EP2007914B1 - Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same - Google Patents
Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same Download PDFInfo
- Publication number
- EP2007914B1 EP2007914B1 EP07734171.7A EP07734171A EP2007914B1 EP 2007914 B1 EP2007914 B1 EP 2007914B1 EP 07734171 A EP07734171 A EP 07734171A EP 2007914 B1 EP2007914 B1 EP 2007914B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- steel tube
- tubing
- tube
- ductile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 101
- 239000010959 steel Substances 0.000 title claims description 101
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910001339 C alloy Inorganic materials 0.000 title description 4
- 238000010791 quenching Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 46
- 230000000171 quenching effect Effects 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 238000005496 tempering Methods 0.000 claims description 14
- 239000011572 manganese Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000011651 chromium Substances 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 238000010622 cold drawing Methods 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052787 antimony Inorganic materials 0.000 claims 1
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- 229910052745 lead Inorganic materials 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000006698 induction Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 238000009628 steelmaking Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910000715 Low-carbon ultra-high-strength steel Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009847 ladle furnace Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
Definitions
- the present invention relates to low carbon alloy steel tubes having ultra high strength and excellent toughness at low temperature and also to a method of manufacturing such a steel tube.
- the steel tube is particularly suitable for making components for containers for automotive restraint systems, an example of which is an automotive airbag inflator.
- Japanese Publication No. 10-140249 [Application date Nov. 5, 1996] and Japanese Publication No. 10-140283 [Application date Nov. 12, 1996 ] illustrate in general terms steel chemistry considered useful for an automotive airbag inflator. These documents mention as a final condition the absence of heat treatment, a stress relieving, and a normalizing or a quenching and tempering. These publications do not mention the possibility of just a quenching as a heat treatment step. No mechanical properties are mentioned in the claims. In the various examples, only in example #21 is the steel quenched and tempered, but the reported UTS is only 686 MPa (99 ksi).
- Japanese Publication No. 2001-49343 [Application date Oct. 8, 1999 ] is said to address only steels for use in making electric-resistance-welded tubes (the ERW process).
- the claims specify various aspects of the ERW process and an optional heat treatment for a normalizing or quench and temper, an optional ulterior cold drawing, an optional ulterior heat treatment (normalizing or quench and temper).
- This document addresses only two different, very general steel chemistry, one being a low carbon steel, the other noting common limits in various alloying elements. This document does not suggest the possibility of just a quenching heat treatment.
- Various examples are given for a quench and temper material, but mechanical properties obtained are relatively low. The maximum result achieved is 852 MPa (123 ksi) in the quench and temper test #18.
- Patent Publication US20020033591A1 broadly suggests the possibility of quenching without tempering
- claims 6 and 7 do not mention the necessity of quenching in order to achieve the mechanical properties claimed and instead these claims require at least two heat treatments.
- WO-A2005/035 800 relates to a steel requiring Ti and final tempering for achieving a ductile-to-brittle transition temperature below - 60°C.
- Airbag inflators for vehicle occupant restraint systems are required to meet strict structural and functional standards. Therefore, strict procedures and tolerances are imposed on the manufacturing process. While field experience indicates that the industry has been successful in meeting past structural and functional standards, improved and/or new properties are necessary to satisfy the evolving requirements, while at the same time a continuous reduction in the manufacturing costs is also important.
- Airbags or supplemental restraint systems are an important safety feature in many of today's vehicles.
- air bag systems were of the type employing explosive chemicals, but they are expensive, and due to environmental and recycling problems, in recent years, a new type of inflator has been developed using an accumulator made of a steel tube filled with argon gas or the like, and this type is increasingly being used.
- the above-mentioned accumulator is a container which at normal times maintains the gas or the like at a high pressure which is blown into an airbag at the time of the collision of an automobile, in a single or multiple stage burst. Accordingly, a steel tube used as such an accumulator is to receive a stress at a high strain rate in an extremely short period of time. Therefore, compared with a simple structure such as an ordinary pressure cylinder, the above-described steel tube is required to have superior dimensional accuracy, excellent workability, and weldability, and above all must have high strength, toughness, and excellent resistance to bursting. Dimensional accuracy also is important to ensure a very precise volume of gas will blow into the airbag.
- Cold forming properties are very important in tubular members used to manufacture accumulators since they are formed to final shape after the tube is manufactured. Different shapes depending on the vessel configuration shall be obtained by cold forming. It is crucial to obtain pressure vessels without cracks and superficial defects after cold forming. Moreover, it is also vital to have very good toughness even at low temperatures after cold forming.
- the steels disclosed herein have very good weldability, and do not require, for air bag accumulator applications, either a preheating prior to welding, or a post weld heat treatment.
- the carbon equivalent, as defined by the formula, Ceq % C + % Mn / 6 + % Cr + % Mo + % V / 5 + % Ni + % Cu / 15 should be less than about 0.63% in order to obtain the required weldability. As Ceq diminishes, weldability improves.
- the carbon equivalent as defined above should be less than about 0.60%, preferably less than about 0.56%, and most preferably less than about 0.52%, or even less than about 0.48%, in order to better guarantee weldability.
- a cold-drawn tube made according to the present invention is cut to length and then cold formed using different known technologies (such as crimping, swaging, or the like) in order to obtain the desired shape.
- a welded tube could be used.
- an end cap and a diffuser are welded to each end of the container by any suitable technology such as friction welding, gas tungsten arc welding or laser welding.
- the inflators are tested to assure that they retain their structural integrity during airbag deployment.
- One of such tests is the so-called burst test. This is a destructive-type test in which a canister is subjected to internal pressures significantly higher than those expected during normal operational use, i.e., airbag deployment. In this test, the inflator is subjected to increasing internal pressures until rupture occurs.
- ductile fracture occurs through different alternative ways: ductile fracture, brittle fracture, and sometimes a combination of these two modes. It has been observed that in ductile fracture an outturned rupture exemplified by an opened bulge (such as would be exhibited by a bursting bubble) occurs. The ruptured surface is inclined approximately 45 degrees with respect to the tube outer surface, and is localized within a subject area. In a brittle fracture, on the other hand, a non-arresting longitudinal crack along the length of the inflator is exhibited, which is indicative of a brittle zone in the material. In this case, the fracture surface is normal to the tube outer surface. These two modes of fracture have distinctive surfaces when observed under a scanning electron microscope--dimples are characteristic of ductile fracture, while cleavage is an indication of brittleness.
- the present invention first relates to certain novel low carbon alloy steels suitable for cold forming having more than high tensile strength (UTS (145 ksi) 1000 MPa minimum) and preferably ultra high tensile strength (UTS (160 ksi) 1103 MPa minimum and possibly (175 ksi or 220 ksi) 1207 MPa or 1518 MPa and, consequently, a very high burst pressure.
- the steel has excellent toughness at low temperature, with guaranteed ductile behavior at -60 °C., i.e., a ductile-to-brittle transition temperature (DBTT) below -60 °C., and possibly as low as -100 °C.
- DBTT ductile-to-brittle transition temperature
- the present invention also relates to a process of manufacturing such a steel tube which essentially comprises a novel rapid induction austenizing/high speed quench/no temper technique.
- a novel rapid induction austenizing/high speed quench/no temper technique there is an extremely rapid induction austenizing with an ultra fast water quenching step that eliminates any tempering step, so as to create a low carbon alloy steel tube that also is suitable for cold forming having ultra high tensile strength (UTS (145 ksi) 1000 MPa minimum and up to (220 ksi), 1518 MPa) and, consequently, a very high burst pressure.
- UTS ultra high tensile strength
- the steel has excellent toughness at low temperature, with guaranteed ductile behavior at -60 °C, i.e., a ductile-to-brittle transition temperature (DBTT) that is below -60° C, and possibly even as low as -100 °C.
- DBTT ductile-to-brittle transition temperature
- the material of the present invention has particular utility in components for containers for automotive restraint system components, an example of which is an automotive airbag inflator.
- the chemistry used to create each of the steels disclosed herein is novel, hereafter will be identified as Steel A, Steel B and Steel D, with the compositions for each being summarized: in Examples on page 18, 19 and 20.
- the present invention relates to steel tubing to be used for stored gas inflator pressure vessels. More particularly, the present invention relates to a low carbon ultra high strength steel grade for seamless pressure vessel applications with guaranteed ductile behavior at -60 °C., i.e., a ductile-to-brittle transition temperature below -60 °C., and possibly even as low as -100 °.
- the present invention relates to a chemical composition and a manufacturing process to obtain a seamless steel tubing to be used to manufacture an inflator.
