[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2017531B1 - Method for monitoring an ionisation electrode signal in burners - Google Patents

Method for monitoring an ionisation electrode signal in burners Download PDF

Info

Publication number
EP2017531B1
EP2017531B1 EP08010303.9A EP08010303A EP2017531B1 EP 2017531 B1 EP2017531 B1 EP 2017531B1 EP 08010303 A EP08010303 A EP 08010303A EP 2017531 B1 EP2017531 B1 EP 2017531B1
Authority
EP
European Patent Office
Prior art keywords
signal
ionisation electrode
ionisation
reference value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08010303.9A
Other languages
German (de)
French (fr)
Other versions
EP2017531A3 (en
EP2017531A2 (en
Inventor
Klaus Richter
Nicole Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Priority to PL08010303T priority Critical patent/PL2017531T3/en
Publication of EP2017531A2 publication Critical patent/EP2017531A2/en
Publication of EP2017531A3 publication Critical patent/EP2017531A3/en
Application granted granted Critical
Publication of EP2017531B1 publication Critical patent/EP2017531B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05001Measuring CO content in flue gas

Definitions

  • the invention relates to a method for checking the ionisationselektrodensignals in burners.
  • Ionization electrodes are used to detect the presence of a flame. In a flame, ions can move freely. If a voltage is applied to two electrodes located in the flame area, a current flows in the flame. When the flame goes out, the current flow comes to a standstill. If the measured ionization current falls below a certain limit value, the regulation of the burner locks the gas supply in order to avoid uncontrolled gas leakage.
  • the ionization current depends on several factors. For example, the ionization current decreases when the surface of the electrodes is covered by a deposition layer due to the influence of the flame.
  • the ionization current of the fuel gas-air ratio ⁇ is dependent. For stoichiometric combustion, the ionization current is maximum.
  • a method for controlling a gas-fired burner of a heating system by means of the measurement of carbon monoxide emission in the exhaust gas is from DE 103 00 602 A1 known.
  • the fuel gas-air mixture of the burner is enriched, whereby the air ratio decreases.
  • An exhaust gas sensor measures the carbon monoxide emission in the exhaust pipe and forwards the signal to a control. If the excess of air falls below a certain level, usually around 8% of excess air, carbon monoxide emissions rise steeply. If the regulation that the carbon monoxide emission has exceeded a predetermined threshold value, the mixture is not further enriched. The mixture is then defined as lean to achieve optimum combustion.
  • the EP 770 824 A2 discloses a method for controlling a fuel gas-air mixture of a burner, in which the ionization current or the ionization voltage is detected.
  • the fuel gas-air mixture is enriched and the ionization voltage is measured. If the latter reaches a maximum, the combustion is stoichiometric. The mixture is then deliberately emaciated.
  • the absolute value of the ionization voltage may vary due to wear, contamination or bending. If the voltage maximum does not reach a certain value, a fault signal is triggered and the burner is switched off.
  • the invention has for its object to provide a method that detects a change in the ionization electrode signal early on to initiate countermeasures before the failure can.
  • this is achieved according to the features of the independent claim, characterized in that in a gas burner with a device for separate control of the fuel gas and air quantity and an exhaust gas sensor for measuring the carbon monoxide concentration or concentration of unburned hydrocarbons, the fuel gas-air mixture is enriched until the exhaust gas sensor detects a signal which corresponds to a predetermined or calculated threshold value, for this state the ionization electrode signal of an ionization electrode is detected and compared with a reference value, wherein in the case in which the ionization electrode signal falls below the reference value a warning is issued.
  • the mean value of the at least two last ionisationselektrodensignale can be formed to give instead of single influences trends greater weight. If a second reference value, which is lower than the first reference value, falls below, then the heater is switched off to avoid unsafe conditions.
  • a heating system has a burner 1 with a surrounding heat exchanger 10, to which an exhaust pipe 9, in which an exhaust gas sensor 6 is connected.
  • the burner 1 a fan 2 is connected upstream.
  • On the input side of the blower 2 is an air intake line 13, in which also a fuel gas line 12, which is separated by a gas valve 4 from the fuel gas supply 11, extends.
  • the gas valve 4 has an actuator 5.
  • the fan 2 has a drive motor 7 with speed detection 8.
  • Actuator 5, drive motor 7, speed detection 8 and exhaust gas sensor 6 are connected to a controller 3, which has a memory module 31 and computing module 32. Also with the control is an ionization electrode 14, which is positioned just above the burner 1, connected.
  • a target power of the burner 1 is calculated.
  • the memory module 31 is to the desired power a target signal for the fuel gas and Amount of air deposited.
  • the blower 2 is driven with its drive motor 7 and its speed detection and the gas valve 4 with its actuator 5, whereby a fuel gas-air mixture flows into the blower 2 and from there to the burner 1.
  • the mixture is burned on the outer surface of the burner 1, flows through the heat exchanger 10 and then flows through the exhaust pipe 9 into the open air.
  • Fig. 2 shows the relationship between carbon monoxide concentration CO, ionization current I and combustion air ratio ⁇ .
  • ionization current I ionization current I
  • combustion air ratio ⁇ 1.0
  • m L is the actual air flow and m L, min is the stoichiometric air flow.
  • the combustion of hydrocarbons into carbon dioxide always produces carbon monoxide as an intermediate. Due to the limited reaction time in the heat affected zone and insufficient mixing of fuel gas and air, in practice, however, a certain excess air is necessary to ensure complete burnout. Therefore, a CO value of well over 1000 ppm is usually reached at just over-stoichiometric combustion. Only with an excess of air of about 10%, the carbon monoxide emissions in the fully reacted exhaust gas fall significantly and reach in conventional burners values well below 100 ppm. As the air ratio increases, however, the combustion temperature drops because of the proportion of inert gases; the combustion reaction is slowed down and the reaction at the heat exchanger stops. Therefore it is off an air surplus of about 80%, a significant increase in carbon monoxide emissions.
  • the control 3 continuously controls the actuator 5 of the gas valve 4 in such a way that more and more fuel gas passes into the blower 2 at the same amount of air. As a result, the mixture is enriched; the air ratio drops.
  • the exhaust gas sensor 6 measures the carbon monoxide emission in the exhaust pipe 9 and forwards the signal to the control 3. If the controller 3 registers that the carbon monoxide emission has reached or exceeded a threshold CO limit specified in the memory module 31, then the mixture is not further enriched. It is known that such carbon monoxide emissions are achieved at an air ratio of about 1.08. First, it is assumed that a new ionization electrode; the ionization electrode signal is therefore not reduced.
  • the ionization electrode signal I 1 of the ionization electrode 14 at the predetermined threshold CO limit is measured and compared in the calculation module 32 of the controller 3 with a first reference value I limit from the memory module 31. Since the ionization electrode signal I 1 is greater than the first reference value I limit , no further measures are necessary.
  • the ionization electrode is already somewhat provided with deposits; the ionization electrode signal is lower.
  • the ionization electrode signal I 2 of the ionization electrode 14 is lower than at the beginning. Since the ionization electrode signal I 2 is still greater than the first reference value I limit , no further measures are necessary.
  • the ionization electrode is provided with strong deposits; the ionization electrode signal is significantly lower than at the beginning.
  • the ionization electrode signal I 3 of the ionization electrode 14 is smaller than the first reference value I limit . Therefore, the control 3 gives an indication of maintenance. This indication can be made, for example, in the form of a warning light or via a remote data connection to a specialist tradesman.
  • a gradient ( ⁇ CO / ⁇ ⁇ ) limit can also be preset. Furthermore, instead of a single measurement, averaging can take place over several measurements. It can be compared both with a given reference value and with the measurements of previous measurements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Überprüfung des lonisationselektrodensignals bei Brennern.The invention relates to a method for checking the ionisationselektrodensignals in burners.

