[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2014336B1 - Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos - Google Patents

Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos Download PDF

Info

Publication number
EP2014336B1
EP2014336B1 EP07112442A EP07112442A EP2014336B1 EP 2014336 B1 EP2014336 B1 EP 2014336B1 EP 07112442 A EP07112442 A EP 07112442A EP 07112442 A EP07112442 A EP 07112442A EP 2014336 B1 EP2014336 B1 EP 2014336B1
Authority
EP
European Patent Office
Prior art keywords
inert gas
enclosed space
air atmosphere
air
vaporizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07112442A
Other languages
German (de)
English (en)
Other versions
EP2014336A1 (fr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amrona AG
Original Assignee
Amrona AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amrona AG filed Critical Amrona AG
Priority to AT07112442T priority Critical patent/ATE460210T1/de
Priority to EP07112442A priority patent/EP2014336B1/fr
Priority to DE502007003086T priority patent/DE502007003086D1/de
Priority to CL200802029A priority patent/CL2008002029A1/es
Priority to ARP080103008A priority patent/AR070639A1/es
Priority to CA2675279A priority patent/CA2675279C/fr
Priority to JP2010515528A priority patent/JP5184630B2/ja
Priority to US12/216,973 priority patent/US8602119B2/en
Priority to AU2008277673A priority patent/AU2008277673B2/en
Priority to UAA200908887A priority patent/UA96011C2/uk
Priority to PCT/EP2008/059155 priority patent/WO2009010485A1/fr
Priority to CN2008800040374A priority patent/CN101605573B/zh
Priority to RU2009142855/12A priority patent/RU2468844C2/ru
Publication of EP2014336A1 publication Critical patent/EP2014336A1/fr
Priority to HK09101657.3A priority patent/HK1124004A1/xx
Priority to NO20092888A priority patent/NO339875B1/no
Application granted granted Critical
Publication of EP2014336B1 publication Critical patent/EP2014336B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/002Fire prevention, containment or extinguishing specially adapted for particular objects or places for warehouses, storage areas or other installations for storing goods
    • A62C3/004Fire prevention, containment or extinguishing specially adapted for particular objects or places for warehouses, storage areas or other installations for storing goods for freezing warehouses and storages
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/33Responding to malfunctions or emergencies to fire, excessive heat or smoke