- a schematic illustration of a method of producing the seamless low carbon ultra high strength steel could be as follows:
- One of the main objectives of the steel-making process is to refine the iron by removal of carbon, silicon, sulfur, phosphorous, and manganese.
- sulfur and phosphorous are prejudicial for the steel because they worsen the mechanical properties of the material.
- Ladle metallurgy is used before or after basic processing to perform specific purification steps that allow faster processing in the basic steel making operation.
- the steel-making process is performed under an extreme clean practice in order to obtain a very low sulfur and phosphorous content, which in turn is crucial for obtaining the high toughness required by the product. Accordingly, the objective of an inclusion level of 2 or less --thin series--, and level 1 or less --heavy series--, under the guidelines of ASTM E45 Standard-Worst Field Method (Method A) has been imposed.
- the maximum microinclusion content as measured according to the above-mentioned Standard should be: Inclusion Type Thin Heavy A 0.5 0 B 1.5 1.0 C 0 0 D 1.5 0.5
- the extreme clean practice allows obtaining oversize inclusion content with 30 ⁇ m or less in size. These inclusion contents are obtained limiting the total oxygen content to 20 ppm.
- C is an element that inexpensively raises the strength of the steel, but if its content is less than 0.06% it is difficult to obtain the desired strength. On the other hand, if the steel has a C content greater than 0.18%, then cold workability, weldability, and toughness decrease. Therefore, the C content range is 0.06% to 0.18%. A preferred range for the C content is 0.07% to 0.12%, and an even more preferred range is 0.10 to 0.12%.
- Mn is an element which is effective in increasing the hardenability of the steel, and therefore it increases strength and toughness. If it content is less than 0.3% it is difficult to obtain the desired strength, whereas if it exceeds 1.5%, then banding structures become marked, and toughness decreases. Accordingly, the Mn content is 0.3% to 1.5%, with a preferred Mn range of 0.60 to 1.40%.
- Si is an element which has a deoxidizing effect during steel making process and also raises the strength of the steel. If Si content is less than 0.05%, the steel is susceptible to oxidation, on the other hand if it exceeds 0.50%, then both toughness and workability decrease. Therefore, the Si content is 0.05% to 0.5%., and a preferred Si range of 0.05% to 0.40%.
- S is an element that causes the toughness of the steel to decrease. Accordingly, the S content is limited to 0.015 % maximum. A preferred maximum value is 0.010%
- P is an element that causes the toughness of the steel to decrease. Accordingly, the P content is limited to 0.025% maximum. A preferred maximum value is 0.02%,
- Ni is an element that increases the strength and toughness of the steel, but it is very costly, therefore for cost reasons Ni is limited to 0.70% maximum. A preferred maximum value is 0.50%.
- Cr is an element which is effective in increasing the strength, toughness, and corrosion resistance of the steel. If it exceeds 1% the toughness at the welding zones decreases markedly. Accordingly, the Cr content is limited to 1.0% maximum, and a preferred Cr maximum content is 0.80%,
- Mo is an element which is effective in increasing the strength of the steel and contributes to retard the softening during tempering, but it is very costly.
- the Mo content is limited to 0.7% maximum, and a preferred Mo maximum content is 0.50%
- V is an element which is effective in increasing the strength of the steel, even if added in small amounts, and allows to retard the softening during tempering.
- this ferroalloy is expensive, forcing the necessity to lower the maximum content. Therefore, V is limited to 0.3% maximum, with a preferred maximum of 0.20%
- Residual elements in a single ladle of steel used to produce tubing or chambers shall be:
- the next step is the steel casting to produce a solid steel bar capable of being pierced and rolled to form a seamless steel tube.
- the steel is cast in the steel shop into a round solid billet, having a uniform diameter along the steel axis.
- the solid cylindrical billet of ultra high clean steel is heated to a temperature of about 1200 °C. to 1300 °C., and at this point undergoes the rolling mill process.
- the billet is heated to a temperature of about 1250 °C., and then passed through the rolling mill.
- the billet is pierced, preferably utilizing the known Manessmann process, and subsequently the outside diameter and wall thickness are substantially reduced while the length is substantially increased during hot rolling. For example, a 148 mm outside diameter solid bar is hot rolled into a 48.3 mm outside diameter hot-rolled tube, with a wall thickness of 3.25 mm.
- the cross-sectional area reduction measured as the ratio of the cross-sectional area of the solid billet to the cross-sectional area of the hot-rolled tube, is important in order to obtain a refined microstructure, necessary to get the desired mechanical properties. Therefore, the minimum cross-sectional area reduction is about 15:1, with preferred and most preferred minimum cross-sectional area reductions of about 20:1 and about 25:1, respectively.
- the seamless hot-rolled tube of ultra high clean steel so manufactured is cooled to room temperature.
- the seamless hot-rolled tube of ultra high clean steel so manufactured has an approximately uniform wall thickness, both circumferentially around the tube and longitudinally along the tube axis.
- the hot-rolled tube is then passed through different finishing steps, for example cut in length into 2 to 4 pieces, and its ends cropped, straightened at known rotary straightening equipment if necessary, and non-destructively tested by one or more of the different known techniques, like electromagnetic testing or ultrasound testing.
- each piece of hot-rolled tube is then properly conditioned for cold drawing.
- This conditioning includes pickling by immersion in acid solution, and applying an appropriate layer of lubricants, like the known zinc phosphate and sodium estearathe combination, or reactive oil.
- the seamless tube is cold drawn, pulling it through an external die that has a diameter smaller than the outside diameter of the tube being drawn.
- the internal surface of the tube is also supported by an internal mandrel anchored to one end of a rod, so that the mandrel remains close to the die during drawing. This drawing operation is performed without the necessity of previously heating the tube above room temperature.
- the seamless tube is so cold drawn at least once, each pass reducing both the outside diameter and the wall thickness of the tube.
- the cold-drawn steel tube so manufactured has a uniform outside diameter along the tube axis, and a uniform wall thickness both circumferentially around the tube and longitudinally along the tube axis.
- the so cold-drawn tube has an outside diameter preferably between 10 and 70 mm, and a wall thickness preferably from 1 to 4 mm.
- the cold-drawn tube is then heat treated in an austenizing furnace at a temperature of at least the upper austenizing temperature, or Ac3 (which, for the specific chemistry disclosed herein, is about 880 °C.), but preferably above about 920 °C. and below about 1050 °C.
- This maximum austenizing temperature is imposed in order to avoid grain coarsening.
- This process can be performed either in a fuel furnace or in an induction-type furnace, but preferably in the latter.
- the transit time in the furnace is strongly dependent on the type of furnace utilized. It has been found that the high surface quality required by this application is better obtained if an induction type furnace is utilized. This is due to the nature of the induction process, in which very short transit times are involved, precluding oxidation to occur.
- the austenizing heating rate is at least about 100 °C. per second, but more preferably at least about 200 °C. per second.
- the extremely high heating rate and, as a consequence, very low heating times, are important for obtaining a very fine grain microstructure, which in turn guarantees the required mechanical properties.
- an appropriate filling factor defined as the ratio of the round area defined by the outer diameter of the tube to the round area defined by the coil inside diameter of the induction furnace, is important for obtaining the required high heating rates.
- the minimum filling factor is about 0.16, and a preferred minimum filling factor is about 0.36.
- the tube is quenched by means of an appropriate quenching fluid.
- the quenching fluid is preferably water or water-based quenching solution.
- the tube temperature drops rapidly to ambient temperature, preferably at a rate of at least about 100 °C. per second, more preferably at a rate of at least about 200 °C. per second. This extremely high cooling rate is crucial for obtaining a complete microstructure transformation.
- the tempering step is eliminated and only a high speed quench using water or water based solutions, as described above, is employed.
- the following equipment is preferred, but not required.
- a Quenching line with a full capacity of 2200 kg per hour follows an induction furnace with a maximum power of inductor settled at 500 Kw.
- a head quencher employs 42 lines with 12 nozzles on each line. Water quenching flow is adjusted into a range of 10 to 60 m3 per hour, and the advance speed of the tube is controlled from 5 to 25 meters per minute. Additionally, following pinch rollers are set up to produce a rotation over the tube.
- the ultra high strength steel tube so manufactured is passed through different finishing steps, straightened at known rotary straightening equipment, and non-destructively tested by one or more of the different known techniques.
- tubes should be tested by means of both known ultrasound and electromagnetic techniques.
- the tubing after heat treatment can be chemically processed to obtain a tube with a desirable appearance and very low surface roughness.