Ionisationselektroden werden eingesetzt, um das Vorhandensein einer Flamme festzustellen. In einer Flamme können sich Ionen frei bewegen. Wird an zwei Elektroden, die sich im Flammenbereich befinden, eine Spannung angelegt, so fließt in der Flamme ein Strom. Erlischt die Flamme, so kommt auch der Stromfluss zum Erliegen. Unterschreitet der gemessene Ionisationsstrom einen bestimmten Grenzwert, so verriegelt die Regelung des Brenners die Gaszufuhr, um unkontrollierten Gasaustritt zu vermeiden.Ionization electrodes are used to detect the presence of a flame. In a flame, ions can move freely. If a voltage is applied to two electrodes located in the flame area, a current flows in the flame. When the flame goes out, the current flow comes to a standstill. If the measured ionization current falls below a certain limit value, the regulation of the burner locks the gas supply in order to avoid uncontrolled gas leakage.

Der Ionisationsstrom ist von einigen Faktoren abhängig. So nimmt beispielsweise der Ionisationsstrom ab, wenn die Oberfläche der Elektroden durch den Einfluss der Flamme mit einer Ablagerungsschicht überzogen ist.The ionization current depends on several factors. For example, the ionization current decreases when the surface of the electrodes is covered by a deposition layer due to the influence of the flame.

Im ungünstigsten Fall kann es trotz Vorhandensein einer Flamme zu einer Brenngasabschaltung kommen, wenn die Ionisationselektroden zu stark mit Ablagerungen überzogen sind.In the worst case, it may come to a fuel gas shutdown despite the presence of a flame, if the ionization electrodes are too heavily coated with deposits.