Definitions

  • the present invention relates to a method and a device for fire prevention and / or fire extinguishing in closed rooms, the indoor air atmosphere may not exceed a predetermined temperature value.
  • An enclosed space the indoor air atmosphere of which must not exceed a predeterminable temperature value, such as a cold storage, an archive or a computer room, is usually equipped with an air conditioning system in order to be able to condition the room accordingly.
  • the air conditioning system is designed and dimensioned so that a sufficient amount of heat or thermal energy from the indoor air atmosphere of the enclosed space can be dissipated to keep the temperature inside the room in a predetermined range.
  • the temperature to be maintained is usually at a value that requires a nearly permanent cooling and thus the continuous operation of an air conditioner, as this is to avoid temperature fluctuations as possible. This applies in particular to deep-freeze warehouses that are operated at temperatures down to -20 ° C.
  • an air conditioning system is also used in, for example, computer rooms or control cabinets in order to avoid - especially due to the waste heat generated in the interior of the room by electronic components, etc. - the temperature of the ambient air atmosphere assuming a critical value.
  • the dimensioning of the air conditioner is to be chosen so that at any time from the indoor air atmosphere, a sufficient amount of heat can be dissipated, so that the temperature inside the room does not exceed the predetermined temperature requirement according to need and application.
  • the amount of heat to be dissipated by the air conditioner from the room air atmosphere depends on the heat flow that diffuses through the space envelope into the interior of the room (heat conduction). If heat-radiating objects are also present in the enclosed space, the waste heat generated in the interior of the room also makes a not insignificant contribution to the amount of heat to be dissipated to the outside. In particular, in server rooms but also cabinets in which computer components are housed, the adequate removal of the resulting waste heat plays a crucial role, so that overheating and malfunction or even destruction of the electronic components can be effectively prevented.
  • Such an inerting system for closed rooms is used, for example, in DE 198 11 851 A1 described.
  • Main field of application of such an "inerting technique”, as the flooding of a fire-prone room by oxygen displacing gases, such as carbon dioxide, nitrogen, noble gases and mixtures thereof is called, are computerized areas, electrical switch and distribution rooms, enclosed facilities and storage areas with high-quality assets.
  • inerting technology in rooms whose room air atmosphere must not exceed a predefinable temperature value, however, involves certain problems. This is due to the fact that the room air atmosphere of the enclosed space must be regularly or continuously traced inert gas so that a set in the indoor air atmosphere inerting can be maintained. Otherwise, the deliberately set oxygen concentration gradient would be between the room air atmosphere the enclosed space on the one hand and the outside atmosphere on the other hand depending on room tightness and air exchange rate sooner or later cancel.
  • conventional systems where the inertization technique is used as preventive fire protection are typically equipped with equipment for providing an oxygen displacing gas (inert gas).
  • This plant is designed, depending on the oxygen content in the room air atmosphere, to supply the room with an amount of inert gas sufficient to maintain the inertization level.
  • a nitrogen generator connected to a compressed air compressor is available, which generates the inert gas (in this case, the nitrogen-enriched air) directly on site as needed.
  • the normal outside air in a compressor is compressed and separated with hollow fiber membranes into nitrogen-enriched air and residual gases. While the residual gases are discharged to the outside, the nitrogen-enriched air in the enclosed space replaces a part of the room air and thus reduces the required oxygen content.
  • the supply of the nitrogen-enriched air is usually activated as soon as the oxygen concentration in the ambient air atmosphere exceeds a predetermined threshold.
  • the predetermined threshold value is selected as a function of the inerting level to be maintained.
  • the nitrogen-enriched air generated in a nitrogen generator and introduced into the interior of the room has a relation to the temperature of the outside air elevated temperature.
  • the indoor air atmosphere may not exceed a predetermined temperature value, associated with increased operating costs, since the air conditioning required for the room air conditioning must be sized accordingly.
  • the present invention is therefore based on the object for enclosed spaces, the indoor air atmosphere is maintained by means of an air conditioner, etc. in a predetermined temperature range, to provide a method and apparatus for fire prevention, with the to be provided by the air conditioning cooling capacity even then must not be increased if the room air atmosphere continuously or regularly inert gas is tracked to set or maintain a certain inerting inside the enclosed space.
  • a liquefied inert gas such as nitrogen
  • a liquefied inert gas such as nitrogen
  • the inert gas vaporized from the evaporator is supplied to the room air atmosphere of the enclosed space in a controlled manner so that the oxygen content in the atmosphere of the enclosed space is either lowered to a certain inerting level and / or maintained at a certain (already set) inerting level.
  • the invention provides that the heat energy required for the evaporation of the liquid inert gas is taken directly or indirectly from the room air atmosphere of the enclosed space.
  • the object underlying the invention is achieved in that the device of the type mentioned on the one hand an oxygen measuring device for measuring the oxygen content in the Room air atmosphere of the enclosed space and on the other hand has a system for the controlled introduction of inert gas in the indoor air atmosphere of the enclosed space.
  • the system has a container for providing and storing the inert gas in liquefied form and an evaporator connected to the container.
  • the evaporator serves on the one hand to evaporate at least part of the inert gas provided in the container and on the other hand to introduce the evaporated inert gas into the ambient air atmosphere of the enclosed space.
  • the device comprises a controller which is designed to control the system for controlled introduction of inert gas in dependence on the measured oxygen content in such a way that the oxygen content in the atmosphere of the enclosed space is lowered to a specific inerting level and / or held at a certain (already set) inerting level.
  • the evaporator is designed to remove directly or indirectly the heat energy required for the evaporation of the liquid inert gas from the ambient air atmosphere of the enclosed space.
  • inerting level as used herein is meant a reduced oxygen level compared to the oxygen level of normal ambient air. This is also referred to as a “basic inerting level” if the reduced oxygen content set in the room air atmosphere does not present any endangerment to persons or animals, so that they can continue to enter the enclosed space without difficulty.
  • the basic inerting level corresponds to an oxygen content in the room air atmosphere of the enclosed space of, for example, 13% by volume to 17% by volume.
  • full inertization level is to be understood as meaning a further reduced oxygen content in comparison to the oxygen content of the basic inertization level, in which the flammability of most materials has already been reduced to such an extent that they can no longer be ignited.
  • the full inertization level is generally about 11% by volume or 12% by volume oxygen content.
  • other values are also conceivable here.
  • the device according to the invention is an installation technology implementation of the method according to the invention for providing a preventive fire protection in rooms whose indoor air atmosphere must not exceed a predetermined temperature value.
  • the evaporation of the provided inert gas is carried out within the enclosed space. It is provided that before the evaporation of the inert gas, this is supplied in liquid form arranged in the interior of the room evaporator. This is a particularly easy to implement yet effective way to remove the room air atmosphere by evaporation of the liquid inert gas inside the room a certain amount of heat (heat of evaporation) and cool the room without the use of air conditioning.
  • the provided inert gas is not vaporized inside, but outside the enclosed space.
  • the heat energy required for the evaporation of the inert gas should be removed, at least in part, via heat conduction of the ambient air atmosphere of the enclosed space in an advantageous manner.
  • an evaporator arranged outside the enclosed space is used.
  • the evaporator is preferably associated with a heat exchanger which is designed so that it allows a heat transfer from the room air atmosphere of the enclosed space to the inert gas to be evaporated in the evaporator.
  • the amount of heat energy used to evaporate the inert gas by heat conduction from the room air atmosphere is removed is adjustable in a regulated manner.
  • the thermal conductivity of a heat conductor used to remove the required amount of heat is adjustable.
  • the thermal conductivity of the heat conductor is set as a function of the actual temperature, ie the temperature currently present and measured in the enclosed space, and / or a predefinable desired temperature.
  • the device further comprises a temperature measuring device for measuring the temperature of the ambient air atmosphere of the enclosed space in order to be able to determine continuously or at predetermined times and / or events the actual temperature prevailing in the enclosed space.
  • the thermal conductivity of the heat conductor which is used to remove the amount of heat required for evaporation, can then be adjusted depending on the measured actual temperature.
  • a heat exchanger with a heat exchanger is used to transfer the amount of heat from the room air atmosphere to the inert gas to be evaporated in the evaporator.
  • the efficiency of the heat exchanger as a function of the measured actual temperature and / or a predefinable desired temperature should be adjustable via the controller.
  • An air evaporator in the context of the present invention is an evaporator which, with the aid of the room air of the enclosed space, is kept at a "moderate" temperature, at which it is possible to convert the inert gas from its liquid state of aggregation into its gaseous state of aggregation.
  • the air evaporator for example, consists of aluminum tubes with longitudinal ribs.
  • Such an air evaporator operates in particular without additional external energy, ie only by heat exchange with an amount of air that is taken from the room air atmosphere of the enclosed space.
  • the liquefied inert gas can evaporate and warm to almost the temperature of the room air atmosphere.
  • the heat energy of the air required for the evaporation of the inert gas preferably via heat conduction taken, which is supplied to the evaporator or the heat exchanger of the evaporator as hot air, so that cools this amount of air accordingly.
  • the cooling effect occurring during the evaporation of the inert gas can be used directly to cool the room.
  • an air conditioning system used for air conditioning of the room can thus be made smaller.
  • This cooling effect is in particular decoupled from the cooling capacity of an air conditioning system used to condition the enclosed space.
  • an air evaporator is used with a heat exchanger, wherein in the heat exchanger on the one hand (as a medium to be heated) the inert gas to be introduced into the enclosed space and on the other hand (as the medium to be cooled) a subset of the air from the room air atmosphere is used.
  • the heat exchanger of the air evaporator via an air duct system connected to the enclosed space, so that on the one hand the heat exchanger (as the medium to be cooled) hot air from the room air atmosphere can be supplied.
  • the air duct system is used so that after the evaporation of the liquefied inert gas, the air supplied to the heat exchanger of the air evaporator air can be introduced as cooled air (cold air) in the enclosed space.
  • this air duct system it is particularly preferable to use at least one hot air duct for removing the air from the room air atmosphere, which at the same time also serves to supply hot air from the room air atmosphere to an air conditioner used for air conditioning of the enclosed space.
  • the (warm) air supplied to the heat exchanger of the air evaporator is again introduced as cooled (cold) air into the enclosed space after the inert gas has evaporated via a cold air duct, whereby this cold air duct can also serve at the same time. to re-supply the air cooled down when needed by the air conditioner used for the air conditioning of the enclosed space to the room air atmosphere.