- the tube could be pickled in a sulfuric acid and hydrochloric acid solution, phosphated using zinc phosphate, and oiled using a petroleum-based oil, a water-based oil, or a mineral oil.
- a steel tube obtained by the described method has the following minimum mechanical properties:
- the yield strength, tensile strength, and elongation are to be performed according to the procedures described in the Standards ASTM E8.
- a full size specimen for evaluating the whole tubular section is preferred.
- the prior (sometimes referred to as former) austenitic grain size shall be preferably 7 or finer, and more preferably 9 or finer, as measured according to ASTM E-112 Standard. This is accomplished thanks to the extremely short heating cycle during austenitizing.
- the steel tube obtained by the described method shall have the stated properties in order to comply with the requirements stated for the invention.
- the demand of the industry is continuously pushing roughness requirements to lower values.
- the present invention has a good visual appearance, with, for example, a surface finish of the finished tubing of 3.2 microns maximum, both at the external and internal surfaces. This requirement is obtained through cold drawing, short austenizing times, and an adequate surface chemical conditioning at different steps of the process.
- a hydroburst pressure test shall be performed by sealing the ends of the tube section, for example, by welding flat steel plates to the ends of the tube. It is important that a 300 mm tube section remains constraint free so that full hoop stress can develop.
- the pressurization of the tube section shall be performed by pumping oil, water, alcohol or a mixture of them.
- the burst test pressure requirement depends on the tube size.
- the ultra high strength steel seamless tube has a guaranteed ductile behavior at -60 °C.
- Tests performed on the samples produced show that this grade has a guaranteed ductile behavior at -60 °C., with a ductile-to-brittle transition temperature below -60 °C.
- the inventors have found that a far more representative validation test is the burst test, performed both at ambient and at low temperature, instead of Charpy impact test (according to ASTM E23). This is due to the fact that relatively thin wall thicknesses and small outside diameter in these products are employed, therefore no standard ASTM specimen for Charpy impact test can be machined from the tube in the transverse direction. Moreover, in order to get this subsize Charpy impact probe, a flattening deformation has to be applied to a curved tube probe. This has a sensible effect on the steel mechanical properties, in particular the impact strength. Therefore, no representative impact test is obtained with this procedure.
- the Steels A, B, and D are alternative steels that were analyzed using the preferred method, wherein a very fast induction furnace austenizing with a high speed quench was used instead of adding a tempering step.
- a very fast induction furnace austenizing with a high speed quench was used instead of adding a tempering step.
- Steel D was discovered to be very promising because of the high performance to cost value it presented.
- Steel D was selected to manufacture tubing according to the preferred method. Measured chemical composition of samples of Steel D that were used for high speed quench tests were as follows: Element % Value C 0.11 Mn 1.07 S 0.002 P 0.008 Si 0.08 V 0.08 Al 0.03 Nb 0.008
- Figure IV shows that a high speed quench Steel D microstructure that presents Martensite at 100% and a completely quenched transformation. Likewise, burst tests at low temperature (- 60° C) were performed in order to observe the behavior and type of crack.
- Figure V shows tested burst samples for Steel D. Both presented a ductile behavior.
- Figure VI presents the core structures for Steel D using normal quenching process.
- Steel B was selected to manufacture tubing according to the preferred method. Measured chemical composition of samples of Steel B that were used for high speed quench tests were as follows: Element % Value C 0.10 Mn 1.09 S 0.001 P 0.011 Si 0.28 V 0.038 Al 0.035 Cr 0.68 Mo 0.41 Nb 0.005
- Steel A was selected to manufacture tubing according to the preferred method. Measured chemical composition of samples of Steel A that were used for high speed quench tests were as follows: Element % Value C 0.10 Mn 1.23 S 0.002 P 0.008 Si 0.27 V 0.002 Al 0.035 Cr 0.11 Mo 0.05 Ni 0.34
- burst tests at low temperature were performed on Steel A in order to observe the behavior and type of crack.,. both presented a ductile behavior.
- a tempering heat treatment was conducted at 580 °C for total time of 15 minutes.
- the UTS average was (116 Ksi) 805 MPa, which do not meet the expected values
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Heat Treatment Of Steel (AREA)
Description
- This PCT application claims the benefit of
U.S. Non-Provisional Application No. 11/395,322, filed April 3, 2006 - The present invention relates to low carbon alloy steel tubes having ultra high strength and excellent toughness at low temperature and also to a method of manufacturing such a steel tube. The steel tube is particularly suitable for making components for containers for automotive restraint systems, an example of which is an automotive airbag inflator.
- In addition, alternative steel compositions in the low carbon, low alloy category and different heat treatment processes were developed and tested in order to decrease the manufacturing cost.
- Japanese Publication No.
10-140249 10-140283 [Application date Nov. 12, 1996
mention as a final condition the absence of heat treatment, a stress relieving, and a normalizing or a quenching and tempering. These publications do not mention the possibility of just a quenching as a heat treatment step. No mechanical properties are mentioned in the claims. In the various examples, only in example #21 is the steel quenched and tempered, but the reported UTS is only 686 MPa (99 ksi). Even the highest stated mechanical properties, in example #26, are relatively low, with a maximum UTS of 863 MPa (125 ksi). Hence, these publications relate to grades which are relatively low (the intended target is 590 MPa (86 ksi). In addition these publications show ductility at low temperature with a flattening drop-weight (DW) type test at -40°C. The currently accepted test for demonstrating ductility at low temperature is the burst test, which is more efficient in showing brittleness. It is believed that most of the examples shown in these documents that are alleged to be ductile after a DW test, would in fact not show ductile behavior at low temperature in a burst test and, therefore, would not qualify for certain airbag inflator applications due to a lack of compliance with governmental regulations (e.g. US DOT). - Japanese Publication No.
2001-49343 [Application date Oct. 8, 1999 - It is believed that the steel "chemistry" put forth by Sumitomo in each of
JP 10-140249 JP 10-140283 JP 2001-49343 Kondo et al., US 6878219 B2 , or the continuation published asUS 2005/ 0039826 A1 , actually define steels with such broad ranges so as to include SAE 1010 general purpose steel as made and sold in the US since long prior to 1990. Applicants are aware that for several years a SAE 1010 steel grade manufactured with modern technologies normally guarantees that a P amount will be below 0.025 and an S amount will be below 0.01 as described in the mentioned application. - Additional documents illustrating the state of the prior art in steels for air bag applications include Erike,
US 6386583 B2 and various published continuations thereof, includingUS 2004/0074570 A1 andUS 2005/0061404 A1 . These documents do not suggest any advantage as taught herein from an extremely rapid induction austenitizing and an ulterior ultra fast water quenching, let alone using just such a rapid quench and not thereafter using a tempering step. In additionJP 10-140283 US 6878219 B2 , with only a slightly lower maximum for P (0.02) and a slightly higher maximum for S (0.02). While Patent PublicationUS20020033591A1 broadly suggests the possibility of quenching without tempering, claims 6 and 7 do not mention the necessity of quenching in order to achieve the mechanical properties claimed and instead these claims require at least two heat treatments. AlsoWO-A2005/035 800 relates to a steel requiring Ti and final tempering for achieving a ductile-to-brittle transition temperature below - 60°C. - Airbag inflators for vehicle occupant restraint systems are required to meet strict structural and functional standards. Therefore, strict procedures and tolerances are imposed on the manufacturing process. While field experience indicates that the industry has been successful in meeting past structural and functional standards, improved and/or new properties are necessary to satisfy the evolving requirements, while at the same time a continuous reduction in the manufacturing costs is also important.
- Airbags or supplemental restraint systems are an important safety feature in many of today's vehicles. In the past, air bag systems were of the type employing explosive chemicals, but they are expensive, and due to environmental and recycling problems, in recent years, a new type of inflator has been developed using an accumulator made of a steel tube filled with argon gas or the like, and this type is increasingly being used.
- The above-mentioned accumulator is a container which at normal times maintains the gas or the like at a high pressure which is blown into an airbag at the time of the collision of an automobile, in a single or multiple stage burst. Accordingly, a steel tube used as such an accumulator is to receive a stress at a high strain rate in an extremely short period of time. Therefore, compared with a simple structure such as an ordinary pressure cylinder, the above-described steel tube is required to have superior dimensional accuracy, excellent workability, and weldability, and above all must have high strength, toughness, and excellent resistance to bursting. Dimensional accuracy also is important to ensure a very precise volume of gas will blow into the airbag.