Darüber hinaus ist der Ionisationsstrom vom Brenngas-Luft-Verhältnis λ abhängig. Bei stöchiometrischer Verbrennung ist der Ionisationsstrom maximal.In addition, the ionization current of the fuel gas-air ratio λ is dependent. For stoichiometric combustion, the ionization current is maximum.

Ein Verfahren zur Regelung eines Gasgebläsebrenners einer Heizungsanlage mit Hilfe der Messung der Kohlenmonoxidemission im Abgas ist aus der DE 103 00 602 A1 bekannt. Hierbei wird das Brenngas-Luft-Gemisch des Brenners angefettet, wodurch die Luftzahl sinkt. Ein Abgassensor misst die Kohlenmonoxidemission im Abgasrohr und leitet das Signal an eine Regelung weiter. Unterschreitet der Luftüberschuss einen bestimmten Wert, in der Regel sind dies ca. 8 % Luftüberschuss, so steigen die Kohlenmonoxidemissionen steil an. Registriert die Regelung, dass die Kohlenmonoxidemission einen vorgegebenen Schwellwert überschritten hat, so wird das Gemisch nicht weiter angefettet. Das Gemisch wird dann definiert abgemagert, um eine optimale Verbrennung zu erreichen.A method for controlling a gas-fired burner of a heating system by means of the measurement of carbon monoxide emission in the exhaust gas is from DE 103 00 602 A1 known. Here, the fuel gas-air mixture of the burner is enriched, whereby the air ratio decreases. An exhaust gas sensor measures the carbon monoxide emission in the exhaust pipe and forwards the signal to a control. If the excess of air falls below a certain level, usually around 8% of excess air, carbon monoxide emissions rise steeply. If the regulation that the carbon monoxide emission has exceeded a predetermined threshold value, the mixture is not further enriched. The mixture is then defined as lean to achieve optimum combustion.

Die EP 770 824 A2 offenbart ein Verfahren zur Regelung eines Brenngas-Luft-Gemischs eines Brenners, bei dem der Ionisationsstrom oder die Ionisationsspannung erfasst wird. Während des Kalibrierverfahrens wird das Brenngas-Luft-Gemisch angefettet und die Ionisationsspannung gemessen. Erreicht letztgenannte ein Maximum, so ist die Verbrennung stöchiometrisch. Das Gemisch wird dann gezielt abgemagert. Der Absolutwert der Ionisationsspannung kann aufgrund von Verschleiß, Verschmutzung oder Verbiegung variieren. Erreicht das Spannungsmaximum einen bestimmten Wert nicht, so wird ein Störsignal ausgelöst und der Brenner abgeschaltet.The EP 770 824 A2 discloses a method for controlling a fuel gas-air mixture of a burner, in which the ionization current or the ionization voltage is detected. During the calibration procedure, the fuel gas-air mixture is enriched and the ionization voltage is measured. If the latter reaches a maximum, the combustion is stoichiometric. The mixture is then deliberately emaciated. The absolute value of the ionization voltage may vary due to wear, contamination or bending. If the voltage maximum does not reach a certain value, a fault signal is triggered and the burner is switched off.

Aus AT 411 189 B ist bekannt, dass bei nahstöchiometrischer Verbrennung die Kohlenmonoxidemissionen im Abgas sehr stark ansteigen. Zur Regelung des Brenngas-Luft-Verhältnisses eines Brenners wird das Gemisch angefettet, bis hohe Kohlenmonoxidemissionen gemessen werden; das Gemisch wird dann gezielt abgemagert. Bezüglich der Ionisationsstrommessung lehrt die AT 411 189 B , dass ein Plausibilitätstest durchgeführt werden kann. Es ist aus dem Stand der Technik bekannt, dass im Bereich 1,0 < λ < 1,3 beim Anfetten sowohl der Ionisationsstrom, als die Kohlenmonoxidemissionen stetig ansteigen. Daher sieht die AT 411 189 B vor, dass in dem Fall, in dem der Ionisationsstrom ansteigt, während die Kohlenmonoxidemissionen abfallen, ein Fehler vorliegen muss, weshalb der Kalibriervorgang abgebrochen wird und die Regelung mit den alten Sollwerten weiterbetrieben wird. Fällt der Ionisationsstrom bei der Anfettung, so sollte die Verbrennung unterstöchiometrisch sein; die Kohlenmonoxidemissionen müssten dann extrem hoch sein. Werden keine solchen Emissionen gemessen, so muss gemäß der Lehre der AT 411 189 B ein Fehler vorliegen.Out AT 411 189 B It is known that with near-stoichiometric combustion, the carbon monoxide emissions in the exhaust gas rise very sharply. To control the fuel gas to air ratio of a burner, the mixture is enriched until high carbon monoxide emissions are measured; the mixture is then deliberately emaciated. Regarding the ionization current measurement teaches the AT 411 189 B that a plausibility test can be carried out. It is known from the prior art that in the field 1.0 <λ <1.3 when enriching both the ionization current, as the carbon monoxide emissions increase steadily. Therefore, the sees AT 411 189 B For example, in the case where the ionization current increases as carbon monoxide emissions fall, there must be a fault, so the calibration process is aborted and the control continues to operate with the old setpoints. If the ionization current falls during enrichment, the combustion should be substoichiometric; the carbon monoxide emissions would then have to be extremely high. If no such emissions are measured, according to the teaching of AT 411 189 B there is a mistake.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren zu schaffen, das eine Veränderung des Ionisationselektrodensignals frühzeitig erkennt, um vor dem Ausfall Gegenmaßnahmen einleiten zu können.The invention has for its object to provide a method that detects a change in the ionization electrode signal early on to initiate countermeasures before the failure can.

