[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2000632A1 - Turbine with a compact inflow casing due to inner control valves - Google Patents

Turbine with a compact inflow casing due to inner control valves Download PDF

Info

Publication number
EP2000632A1
EP2000632A1 EP07011268A EP07011268A EP2000632A1 EP 2000632 A1 EP2000632 A1 EP 2000632A1 EP 07011268 A EP07011268 A EP 07011268A EP 07011268 A EP07011268 A EP 07011268A EP 2000632 A1 EP2000632 A1 EP 2000632A1
Authority
EP
European Patent Office
Prior art keywords
control valve
turbine
nozzle group
secondary control
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07011268A
Other languages
German (de)
French (fr)
Inventor
Walter Gehringer
Richard Geist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07011268A priority Critical patent/EP2000632A1/en
Priority to CA002689224A priority patent/CA2689224A1/en
Priority to US12/602,891 priority patent/US20100178153A1/en
Priority to BRPI0812409-4A2A priority patent/BRPI0812409A2/en
Priority to PCT/EP2008/055045 priority patent/WO2008148607A1/en
Priority to CN200880019281A priority patent/CN101680308A/en
Priority to EP08736568A priority patent/EP2153029A1/en
Publication of EP2000632A1 publication Critical patent/EP2000632A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines

Definitions

  • the present invention relates to a turbine having an inflow housing, which has an inlet for an inflowing working medium, a plurality of control valves and at least two nozzle groups, the flow of the working medium from the inlet into the nozzle groups being controllable by means of the control valves.
  • the inflow housing is the part of the turbine housing into which the working medium flows into the turbine and in which the working medium is directed onto the rotor.
  • the inflow housing comprises a plurality of nozzle groups, which extend around the rotor in a ring-shaped manner on a common diameter. Each nozzle group combines several nozzles that are directed at the rotor.
  • the working medium flowing in through the inlet is directed into the nozzle groups, exits the nozzles and flows through the rotor blades of the rotor.
  • the division of the nozzles into nozzle groups is used to regulate the output.
  • the total mass flow rate and thus the performance of the turbine can be controlled by varying the nozzle groups acted upon with working fluid.
  • the distribution of the working medium to the individual nozzle groups and the individual mass flow rate per nozzle group is controlled by the control valves.
  • a quick-closing valve is provided, which closes the inlet and thus can prevent the total flow through the turbine.
  • the inflow housing of a known steam turbine is in FIG. 2a of the DE 1 915 267 A1 shown.
  • the Control valves in a so-called valve housing or valve box above the actual turbine housing.
  • the working medium flows in laterally through an inlet, passes through a quick-acting valve and enters the valve box, from which five supply lines connected in parallel each branch off via a control valve to five nozzle groups.
  • Each nozzle group thus has its own supply line and its own control valve.
  • the respective supply lines and valves are connected in parallel.
  • a circuit diagram of this arrangement is shown in the attached FIG. 1 ,
  • the linearly guided valve spindles of the control valves are usually driven in each case with an individual motor and not, as shown in this publication, via a control bar.
  • control valves are arranged outside the turbine housing and connected via welded pipes or pipe bends with the nozzle housing.
  • the separated from the inflow housing live steam flow is thus performed by comparatively long pipes to the nozzle groups.
  • the present invention has the object, a turbine of the type mentioned so on to form that their Einströmgephaseuse builds as compact as possible, and that flow losses are reduced by long lines.
  • This task is initially solved by the fact that the control valves are divided functionally into a primary control valve and at least one secondary control valve.
  • the inlet is to be connected to the first nozzle group via an inlet pipe, wherein the inlet pipe is to be guided by the primary control valve such that the flow of the working medium along the inlet pipe is controllable by means of the primary control valve.
  • the secondary control valve connects the first nozzle group to the second nozzle group in such a way that the flow of the working medium from the first nozzle group into the second nozzle group is controllable by means of the secondary control valve.
  • the present invention is based on the basic idea of no longer controlling the individual nozzle groups with control valves connected in parallel, but of connecting the nozzle groups in series via the secondary control valves. This measure basically makes it possible to save pipeline passages in the inflow housing and thus achieve a more compact design. The pipelines also reduce the flow losses.
  • the valve position of the primary control valve is decisive, since this can control the entire flow of the working fluid through the turbine. Since the first nozzle group is connected directly to the inlet via the primary control valve and the quick-acting valve, the first nozzle group is with the primary control valve open and
  • a preferred embodiment of the invention provides to provide at least three series-connected nozzle groups in the inflow, so that at least two secondary control valves are required, which connect the first with the second and the second with the third nozzle group. In order to allow the power control even smaller steps, it is also advisable to provide a fourth or fifth nozzle group; the number of secondary control valves needed would consequently increase to three or four.
  • the start-up of such a turbine is preferably carried out by the following steps:
  • the quick-action valve is initially opened, whereby the pressure of the working medium builds up to the valve seat of the primary control valve.
  • the first nozzle group is directly controlled by the primary control valve.
  • the turbine is triggered and brought to operating speed.
  • the main control valve is opened, thus releasing the cross section for the entire mass flow of the working medium. Since the mass flow rate is capped by the nozzle cross sections of the first group, the performance of the turbine remains constant when the maximum mass flow rate is reached.
