Published As

Publication number Publication date
ES2359293T3 (en) 2011-05-20
FR2919619A1 (en) 2009-02-06
WO2009019333A1 (en) 2009-02-12
EP2173928A1 (en) 2010-04-14
FR2919619B1 (en) 2009-10-09

Similar Documents

Publication Publication Date Title
TWI359883B (en) Apparatus and foam electroplating process
FR2529582A1 (en) IMPROVED PROCESS FOR ELECTROLYTICALLY COATING NON-METALLIC SURFACES
JP6169719B2 (en) Device and method for electrolytic coating of objects
EP2334846B1 (en) Method and installation for electrolytic tinning of a continuously running steel strip in an electrodeposition unit
EP2173928B1 (en) Plant and process for the electrolytic tinning of steel strips, using an insoluble anode
EP2191044B1 (en) Equipment and method for the electrolytic tinning of steel strips using a non-soluble anode
EP2173927B1 (en) Equipment and method for electrolytic tinning of steel strips using a non soluble anode
EP2167223B1 (en) Unit and method for the electrolytic tinning of steel strips
EP0580730B1 (en) Electrode for an electrolytic cell, use thereof and method using same
CA1234772A (en) Method and apparatus for unilateral electroplating of a moving metal strip
LU85358A1 (en) DEVICE FOR THE ELECTROLYTIC TREATMENT OF METAL TAPES
EP3555345B1 (en) Electrolytic method for extracting tin or simultaneously extracting tin and lead contained in an electrically conductive mixture
FR2854905A1 (en) The recuperation of copper from a spent ammoniac engraving solution by electrolysis with regeneration of the engraving solution
WO2009016292A2 (en) Unit and method for the electrolytic tinning of steel bands, using a soluble anode
FR2680523A1 (en) ELECTRODEPOSITION PROCESS.
EP1838903B1 (en) Method for electroplating a metal to obtain cells with electrodes-solid polymer electrolyte
US20240309530A1 (en) Methods and devices for enriching a substrate with an alkali metal, and electrolyte
US532209A (en) Beenaed moebius
JP4460424B2 (en) Method for producing electrolytic polymerized membrane
US3109783A (en) Electrolytic plating
JP2005194568A (en) Method of producing hot dip metal plated steel sheet
JPH11158686A (en) High-speed plating device and high-speed plating method
JPS6056239B2 (en) Continuous plating method for wire rods
JP2006348354A (en) Method for manufacturing tin-electroplated steel strip
FR2614903A1 (en) Electrolysis cell for the recovery of metals, especially of copper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008004541

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008004541

Country of ref document: DE

Effective date: 20110224

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2359293

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110520

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

26N No opposition filed

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

BERE Be: lapsed

Owner name: SIEMENS VAI METALS TECHNOLOGIES SAS

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008004541

Country of ref document: DE

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 6

Ref country code: NL

Payment date: 20130603

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130819

Year of fee payment: 6

Ref country code: ES

Payment date: 20130711

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008004541

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008004541

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140610