Erfindungsgemäß wird dies gemäß den Merkmalen des unabhängigen Anspruchs dadurch gelöst, dass bei einem Gasbrenner mit einer Einrichtung zur getrennten Regelung der Brenngas- und Luftmenge und einem Abgassensor zur Messung der Kohlenmonoxid-Konzentration oder Konzentration an unverbrannten Kohlenwasserstoffen, das Brenngas-Luft-Gemisch angefettet wird bis der Abgassensor ein Signal erfasst, das einem vorgegebenen oder errechneten Schwellwert entspricht, zu diesem Zustand das lonisationselektrodensignals einer Ionisationselektrode erfasst und mit einem Referenzwert verglichen wird, wobei in dem Fall, in dem das lonisationselektrodensignals den Referenzwert unterschreitet ein Warnhinweis ausgegeben wird.According to the invention this is achieved according to the features of the independent claim, characterized in that in a gas burner with a device for separate control of the fuel gas and air quantity and an exhaust gas sensor for measuring the carbon monoxide concentration or concentration of unburned hydrocarbons, the fuel gas-air mixture is enriched until the exhaust gas sensor detects a signal which corresponds to a predetermined or calculated threshold value, for this state the ionization electrode signal of an ionization electrode is detected and compared with a reference value, wherein in the case in which the ionization electrode signal falls below the reference value a warning is issued.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich durch die Merkmale der unabhängigen Ansprüche.Advantageous embodiments of the invention will become apparent from the features of the independent claims.

So kann der Mittelwert der mindestens zwei letzten lonisationselektrodensignale gebildet werden, um anstelle von Einzeleinflüssen Trends größeres Gewicht zu geben. Wird ein zweiter Referenzwertes, der niedriger als der erste Referenzwert ist, unterschritten, so wird das Heizgerät abgeschaltet, um unsichere Zustände zu vermeiden.Thus, the mean value of the at least two last ionisationselektrodensignale can be formed to give instead of single influences trends greater weight. If a second reference value, which is lower than the first reference value, falls below, then the heater is switched off to avoid unsafe conditions.

Die Erfindung wird nun anhand der Figuren detailliert erläutert. Hierbei zeigen:

  • Figur 1 eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens und
  • Figur 2 den Verlauf des Ionisationsstroms und der Kohlenmonoxidemissionen während der Durchführung des erfindungsgemäßen Verfahrens.
The invention will now be explained in detail with reference to FIGS. Hereby show:
  • FIG. 1 an apparatus for carrying out the method according to the invention and
  • FIG. 2 the course of the ionization and the carbon monoxide emissions during the implementation of the method according to the invention.

Eine Heizungsanlage gemäß Fig. 1 verfügt über einen Brenner 1 mit einem diesen umgebenden Wärmeaustauscher 10, an den sich ein Abgasrohr 9, in dem sich ein Abgassensor 6 befindet, anschließt. Dem Brenner 1 ist ein Gebläse 2 vorgeschaltet. Auf der Eingangsseite des Gebläses 2 befindet sich eine Luftansaugleitung 13, in die auch eine Brenngasleitung 12, die durch ein Gasventil 4 von der Brenngaszuführung 11 getrennt ist, reicht. Das Gasventil 4 verfügt über einen Stellantrieb 5. Das Gebläse 2 verfügt über einen Antriebsmotor 7 mit Drehzahlerfassung 8. Stellantrieb 5, Antriebsmotor 7, Drehzahlerfassung 8 und Abgassensor 6 sind mit einer Regelung 3, die über ein Speichermodul 31 und Rechenmodul 32 verfügt, verbunden. Ebenfalls mit der Regelung ist eine Ionisationselektrode 14, die knapp oberhalb des Brenners 1 positioniert ist, verbunden.A heating system according to Fig. 1 has a burner 1 with a surrounding heat exchanger 10, to which an exhaust pipe 9, in which an exhaust gas sensor 6 is connected. The burner 1, a fan 2 is connected upstream. On the input side of the blower 2 is an air intake line 13, in which also a fuel gas line 12, which is separated by a gas valve 4 from the fuel gas supply 11, extends. The gas valve 4 has an actuator 5. The fan 2 has a drive motor 7 with speed detection 8. Actuator 5, drive motor 7, speed detection 8 and exhaust gas sensor 6 are connected to a controller 3, which has a memory module 31 and computing module 32. Also with the control is an ionization electrode 14, which is positioned just above the burner 1, connected.