  • the first secondary control valve is opened, so that the current now also reaches the second nozzle group.
  • the mass flow rate increases as a result. If the turbine has further, downstream nozzle groups, these are connected later by opening the respective secondary control valves.
  • the interconnection of the individual nozzle groups according to the invention makes it possible to arrange the shut-off elements of the secondary control valves directly between the annular sector-shaped nozzle groups extending around the rotor, that is to say on the same diameter as the nozzle groups.
  • the flow paths in the inflow housing are thereby further shortened.
  • the installation space of the inflow housing can be significantly reduced in this design by the fact that the actuation axes of the secondary control valves are arranged radially to the axis of rotation of the rotor.
  • the actuating travel of the shut-off devices is then not tangential to the diameter of the nozzle groups, but rather radially. Of the necessary outer diameter of the inflow is thereby lowered.
  • the shut-off elements of the secondary control valves are designed as rotationally switchable control valves, so that the actuating axis is an axis of rotation.
  • the rotary shut-off valves take up less space than linear shut-off valves, require lower actuation forces and need not be completely sealed.
  • the use of rotationally connected, not completely sealing shut-off devices is also possible because the secondary control valves no quick-closing function is required. This quick-closing function is taken over by the quick-acting valve and the downstream primary control valve.
  • the inflow housing of the turbine according to the invention is designed substantially annular and divided into at least two housing halves, wherein the inlet conduit is an integral part of a housing half.
  • the advantage of this design is that the line of the working medium can be welded without flange connection, that only one influx into the turbine housing with piston ring has to be sealed, and that all components warm up well during the starting phase.
  • two housing halves, each with an integrated inlet can be provided to double the nominal diameter of the Zudampfan gleiches total.
  • the present invention is preferably applied in the field of axial-flow steam turbines.
  • FIG. 1 schematically shows the valve circuit of a conventional steam turbine, as it is known from the document mentioned.
  • the housing of the turbine comprises an inflow housing 1, in which the rotor, not shown, is rotatably mounted. Impacted with working medium, the rotor over four nozzle groups 21, 22, 23, 24, which extend in an annular sector on a common diameter D around the rotor around.
  • the working medium - in the case of a steam turbine water vapor - flows through an inlet 3 in the inflow 1 a.
  • a quick-acting valve 4 is arranged, by means of which the inlet 3 can be quickly closed in emergencies.
  • the flow fanned into four supply lines 51, 52, 53, 54 which connect the inlet 3 respectively with the nozzle groups 21, 22, 23, 24.
  • the flow of the working medium through the supply lines 51, 52, 53, 54 is controlled by respective control valves 61, 62, 63, 64.
  • the nozzle groups 21 to 24 are thus connected in parallel via their respective supply lines 51 to 54 and the associated control valves 61 to 64.
  • the wiring according to the invention is in FIG. 2 shown.
  • the inlet 3 live steam connection
  • the inlet line 7 is passed through a primary control valve 8, which controls the total flow through the turbine.
  • the primary control valve 8 is advantageously equipped with a pre-stroke, which can be realized for example by a parallel-connected Vorhub valve (not shown).
  • Quick-acting valve 4, primary control valve 8 and first nozzle group 21 are thus connected in series via the inlet line 7.
  • the series connection continues into the second 22, third 23 and fourth nozzle groups 24.
  • the second nozzle group 22 is connected to the first nozzle group 21 exclusively connected via a first secondary control valve 91.
  • the connection from the second nozzle group 22 to the third nozzle group 23 takes place in the same way via a second secondary control valve 92, the connection in the fourth nozzle group 24 according to a third secondary control valve 93rd
  • the shut-off elements 10 of the secondary control valves 91, 92, 93 are located on the same diameter D as the nozzle groups 21, 22, 23, 24. Thus, a particularly compact design of the inflow housing 1 is achieved.
  • the actuating axes 11 of the secondary control valves extend radially to the axis of rotation of the rotor, so the housing center. By these measures, the servomotors 12 of the actuators can be arranged outside the inflow housing 1.
  • FIGS. 3 to 5 Concrete design proposals of this construction are in the FIGS. 3 to 5 seen.
  • the secondary control valves 91, 92, 93 are to be actuated rotationally, so that the shut-off elements 10 are rotary valves.
  • the servomotors 12 are placed on the inflow housing 1, ie in the pressure-free region. It must be sealed only the housing leaving the actuator axis 11, which is easy to fall in axes of rotation.
  • the inflow housing 1 itself is therefore substantially annular and significantly more compact than in the prior art, since it accommodates only the nozzle groups 21, 22, 23 and the shut-off elements 10.
  • the inflow housing 1 is cast and divided into an upper housing half 1a and a lower housing half 1b, wherein the inlet conduit 7 is an integral part of the lower housing half 1b.
  • Quick-action valve 4 are arranged outside of the housing 1. It is therefore only a steam supply in the turbine housing with piston rings seal. The steam line can therefore be welded without flange connection.
  • FIG. 6 shows an inflow housing with two integrated inlet lines.
  • the internal control valves 10 need only low actuating forces and in particular no quick-closing device, since they are connected in series with the primary control valve 8 and the quick-closing valve 4.
  • the internal control valves without opening the turbine housing and be installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