  • the heat exchanger can also be designed as a component of an air conditioning system used for conditioning the enclosed space.
  • the air conditioning system itself has a heat exchanger through which a subset of the air from the indoor air atmosphere is passed to transfer thermal energy from the air to a cooling medium.
  • the heat exchanger of the air conditioner upstream or downstream of the heat exchanger of the evaporator.
  • the amount of air supplied to the heat exchanger as hot air in dependence on the actual temperature and / or a predetermined target temperature is adjustable.
  • a temperature measuring device is provided for measuring the actual temperature in the ambient air atmosphere of the enclosed space.
  • the inert gas used in the inventive solution is preferably provided that this is stored in a saturated state in the container.
  • the inert gas should be stored at a temperature which is a few degrees below the critical point for the inert gas.
  • the storage of the nitrogen at a pressure in the range between 25 and 33 bar, preferably at 30 bar , and the corresponding saturation temperature takes place.
  • the tank pressure should be sufficiently high, so that the supply pressure can press the inert gas as quickly as possible to the evaporator.
  • a supply pressure of 20 to 30 bar is assumed, so that the lines which connect the container for storing the liquefied inert gas with the evaporator, may have the smallest possible diameter cable.
  • the saturation temperature would be -150 ° C, whereby a sufficiently large distance from the critical temperature of -147 ° C can be maintained.
  • the solution according to the invention is not only suitable as a preventive fire protection in which the flammability of the goods stored in this space is reduced by a preferably permanent reduction of the oxygen content in the ambient air atmosphere of the enclosed space. Rather, it is also conceivable that in the case of a fire or if necessary, the oxygen content of the room air atmosphere is further lowered to a certain Vollinertmaschinesmat, namely by the indoor air atmosphere in a controlled manner inert gas is supplied.
  • the setting (and holding) of the Vollinertmaschineshous can be done, for example, for the purpose of fire extinguishment.
  • the apparatus further comprises a fire detection device for measuring a fire characteristic in the atmosphere of the enclosed space.
  • fire characteristic physical quantities that undergo measurable changes in the environment of a fire of origin, e.g. the ambient temperature, the solid or liquid or gas content in the ambient air (formation of smoke in the form of particles or aerosols or vapor) or the ambient radiation.
  • the Vollinertmaschinesher is adjusted by machine production and subsequent introduction of an oxygen-displacing gas.
  • the inert gas it is also possible for the inert gas to be supplied or to be supplied to adjust and maintain the full inertization level to be provided in the container, which is preferably designed as a cold tank, and vaporized with the evaporator.
  • the solution according to the invention can be used as preventive fire protection in an enclosed cold storage, a computer room or in a similar room, wherein the room air atmosphere of this room must not exceed a temperature value.
  • the solution according to the invention is also particularly preferred as a preventive fire protection in an enclosed cabinet or in a similar device in which also the room air atmosphere must not exceed a temperature value.
  • a preventive fire protection measure in an air-conditioned room 10 is used.
  • the room 10 is for example a cold storage or a computer room, so a room whose indoor air atmosphere must not exceed a predetermined temperature value.
  • the air conditioner should be designed so that with the help of the air conditioning of the room air atmosphere of the room 10, a sufficient amount of heat can be removed so that the temperature in the interior of the room 10 can be maintained in a predeterminable temperature range.
  • a preventive fire protection measure for air-conditioned rooms such as cold storage or computer rooms, specified.
  • the inventive Solution is characterized by the fact that, if necessary, the cooling effect that occurs when evaporating an inert gas to be introduced into the room air atmosphere, either directly or indirectly to cool the space 10 is exploited. Accordingly, it can be achieved with the solution according to the invention that the cooling power to be provided by the air conditioning system is correspondingly reduced. This not only reduces the operating costs of the entire system, but can also be dimensioned smaller in the planning of the room 10, the air conditioning.
  • an inert gas such as nitrogen
  • a container 1 designed here as a cold tank. So that a certain level of inerting can be set and maintained as preventive fire protection in the room air atmosphere of the enclosed space 10, a Fig. 1 only schematically illustrated evaporator 16 via a liquid gas feed line 8, a portion of the stored in the container 1 inert gas 37 supplied in liquid form.
  • the evaporator 16 is disposed inside the enclosed space 10.
  • the evaporator 16 may be, for example, an air evaporator which is at least partially surrounded by the room air of the enclosed space.
  • the inert gas supplied in liquid form can be converted into its gaseous state and thus evaporated.
  • the evaporator 16 itself can briefly cool down during the evaporation of the inert gas, but it is then reheated by the room air.
  • the evaporator removes the amount of heat required to evaporate the inert gas 37 directly the room air atmosphere of the enclosed space 10, since the evaporator 16 in the interior of the room 10th is arranged. Accordingly, the room air atmosphere of the room 10 is removed during the evaporation of the liquid inert gas 37 thermal energy, as a result, the room air atmosphere of the room 10 cools accordingly.
  • This cooling effect which is used to cool down the room air atmosphere of the room 10, occurs in particular when inert gas is introduced into the room air atmosphere of the room 10.
  • the evaporator 16 is followed by an inert gas line 3, via which the inert gas evaporated in the evaporator 16 is conducted in the gaseous state to the outlet nozzles 2.
  • the supply of the liquid inert gas 37 takes place from the container 1 to the evaporator 16 in a controllable manner via a controller 11.
  • the liquefied gas line 8 is associated with a valve 9 which can be controlled accordingly via the controller 11.
  • the amount of inert gas to be vaporized in the evaporator 16 and then introduced into the space 10 is preferably regulated via a corresponding activation of the valve 9 initiated by the controller 11.
  • the controller 11 outputs a control signal via a control line 40 to the valve 9 assigned to the liquid gas supply line 8.
  • the valve 9 can be opened and closed in this manner, so that if necessary, a certain subset of the stored inert gas 37 in the container 1 - after it was supplied to the evaporator 16 and evaporated there - can be introduced into the ambient air atmosphere of the room 10.
  • the controller 11 should in particular be designed so that it independently emits a corresponding drive signal to the valve 9, when inert gas must be tracked in the room air atmosphere of the enclosed space 10 in order to adjust the oxygen content of the room air atmosphere to a certain inerting or at a certain inerting level hold.
  • the inerting level to be set or maintained in the space 10 by controlled feeding or tracking of inert gas is preferably selected as a function of the fire load of the enclosed space 10. So it is conceivable, for example, that in the indoor air atmosphere, a relatively low oxygen content of, for example, about 12 vol.%, 11 vol.% Or lower is set when highly flammable matter or goods are stored in the space 10.
  • the controller 11 controls such that - starting from an oxygen content of about 21 vol .-% - in the interior of the room 10 first established a certain inerting and then held.
  • the controller 11 is provided with a control interface 38, by means of which set values for the user to be set and / or or to be held inerting level can be entered.
  • At least one oxygen sensor 4 is arranged in the interior of the space 10, via which the oxygen content in the ambient air atmosphere of the room 10 is measured continuously or at predeterminable times or events.
  • the oxygen measured value detected by this sensor 4 can be supplied to the controller 11 via a signal line 39.
  • an aspiratively operating system is used in which representative sub-quantities of the room air are continuously drawn in via a (not explicitly shown) pipeline or channel system and these sub-quantities are supplied to the oxygen sensor 4.
  • the inert gas is stored in liquefied form in the container 1.
  • the container 1 is preferably designed for permanent thermal insulation as a double-walled cold tank.
  • the container 1 may have an inner container 36 and a supporting outer container 24.
  • the inner container 36 is made of, for example, cold-resistant Cr-Ni steel, while structural steel, etc. is used as the material for the outer container 24.
  • the space between the inner container 36 and the outer container 32 may be lined with perlite and additionally isolated by a vacuum. This allows a particularly good thermal insulation.
  • the vacuum in the space between the inner container 36 and the outer container 24 can be renewed or reset, the container 1 a vacuum connection 18, to which, for example, corresponding vacuum pumps can be connected.
  • the used in the preferred embodiment of the solution according to the invention used cold tank is designed so that even when filling the container 1 with liquid inert gas, the pressure in the inner container 36 remains constant, so that even during refueling via the liquid line 8 easily withdrawn inert gas in liquid form can be.
  • cryogenic inert gas is pumped via a filling port 28 into a filling line 34.
  • the filling line 34 is connected via valves 29 to 32 with the inner container 36 of the inert gas container 1.
  • a liquid gas removal is also possible via the optional liquid gas removal connection or inert gas removal connection 33.
  • the evaporator 16 is disposed in the interior of the enclosed space 10, the evaporator 16 takes the entire amount of heat required to evaporate the evaporator 16 in liquid form supplied inert gas 37, directly the room air atmosphere of the enclosed space 10.
  • the associated cooling effect can be exploited to cool the ambient air atmosphere of the enclosed space 10 accordingly.
  • This cooling effect can - in particular if the space 10 is to be cooled permanently (cold storage), or if from the room 10, in particular over a longer period of time to dissipate the waste heat generated by electronic equipment, etc. - can be used to the cooling capacity, which air conditioner used for air conditioning (cooling) of the room 10 must apply accordingly, and in particular to reduce the ongoing operating costs of the entire system.
  • the cooling effect usable for cooling down the room air atmosphere of the room 10 occurs, in particular, when inert gas is introduced into the room air atmosphere of the room 10 in order to set and / or maintain a certain level of inerting there. In particular, then the room air atmosphere of the room 10 is withdrawn thermal energy, as a result, the room air atmosphere of the room 10 cools accordingly.
  • a further evaporator 20 may be provided, but outside the room 10th is arranged.
  • This further evaporator 20 is connected in a preferred manner via a feed line 46 with the tank 1 designed as a cold tank.
  • the further evaporator 20 is used in a preferred manner, if necessary, to evaporate the withdrawn via the feed line 46 from the container 1 inert gas.
  • the amount of inert gas supplied to the further evaporator 20 can be regulated by means of a valve 19 assigned to the feed line 46, specifically by this valve 19 being preferably controlled accordingly by the controller 11.
  • the inert gas evaporated in the further evaporator 20 may also be at least partially introduced, for example, via the outlet nozzles 2 into the enclosed space 10 in order to set or maintain a certain level of inertization in the ambient air atmosphere of the enclosed space 10.
  • the output of the further evaporator 20 can be connected via a valve 21 designed here as a three-way valve to the supply line 3 and the outlet nozzles 2 arranged in the interior of the space 10.
  • the output of the further evaporator 20 may also be connected to an inert gas removal port 44 to allow the user of the plant to remove gaseous inert gas from the vessel 1, also outside the space 10.
  • the additional evaporator 20 which is arranged outside of the space 10 and thus during operation (ie during evaporation of inert gas) does not extract heat from the room air atmosphere, it is possible that in the room 10, a continuous inerting be set or held can, if a recoverable by withdrawal of heat of evaporation cooling the room 10 is not or no longer desirable.