Beim Brennerbetrieb wird von der Regelung 3 z.B. aufgrund eines nicht dargestellten Raumthermostaten in Verbindung mit einer ebenfalls nicht dargestellten Vorlauftemperaturerfassung im Rechenmodul 32 eine Sollleistung des Brenners 1 berechnet. Im Speichermodul 31 ist zu der Sollleistung ein Sollsignal für die Brenngas- und Luftmenge hinterlegt. Mit diesen Sollsignalen wird das Gebläse 2 mit seinem Antriebsmotor 7 und seiner Drehzahlerfassung sowie das Gasventil 4 mit seinem Stellantrieb 5 angesteuert, wodurch ein Brenngas-Luft-Gemisch in das Gebläse 2 und von dort zum Brenner 1 strömt. Das Gemisch wird an der äußeren Oberfläche des Brenners 1 verbrannt, durchströmt den Wärmeaustauscher 10 und strömt anschließend durch das Abgasrohr 9 ins Freie.When burner operation of the controller 3, for example due to a not shown room thermostat in conjunction with a flow temperature detection, also not shown in the computing module 32, a target power of the burner 1 is calculated. In the memory module 31 is to the desired power a target signal for the fuel gas and Amount of air deposited. With these desired signals, the blower 2 is driven with its drive motor 7 and its speed detection and the gas valve 4 with its actuator 5, whereby a fuel gas-air mixture flows into the blower 2 and from there to the burner 1. The mixture is burned on the outer surface of the burner 1, flows through the heat exchanger 10 and then flows through the exhaust pipe 9 into the open air.

Fig. 2 zeigt den Zusammenhang zwischen Kohlenmoxidkonzentration CO, Ionisationsstrom I und Verbrennungsluftverhältnis λ. Hierbei sind drei unterschiedliche Ionisationstromlinien für unterschiedliche Zustände der Ionisationselektrode dargestellt. Um eine vollständige Verbrennung zu erreichen, ist theoretisch ein Verbrennungsluftverhältnis λ von 1,0 notwendig. λ = m L m L , min

Figure imgb0001
Fig. 2 shows the relationship between carbon monoxide concentration CO, ionization current I and combustion air ratio λ. Here, three different ionization current lines for different states of the ionization electrode are shown. In order to achieve complete combustion, a combustion air ratio λ of 1.0 is theoretically necessary. λ = m L m L . min
Figure imgb0001

Hierbei ist mL die tatsächliche Luftmenge und mL,min die stöchiometrische Luftmenge. Bei der Verbrennung von Kohlenwasserstoffen zu Kohlendioxid entsteht stets Kohlenmonoxid als Zwischenprodukt. Aufgrund der begrenzten Reaktionszeit in der wärmebeeinflußten Zone und eine unzureichende Durchmischung von Brenngas und Luft, ist in der Praxis jedoch ein gewisser Luftüberschuss notwendig, um einen vollständigen Ausbrand zu gewährleisten. Daher hat man in der Regel bei knapp überstöchiometrischer Verbrennung einen CO-Wert von weit über 1000 ppm. Erst bei einem Luftüberschuß von ca. 10 % fallen die Kohlenmonoxid-Emissionen im ausreagierten Abgas deutlich und erreichen bei üblichen Brennern Werte deutlich unter 100 ppm. Mit Erhöhung der Luftzahl fällt jedoch - aufgrund des Anteils inerter Gase - die Verbrennungstemperatur; die Verbrennungsreaktion wird verlangsamt und es kommt zum Abbruch der Reaktion am Wärmeaustauscher. Daher ist ab einem Luftüberschuss von ca. 80 % ein deutlicher Anstieg der Kohlenmonoxidemissionen zu verzeichnen.Here, m L is the actual air flow and m L, min is the stoichiometric air flow. The combustion of hydrocarbons into carbon dioxide always produces carbon monoxide as an intermediate. Due to the limited reaction time in the heat affected zone and insufficient mixing of fuel gas and air, in practice, however, a certain excess air is necessary to ensure complete burnout. Therefore, a CO value of well over 1000 ppm is usually reached at just over-stoichiometric combustion. Only with an excess of air of about 10%, the carbon monoxide emissions in the fully reacted exhaust gas fall significantly and reach in conventional burners values well below 100 ppm. As the air ratio increases, however, the combustion temperature drops because of the proportion of inert gases; the combustion reaction is slowed down and the reaction at the heat exchanger stops. Therefore it is off an air surplus of about 80%, a significant increase in carbon monoxide emissions.