The turbine has an inflow housing (1), which comprises an inlet for an inflowing working fluid, where the inlet can be closed by a quick closing valve (4), multiple control valves (8,91) and two nozzle groups (21,22). The secondary control valve connects the former nozzle group to the latter nozzle group such that the flow of the working fluid from the former nozzle group into the latter nozzle group can be controlled by the secondary control valve. An independent claim is also included for a method for operating a turbine.

Description

Die vorliegende Erfindung betrifft eine Turbine mit einem Einströmgehäuse, welches einen von einem Schnellschlussventil verschließbaren Einlass für ein anströmendes Arbeitsmedium, eine Mehrzahl von Regelventilen und mindestens zwei Düsengruppen aufweist, wobei der Strom des Arbeitsmediums von dem Einlass in die Düsengruppen mittels der Regelventile steuerbar ist.The present invention relates to a turbine having an inflow housing, which has an inlet for an inflowing working medium, a plurality of control valves and at least two nozzle groups, the flow of the working medium from the inlet into the nozzle groups being controllable by means of the control valves.

Bekannt ist eine derartige Turbine aus der Offenlegungsschrift DE 1 915 267 A1 derselben Anmelderin. Das Einströmgehäuse ist der Teil des Turbinengehäuses, in den das Arbeitsmedium in die Turbine einströmt und in dem das Arbeitsmedium auf den Läufer gerichtet wird. Zum Beaufschlagen des Läufers umfasst das Einströmgehäuse mehrere Düsengruppen, die sich ringsektorförmig auf einem gemeinsamen Durchmesser um den Läufer herum erstrecken. Jede Düsengruppe fasst mehrere Düsen zusammen, die auf den Läufer gerichtet sind. Das durch den Einlass einströmende Arbeitsmedium wird in die Düsengruppen geleitet, tritt aus den Düsen aus und durchströmt die Laufbeschaufelung des Läufers. Die Aufteilung der Düsen in Düsengruppen dient der Leistungsregelung. Da der Massendurchsatz durch den Düsenquerschnitt begrenzt ist, kann durch Variation der mit Arbeitsmedium beaufschlagten Düsengruppen der Gesamtmassendurchsatz und damit die Leistung der Turbine gesteuert werden. Die Aufteilung des Arbeitsmediums auf die einzelnen Düsengruppen und der individuelle Massendurchsatz pro Düsengruppe wird durch die Regelventile gesteuert. Zur Notabschaltung ist ein Schnellschlussventil vorgesehen, welches den Einlass verschließen und damit den Gesamtstrom durch die Turbine unterbinden kann.Such a turbine is known from the published patent application DE 1 915 267 A1 the same applicant. The inflow housing is the part of the turbine housing into which the working medium flows into the turbine and in which the working medium is directed onto the rotor. For loading the rotor, the inflow housing comprises a plurality of nozzle groups, which extend around the rotor in a ring-shaped manner on a common diameter. Each nozzle group combines several nozzles that are directed at the rotor. The working medium flowing in through the inlet is directed into the nozzle groups, exits the nozzles and flows through the rotor blades of the rotor. The division of the nozzles into nozzle groups is used to regulate the output. Since the mass flow rate is limited by the nozzle cross-section, the total mass flow rate and thus the performance of the turbine can be controlled by varying the nozzle groups acted upon with working fluid. The distribution of the working medium to the individual nozzle groups and the individual mass flow rate per nozzle group is controlled by the control valves. For emergency shutdown, a quick-closing valve is provided, which closes the inlet and thus can prevent the total flow through the turbine.