- Cold forming properties are very important in tubular members used to manufacture accumulators since they are formed to final shape after the tube is manufactured. Different shapes depending on the vessel configuration shall be obtained by cold forming. It is crucial to obtain pressure vessels without cracks and superficial defects after cold forming. Moreover, it is also vital to have very good toughness even at low temperatures after cold forming.
- The steels disclosed herein have very good weldability, and do not require, for air bag accumulator applications, either a preheating prior to welding, or a post weld heat treatment. The carbon equivalent, as defined by the formula,
- To produce a gas container, a cold-drawn tube made according to the present invention is cut to length and then cold formed using different known technologies (such as crimping, swaging, or the like) in order to obtain the desired shape. Alternatively, a welded tube could be used. Subsequently, to produce the accumulator, an end cap and a diffuser are welded to each end of the container by any suitable technology such as friction welding, gas tungsten arc welding or laser welding. These welds are highly critical and as such require considerable labor, and in certain instances testing to assure weld integrity throughout the pressure vessel and airbag deployment. It has been observed that these welds can crack or fail, thus, risking the integrity of the accumulator, and possibly the operation of the airbag.
- The inflators are tested to assure that they retain their structural integrity during airbag deployment. One of such tests is the so-called burst test. This is a destructive-type test in which a canister is subjected to internal pressures significantly higher than those expected during normal operational use, i.e., airbag deployment. In this test, the inflator is subjected to increasing internal pressures until rupture occurs.
- In reviewing the burst test results and studying the test canister specimens from these tests, it has been found that fracture occurs through different alternative ways: ductile fracture, brittle fracture, and sometimes a combination of these two modes. It has been observed that in ductile fracture an outturned rupture exemplified by an opened bulge (such as would be exhibited by a bursting bubble) occurs. The ruptured surface is inclined approximately 45 degrees with respect to the tube outer surface, and is localized within a subject area. In a brittle fracture, on the other hand, a non-arresting longitudinal crack along the length of the inflator is exhibited, which is indicative of a brittle zone in the material. In this case, the fracture surface is normal to the tube outer surface. These two modes of fracture have distinctive surfaces when observed under a scanning electron microscope--dimples are characteristic of ductile fracture, while cleavage is an indication of brittleness.
- At times, a combination of these two fracture modes can be observed, and brittle cracks can propagate from the ductile, ruptured area. Because the whole system, including the airbag inflator, may be utilized in vehicles operating in very different climates, it is crucial that the material exhibits ductile behavior over a wide temperature range, from very cold up to warm temperatures.
- First, the present invention first relates to certain novel low carbon alloy steels suitable for cold forming having more than high tensile strength (UTS (145 ksi) 1000 MPa minimum) and preferably ultra high tensile strength (UTS (160 ksi) 1103 MPa minimum and possibly (175 ksi or 220 ksi) 1207 MPa or 1518 MPa and, consequently, a very high burst pressure. Moreover, the steel has excellent toughness at low temperature, with guaranteed ductile behavior at -60 °C., i.e., a ductile-to-brittle transition temperature (DBTT) below -60 °C., and possibly as low as -100 °C.
- Second, the present invention also relates to a process of manufacturing such a steel tube which essentially comprises a novel rapid induction austenizing/high speed quench/no temper technique. In a preferred method, there is an extremely rapid induction austenizing with an ultra fast water quenching step that eliminates any tempering step, so as to create a low carbon alloy steel tube that also is suitable for cold forming having ultra high tensile strength (UTS (145 ksi) 1000 MPa minimum and up to (220 ksi), 1518 MPa) and, consequently, a very high burst pressure. Moreover, the steel has excellent toughness at low temperature, with guaranteed ductile behavior at -60 °C, i.e., a ductile-to-brittle transition temperature (DBTT) that is below -60° C, and possibly even as low as -100 °C.
- The material of the present invention has particular utility in components for containers for automotive restraint system components, an example of which is an automotive airbag inflator. The chemistry used to create each of the steels disclosed herein is novel, hereafter will be identified as Steel A, Steel B and Steel D, with the compositions for each being summarized: in Examples on page 18, 19 and 20.
- Preferred embodiments of the invention are described in detail below, by example only, with reference to the accompanying drawings, wherein:
- Figure IV shows a high speed quench core microstructure on Steel D;
- Figure V shows burst test at -60 C for a high speed quench on Steel D.
- Figure VI shows micro-structure for a normal quench on Steel D
- While the present invention is susceptible of embodiment in various forms, it will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiment illustrated.
- The present invention relates to steel tubing to be used for stored gas inflator pressure vessels. More particularly, the present invention relates to a low carbon ultra high strength steel grade for seamless pressure vessel applications with guaranteed ductile behavior at -60 °C., i.e., a ductile-to-brittle transition temperature below -60 °C., and possibly even as low as -100 °.
- More particularly, the present invention relates to a chemical composition and a manufacturing process to obtain a seamless steel tubing to be used to manufacture an inflator.
- A schematic illustration of a method of producing the seamless low carbon ultra high strength steel could be as follows:
- 1. Steel making
- 2. Steel casting
- 3. Tube hot rolling
- 4. Hot-rolled hollow finishing operations
- 5. Cold drawing
- 6. Austenizing with Quenching (without tempering)
- 7. Cold-drawn tube finishing operations
- One of the main objectives of the steel-making process is to refine the iron by removal of carbon, silicon, sulfur, phosphorous, and manganese. In particular, sulfur and phosphorous are prejudicial for the steel because they worsen the mechanical properties of the material. Ladle metallurgy is used before or after basic processing to perform specific purification steps that allow faster processing in the basic steel making operation.
- The steel-making process is performed under an extreme clean practice in order to obtain a very low sulfur and phosphorous content, which in turn is crucial for obtaining the high toughness required by the product. Accordingly, the objective of an inclusion level of 2 or less --thin series--, and level 1 or less --heavy series--, under the guidelines of ASTM E45 Standard-Worst Field Method (Method A) has been imposed. In the preferred embodiment of this invention, the maximum microinclusion content as measured according to the above-mentioned Standard should be:
Inclusion Type Thin Heavy A 0.5 0 B 1.5 1.0 C 0 0 D 1.5 0.5 - Furthermore, the extreme clean practice allows obtaining oversize inclusion content with 30 µm or less in size. These inclusion contents are obtained limiting the total oxygen content to 20 ppm.
- Extreme clean practice in secondary metallurgy is performed by bubbling inert gases in the ladle furnace to force the inclusion and impurities to float. The production of a fluid slag capable of absorbing impurities and inclusions, and the inclusions' size and shape modification by the addition of SiCa to the liquid steel, produce high quality steel with low inclusion content.
- The chemical composition of the obtained steel shall be as follows, in each case"%" means "mass percent":
- C is an element that inexpensively raises the strength of the steel, but if its content is less than 0.06% it is difficult to obtain the desired strength. On the other hand, if the steel has a C content greater than 0.18%, then cold workability, weldability, and toughness decrease. Therefore, the C content range is 0.06% to 0.18%. A preferred range for the C content is 0.07% to 0.12%, and an even more preferred range is 0.10 to 0.12%.
- Mn is an element which is effective in increasing the hardenability of the steel, and therefore it increases strength and toughness. If it content is less than 0.3% it is difficult to obtain the desired strength, whereas if it exceeds 1.5%, then banding structures become marked, and toughness decreases. Accordingly, the Mn content is 0.3% to 1.5%, with a preferred Mn range of 0.60 to 1.40%.
- Si is an element which has a deoxidizing effect during steel making process and also raises the strength of the steel. If Si content is less than 0.05%, the steel is susceptible to oxidation, on the other hand if it exceeds 0.50%, then both toughness and workability decrease. Therefore, the Si content is 0.05% to 0.5%., and a preferred Si range of 0.05% to 0.40%.
- S is an element that causes the toughness of the steel to decrease. Accordingly, the S content is limited to 0.015 % maximum. A preferred maximum value is 0.010%
- P is an element that causes the toughness of the steel to decrease. Accordingly, the P content is limited to 0.025% maximum. A preferred maximum value is 0.02%,
- Ni is an element that increases the strength and toughness of the steel, but it is very costly, therefore for cost reasons Ni is limited to 0.70% maximum. A preferred maximum value is 0.50%.
- Cr is an element which is effective in increasing the strength, toughness, and corrosion resistance of the steel. If it exceeds 1% the toughness at the welding zones decreases markedly. Accordingly, the Cr content is limited to 1.0% maximum, and a preferred Cr maximum content is 0.80%,
- Mo is an element which is effective in increasing the strength of the steel and contributes to retard the softening during tempering, but it is very costly.