  • FIG. 2 is a schematic representation of a second preferred embodiment of the inventive solution shown. This embodiment differs from that in FIG Fig. 1 shown system in that now no evaporator is provided inside the room 10. Rather, here comes via the liquefied gas supply line. 8 with the Inertgas notioner 1 connected evaporator 16 is used, which - as well as the further evaporator 20 - is arranged outside of the space 10.
  • the valve 9 is provided, which can be controlled via the controller 11 in order to supply the evaporator 16 in a controlled manner in the inert gas container 1 stored liquefied inert gas 37.
  • the (liquid) inert gas supplied to the evaporator 16 via the liquid gas feed line 8 is vaporized in the evaporator 16 and then fed via the feed line 3 to the outlet nozzles 2 arranged in the interior of the space 10.
  • a plurality of outlet nozzles 2 are preferably provided, which are arranged distributed in the interior of the space 10 in order to be able to distribute this as evenly as possible in the space 10 when inert gas is introduced.
  • the at the in Fig. 2 shown embodiment used evaporator 16 is preferably designed as an evaporator, which is kept without supplying external energy only with the help of the room air of the enclosed space 10 at a "moderate" temperature. At this moderate temperature evaporation of the supplied liquid inert gas 37 is possible in the evaporator 16.
  • the air evaporator 16 is designed as a heat exchanger system, by which on the one hand, the inert gas to be evaporated 37 and on the other hand, a discharged from the room air atmosphere of the space 10 amount of air is passed.
  • the heat exchanger system of the evaporator 16 has an air duct system 22, 23.
  • the air duct system comprises a hot air duct 22, via which, with the aid of, for example, a pumping device 12, if necessary, a subset of the room air is sucked in and fed to the evaporator 16 or to the heat exchanger belonging to the evaporator 16.
  • the amount of room air, which is supplied to the heat exchanger associated with the evaporator 16, can be adjusted in a controlled manner via the controller 11.
  • the controller 11 via a control line 41 corresponding control signals to the pumping device 12, so that the delivery rate and possibly also the conveying direction of the pumping device 12 are adjustable. It is conceivable that the controller 11 adjusts the delivery rate of the pumping device 12, for example, as a function of a desired operating temperature of the evaporator 16 and the actual temperature of the evaporator 16 or of the heat exchanger belonging to the evaporator 16.
  • the controller 11 may be provided via which the operating temperature of the evaporator 16 is detected continuously or at predeterminable times or events.
  • This operating temperature actual value is then transmitted to the controller 11, which compares the operating temperature actual value with a predetermined desired value and adjusts the delivery rate of the pumping device 12 accordingly.
  • the setpoint of the temperature can be entered by the user of the system via the interface 38 in the controller 11.
  • the cooling effect occurring during the evaporation of the inert gas 37 can be used to cool down the ambient air atmosphere of the enclosed space 10 in a regulated manner.
  • the amount of air is adjustable, which flows through the heat exchanger of the evaporator 16 per unit time and is used to heat the inert gas to be evaporated and supplied to the space 10. It can be seen that at a low flow rate of the pumping device 12, the evaporator 16 is operable only in a throttled manner, so that via the valve 9 by the evaporator 16 per unit time to be evaporated amount of liquid gas must be reduced accordingly.
  • a further evaporator 20 is provided, which operates separately from the evaporator 16 and is connected via the line 46 with the inert gas 1.
  • the further evaporator 20 is designed to evaporate the inert gas 37 supplied via the feed line 46, without evaporative heat being removed from the room air atmosphere of the space 10 for this purpose.
  • a third preferred embodiment of the solution according to the invention is shown.
  • This third preferred embodiment substantially corresponds to the in Fig. 2 embodiment shown, but with the exception that here the evaporator 16 associated heat exchanger is heated only indirectly with the room air of the enclosed space 10.
  • the heat exchanger of the evaporator 16 (as the medium to be cooled) is operated with a liquid heat exchange medium 45.
  • the heat exchange medium 45 is stored in a heat exchanger tank 15.
  • a heat transfer from the heat exchange medium 45 can take place on the to be evaporated and introduced into the space 10 inert gas, two ports of the evaporator 16 associated heat exchanger via a supply line and a derivative with the heat exchanger tank 15 are connected.
  • the heat exchange medium stored in the heat exchanger tank 15 45 can be supplied to the heat exchanger of the evaporator 16 as a medium to be cooled.
  • the part of the heat exchanger medium 45 fed to the heat exchanger of the evaporator 16 passes through the heat exchanger of the evaporator 16 and thereby releases thermal energy to the inert gas to be evaporated and heated in the evaporator 16.
  • the cooled in the heat exchanger of the evaporator 16 heat exchange medium 45 is then returned to the heat exchanger tank 15.
  • a further heat exchanger 17 is provided, through which on the one hand a subset of the room air and on the other hand, the heat exchanger medium 45 mounted in the heat exchanger tank 15 is passed.
  • the further heat exchanger 17 is connected via an air duct system 22, 23 with the space 10.
  • the air duct system on a hot air line 22 via which, for example, with the aid of, for example, the pumping device 12, if necessary, a portion of the room air sucked and the other heat exchanger 17 can be supplied.
  • the amount of the further heat exchanger 17 supplied room air can be adjusted in a controlled manner via the controller 11.
  • the controller 11 via the control line 41 corresponding control signals to the pumping device 12 from, so that the Delivery rate and possibly also the conveying direction of the pumping device 12 are adjustable. It is conceivable that the controller 11 adjusts the delivery rate of the pumping device 12, for example, as a function of a desired temperature of the room 10 and the actual temperature of the room 10.
  • At least one temperature sensor 5 should be provided inside the room 10, via which the actual temperature of the room 10 is measured continuously or at predetermined times or events.
  • the temperature measured value can then be transmitted to the controller 11, which compares the actual temperature value with a predetermined desired value and adjusts the delivery rate of the pumping device 12 accordingly.
  • the further heat exchanger 17 In order to ensure that in the further heat exchanger 17, a heat transfer can take place from the air sucked from the room air atmosphere via the pumping device 12, two terminals of the further heat exchanger 17 are connected via a feed line and a discharge to the heat exchanger tank 15. With the help of a controllable from the controller 11 via a control line 43 pumping device 14, at least a portion of the stored in the heat exchanger tank 15 heat exchange medium 45, which is cooled accordingly during operation of the evaporator 16, the further heat exchanger 17 can be supplied as medium to be heated. The part of the heat exchanger medium 45 fed to the further heat exchanger 17 passes through the further heat exchanger 17 and absorbs thermal energy from the room air to be cooled in the further heat exchanger 17. The heated in the other heat exchanger 17 heat exchanger medium 45 is then returned to the heat exchanger tank 15.
  • the thus cooled air quantity is introduced via the cold air duct 23 belonging to the air duct system back into the ambient air atmosphere of the enclosed space 10.
  • the cooling effect occurring during the evaporation of the inert gas 37 can be used indirectly to cool down the ambient air atmosphere of the enclosed space 10 in a regulated manner.
  • the amount of air is adjustable, which flows per unit time through the further heat exchanger 17 and is used to cool down the room air atmosphere of the room 10.
  • the delivery rate or delivery rate of the pumping devices 13 and 14 via the controller 11 set by corresponding signals are transmitted via the control lines 42 and 43.
  • the amount of heat exchange medium 45 is adjustable, which flows per unit time through the heat exchanger 16 or the other heat exchanger 17 and for heating the inert gas to be supplied to the room 10 or to cool down the room air atmosphere of the room 10 is used.
  • the heat exchange medium stored in the heat exchanger tank 15 can be used as a cold or heat reservoir to independently supply thermal energy to the evaporator 16 or dissipate thermal energy from the room air as needed.
  • a further evaporator 20 may be provided, which is arranged outside of the space 10.
  • This further evaporator 20 is connected in a preferred manner via a feed line 46 with the tank 1 designed as a cold tank.
  • the further evaporator 20 is used in a preferred manner to evaporate, if necessary, a withdrawn via the feed line 46 from the container 1 inert gas.
  • the amount of inert gas supplied to the further evaporator 20 can be regulated via the valve 19 assigned to the feed line 46, specifically by this valve 19 being controlled accordingly by the controller 11.
  • the inert gas evaporated in the further evaporator 20 can be at least partially introduced, for example via the outlet nozzles 2 in the enclosed space 10 to adjust or maintain a certain inerting in the indoor atmosphere of the enclosed space 10. It is basically conceivable that the output of the further evaporator 20 is connected via a, for example, designed as a three-way valve valve with the supply line 3 and arranged in the interior of the space 10 outlet nozzles 2.
  • a temperature measuring device 5 for measuring the temperature of the room air atmosphere of the enclosed space 10 and an oxygen measuring device 4 for measuring the oxygen content in the room air atmosphere of the room 10 are further provided.
  • this temperature measuring device 5 the actual temperature prevailing in the enclosed space 10 can be determined continuously or at given times and / or events.
  • the controller 11 is preferably designed, both on the one hand in dependence on the measured actual temperature and a predetermined target temperature and on the other hand, depending on the measured oxygen content and a predetermined inertization both the valves 9 and 21 and a (not shown ) Air conditioning to drive.
  • the valves 9 and 21 both the amount of inert gas to be supplied to the space 10 and the amount of heat removed from the room air atmosphere during evaporation of the inert gas to be supplied are adjusted. If the cooling effect occurring during the evaporation of the inert gas is not sufficient to set or maintain a specific temperature in the interior of the room 10, the air conditioning system (not shown) is correspondingly activated via the controller 11.
  • the controller 11 is designed for this purpose on the one hand as a function of the measured actual temperature and a predetermined setpoint temperature and on the other hand depending on the measured oxygen content and a predetermined inerting both the two valves 9, 21 and the pumping device 12 as also to control a (not shown) air conditioning.
  • the amount of the inert gas to be supplied to the space 10 is set via the valves 9, 21.
  • the amount of heat is set, which is taken with the evaporator 16 of the room air atmosphere. If the cooling effect provided by the evaporator 16 is not sufficient to set or maintain a specific temperature in the interior of the room 10, the air conditioning system (not shown) is correspondingly activated via the controller 11.
  • the controller 11 is preferably designed on the one hand as a function of the measured actual temperature and a predetermined desired temperature and on the other hand depending on the measured oxygen content and a predetermined inertization both the valve 9 and to control the pumping devices 12 to 14 and a (not shown) air conditioning.
  • the valve 9 the amount of the inert gas to be supplied to the space 10 is set.
  • the delivery rate of the pumping device 13 the amount of heat to be supplied to the evaporator 16 is adjusted, while the quantity of heat to be dissipated from the ambient air atmosphere is regulated via the pumping devices 12 and 14. If the cooling power achievable with the further heat exchanger 17 is not sufficient to set or maintain a specific temperature in the interior of the room 10, the air conditioning system (not shown) is activated accordingly via the controller 11.
  • the setting (and holding) of the Vollinertleitershous can be done, for example, for the purpose of fire extinguishing.
  • the apparatus further comprises a fire detection device 6 for measuring a fire characteristic in the atmosphere of the enclosed space 10.
  • a fire detection device 6 for measuring a fire characteristic in the atmosphere of the enclosed space 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Claims (24)