Zu Beginn des erfindungsgemäßen Verfahrens liegt ein beliebiges Brenngas-Luft-Verhältnis vor. Die Regelung 3 steuert kontinuierlich den Stellantrieb 5 des Gasventils 4 derartig, dass stetig mehr Brenngas bei gleicher Luftmenge in das Gebläse 2 gelangt. Hierdurch wird das Gemisch angefettet; die Luftzahl sinkt. Der Abgassensor 6 misst die Kohlenmonoxidemission im Abgasrohr 9 und leitet das Signal an die Regelung 3 weiter. Registriert die Regelung 3, dass die Kohlenmonoxidemission einen im Speichermodul 31 vorgegebenen Schwellwert COGrenz erreicht oder überschritten hat, so wird das Gemisch nicht weiter angefettet. Es ist bekannt, dass derartige Kohlenmonoxidemissionen bei einer Luftzahl von ca. 1,08 erreicht werden. Zunächst wird von einer neuwertigen Ionisationselektrode ausgegangen; das lonisationselektrodensignal ist demnach nicht gemindert. Das lonisationselektrodensignal I1 der Ionisationselektrode 14 beim vorgegebenen Schwellwert COGrenz wird gemessen und im Rechenmodul 32 der Regelung 3 mit einem ersten Referenzwert IGrenz aus dem Speichermodul 31 verglichen. Da das lonisationselektrodensignal I1 größer als der erste Referenzwert IGrenz ist, sind keine weiterführenden Maßnahmen notwendig.At the beginning of the process according to the invention is any fuel gas to air ratio. The control 3 continuously controls the actuator 5 of the gas valve 4 in such a way that more and more fuel gas passes into the blower 2 at the same amount of air. As a result, the mixture is enriched; the air ratio drops. The exhaust gas sensor 6 measures the carbon monoxide emission in the exhaust pipe 9 and forwards the signal to the control 3. If the controller 3 registers that the carbon monoxide emission has reached or exceeded a threshold CO limit specified in the memory module 31, then the mixture is not further enriched. It is known that such carbon monoxide emissions are achieved at an air ratio of about 1.08. First, it is assumed that a new ionization electrode; the ionization electrode signal is therefore not reduced. The ionization electrode signal I 1 of the ionization electrode 14 at the predetermined threshold CO limit is measured and compared in the calculation module 32 of the controller 3 with a first reference value I limit from the memory module 31. Since the ionization electrode signal I 1 is greater than the first reference value I limit , no further measures are necessary.

Bei einer späteren Durchführung des erfindungsgemäßen Verfahrens ist die Ionisationselektrode bereits etwas mit Ablagerungen versehen; das Ionisationselektrodensignal ist geringer. Bei dem vorgegebenen Schwellwert COGrenz ist das Ionisationselektrodensignal I2 der Ionisationselektrode 14 geringer als zu Beginn. Da das Ionisationselektrodensignal I2 weiterhin größer als der erste Referenzwert IGrenz ist, sind keine weiterführenden Maßnahmen notwendig.In a later implementation of the method according to the invention, the ionization electrode is already somewhat provided with deposits; the ionization electrode signal is lower. At the predetermined threshold CO limit , the ionization electrode signal I 2 of the ionization electrode 14 is lower than at the beginning. Since the ionization electrode signal I 2 is still greater than the first reference value I limit , no further measures are necessary.

Bei einer noch späteren Durchführung des erfindungsgemäßen Verfahrens ist die Ionisationselektrode mit starken Ablagerungen versehen; das lonisationselektrodensignal ist deutlich geringer als zu Beginn. Bei dem vorgegebenen Schwellwert COGrenz ist das Ionisationselektrodensignal I3 der Ionisationselektrode 14 kleiner als der erste Referenzwert IGrenz. Daher gibt die Regelung 3 einen Hinweis zur Wartung aus. Dieser Hinweis kann zum Beispiel in Form einer Warnleuchte oder über eine Datenfernverbindung zu einem Fachhandwerker erfolgen.In an even later implementation of the method according to the invention, the ionization electrode is provided with strong deposits; the ionization electrode signal is significantly lower than at the beginning. At the predetermined threshold CO limit , the ionization electrode signal I 3 of the ionization electrode 14 is smaller than the first reference value I limit . Therefore, the control 3 gives an indication of maintenance. This indication can be made, for example, in the form of a warning light or via a remote data connection to a specialist tradesman.