- Accordingly, the Mo content is limited to 0.7% maximum, and a preferred Mo maximum content is 0.50%
- V is an element which is effective in increasing the strength of the steel, even if added in small amounts, and allows to retard the softening during tempering. However, this ferroalloy is expensive, forcing the necessity to lower the maximum content. Therefore, V is limited to 0.3% maximum, with a preferred maximum of 0.20%
- Preferred ranges for other elements not listed above are as follows:
Element Weight % Aluminum 0.10% max Niobium 0.06% max Sn 0.05% max Sb 0.05% max Pb 0.05% max As 0.05% max - Residual elements in a single ladle of steel used to produce tubing or chambers shall be:
- Sn+Sb+Pb+As ≤0.15% max, and
- S+P ≤0.025
- The next step is the steel casting to produce a solid steel bar capable of being pierced and rolled to form a seamless steel tube. The steel is cast in the steel shop into a round solid billet, having a uniform diameter along the steel axis.
- The solid cylindrical billet of ultra high clean steel is heated to a temperature of about 1200 °C. to 1300 °C., and at this point undergoes the rolling mill process. Preferably, the billet is heated to a temperature of about 1250 °C., and then passed through the rolling mill. The billet is pierced, preferably utilizing the known Manessmann process, and subsequently the outside diameter and wall thickness are substantially reduced while the length is substantially increased during hot rolling. For example, a 148 mm outside diameter solid bar is hot rolled into a 48.3 mm outside diameter hot-rolled tube, with a wall thickness of 3.25 mm.
- The cross-sectional area reduction, measured as the ratio of the cross-sectional area of the solid billet to the cross-sectional area of the hot-rolled tube, is important in order to obtain a refined microstructure, necessary to get the desired mechanical properties. Therefore, the minimum cross-sectional area reduction is about 15:1, with preferred and most preferred minimum cross-sectional area reductions of about 20:1 and about 25:1, respectively.
- The seamless hot-rolled tube of ultra high clean steel so manufactured is cooled to room temperature. The seamless hot-rolled tube of ultra high clean steel so manufactured has an approximately uniform wall thickness, both circumferentially around the tube and longitudinally along the tube axis.
- The hot-rolled tube is then passed through different finishing steps, for example cut in length into 2 to 4 pieces, and its ends cropped, straightened at known rotary straightening equipment if necessary, and non-destructively tested by one or more of the different known techniques, like electromagnetic testing or ultrasound testing.
- The surface of each piece of hot-rolled tube is then properly conditioned for cold drawing. This conditioning includes pickling by immersion in acid solution, and applying an appropriate layer of lubricants, like the known zinc phosphate and sodium estearathe combination, or reactive oil. After surface conditioning, the seamless tube is cold drawn, pulling it through an external die that has a diameter smaller than the outside diameter of the tube being drawn. In most cases, the internal surface of the tube is also supported by an internal mandrel anchored to one end of a rod, so that the mandrel remains close to the die during drawing. This drawing operation is performed without the necessity of previously heating the tube above room temperature.
- The seamless tube is so cold drawn at least once, each pass reducing both the outside diameter and the wall thickness of the tube. The cold-drawn steel tube so manufactured has a uniform outside diameter along the tube axis, and a uniform wall thickness both circumferentially around the tube and longitudinally along the tube axis. The so cold-drawn tube has an outside diameter preferably between 10 and 70 mm, and a wall thickness preferably from 1 to 4 mm.
- The cold-drawn tube is then heat treated in an austenizing furnace at a temperature of at least the upper austenizing temperature, or Ac3 (which, for the specific chemistry disclosed herein, is about 880 °C.), but preferably above about 920 °C. and below about 1050 °C. This maximum austenizing temperature is imposed in order to avoid grain coarsening. This process can be performed either in a fuel furnace or in an induction-type furnace, but preferably in the latter. The transit time in the furnace is strongly dependent on the type of furnace utilized. It has been found that the high surface quality required by this application is better obtained if an induction type furnace is utilized. This is due to the nature of the induction process, in which very short transit times are involved, precluding oxidation to occur. Preferably, the austenizing heating rate is at least about 100 °C. per second, but more preferably at least about 200 °C. per second. The extremely high heating rate and, as a consequence, very low heating times, are important for obtaining a very fine grain microstructure, which in turn guarantees the required mechanical properties.
- Furthermore, an appropriate filling factor, defined as the ratio of the round area defined by the outer diameter of the tube to the round area defined by the coil inside diameter of the induction furnace, is important for obtaining the required high heating rates. The minimum filling factor is about 0.16, and a preferred minimum filling factor is about 0.36.
- At or close to the exit zone of the furnace the tube is quenched by means of an appropriate quenching fluid. The quenching fluid is preferably water or water-based quenching solution. The tube temperature drops rapidly to ambient temperature, preferably at a rate of at least about 100 °C. per second, more preferably at a rate of at least about 200 °C. per second. This extremely high cooling rate is crucial for obtaining a complete microstructure transformation.
- The tempering step is eliminated and only a high speed quench using water or water based solutions, as described above, is employed.
In order to achieve a high speed quench, the following equipment is preferred, but not required.
A Quenching line with a full capacity of 2200 kg per hour, follows an induction furnace with a maximum power of inductor settled at 500 Kw. A head quencher employs 42 lines with 12 nozzles on each line. Water quenching flow is adjusted into a range of 10 to 60 m3 per hour, and the advance speed of the tube is controlled from 5 to 25 meters per minute. Additionally, following pinch rollers are set up to produce a rotation over the tube. - The ultra high strength steel tube so manufactured is passed through different finishing steps, straightened at known rotary straightening equipment, and non-destructively tested by one or more of the different known techniques. Preferably, for this kind of applications tubes should be tested by means of both known ultrasound and electromagnetic techniques.
- The tubing after heat treatment can be chemically processed to obtain a tube with a desirable appearance and very low surface roughness. For example, the tube could be pickled in a sulfuric acid and hydrochloric acid solution, phosphated using zinc phosphate, and oiled using a petroleum-based oil, a water-based oil, or a mineral oil.
- A steel tube obtained by the described method has the following minimum mechanical properties:
- Yield Strength about (110 ksi) 758 MPa minimum
- Tensile Strength about (145 ksi) 1000 MPa minimum
- Elongation about 9% minimum
- The yield strength, tensile strength, and elongation are to be performed according to the procedures described in the Standards ASTM E8. For the tensile test, a full size specimen for evaluating the whole tubular section is preferred.
- Flattening testing shall conform to the requirements of Specification DOT 39 of 49 CFR, Paragraph 178.65. Therefore, a tube section shall not crack when flattened with a 60 degree angled V-shaped tooling, until the opposite sides are 6 times the tube wall thickness apart. This test is fully met by the steel developed.
- In order to obtain a good balance between strength and toughness, the prior (sometimes referred to as former) austenitic grain size shall be preferably 7 or finer, and more preferably 9 or finer, as measured according to ASTM E-112 Standard. This is accomplished thanks to the extremely short heating cycle during austenitizing.
- The steel tube obtained by the described method shall have the stated properties in order to comply with the requirements stated for the invention.
- The demand of the industry is continuously pushing roughness requirements to lower values. The present invention has a good visual appearance, with, for example, a surface finish of the finished tubing of 3.2 microns maximum, both at the external and internal surfaces. This requirement is obtained through cold drawing, short austenizing times, and an adequate surface chemical conditioning at different steps of the process.
- A hydroburst pressure test shall be performed by sealing the ends of the tube section, for example, by welding flat steel plates to the ends of the tube. It is important that a 300 mm tube section remains constraint free so that full hoop stress can develop. The pressurization of the tube section shall be performed by pumping oil, water, alcohol or a mixture of them.
- The burst test pressure requirement depends on the tube size. When burst tested, the ultra high strength steel seamless tube has a guaranteed ductile behavior at -60 °C. Tests performed on the samples produced show that this grade has a guaranteed ductile behavior at -60 °C., with a ductile-to-brittle transition temperature below -60 °C.
- The inventors have found that a far more representative validation test is the burst test, performed both at ambient and at low temperature, instead of Charpy impact test (according to ASTM E23). This is due to the fact that relatively thin wall thicknesses and small outside diameter in these products are employed, therefore no standard ASTM specimen for Charpy impact test can be machined from the tube in the transverse direction. Moreover, in order to get this subsize Charpy impact probe, a flattening deformation has to be applied to a curved tube probe. This has a sensible effect on the steel mechanical properties, in particular the impact strength. Therefore, no representative impact test is obtained with this procedure.