  1. Procédé pour la prévention anti-incendie et pour l'extinction d'incendies dans des espaces clos (10), où l'atmosphère de l'espace clos ne doit pas dépasser une valeur de température prédéterminée, ledit procédé comprenant les étapes suivantes :
    a) on prépare un gaz inerte liquéfié, en particulier de l'azote, dans un récipient (1) ;
    b) on admet au moins une partie du gaz inerte préparé dans un évaporateur (16) et on l'amène à évaporation dans celui-ci ; et
    c) le gaz inerte évaporé dans l'évaporateur (16) est admis d'une manière régulée dans l'atmosphère de l'espace clos (10), de telle manière que la teneur en oxygène dans l'atmosphère de l'espace clos (10) est abaissée à un niveau d'inactivation déterminé et maintenue à celui-ci, ou bien est maintenue à un niveau d'inactivation déterminé déjà établi, et
    l'énergie thermique nécessaire pour l'évaporation du gaz inerte liquide dans l'évaporateur (16) est prélevée de l'atmosphère de l'espace clos (10).
  2. Procédé selon la revendication 1, dans lequel
    l'évaporation du gaz inerte préparé est exécutée à l'intérieur de l'espace clos (10) et, avant l'étape de procédé consistant à l'évaporation, le gaz inerte est amené sous forme liquide à un évaporateur (16) agencé à l'intérieur de l'espace (10).
  3. Procédé selon la revendication 1, dans lequel
    l'évaporation du gaz inerte préparé est exécutée à l'extérieur de l'espace clos (10), et l'énergie thermique nécessaire pour l'évaporation du gaz inerte est prélevée de l'atmosphère de l'espace clos (10) au moins partiellement par conduction thermique.
  4. Procédé selon la revendication 3, dans lequel
    le montant de l'énergie thermique nécessaire pour l'évaporation du gazinière qui est prélevée de l'atmosphère de l'espace clos (10) est susceptible d'être établi de manière régulée, et cela en établissant la conductibilité thermique d'un caloporteur (45) utilisé pour le prélèvement de la quantité d'énergie nécessaire en fonction de la température réelle qui se présente actuellement dans l'espace clos (10) et/ou d'une température de consigne prédéterminée.
  5. Procédé selon la revendication 3, dans lequel
    pour évaporer ladite au moins une partie du gaz inerte préparé, on utilise un évaporateur à air (16), et le procédé comprend en outre les opérations suivantes :
    b1) au moins pendant l'évaporation du gaz inerte, on admet à l'évaporateur (16) ou à un échangeur de chaleur associé à l'évaporateur (16), de l'air provenant de l'atmosphère de l'espace clos (10) à titre d'air chaud, de préférence de manière régulée ;
    b2) l'énergie thermique nécessaire pour l'évaporation du gaz inerte est prélevée au moins partiellement par conduction thermique de l'air admis à titre d'air chaud dans l'évaporateur (16) ou dans l'échangeur de chaleur, grâce à quoi l'air admis à titre d'air chaud se refroidit ; et
    b3) l'air refroidi est ramené dans l'espace (10).
  6. Procédé selon la revendication 5, dans lequel
    la quantité d'air admise à titre d'air chaud dans l'évaporateur (16) ou dans l'échangeur de chaleur est susceptible d'être réglée en fonction de la température réelle qui se présente actuellement dans l'espace clos (10) et/ou d'une température de consigne prédéterminée.
  7. Procédé selon l'une des revendications précédentes, dans lequel
    l'étape c) comprend en outre les opérations suivantes :
    c1) on mesure la teneur en oxygène dans l'espace clos (10) ; et
    c2) le gaz inerte évaporé dans l'évaporateur (16) est admis en fonction de la valeur de mesure d'oxygène dans l'atmosphère de l'espace clos (10), afin de maintenir la teneur en oxygène dans l'atmosphère de l'espace clos (10) au niveau d'inertisation déterminé.
  8. Procédé selon l'une des revendications précédentes, dans lequel
    le niveau d'inertisation déterminé est un niveau d'inactivation de base, et dans lequel le procédé comprend, après l'étape c), l'étape de procédé suivante :
    d) dans le cas d'un incendie ou en cas de besoin, la teneur en oxygène de l'atmosphère de l'espace est abaissée plus loin à un niveau d'inertisation complète déterminait, en admettant le gaz inerte de manière régulée dans l'atmosphère de l'espace.
  9. Procédé selon la revendication 8, dans lequel
    on détecte au moyen d'un détecteur (6) pour des valeurs caractéristiques d'un incendie, si un incendie s'est déclaré dans l'espace clos (10).
  10. Procédé selon la revendication 9, dans lequel
    dans l'étape d), l'abaissement au niveau d'inactivation complète à lieux en fonction de la valeur de mesure du détecteur (6) pour une valeur caractéristique d'un incendie.
  11. Procédé selon la revendication 8 ou 9, dans lequel
    dans l'étape d), l'abaissement au niveau d'activation complète à lieux en fonction des produits stockés dans l'espace clos (10), et en particulier de leur comportement vis-à-vis de l'inflammation.
  12. Procédé selon l'une des revendications 8 à 11, dans lequel
    le gaz inerte admis à l'étape d) est préparé dans le récipient (1), réalisé de préférence sous forme de réservoir cryogénique, et est évaporé au moyen de l'évaporateur (16).
  13. Appareil pour la mise en oeuvre du procédé selon l'une des revendications 1 à 12, ledit appareil comprenant les éléments suivants :
    - un système de mesure d'oxygène (4) pour mesurer la teneur en oxygène dans l'atmosphère de l'espace clos (10) ;
    - une installation pour l'amenée régulée de gaz inerte dans l'atmosphère de l'espace clos (10), ladite installation comprenant un récipient (1), réalisé de préférence sous forme de réservoir cryogénique, pour préparer et stocker le gaz inerte sous forme liquéfiée, et un évaporateur (16) relié au récipient pour évaporer au moins une partie du gaz inerte préparé dans le récipient (1) et amener le gaz inerte évaporé dans l'atmosphère de l'espace clos (10) ; et
    - une commande (11) qui est conçue pour piloter l'installation en fonction de la teneur en oxygène mesurée en vue de l'amenée régulée de gaz inerte, de telle façon que la teneur en oxygène dans l'atmosphère de l'espace clos (10) est abaissée à un niveau d'inertisation déterminé et est maintenue à ce niveau, ou bien est maintenue à un niveau d'inertisation déterminé déjà établi, et
    l'évaporateur (16) est conçu pour prélever l'énergie thermique nécessaire pour l'évaporation du gaz inerte liquéfié depuis l'atmosphère de l'espace clos (10).
  14. Appareil selon la revendication 13, dans lequel
    l'évaporateur (16) est un évaporateur à air (16) agencé à l'intérieur de l'espace clos (10).
  15. Appareil selon la revendication 13, dans lequel
    l'évaporateur (16) est un évaporateur (16) agencé à l'extérieur de l'espace clos (10), et l'installation destinée à l'amenée régulée de gaz inerte dans l'atmosphère de l'espace clos (10) comprend en outre un dispositif à échangeur de chaleur (16, 17) qui assure une transmission de chaleur depuis l'atmosphère de l'espace clos (10) vers le gaz inerte à évaporer dans l'évaporateur (16).
  16. Appareil selon la revendication 15, qui comprend en outre un système de mesure de température (5) pour mesurer la température de l'air de l'espace clos (10), et dans lequel le dispositif à échangeur de chaleur (16, 17) destiné au transfert de l'énergie thermique depuis l'atmosphère de l'espace vers le gaz inerte à évaporer dans l'évaporateur (16) comprend un dispositif de transfert thermique (45) dont le degré d'efficacité, au sens du premier principe de la thermodynamique, est réglable en fonction de la température mesurée et/ou d'une température de consigne prédéterminée, au moyen de la commande (11).
  17. Appareil selon la revendication 15, dans lequel
    l'évaporateur (16) est un évaporateur à air (16), et dans le dispositif à échangeur de chaleur (16, 17) le gaz inerte à amener dans l'espace clos (10) est utilisé à titre de fluide à réchauffer, et une quantité partielle de l'air provenant de l'atmosphère de l'espace est utilisée à titre de fluide à refroidir.
  18. Appareil selon la revendication 17, dans lequel
    pour l'amenée et l'évacuation d'air hors de l'atmosphère de l'espace clos (10), le dispositif à échangeur de chaleur (16, 17) est relié à l'espace clos (10) via un système de canaux à air (22, 23), et le système de canaux à air (22, 23) comprend au moins un canal à air chaud (22) et au moins un canal à air froid (23) d'une installation de climatisation utilisée pour la climatisation de l'espace clos (10).
  19. Appareil selon la revendication 17 ou 18, qui comprend en outre un système de mesure de température (5) pour mesurer la température de l'atmosphère de l'espace clos (10), et dans lequel la commande (11) est conçue pour régler la quantité d'air admis à titre de fluide à refroidir dans l'évaporateur (16) en fonction de la température mesurée et/ou d'une température de consigne prédéterminée.
  20. Appareil selon l'une des revendications 15 à 19, dans lequel
    le dispositif à échangeur de chaleur (16, 17) est une composante d'une installation de climatisation utilisée pour la climatisation de l'espace clos (10).
  21. Appareil selon la revendication 20, dans lequel
    l'installation de climatisation comprend un échangeur de chaleur à travers lequel est menée une quantité partielle de l'air provenant de l'atmosphère de l'espace, afin de transmettre de l'énergie thermique depuis l'air vers un fluide de refroidissement, et dans lequel l'échangeur de chaleur de l'installation de climatisation est branché en amont ou en aval du système à échangeur de chaleur associé à l'évaporateur (16).
  22. Appareil selon l'une des revendications 13 à 21, qui comprend en outre un dispositif de reconnaissance d'incendie (5) pour mesurer une grandeur caractéristique d'incendie dans l'atmosphère de l'espace clos (10).
  23. Utilisation de l'appareil selon l'une des revendications 13 à 22 à titre de prévention anti-incendie dans un stockage réfrigéré fermé, dans une salle informatique, ou dans un espace similaire (10), dont l'atmosphère de doit pas dépasser une certaine valeur de température.
  24. Utilisation de l'appareil selon l'une des revendications 13 à 22 à titre de prévention anti-incendie dans une armoire de commutation fermée ou dans un système similaire, dont l'atmosphère ne doit pas dépasser une certaine valeur de température.
EP07112442A 2007-07-13 2007-07-13 Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos Active EP2014336B1 (fr)