Das Einströmgehäuse einer bekannten Dampfturbine ist in Figur 2a der DE 1 915 267 A1 dargestellt. Bei dieser im Prinzip noch heute hergestellten Gehäusebauart befinden sich die Regelventile in einem so genannten Ventilgehäuse oder Ventilkasten oberhalb des eigentlichen Turbinengehäuses. Das Arbeitsmedium strömt seitlich durch einen Einlass ein, durchläuft ein Schnellschlussventil und gelangt in den Ventilkasten, von dem aus fünf parallel geschaltete Zuleitungen jeweils über ein Regelventil zu fünf Düsengruppen abzweigen. Jede Düsengruppe verfügt somit über eine eigene Zuleitung und ein eigenes Regelventil. Die jeweiligen Zuleitungen und Ventile sind parallel geschaltet. Ein Schaltbild dieser Anordnung zeigt die beiliegende Figur 1. Bei heutigen Bauformen einer solchen Ventilanordnung werden die linear geführten Ventilspindeln der Regelventile in der Regel jeweils mit einem individuellen Motor angetrieben und nicht, wie in dieser Offenlegungsschrift gezeigt, über einen Steuerbalken.The inflow housing of a known steam turbine is in FIG. 2a of the DE 1 915 267 A1 shown. In this housing model, which is still produced today, are the Control valves in a so-called valve housing or valve box above the actual turbine housing. The working medium flows in laterally through an inlet, passes through a quick-acting valve and enters the valve box, from which five supply lines connected in parallel each branch off via a control valve to five nozzle groups. Each nozzle group thus has its own supply line and its own control valve. The respective supply lines and valves are connected in parallel. A circuit diagram of this arrangement is shown in the attached FIG. 1 , In today's designs of such a valve arrangement, the linearly guided valve spindles of the control valves are usually driven in each case with an individual motor and not, as shown in this publication, via a control bar.

Bei einer anderen bekannten Bauart von Dampfturbinen werden die Regelventile außerhalb des Turbinengehäuses angeordnet und über angeschweißte Rohre oder Rohrbögen mit dem Düsengehäuse verbunden. Der entfernt vom Einströmgehäuse aufgeteilte Frischdampfstrom wird somit durch vergleichsweise lange Rohrleitungen zu den die Düsengruppen geführt.In another known type of steam turbine, the control valves are arranged outside the turbine housing and connected via welded pipes or pipe bends with the nozzle housing. The separated from the inflow housing live steam flow is thus performed by comparatively long pipes to the nozzle groups.

Beide Bauarten haben den Nachteil, dass das Einströmgehäuse mit dem außenliegenden Ventilkasten oder den Rohren sehr raumgreifend bauen. Darüber hinaus sind diese Konstruktionen sehr kostspielig, da man für die Gussgehäuse der Ventile, Rohrleitungen und Flansche sehr hochwertige Materialien verwenden muss. Durch die vielen Strömungsumlenkungen in den Rohrleitungen bzw. den Zuleitungen zu den Düsengruppen kommt es unweigerlich zu erheblichen Energieverlusteen. Zudem erfordern die in de DE 1 915 267 beschriebenen, axial durchströmten Regelventile hohe Stellkräfte.Both types have the disadvantage that the Einströmgehäuse build with the outer valve box or pipes very spacious. In addition, these designs are very expensive because of the need to use very high quality materials for the cast housings of valves, piping and flanges. Due to the many flow deflections in the pipes or the supply lines to the nozzle groups, it inevitably leads to significant energy losses. In addition, the require in de DE 1 915 267 described, axially flowed control valves high actuating forces.

Im Hinblick auf diesen Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Turbine der eingangs genannten Art so weiter zu bilden, dass ihr Einströmgehäuse möglichst kompakt baut, und dass Strömungsverluste durch lange Leitungen verringert werden. Gelöst wird diese Aufgabe zunächst dadurch, dass die Regelventile funktional aufgeteilt werden in ein Primär-Regelventil und mindestens ein Sekundär-Regelventil. Weiter ist der Einlass über eine Einlassleitung mit der ersten Düsengruppe zu verbinden, wobei die Einlassleitung dergestalt durch das Primär-Regelventil zu führen ist, dass der Strom des Arbeitsmediums entlang der Einlassleitung mittels des Primär-Regelventils steuerbar ist. Das Sekundär-Regelventil verbindet erfindungsgemäß die erste Düsengruppe mit der zweiten Düsengruppe dergestalt, dass der Strom des Arbeitsmediums von der ersten Düsengruppe in die zweite Düsengruppe mittels des Sekundär-Regelventils steuerbar ist. Die vorliegende Erfindung basiert auf der Grundidee, die einzelnen Düsengruppen nicht mehr mit parallel geschalteten Regelventilen zu steuern, sondern die Düsengruppen über die Sekundär-Regelventile in Reihe zu schalten. Diese Maßnahme ermöglicht es grundsätzlich Rohrleitungswege im Einströmgehäuse einzusparen und so zu einer kompakteren Bauweise zu gelangen. Durch die eingesparten Leitungen werden zudem die Strömungsverluste verringert. Bei der Steuerung der Turbine ist die Ventilstellung des Primär-Regelventils maßgeblich, da dieses den gesamten Strom des Arbeitsmediums durch die Turbine steuern kann. Da die erste Düsengruppe über das Primär-Regelventil und das Schnellschlussventil unmittelbar mit dem Einlass verbunden ist, ist die erste Düsengruppe bei geöffnetem Primär-Regelventil undIn view of this prior art, the present invention has the object, a turbine of the type mentioned so on to form that their Einströmgehäuse builds as compact as possible, and that flow losses are reduced by long lines. This task is initially solved by the fact that the control valves are divided functionally into a primary control valve and at least one secondary control valve. Further, the inlet is to be connected to the first nozzle group via an inlet pipe, wherein the inlet pipe is to be guided by the primary control valve such that the flow of the working medium along the inlet pipe is controllable by means of the primary control valve. According to the invention, the secondary control valve connects the first nozzle group to the second nozzle group in such a way that the flow of the working medium from the first nozzle group into the second nozzle group is controllable by means of the secondary control valve. The present invention is based on the basic idea of no longer controlling the individual nozzle groups with control valves connected in parallel, but of connecting the nozzle groups in series via the secondary control valves. This measure basically makes it possible to save pipeline passages in the inflow housing and thus achieve a more compact design. The pipelines also reduce the flow losses. In the control of the turbine, the valve position of the primary control valve is decisive, since this can control the entire flow of the working fluid through the turbine. Since the first nozzle group is connected directly to the inlet via the primary control valve and the quick-acting valve, the first nozzle group is with the primary control valve open and