- Applicants have discovered that a high speed quench without a temper is a critical aspect of the present invention. Steels which are lower alloy and less expensive than prior art chemistries when treated by a particular heating and high speed quench can meet or exceed the standards discussed hereinbefore.
- The Steels A, B, and D are alternative steels that were analyzed using the preferred method, wherein a very fast induction furnace austenizing with a high speed quench was used instead of adding a tempering step. Surprisingly, when control testing was done with these novel steels wherein less than a high speed quench, i.e, a normal quenching process was employed or a tempering step, as described hereinbefore, was employed, the tests showed significantly poorer characteristics.
- Steel D was discovered to be very promising because of the high performance to cost value it presented. Steel D was selected to manufacture tubing according to the preferred method. Measured chemical composition of samples of Steel D that were used for high speed quench tests were as follows:
Element % Value C 0.11 Mn 1.07 S 0.002 P 0.008 Si 0.08 V 0.08 Al 0.03 Nb 0.008 - The parameters used for the high speed quench tests on samples of Steel D were as follows:
- Quenching process was conducted controlling austenite temperature into 920 - 940 °C. Water flow of 40 m3/hr
- Speed advance tube of 10m/min.
- Inductor power of 62 % total capacity (500 Kw)
- Figure IV shows that a high speed quench Steel D microstructure that presents Martensite at 100% and a completely quenched transformation.
Likewise, burst tests at low temperature (- 60° C) were performed in order to observe the behavior and type of crack. Figure V shows tested burst samples for Steel D. Both presented a ductile behavior. - A control test on Steel D involving a normal quenching process was performed, results as follows:
Sample YS (Mpa) YS (Psi) % Elo UTS (Mpa) UTS (Psi) 19609 618 89635 24 861 124952 19610 586 85060 24 882 127967 - Figure VI presents the core structures for Steel D using normal quenching process.
- Steel B was selected to manufacture tubing according to the preferred method. Measured chemical composition of samples of Steel B that were used for high speed quench tests were as follows:
Element % Value C 0.10 Mn 1.09 S 0.001 P 0.011 Si 0.28 V 0.038 Al 0.035 Cr 0.68 Mo 0.41 Nb 0.005 - The parameters used for the high speed quench tests on samples of Steel B were as follows:
- Quenching process was conducted controlling austenite temperature into 920 - 940 °C. Water flow of 40 m3/hr
- Speed advance tube of 10m/min.
- Inductor power of 70 % total capacity (500 Kw)
- Likewise, burst tests at low temperature (- 60° C) were performed on Steel B in order to observe the behavior and type of crack.,. both presented a ductile behavior.
- Steel A was selected to manufacture tubing according to the preferred method. Measured chemical composition of samples of Steel A that were used for high speed quench tests were as follows:
Element % Value C 0.10 Mn 1.23 S 0.002 P 0.008 Si 0.27 V 0.002 Al 0.035 Cr 0.11 Mo 0.05 Ni 0.34 - The parameters used for the high speed quench tests on samples of Steel A were as follows:
- Quenching process was conducted controlling austenite temperature into 920 - 940 °C. Water flow of 50 m3/hr
- Speed advance tube of 20m/min.
- Inductor power of 90 % total capacity (500 Kw)
- Likewise, burst tests at low temperature (- 60° C and -100°C) were performed on Steel A in order to observe the behavior and type of crack.,. both presented a ductile behavior.
- Once samples of the preferred Steel D were found to yield surprising mechanical values upon using a high speed quenching according to the preferred method, a tempering then was performed in order to determine the effect of adding a temper upon the mechanical properties.
- A tempering heat treatment was conducted at 580 °C for total time of 15 minutes. The UTS average was (116 Ksi) 805 MPa, which do not meet the expected values
Test results for high speed quenched on samples of Steel D, were as follows:
Sample | YS (Mpa) | YS (Psi) | % Elo | UTS (Mpa) | UTS (Psi) |
19605 | 860 | 124810 | 20 | 1209 | 175388 |
19606 | 781 | 113360 | 19 | 1184 | 171860 |
Test results for high speed quenched on samples of Steel B, were as follows:
Sample | YS (MPa) | YS (Ksi) | % Elo | UTS (MPa) | UTS (Ksi) |
25222 | 940 | 136 | 22 | 1217 | 176 |
25002 | 914 | 132 | 24 | 1206 | 175 |
Test results for high speed quenched on samples of Steel A, were as follows:
Sample | YS (MPa) | YS (Ksi) | % Elo | UTS (MPa) | UTS (Ksi) |
20313 | 920 | 133 | 22 | 1230 | 178 |
21442 | 883 | 128 | 20 | 1195 | 173 |
Claims (15)
- A method of manufacturing a length of steel tubing, in particular for a stored gas inflator pressure vessel, comprising the following steps:- producing a length of tubing from a steel material consisting of, by weight: 0.07% to 0.12% carbon, 0.60% to 1.40% manganese, 0.05% to 0.40% silicon, up to 0.010% sulfur, up to 0.02% phosphorous, and at least one of the following elements: up to 0.20% vanadium, up to 0.07% aluminium, up to 0.04% niobium, up to 0.8% chromium, up to 0.50 % nickel, up to 0.50 % molybdenum, up to 0.35 % copper, up to 0.15% residual elements, said residual elements consisting of Sn, Sb, Pb or As up to 0.05% each, and the balance iron and incidental impurities;- subjecting the steel tubing to a cold-drawing process to obtain desired dimensions;- austenizing by heating the cold-drawn steel tubing in an induction-type austenizing furnace to a temperature of at least Ac3, at a heating rate of at least 100°C per second;- after the austenizing step, quenching the steel tubing in a quenching fluid until the tubing reaches approximately ambient temperature, at a cooling rate of at least 100°C per second,
the method being completed by the step of quenching without providing a subsequent step of tempering,
wherein the steel tube has a tensile strength of at least 1103 MPa (160 ksi) and has a ductile-to-brittle transition temperature below -60 °C. - The method of claim 1, wherein the finished steel tubing has an elongation at break of at least 9%.
- The method of claim 1, wherein in the austenizing heating step, the steel tubing is heated to a temperature between 860 -1050°C.
- The method of claim 1, wherein in the austenizing heating step, the steel tubing is heated at a rate of at least 200°C per second.
- The method of claim 1, wherein in the quenching step, the steel tubing is cooled at a rate of at least 200 °C per second.
- The method of claim 1, wherein the steel tube has a ductile-to-brittle transition temperature below -100 °C.
- A seamless steel tube manufactured with the method according to claim 1 wherein the steel tube has a tensile strength of at least 1103 MPa (160 ksi), and has a ductile-to-brittle transition temperature below -60 °C.
- A seamless steel tube according to claim 9, having a ductile-to-brittle transition temperature below -100 °C.
- A seamless steel tube according to claim 9 or 10 wherein the steel tube is a stored gas inflator pressure vessel.
- A seamless steel tube according to claim 9 or 10 wherein the steel tube is an automotive airbag inflator.
- Use of a seamless steel tube according to claim 9 in a stored gas inflator pressure vessel.