Priority Applications (15)

Application Number Priority Date Filing Date Title
AT07112442T ATE460210T1 (de) 2007-07-13 2007-07-13 Verfahren und vorrichtung zur brandverhütung und/oder brandlöschung in geschlossenen räumen
EP07112442A EP2014336B1 (fr) 2007-07-13 2007-07-13 Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos
DE502007003086T DE502007003086D1 (de) 2007-07-13 2007-07-13 Verfahren und Vorrichtung zur Brandverhütung und/oder Brandlöschung in geschlossenen Räumen
ARP080103008A AR070639A1 (es) 2007-07-13 2008-07-11 Metodo y dispositivo para la prevencion y extincion de incendios en espacios cerrados
CL200802029A CL2008002029A1 (es) 2007-07-13 2008-07-11 Metodo para la prevencion y extincion de incendios en espacios cerrados, que comprende proveer un gas inerte licuado dentro de un contenedor, suministrar una porcion de dicho gas a un vaporizador, vaporizar el gas y suministrar reguladamente el gas v
JP2010515528A JP5184630B2 (ja) 2007-07-13 2008-07-14 閉鎖空間における防火及び/又は消火方法並びに閉鎖空間における防火及び/又は消火装置
US12/216,973 US8602119B2 (en) 2007-07-13 2008-07-14 Method and device for preventing and/or extinguishing fires in enclosed spaces
AU2008277673A AU2008277673B2 (en) 2007-07-13 2008-07-14 Method and device for fire prevention and/or fire extinguishing in enclosed spaces
CA2675279A CA2675279C (fr) 2007-07-13 2008-07-14 Procede et dispositif pour la prevention d'un incendie ou l'extinction d'un incendie dans des espaces clos
UAA200908887A UA96011C2 (uk) 2007-07-13 2008-07-14 Спосіб і пристрій для запобігання пожежам та (або) їх гасіння у замкнених просторах
PCT/EP2008/059155 WO2009010485A1 (fr) 2007-07-13 2008-07-14 Procédé et dispositif pour la prévention d'incendies et/ou l'extinction d'incendies dans des espaces clos
CN2008800040374A CN101605573B (zh) 2007-07-13 2008-07-14 用于在密封空间内防火和/或灭火的方法和设备
RU2009142855/12A RU2468844C2 (ru) 2007-07-13 2008-07-14 Способ и устройство для предотвращения и/или тушения возгораний в закрытых пространствах
HK09101657.3A HK1124004A1 (en) 2007-07-13 2009-02-20 Method and device for fire prevention and/or fire fighting in closed rooms
NO20092888A NO339875B1 (no) 2007-07-13 2009-08-24 Fremgangsmåte og anordning til å forhindre og/eller slukke branner i lukkede rom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07112442A EP2014336B1 (fr) 2007-07-13 2007-07-13 Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos

Publications (2)

Publication Number Publication Date
EP2014336A1 EP2014336A1 (fr) 2009-01-14
EP2014336B1 true EP2014336B1 (fr) 2010-03-10

Family

ID=38698369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07112442A Active EP2014336B1 (fr) 2007-07-13 2007-07-13 Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos

Country Status (15)

Country Link
US (1) US8602119B2 (fr)
EP (1) EP2014336B1 (fr)
JP (1) JP5184630B2 (fr)
CN (1) CN101605573B (fr)
AR (1) AR070639A1 (fr)
AT (1) ATE460210T1 (fr)
AU (1) AU2008277673B2 (fr)
CA (1) CA2675279C (fr)
CL (1) CL2008002029A1 (fr)
DE (1) DE502007003086D1 (fr)
HK (1) HK1124004A1 (fr)
NO (1) NO339875B1 (fr)
RU (1) RU2468844C2 (fr)
UA (1) UA96011C2 (fr)
WO (1) WO2009010485A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100121A1 (de) * 2018-08-03 2020-02-06 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002172A1 (de) * 2005-01-17 2006-07-27 Amrona Ag Inertisierungsverfahren zur Brandvermeidung
GB2477718A (en) * 2010-02-04 2011-08-17 Graviner Ltd Kidde Inert gas suppression system for temperature control
CA2707317C (fr) * 2010-06-10 2015-04-07 Steven Kennerknecht Moulage a modele perdu et procede connexe
CN102462907A (zh) * 2010-11-11 2012-05-23 天津龙盛世博安全设备有限公司 电力设备、设施的小型固定式灭火系统
ES2685512T3 (es) * 2011-11-18 2018-10-09 Minimax Gmbh & Co. Kg Instalación para la extinción o inertización con un agente de extinción sintético líquido
GB2498389B (en) * 2012-01-15 2016-04-06 Alan Beresford A combined cooling and fire suppression/extinguishing system employing liquid nitrogen in a continuously operating ventilation system
DE102012023979A1 (de) * 2012-12-07 2014-06-12 Cooper Crouse-Hinds Gmbh Explosionsgeschütztes Gehäuse
US10016643B2 (en) 2013-05-15 2018-07-10 waveGUARD Corporation Hydro fire mitigation system
RU2555678C1 (ru) * 2014-02-26 2015-07-10 Закрытое акционерное общество "Центральный ордена Трудового Красного Знамени научно-исследовательский и проектно-конструкторский институт морского флота" Способ предотвращения возгорания навалочного груза
US9648164B1 (en) * 2014-11-14 2017-05-09 United Services Automobile Association (“USAA”) System and method for processing high frequency callers
CN104841070A (zh) * 2015-02-12 2015-08-19 尤文峰 室内防火装置
CN104833053B (zh) * 2015-04-30 2017-12-05 广东美的制冷设备有限公司 空调器的安全防护方法及系统
US10933262B2 (en) * 2015-12-22 2021-03-02 WAGNER Fire Safety, Inc. Oxygen-reducing installation and method for operating an oxygen-reducing installation
US11376458B2 (en) 2016-12-20 2022-07-05 Carrier Corporation Fire protection system for an enclosure and method of fire protection for an enclosure
KR101996928B1 (ko) * 2018-12-19 2019-07-08 주식회사 벽진테크 사물인터넷 기반 지능형 사고 예방시스템을 내장한 배전반
US11517831B2 (en) * 2019-06-25 2022-12-06 George Andrew Rabroker Abatement system for pyrophoric chemicals and method of use
AU2020324372A1 (en) * 2019-08-02 2022-03-24 ETG Holdings Company, Inc. Extended discharge fire suppression systems and methods
KR102215281B1 (ko) * 2020-03-23 2021-02-10 이승철 전기화재가스감지 이벤트 처리 배전반
CN111905303B (zh) * 2020-06-28 2021-09-10 无锡布塔信息科技有限公司 一种用于大数据计算机的火灾灾害安全防护方法
CN113318361A (zh) * 2021-05-17 2021-08-31 上海景文同安机电消防工程有限公司 电控间消防系统及消防方法
CN117748316B (zh) * 2023-12-22 2024-05-31 浙江华研新能源有限公司 一种分布式储能设备
CN118669905A (zh) * 2024-08-15 2024-09-20 中铁建工集团第四建设有限公司 一种厂房用通风装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521997A (en) * 1975-06-16 1977-01-08 Kimimichi Monma Quick system for extinguishing fire of a multistorey building
DE4018265C1 (en) * 1990-06-07 1991-11-14 Linde Ag, 6200 Wiesbaden, De Emergency refrigeration of cold room - involves pouring liq. nitrogen and liq. oxygen into room for evaporative cooling
DE4101668A1 (de) * 1991-01-22 1992-07-23 Messer Griesheim Gmbh Feuerloescheinrichtung mit einem speicher fuer ein als loeschmittel dienendes tiefsiedendes verfluessigtes gas
PT99175B (pt) * 1991-10-08 1996-01-31 Fernando Jorge Nunes De Almeid Instalacao de fornecimento de fluido criogenico
US5368105A (en) * 1991-12-11 1994-11-29 The United States Of America As Represented By The Secretary Of The Interior Cryogenic slurry for extinguishing underground fires
RU2018331C1 (ru) * 1992-11-12 1994-08-30 Уральский научно-производственный комплекс криогенного машиностроения Способ подачи жидкого азота на пожарный ствол и устройство для его осуществления
US7207392B2 (en) * 2000-04-17 2007-04-24 Firepass Ip Holdings, Inc. Method of preventing fire in computer room and other enclosed facilities
JPH10238918A (ja) * 1997-02-27 1998-09-11 Nippon Air Rikiide Kk 特殊ガス用簡易保冷庫
DE19811851C2 (de) * 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen
US6502421B2 (en) * 2000-12-28 2003-01-07 Igor K. Kotliar Mobile firefighting systems with breathable hypoxic fire extinguishing compositions for human occupied environments
JP2001340482A (ja) * 2000-06-05 2001-12-11 Ishikawajima Harima Heavy Ind Co Ltd 消火設備
US6401830B1 (en) * 2000-11-21 2002-06-11 David B. Romanoff Fire extinguishing agent and method
WO2002055155A1 (fr) * 2001-01-11 2002-07-18 Wagner Alarm- Und Sicherungssysteme Gmbh Procede d'inertisation au moyen d'un tampon d'azote
US6763894B2 (en) * 2001-08-01 2004-07-20 Kidde-Fenwal, Inc. Clean agent fire suppression system and rapid atomizing nozzle in the same
RU2201775C1 (ru) * 2002-07-10 2003-04-10 Научно-производственное предприятие "Атомконверс" Способ предупреждения пожаров и взрывов в помещениях
US6889775B2 (en) 2002-08-20 2005-05-10 Fike Corporation Retrofitted non-Halon fire suppression system and method of retrofitting existing Halon based systems
DE10311556A1 (de) * 2003-02-18 2004-09-23 Martin Reuter Sicherheitsraum und Verfahren zur Kühlung eines Sicherheitsraumes
RU2256472C2 (ru) * 2003-05-29 2005-07-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" Способ тушения пожара в объеме с емкостями со сжиженным горючим газом и система тушения пожара для реализации этого способа