Schnellschlussventil stets mit Arbeitsmedium beaufschlagt. Zur Leistungssteigerung werden die nachgeordneten Düsengruppen sukzessive über die Sekundär-Regelventile zugeschaltet.Quick-acting valve always charged with working medium. To increase performance, the downstream nozzle groups are switched successively via the secondary control valves.

Eine bevorzugte Weiterbildung der Erfindung sieht es vor, mindestens drei in Reihe geschaltete Düsengruppen im Einströmgehäuse vorzusehen, so dass mindestens zwei Sekundär-Regelventile erforderlich sind, welche die erste mit der zweiten bzw. die zweite mit der dritten Düsengruppe verbinden. Um die Leistungssteuerung noch kleinschrittiger zu ermöglichen, empfiehlt es sich darüber hinaus noch eine vierte oder fünfte Düsengruppe vorzusehen; die Anzahl der notwendigen Sekundär-Regelventile würde folglich auf drei bzw. vier ansteigen.A preferred embodiment of the invention provides to provide at least three series-connected nozzle groups in the inflow, so that at least two secondary control valves are required, which connect the first with the second and the second with the third nozzle group. In order to allow the power control even smaller steps, it is also advisable to provide a fourth or fifth nozzle group; the number of secondary control valves needed would consequently increase to three or four.

Wie bereits erwähnt, fließt der gesamte Strom des Arbeitsmediums durch das Primär-Regelventil. Um die Betätigungskräfte gering zu halten und ein sanftes Anfahren der Turbine zu ermöglichen, empfiehlt es sich, dieses Ventil mit einem Vorhub auszustatten.As already mentioned, the entire flow of the working fluid flows through the primary control valve. In order to keep the actuating forces low and to allow a smooth starting of the turbine, it is advisable to equip this valve with a forward stroke.

Das Anfahren einer solchen Turbine geschieht bevorzugt durch die folgenden Schritte: Bei ruhender Turbine wird zunächst das Schnellschlussventil geöffnet, wodurch sich bis zum Ventilsitz des Primär-Regelventils der Druck des Arbeitsmediums aufbaut. Die erste Düsengruppe wird durch das Primär-Regelventil direkt angesteuert. Mit Hilfe eines kleinen Vorhubventils am Primär-Regelventil wird die Turbine angestoßen und auf Betriebsdrehzahl gebracht. Nachdem die Maschine Last aufgenommen hat und die erste Düsengruppe voll ausgesteuert ist, wird das Hauptregelventil aufgefahren und gibt so den Querschnitt für den gesamten Massenstrom des Arbeitsmediums frei. Da der Massendurchsatz durch die Düsenquerschnitte der ersten Gruppe gedeckelt ist, bleibt die Leistung der Turbine bei Erreichen des maximalen Massendurchsatzes konstant. Soll die Turbinenleistung weiter gesteigert werden, wird das erste Sekundär-Regelventil geöffnet, so dass der Strom nun auch die zweite Düsengruppe erreicht. Der Massendurchsatz nimmt dadurch zu. Sofern die Turbine über weitere, nachgeschaltete Düsengruppen verfügt, werden diese durch Öffnen der jeweiligen Sekundär-Regelventile später hinzugeschaltet.The start-up of such a turbine is preferably carried out by the following steps: When the turbine is at rest, the quick-action valve is initially opened, whereby the pressure of the working medium builds up to the valve seat of the primary control valve. The first nozzle group is directly controlled by the primary control valve. With the help of a small Vorhubventils on the primary control valve, the turbine is triggered and brought to operating speed. After the machine has picked up load and the first nozzle group is fully controlled, the main control valve is opened, thus releasing the cross section for the entire mass flow of the working medium. Since the mass flow rate is capped by the nozzle cross sections of the first group, the performance of the turbine remains constant when the maximum mass flow rate is reached. If the turbine power is to be further increased, the first secondary control valve is opened, so that the current now also reaches the second nozzle group. The mass flow rate increases as a result. If the turbine has further, downstream nozzle groups, these are connected later by opening the respective secondary control valves.