- Use of a seamless steel tube according to claim 9 in an automotive airbag inflator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/395,322 US20060169368A1 (en) | 2004-10-05 | 2006-04-03 | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
PCT/IB2007/000850 WO2007113642A2 (en) | 2006-04-03 | 2007-04-02 | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2007914A2 EP2007914A2 (en) | 2008-12-31 |
EP2007914B1 true EP2007914B1 (en) | 2017-10-04 |
Family
ID=38564023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07734171.7A Active EP2007914B1 (en) | 2006-04-03 | 2007-04-02 | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
Country Status (10)
Country | Link |
---|---|
US (2) | US20060169368A1 (en) |
EP (1) | EP2007914B1 (en) |
JP (1) | JP2009532584A (en) |
KR (1) | KR20090013769A (en) |
CN (1) | CN101448966A (en) |
AR (1) | AR060286A1 (en) |
BR (1) | BRPI0709458B1 (en) |
CA (1) | CA2650452A1 (en) |
MX (1) | MX2008012810A (en) |
WO (1) | WO2007113642A2 (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101087562B1 (en) * | 2003-03-31 | 2011-11-28 | 히노 지도샤 가부시키가이샤 | Piston for internal combustion engine and producing method thereof |
AU2003225402B2 (en) | 2003-04-25 | 2010-02-25 | Dalmine S.P.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
US8926771B2 (en) * | 2006-06-29 | 2015-01-06 | Tenaris Connections Limited | Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same |
US9014280B2 (en) | 2006-10-13 | 2015-04-21 | Qualcomm Incorporated | Video coding with adaptive filtering for motion compensated prediction |
MX2007004600A (en) * | 2007-04-17 | 2008-12-01 | Tubos De Acero De Mexico S A | Seamless steel pipe for use as vertical work-over sections. |
US7862667B2 (en) | 2007-07-06 | 2011-01-04 | Tenaris Connections Limited | Steels for sour service environments |
MX2010005532A (en) * | 2007-11-19 | 2011-02-23 | Tenaris Connections Ltd | High strength bainitic steel for octg applications. |
AT507596B1 (en) * | 2008-11-20 | 2011-04-15 | Voestalpine Tubulars Gmbh & Co Kg | METHOD AND DEVICE FOR PRODUCING STEEL TUBES WITH SPECIAL CHARACTERISTICS |
BRPI0904814B1 (en) * | 2008-11-25 | 2020-11-10 | Maverick Tube, Llc | method of manufacturing a steel product |
JP4770922B2 (en) * | 2008-12-08 | 2011-09-14 | 住友金属工業株式会社 | Steel pipe for airbag and manufacturing method thereof |
TWI381057B (en) * | 2009-03-20 | 2013-01-01 | China Steel Corp | Steel material suitable for preparing airbag device for airbag and its application |
CN101693941B (en) * | 2009-08-13 | 2011-06-08 | 巨力索具股份有限公司 | Method for quenching medium and low carbon alloy structural steel workpieces |
EP2325435B2 (en) | 2009-11-24 | 2020-09-30 | Tenaris Connections B.V. | Threaded joint sealed to [ultra high] internal and external pressures |
CN101792885B (en) * | 2010-03-30 | 2011-08-03 | 莱芜钢铁集团有限公司 | Hot-rolled round steel for high carbon manganese and chrome grinding ball and method for producing same |
MX2012005710A (en) * | 2010-06-03 | 2012-06-12 | Sumitomo Metal Ind | Steel pipe for air bag and process for producing same. |
JP5234226B2 (en) * | 2010-06-03 | 2013-07-10 | 新日鐵住金株式会社 | Manufacturing method of steel pipe for airbag |
CN101988170B (en) * | 2010-12-06 | 2012-03-28 | 周建安 | Method for microalloying vanadium and nitrogen in molten iron |
US9163296B2 (en) | 2011-01-25 | 2015-10-20 | Tenaris Coiled Tubes, Llc | Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment |
IT1403689B1 (en) | 2011-02-07 | 2013-10-31 | Dalmine Spa | HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS. |
IT1403688B1 (en) | 2011-02-07 | 2013-10-31 | Dalmine Spa | STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR. |
US8414715B2 (en) | 2011-02-18 | 2013-04-09 | Siderca S.A.I.C. | Method of making ultra high strength steel having good toughness |
US8636856B2 (en) | 2011-02-18 | 2014-01-28 | Siderca S.A.I.C. | High strength steel having good toughness |
DE102011108162B4 (en) * | 2011-07-20 | 2013-02-21 | Salzgitter Flachstahl Gmbh | Process for producing a component by hot forming a precursor of steel |
FI20115832L (en) * | 2011-08-26 | 2013-02-27 | Rautaruukki Oyj | Method for manufacturing a steel product with excellent mechanical properties, steel product manufactured with the method and use of strain-hardened steel |
US9340847B2 (en) | 2012-04-10 | 2016-05-17 | Tenaris Connections Limited | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same |
CN102605283B (en) * | 2012-04-18 | 2013-12-25 | 江苏省沙钢钢铁研究院有限公司 | Low-cost high-toughness low-temperature pressure vessel steel and manufacturing method thereof |
US9365944B2 (en) * | 2012-05-18 | 2016-06-14 | Tube-Mac Piping Technologies Ltd. | Method of making hydralic tubing |
CA2897451C (en) | 2013-01-11 | 2019-10-01 | Tenaris Connections Limited | Galling resistant drill pipe tool joint and corresponding drill pipe |
US9187811B2 (en) | 2013-03-11 | 2015-11-17 | Tenaris Connections Limited | Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing |
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
EP2789700A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
EP2789701A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
KR101505286B1 (en) * | 2013-05-30 | 2015-03-24 | 현대제철 주식회사 | Method of manufacturing seamless product |
CN105452515A (en) | 2013-06-25 | 2016-03-30 | 特纳瑞斯连接有限责任公司 | High-chromium heat-resistant steel |
CN103320711B (en) * | 2013-06-26 | 2016-01-20 | 衡阳华菱钢管有限公司 | Weldless steel tube and manufacture method thereof |
US9776592B2 (en) * | 2013-08-22 | 2017-10-03 | Autoliv Asp, Inc. | Double swage airbag inflator vessel and methods for manufacture thereof |
CN104046924B (en) * | 2014-06-25 | 2017-01-04 | 宝山钢铁股份有限公司 | A kind of safe automobile air bag high tough seamless steel pipe and manufacture method thereof |
WO2016063513A1 (en) * | 2014-10-23 | 2016-04-28 | Jfeスチール株式会社 | High-strength welded steel pipe for airbag inflator, and method for manufacturing same |
KR101639327B1 (en) * | 2014-12-16 | 2016-07-13 | 주식회사 세아베스틸 | Steel for inflator tube of air bag having good impact value in low temperature |
KR101657827B1 (en) * | 2014-12-24 | 2016-09-20 | 주식회사 포스코 | Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof |
US20160305192A1 (en) | 2015-04-14 | 2016-10-20 | Tenaris Connections Limited | Ultra-fine grained steels having corrosion-fatigue resistance |
JP7053267B2 (en) | 2015-05-21 | 2022-04-12 | クリーブランド-クリフス スティール プロパティーズ、インク. | High manganese 3rd generation advanced high-strength steel |
CN106282831B (en) * | 2015-05-25 | 2018-11-06 | 宝钢湛江钢铁有限公司 | A kind of high-strength container weather resisting steel and its manufacturing method |
GB2548175B (en) * | 2016-03-09 | 2018-10-03 | Goodwin Plc | A steel, a welding consumable and a cast steel product |
JP2018024915A (en) * | 2016-08-10 | 2018-02-15 | 豊田合成株式会社 | Gas housing container for inflator and manufacturing method therefor |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
US10434554B2 (en) | 2017-01-17 | 2019-10-08 | Forum Us, Inc. | Method of manufacturing a coiled tubing string |
CN107236909B (en) * | 2017-06-16 | 2019-06-18 | 武汉钢铁有限公司 | It can be used for the high intensity, high tenacity corrosion resistant steel and its production method of -60 DEG C of low temperature environments |
JP6981240B2 (en) * | 2017-12-26 | 2021-12-15 | 日本製鉄株式会社 | Manufacturing method of seamless steel pipe and seamless steel pipe |
CN110295313B (en) | 2018-03-21 | 2021-09-17 | 宝山钢铁股份有限公司 | Low-temperature-resistant high-strength high-toughness oil casing pipe and manufacturing method thereof |
CN110205558A (en) * | 2019-06-05 | 2019-09-06 | 盐城市联鑫钢铁有限公司 | A kind of HRB400 steel alloy and its smelting process method containing Nb, V |
CN110257722A (en) * | 2019-07-25 | 2019-09-20 | 南京钢铁股份有限公司 | High-intensitive S420NL-Z35 low-temperature flexibility steel plate and manufacturing method |
JP2023531248A (en) | 2020-06-23 | 2023-07-21 | テナリス・コネクシヨンズ・ベー・ブイ | Method for producing high-strength steel pipe from steel composition and components made therefrom |
DE102020133765A1 (en) | 2020-12-16 | 2022-06-23 | Benteler Steel/Tube Gmbh | High strength steel pipe and method of making high strength steel pipe |
CN115627418B (en) * | 2022-10-18 | 2023-08-29 | 广西柳钢中金不锈钢有限公司 | Nickel-chromium-manganese-containing steel for carbon structure and manufacturing method thereof |
CN115976409A (en) * | 2022-12-15 | 2023-04-18 | 攀钢集团攀枝花钢铁研究院有限公司 | Low-cost hollow anchor rod welded pipe, hot-rolled steel strip and preparation method |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3645725A (en) * | 1969-05-02 | 1972-02-29 | Armco Steel Corp | Austenitic steel combining strength and resistance to intergranular corrosion |