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100121A1 (de) * 2018-08-03 2020-02-06 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät

Also Published As

Publication number Publication date
AU2008277673B2 (en) 2012-01-19
AU2008277673A1 (en) 2009-01-22
CN101605573A (zh) 2009-12-16
CA2675279C (fr) 2015-03-03
CL2008002029A1 (es) 2008-10-24
HK1124004A1 (en) 2009-07-03
US20090014187A1 (en) 2009-01-15
WO2009010485A1 (fr) 2009-01-22
ATE460210T1 (de) 2010-03-15
US8602119B2 (en) 2013-12-10
JP2010533015A (ja) 2010-10-21
UA96011C2 (uk) 2011-09-26
NO20092888L (no) 2009-08-24
NO339875B1 (no) 2017-02-13
RU2468844C2 (ru) 2012-12-10
AR070639A1 (es) 2010-04-28
CN101605573B (zh) 2013-01-09
DE502007003086D1 (de) 2010-04-22
RU2009142855A (ru) 2011-05-27
EP2014336A1 (fr) 2009-01-14
CA2675279A1 (fr) 2009-01-22
JP5184630B2 (ja) 2013-04-17

Similar Documents

Publication Publication Date Title
EP2014336B1 (fr) Procédé et dispositif destinés à la prévention contre les incendies et/ou l'extinction d'incendies dans des espaces clos
EP1062005B3 (fr) Procede d'inertisation pour la prevention et l'extinction des incendies dans des locaux fermes
DE102017005287B3 (de) Sicherheitsschrank für aktive elektrische und/oder elektronische Komponenten
EP0966732B1 (fr) Armoire electrique pourvue d'un systeme d'extinction d'incendie
WO2009016176A1 (fr) Procédé d'inertisation pour réduire le risque d'un début d'incendie dans une pièce fermée ainsi qu'un dispositif pour exécuter le procédé
DE10352437A1 (de) Vorrichtung zum Verhindern und Löschen von Bränden
DE19807804A1 (de) Schaltschrank mit Feuerlöschsystem
WO2005063338A1 (fr) Procede d'inertisation et dispositif pour eteindre un incendie
DE2510739A1 (de) Verfahren und vorrichtung zum abgeben von gas
DE60108756T2 (de) Automatische ortsfeste feuerbekämpfungseinrichtung
DE4021612A1 (de) Verfahren zur minimierung der stoerfall-gefahr
DE19936454C5 (de) Sprinkleranlage eines Tiefkühlhauses
EP3444520A1 (fr) Refroidissement d'une évaporation de gaz liquéfié destiné à l'entraînement des machines, des installations ou des véhicules
EP3492846B1 (fr) Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable
WO2016062690A1 (fr) Système et procédé de réduction de l'oxygène dans un espace cible
EP2565567B1 (fr) Procédé et dispositif de refroidissement et de production d'une atmosphère similaire à l'air et véhicule de refroidissement
EP2515057B1 (fr) Procédé et dispositif destinés à la régulation de la température d'un milieu fluidique
DE2344400A1 (de) Verfahren und vorrichtung zum betreiben einer kohlensaeure-niederdruck-loeschanlage fuer tiefkuehlhaeuser
DE19853531C2 (de) Vorrichtung zur Entnahme eines unter Druck stehenden flüssigen Gasstromes aus einem Druckbehälter
EP2605837B1 (fr) Installation de gicleurs dotée d'un circuit de circulation
DE202020101453U1 (de) Armaturenschrank
WO2019149936A1 (fr) Procédé destiné à chauffer l'air ambiant dans un bâtiment au moyen d'une installation d'extinction d'incendie, ainsi qu'installation d'extinction d'incendie et utilisation de cette dernière
DE19846459A1 (de) Druckspeicher und Verfahren zum Bereitstellen eines unter Druck stehenden Fluids
DE102008020015A1 (de) Brandlöschsystem mit Inertgasen für Lagerbehälter / Lagerregale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1124004

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER & PARTNER AG PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007003086

Country of ref document: DE

Date of ref document: 20100422

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1124004

Country of ref document: HK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100710

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: AMRONA A.G.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

26N No opposition filed

Effective date: 20101213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100911

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: DUFOURSTRASSE 116, 8008 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210728

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 17

Ref country code: CH

Payment date: 20230802

Year of fee payment: 17

Ref country code: AT

Payment date: 20230720

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 18