Die erfindungsgemäße Verschaltung der einzelnen Düsengruppen erlaubt es, die Absperrorgane der Sekundär-Regelventile unmittelbar zwischen den sich ringsektorförmig um den Läufer herum erstreckenden Düsengruppen anzuordnen, also auf demselben Durchmesser wie die Düsengruppen. Die Strömungswege im Einströmgehäuse werden dadurch weiter verkürzt.The interconnection of the individual nozzle groups according to the invention makes it possible to arrange the shut-off elements of the secondary control valves directly between the annular sector-shaped nozzle groups extending around the rotor, that is to say on the same diameter as the nozzle groups. The flow paths in the inflow housing are thereby further shortened.

Der Bauraum des Einströmgehäuses kann bei dieser Gestaltung signifikant dadurch gesenkt werden, dass die Betätigungsachsen der Sekundär-Regelventile radial zur Drehachse des Läufers angeordnet werden. Der Betätigungsweg der Absperrorgane befindet sich dann nämlich nicht tangential zum Durchmesser der Düsengruppen, sondern radial. Der notwendige Außendurchmesser des Einströmgehäuses wird dadurch gesenkt.The installation space of the inflow housing can be significantly reduced in this design by the fact that the actuation axes of the secondary control valves are arranged radially to the axis of rotation of the rotor. The actuating travel of the shut-off devices is then not tangential to the diameter of the nozzle groups, but rather radially. Of the necessary outer diameter of the inflow is thereby lowered.

Vorzugsweise werden bei dieser Ausführungsform die Absperrorgane der Sekundär-Regelventile als rotatorisch schaltbare Regelklappen ausgeführt, so dass es sich bei der Betätigungsachse um eine Drehachse handelt. Die rotatorisch geschalteten Absperrorgane nehmen weniger Platz ein als linear geschaltete Absperrorgane, erfordern geringere Betätigungskräfte und müssen nicht vollständig abgedichtet sein. Die Verwendung von rotatorisch geschalteten, nicht vollständig abdichtenden Absperrorganen ist auch deshalb möglich, da bei den Sekundär-Regelventilen keine Schnellschlussfunktion erforderlich ist. Diese Schnellschlussfunktion wird von dem Schnellschlussventil und dem nachgeschalteten Primär-Regelventil übernommen. Vorzugsweise wird das Einströmgehäuse der erfindungsgemäßen Turbine im Wesentlichen ringförmig gestaltet und in mindestens zwei Gehäusehälften unterteilt, wobei die Einlassleitung integraler Bestandteil einer Gehäusehälfte ist. Vorteil dieser Gestaltung ist, dass die Leitung des Arbeitsmediums ohne Flanschverbindung anschweißbar ist, dass nur eine Zufügung ins Turbinengehäuse mit Kolbenring abgedichtet werden muss, und dass sich alle Bauteile während der Startphase gut aufwärmen. Bei großem Dampfvolumen können zwei Gehäusehälften mit je einem integrierten Einlass vorgesehen sein, um die Nennweite des Zudampfanschlusses insgesamt zu verdoppeln.Preferably, in this embodiment, the shut-off elements of the secondary control valves are designed as rotationally switchable control valves, so that the actuating axis is an axis of rotation. The rotary shut-off valves take up less space than linear shut-off valves, require lower actuation forces and need not be completely sealed. The use of rotationally connected, not completely sealing shut-off devices is also possible because the secondary control valves no quick-closing function is required. This quick-closing function is taken over by the quick-acting valve and the downstream primary control valve. Preferably, the inflow housing of the turbine according to the invention is designed substantially annular and divided into at least two housing halves, wherein the inlet conduit is an integral part of a housing half. The advantage of this design is that the line of the working medium can be welded without flange connection, that only one influx into the turbine housing with piston ring has to be sealed, and that all components warm up well during the starting phase. For large volumes of steam, two housing halves, each with an integrated inlet can be provided to double the nominal diameter of the Zudampfanschlusses total.

Die vorliegende Erfindung wird bevorzugt auf dem Gebiet der Dampfturbinen in Axial-Bauweise angewandt.The present invention is preferably applied in the field of axial-flow steam turbines.