Unterschreitet das Ionisationselektrodensignal einen zweiten Referenzwert IAbschalt, so wird die Brenngaszufuhr zum Brenner 1 abgeschaltet.If the ionization electrode signal falls below a second reference value I switch-off , the fuel gas supply to the burner 1 is switched off.

Erfindungsgemäß kann anstelle des vorgegebenen Schwellwerts COGrenz auch ein Gradient (Δ CO/Δ λ)Grenz vorgegeben werden. Ferner kann anstelle einer Einzelmessung eine Mittelwertbildung über mehrere Messungen erfolgen. Es kann sowohl mit einem vorgegebenen Referenzwert, als auch mit den Messwerten vorhergegangener Messungen verglichen werden.According to the invention, instead of the predetermined threshold CO limit , a gradient (Δ CO / Δ λ) limit can also be preset. Furthermore, instead of a single measurement, averaging can take place over several measurements. It can be compared both with a given reference value and with the measurements of previous measurements.

Claims (3)

  1. Method to test the ionisation electrode signal of an ionisation electrode (14) of a gas burner (1), in particular having bellows (2), having an electronic control (3), which produces a target signal for the quantity of combustible gas and the quantity of air for a predetermined burner capacity, a device to regulate the quantity of combustible gas (4, 5) and an exhaust gas sensor (6), which produces a signal equivalent to the carbon monoxide concentration or the concentration of unburnt hydrocarbons, wherein the mixture of combustible gas and air is enriched until the exhaust gas sensor (6) detects a signal, which corresponds to a predetermined or calculated threshold value alone or in connection with at least one further signal, characterised in that in this state the ionisation electrode signal of an ionisation electrode (14) is detected and is compared to a reference value or to at least one measured value from earlier tests, wherein in the case in which the ionisation electrode signal falls below the reference value or substantially falls below at least one earlier measured value, a warning is issued.
  2. Method to test the ionisation electrode signal of an ionisation electrode (14) of a gas burner (1) according to claim 1, characterised in that the average value of the at least two last ionisation electrode signals is formed as a reference condition and is compared with the reference value or the average value of the at least two preceding ionisation electrode signals as a reference condition.
  3. Method to test the ionisation electrode signal of an ionisation electrode (14) of a gas burner (1) according to claim 1 or 2, characterised in that in the case of a second reference value being fallen below, which is lower than the first reference value, or in the case in which at least one earlier measured value is significantly fallen below, the gas burner (1) is switched off.
EP08010303.9A 2007-06-11 2008-06-06 Method for monitoring an ionisation electrode signal in burners Active EP2017531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08010303T PL2017531T3 (en) 2007-06-11 2008-06-06 Method for monitoring an ionisation electrode signal in burners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0089707A AT505244B1 (en) 2007-06-11 2007-06-11 METHOD FOR CHECKING IONIZATION ELECTRODE SIGNAL IN BURNERS

Publications (3)

Publication Number Publication Date
EP2017531A2 EP2017531A2 (en) 2009-01-21
EP2017531A3 EP2017531A3 (en) 2013-03-13
EP2017531B1 true EP2017531B1 (en) 2014-01-01

Family

ID=39639512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010303.9A Active EP2017531B1 (en) 2007-06-11 2008-06-06 Method for monitoring an ionisation electrode signal in burners

Country Status (7)

Country Link
EP (1) EP2017531B1 (en)
AT (1) AT505244B1 (en)
DE (1) DE102008027010A1 (en)
DK (1) DK2017531T3 (en)
ES (1) ES2450641T3 (en)
HR (1) HRP20140289T1 (en)
PL (1) PL2017531T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228979A1 (en) 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and/or a burner behavior, and burner unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2007310C2 (en) * 2011-08-29 2013-03-04 Intergas Heating Assets B V WATER HEATING DEVICE AND METHOD FOR MEASURING A FLAME FLOW IN A FLAME IN A WATER HEATING DEVICE.
DE102013014379A1 (en) * 2013-08-30 2015-03-05 Kübler Gmbh Method for determining the maintenance status of a heating system
EP3156730B1 (en) * 2015-10-12 2019-03-20 MHG Heiztechnik GmbH Method of calibrating a burner device for liquid fuels and control device for a burner device
EP3290802B1 (en) * 2016-09-02 2022-01-19 Robert Bosch GmbH Method for controlling an inspection time in a heating system and a control unit and a heating system
DE102017204030A1 (en) 2016-09-02 2018-03-08 Robert Bosch Gmbh Method for detecting a state of aging of a heating system and a control unit and a heating system
DE102016225752A1 (en) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Method for controlling a fuel-air ratio in a heating system and a control unit and a heating system
DE102018120377A1 (en) 2018-08-21 2020-02-27 Truma Gerätetechnik GmbH & Co. KG Heater and method for controlling a blower gas burner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59604283D1 (en) * 1995-10-25 2000-03-02 Stiebel Eltron Gmbh & Co Kg Method and circuit for regulating a gas burner
DE10300602B4 (en) 2002-01-17 2012-01-05 Vaillant Gmbh Method for controlling a gas burner
AT411189B (en) * 2002-01-17 2003-10-27 Vaillant Gmbh METHOD FOR CONTROLLING A GAS BURNER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228979A1 (en) 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and/or a burner behavior, and burner unit
DE102019003451A1 (en) * 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and / or a burning behavior of a burner and burner arrangement