JPS61130462A (en) * | 1984-11-28 | 1986-06-18 | Tech Res & Dev Inst Of Japan Def Agency | High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above |
ATE47428T1 (en) * | 1985-06-10 | 1989-11-15 | Hoesch Ag | PROCESS AND USE OF A STEEL FOR THE MANUFACTURE OF STEEL PIPES WITH INCREASED SOUR GAS RESISTANCE. |
JPH01275739A (en) * | 1988-04-28 | 1989-11-06 | Sumitomo Metal Ind Ltd | Low si high strength and heat-resistant steel tube having excellent ductility and toughness |
JPH0772299B2 (en) * | 1990-06-19 | 1995-08-02 | 住友金属工業株式会社 | Manufacturing method of high yield steel plate with low yield ratio |
US5348344A (en) * | 1991-09-18 | 1994-09-20 | Trw Vehicle Safety Systems Inc. | Apparatus for inflating a vehicle occupant restraint using a mixture of gases |
US5454883A (en) * | 1993-02-02 | 1995-10-03 | Nippon Steel Corporation | High toughness low yield ratio, high fatigue strength steel plate and process of producing same |
US5388322A (en) * | 1993-05-28 | 1995-02-14 | Simon; Joseph A. | Method of making a shatterproof air bag inflator pressure vessel |
IT1271310B (en) * | 1994-12-21 | 1997-05-27 | Snam Progetti | PROCEDURE FOR OBTAINING DISTINCT CURRENTS OF METHANOL AND ETHANOL, OF N-PROPANOL, OF ISOBUTANOL, USABLE IN THE SYNTHESIS OF HIGH-OCTANIC PRODUCTS, FROM MIXTURES CONTAINING ALCOHOLS WITH WATER AND OTHER LOW BOILING AND HIGH BOILING COMPOUNDS |
US6056833A (en) * | 1997-07-23 | 2000-05-02 | Usx Corporation | Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio |
US6159312A (en) * | 1997-12-19 | 2000-12-12 | Exxonmobil Upstream Research Company | Ultra-high strength triple phase steels with excellent cryogenic temperature toughness |
JP3519966B2 (en) * | 1999-01-07 | 2004-04-19 | 新日本製鐵株式会社 | Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method |
US6187117B1 (en) * | 1999-01-20 | 2001-02-13 | Bethlehem Steel Corporation | Method of making an as-rolled multi-purpose weathering steel plate and product therefrom |
US6173495B1 (en) * | 1999-05-12 | 2001-01-16 | Trw Inc. | High strength low carbon air bag quality seamless tubing |
DE10022463B4 (en) * | 1999-05-12 | 2005-07-14 | Trw Inc., Lyndhurst | A method of manufacturing a container of an inflator of a vehicle occupant protection device |
US7481897B2 (en) * | 2000-09-01 | 2009-01-27 | Trw Automotive U.S. Llc | Method of producing a cold temperature high toughness structural steel |
US6386583B1 (en) * | 2000-09-01 | 2002-05-14 | Trw Inc. | Low-carbon high-strength steel |
US20020033591A1 (en) * | 2000-09-01 | 2002-03-21 | Trw Inc. | Method of producing a cold temperature high toughness structural steel tubing |
JP3678147B2 (en) * | 2000-12-27 | 2005-08-03 | 住友金属工業株式会社 | Steel tube for high strength and toughness airbag and its manufacturing method |
EP1375683B1 (en) * | 2001-03-29 | 2012-02-08 | Sumitomo Metal Industries, Ltd. | High strength steel tube for air bag and method for production thereof |
MXPA04010403A (en) * | 2002-06-26 | 2005-02-17 | Jfe Steel Corp | Method for producing seamless steel pipe for inflator of air bag. |
AU2003225402B2 (en) * | 2003-04-25 | 2010-02-25 | Dalmine S.P.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
US20050000601A1 (en) * | 2003-05-21 | 2005-01-06 | Yuji Arai | Steel pipe for an airbag system and a method for its manufacture |
US7278190B2 (en) * | 2003-07-03 | 2007-10-09 | Newfrey Llc | Two component fuel and brake line clip |
US20050076975A1 (en) * | 2003-10-10 | 2005-04-14 | Tenaris Connections A.G. | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same |
US20050087269A1 (en) * | 2003-10-22 | 2005-04-28 | Merwin Matthew J. | Method for producing line pipe |
-
2006
- 2006-04-03 US US11/395,322 patent/US20060169368A1/en not_active Abandoned
-
2007
- 2007-04-02 JP JP2009503677A patent/JP2009532584A/en active Pending
- 2007-04-02 WO PCT/IB2007/000850 patent/WO2007113642A2/en active Application Filing
- 2007-04-02 EP EP07734171.7A patent/EP2007914B1/en active Active
- 2007-04-02 CA CA002650452A patent/CA2650452A1/en not_active Abandoned
- 2007-04-02 MX MX2008012810A patent/MX2008012810A/en active IP Right Grant
- 2007-04-02 CN CNA2007800182065A patent/CN101448966A/en active Pending
- 2007-04-02 BR BRPI0709458-2A patent/BRPI0709458B1/en active IP Right Grant
- 2007-04-02 KR KR1020087026381A patent/KR20090013769A/en not_active Application Discontinuation
- 2007-04-03 AR ARP070101416A patent/AR060286A1/en active IP Right Grant
-
2008
- 2008-12-17 US US12/336,832 patent/US20090101242A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
BRPI0709458A2 (en) | 2011-07-12 |
JP2009532584A (en) | 2009-09-10 |
CA2650452A1 (en) | 2007-10-11 |
WO2007113642A3 (en) | 2008-01-31 |
WO2007113642A2 (en) | 2007-10-11 |
MX2008012810A (en) | 2009-03-16 |
KR20090013769A (en) | 2009-02-05 |
US20090101242A1 (en) | 2009-04-23 |
CN101448966A (en) | 2009-06-03 |
AR060286A1 (en) | 2008-06-04 |
BRPI0709458B1 (en) | 2014-09-09 |
EP2007914A2 (en) | 2008-12-31 |
US20060169368A1 (en) | 2006-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2007914B1 (en) | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same | |
EP1678335B1 (en) | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same | |
JP2007508452A6 (en) | Low carbon alloy steel pipe with ultra high strength and excellent toughness at low temperature and its manufacturing method | |
EP1637619B1 (en) | Steel pipe for airbag system and method for its manufacture | |
TWI410505B (en) | Seamless steel pipe for airbag accumulator and its manufacturing method | |
EP1375683A1 (en) | High strength steel tube for air bag and method for production thereof | |
JP5979334B1 (en) | High strength welded steel pipe for airbag inflator and method for manufacturing the same | |
EP2857537A1 (en) | Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof | |
EP2484793B1 (en) | Steel pipe for air bag and process for producing same | |
CN100460527C (en) | Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same | |
JPH10140250A (en) | Production of steel tube for air bag, having high strength and high toughness | |
JP3220975B2 (en) | Manufacturing method of steel pipe for high strength and high toughness air bag | |
JP3318467B2 (en) | Manufacturing method of high strength and high toughness steel pipe with excellent workability | |
EP2578705A1 (en) | Process for producing steel pipe for air bag | |
JP2002194501A (en) | High strength, highly tough steel tube for air bag application and production method of the same | |
JP4197590B2 (en) | Steel tube and pressure accumulator for high strength and toughness airbag | |
JP2004076034A (en) | Method for producing high strength, high toughness and high workability seamless steel pipe for air bag | |
MXPA02005390A (en) | Welded steel pipe having excellent hydroformability and method for making the same. | |
JP2005060796A (en) | Method for producing high strength and high toughness welded steel tube for air bag bottle | |
JP2004027303A (en) | High strength, high toughness, high workability seamless steel tube for air bag and method of producing the same | |
MXPA06003933A (en) | Low carbon alloy steel tube having ultra high strength and excellent toughnes at low temperature and method of manufacturing the same | |
CA3235953A1 (en) | Seamless steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081031 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LOPEZ, EDGARDO, OSCAR Inventor name: ALTSCHULER, EDUARDO |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20121217 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TENARIS CONNECTIONS LIMITED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TENARIS CONNECTIONS B.V. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170314 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 934112 Country of ref document: AT Kind code of ref document: T Effective date: 20171015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007052566 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 934112 Country of ref document: AT Kind code of ref document: T Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180105 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007052566 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
26N | No opposition filed |
Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180402 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180402 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070402 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240320 Year of fee payment: 18 Ref country code: IT Payment date: 20240320 Year of fee payment: 18 Ref country code: FR Payment date: 20240320 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240401 Year of fee payment: 18 |