Die vorliegende Erfindung soll nun anhand eines Ausführungsbeispiels näher erläutert werden. Hierfür zeigen:

Fig. 1:
konventionelle Ventilschaltung (Stand der Technik);
Fig. 2:
erfindungsgemäße Ventilschaltung;
Fig. 3:
Einströmgehäuse, teilweise explodiert, perspektivisch;
Fig. 4:
Einströmgehäuse, teilweise explodiert, in Rückansicht;
Fig. 5:
Schnitt durch Einströmgehäuse;
Fig. 6:
Einströmgehäuse mit zwei Einlässen.
The present invention will now be explained in more detail with reference to an embodiment. For this show:
Fig. 1:
conventional valve circuit (prior art);
Fig. 2:
valve circuit according to the invention;
3:
Inflow housing, partially exploded, in perspective;
4:
Inflow housing, partially exploded, in rear view;
Fig. 5:
Section through inflow housing;
Fig. 6:
Inflow housing with two inlets.

Figur 1 zeigt schematisch die Ventilschaltung einer konventionellen Dampfturbine, wie sie aus der eingangs genannten Druckschrift bekannt ist. Das Gehäuse der Turbine umfasst ein Einströmgehäuse 1, in dem der nicht dargestellte Läufer drehbar gelagert ist. Beaufschlagt mit Arbeitsmedium wird der Läufer über vier Düsengruppen 21, 22, 23, 24, welche sich ringsektorförmig auf einem gemeinsamen Durchmesser D um den Läufer herum erstrecken. FIG. 1 schematically shows the valve circuit of a conventional steam turbine, as it is known from the document mentioned. The housing of the turbine comprises an inflow housing 1, in which the rotor, not shown, is rotatably mounted. Impacted with working medium, the rotor over four nozzle groups 21, 22, 23, 24, which extend in an annular sector on a common diameter D around the rotor around.

Das Arbeitsmedium - im Falle einer Dampfturbine Wasserdampf - strömt durch einen Einlass 3 in das Einströmgehäuse 1 ein. Unmittelbar hinter dem Einlass 3 ist ein Schnellschlussventil 4 angeordnet, mittels welchem der Einlass 3 in Notfällen rasch verschlossen werden kann. Hinter dem Schnellschlussventil 4 fächert sich der Strom in vier Zuführleitungen 51, 52, 53, 54 auf, die den Einlass 3 jeweils mit den Düsengruppen 21, 22, 23, 24 verbinden. Der Strom des Arbeitsmediums durch die Zuführleitungen 51, 52, 53, 54 wird durch jeweilige Regelventile 61, 62, 63, 64 gesteuert. Die Düsengruppen 21 bis 24 sind folglich über ihre jeweiligen Zuführleitungen 51 bis 54 und die zugehörigen Regelventile 61 bis 64 parallel geschaltet.The working medium - in the case of a steam turbine water vapor - flows through an inlet 3 in the inflow 1 a. Immediately behind the inlet 3, a quick-acting valve 4 is arranged, by means of which the inlet 3 can be quickly closed in emergencies. Behind the quick-acting valve 4, the flow fanned into four supply lines 51, 52, 53, 54, which connect the inlet 3 respectively with the nozzle groups 21, 22, 23, 24. The flow of the working medium through the supply lines 51, 52, 53, 54 is controlled by respective control valves 61, 62, 63, 64. The nozzle groups 21 to 24 are thus connected in parallel via their respective supply lines 51 to 54 and the associated control valves 61 to 64.

Die erfindungsgemäße Beschaltung ist in Figur 2 dargestellt. Hier ist der über das Schnellschlussventil 4 verschließbare Einlass 3 (Frischdampfanschluss) über eine Einlassleitung 7 unmittelbar und ausschließlich mit der ersten Düsengruppe 21 verbunden. Die Einlassleitung 7 ist durch ein Primär-Regelventil 8 hindurch geführt, welches den Gesamtstrom durch die Turbine steuert. Das Primär-Regelventil 8 ist vorteilhafterweise mit einem Vorhub ausgestattet, der beispielsweise durch ein parallel geschaltetes Vorhub-Ventil realisiert sein kann (nicht dargestellt). Schnellschlussventil 4, Primär-Regelventil 8 und erste Düsengruppe 21 sind somit über die Einlassleitung 7 in Reihe geschaltet. Die Reihenschaltung setzt sich fort in die zweite 22, dritte 23 und vierte Düsengruppe 24. Die zweite Düsengruppe 22 ist mit der ersten Düsengruppe 21 ausschließlich über ein erstes Sekundär-Regelventil 91 verbunden. Die Verbindung von der zweiten Düsengruppe 22 auf die dritte Düsengruppe 23 erfolgt in derselben Weise über ein zweites Sekundär-Regelventil 92, die Verbindung in die vierte Düsengruppe 24 entsprechend über ein drittes Sekundär-Regelventil 93.The wiring according to the invention is in FIG. 2 shown. Here, the inlet 3 (live steam connection), which can be closed via the quick-closing valve 4, is connected directly and exclusively to the first nozzle group 21 via an inlet line 7. The inlet line 7 is passed through a primary control valve 8, which controls the total flow through the turbine. The primary control valve 8 is advantageously equipped with a pre-stroke, which can be realized for example by a parallel-connected Vorhub valve (not shown). Quick-acting valve 4, primary control valve 8 and first nozzle group 21 are thus connected in series via the inlet line 7. The series connection continues into the second 22, third 23 and fourth nozzle groups 24. The second nozzle group 22 is connected to the first nozzle group 21 exclusively connected via a first secondary control valve 91. The connection from the second nozzle group 22 to the third nozzle group 23 takes place in the same way via a second secondary control valve 92, the connection in the fourth nozzle group 24 according to a third secondary control valve 93rd