Also Published As

Publication number Publication date
PL2017531T3 (en) 2014-06-30
AT505244B1 (en) 2009-08-15
DK2017531T3 (en) 2014-03-31
EP2017531A3 (en) 2013-03-13
AT505244A1 (en) 2008-12-15
ES2450641T3 (en) 2014-03-25
DE102008027010A1 (en) 2008-12-18
EP2017531A2 (en) 2009-01-21
HRP20140289T1 (en) 2014-04-25

Similar Documents

Publication Publication Date Title
EP2017531B1 (en) Method for monitoring an ionisation electrode signal in burners
EP1331444B1 (en) Method for regulating a gas burner
EP2014985B1 (en) Method of adjusting the air/fuel ratio for a gas fired burner
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
EP3593047B1 (en) Method for identifying the type of fuel gas during the starting operation of a fuel-gas-operated heating device and fuel-gas-operated heating device
EP0331918A2 (en) Actuating method for a heating apparatus, and heating apparatus
DE102019131310A1 (en) Heater with emergency control
EP2405198B1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
DE10300602B4 (en) Method for controlling a gas burner
DE10001251B4 (en) Method for controlling or regulating a gas burner
DE19919126A1 (en) Exhaust gas recirculation system for internal combustion engine
EP3870899B1 (en) Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device
EP3734159A1 (en) Method for checking a gas mixture sensor in a combustion gas operated heater
DE102011010074B4 (en) Method for checking the functionality of a sensor and for controlling a furnace
DE102005011021A1 (en) Fresh air-exhaust gas-pipeline system testing method for blower-supported heating device, involves issuing warning instruction and/or disconnecting blower-supported heating device during lower-deviation of preset threshold value
WO2020221540A1 (en) Reduction of nitrogen oxide in the exhaust gas flow of a firing system with an scr catalyst
DE102008016047B4 (en) Procedure for level monitoring
DE10319835A1 (en) Control method for fuel-driven burner, involves performing calibrating procedure during start of burner operation by increasing the fuel-air mixture until an exhaust sensor outputs a signal equivalent to an established threshold value
EP4215815A1 (en) Device and use of a flow rate of a heating system and an ionisation signal of a heating system
DE19956395A1 (en) Process for flame monitoring in gas burners and corresponding device
DE4331048A1 (en) Method and device for operating an over-stoichiometric premixing gas burner
DE102022122820A1 (en) Method for evaluating an installation of a gas-air system of a heater, gas-air system and computer program
EP4012260A1 (en) Gas boiler and method for controlling a combustion process of a gas boiler
WO1991000978A1 (en) Furnace control device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 1/02 20060101ALI20130205BHEP

Ipc: F23N 5/12 20060101AFI20130205BHEP

17P Request for examination filed

Effective date: 20130819

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 5/12 20060101AFI20130912BHEP

Ipc: F23N 1/02 20060101ALI20130912BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20131023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011141

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2450641

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140325

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20140289

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140326

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20140289

Country of ref document: HR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 16085

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140501

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011141

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011141

Country of ref document: DE

Effective date: 20141002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140606

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140289

Country of ref document: HR

Payment date: 20190603

Year of fee payment: 12

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140289

Country of ref document: HR

Payment date: 20200525

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140289

Country of ref document: HR

Payment date: 20210524

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140289

Country of ref document: HR

Payment date: 20220603

Year of fee payment: 15

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20140289

Country of ref document: HR

Payment date: 20230526

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230515

Year of fee payment: 16

Ref country code: FR

Payment date: 20230623

Year of fee payment: 16

Ref country code: DK

Payment date: 20230517

Year of fee payment: 16

Ref country code: DE

Payment date: 20230515

Year of fee payment: 16

Ref country code: BG

Payment date: 20230421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230601

Year of fee payment: 16

Ref country code: SK

Payment date: 20230523

Year of fee payment: 16

Ref country code: PL

Payment date: 20230524

Year of fee payment: 16

Ref country code: HR

Payment date: 20230526

Year of fee payment: 16

Ref country code: AT

Payment date: 20230517

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230515

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230629

Year of fee payment: 16

Ref country code: GB

Payment date: 20230515

Year of fee payment: 16

Ref country code: ES

Payment date: 20230703

Year of fee payment: 16

Ref country code: CH

Payment date: 20230702

Year of fee payment: 16