Die Absperrorgane 10 der Sekundär-Regelventile 91, 92, 93 befinden sich auf demselben Durchmesser D wie die Düsengruppen 21, 22, 23, 24. Dadurch wird eine besonders kompakte Bauweise des Einströmgehäuses 1 erzielt. Die Betätigungsachsen 11 der Sekundär-Regelventile erstrecken sich radial zur Drehachse des Läufers, also dem Gehäusezentrum. Durch diese Maßnahmen können die Stellmotoren 12 der Betätigungsorgane außerhalb des Einströmgehäuses 1 angeordnet werden.The shut-off elements 10 of the secondary control valves 91, 92, 93 are located on the same diameter D as the nozzle groups 21, 22, 23, 24. Thus, a particularly compact design of the inflow housing 1 is achieved. The actuating axes 11 of the secondary control valves extend radially to the axis of rotation of the rotor, so the housing center. By these measures, the servomotors 12 of the actuators can be arranged outside the inflow housing 1.

Konkrete Gestaltungsvorschläge dieser Bauweise sind in den Figuren 3 bis 5 ersichtlich. Die Sekundär-Regelventile 91, 92, 93 sind hier rotatorisch zu betätigen, so dass es sich bei den Absperrorganen 10 um Drehklappen handelt. Die Stellmotoren 12 sind auf das Einströmgehäuse 1 aufgesetzt, also im druckfreien Bereich. Es muss lediglich die das Gehäuse verlassene Betätigungsachse 11 abgedichtet werden, was bei Drehachsen leicht fällt.Concrete design proposals of this construction are in the FIGS. 3 to 5 seen. The secondary control valves 91, 92, 93 are to be actuated rotationally, so that the shut-off elements 10 are rotary valves. The servomotors 12 are placed on the inflow housing 1, ie in the pressure-free region. It must be sealed only the housing leaving the actuator axis 11, which is easy to fall in axes of rotation.

Das Einströmgehäuse 1 selbst ist daher im Wesentlichen ringförmig und deutlich kompakter als im Stand der Technik, da es lediglich die Düsengruppen 21, 22, 23 und die Absperrorgane 10 beherbergt.The inflow housing 1 itself is therefore substantially annular and significantly more compact than in the prior art, since it accommodates only the nozzle groups 21, 22, 23 and the shut-off elements 10.

Das Einströmgehäuse 1 ist gegossen und in eine obere Gehäusehälfte 1a und eine untere Gehäusehälfte 1b aufgeteilt, wobei die Einlassleitung 7 integraler Bestandteil der unteren Gehäusehälfte 1b ist. Primär-Regelventil 8 undThe inflow housing 1 is cast and divided into an upper housing half 1a and a lower housing half 1b, wherein the inlet conduit 7 is an integral part of the lower housing half 1b. Primary control valve 8 and

Schnellschlussventil 4 sind außerhalb des Gehäuses 1 angeordnet. Es ist daher nur eine Dampfzuführung ins Turbinengehäuse mit Kolbenringen abzudichten. Die Dampfleitung kann daher ohne Flanschverbindung angeschweißt werden.Quick-action valve 4 are arranged outside of the housing 1. It is therefore only a steam supply in the turbine housing with piston rings seal. The steam line can therefore be welded without flange connection.

Bei sehr großem Dampfvolumen ist es ebenfalls möglich, ein Einströmgehäuse mit zwei Einlassleitungen zu versehen, um dadurch die Nennweite des Zudampfanschlusses zu verdoppeln. Entsprechend sind dann auch zwei Primär-Regelventile und zwei Schnellschlussventile erforderlich, je eins pro Einlass. Figur 6 zeigt ein Einströmgehäuse mit zwei integrierten Einlassleitungen 7.For very large volumes of steam, it is also possible to provide an inflow housing with two inlet lines to thereby doubling the nominal width of the Zudampfanschlusses. Accordingly, then two primary control valves and two quick-closing valves are required, one per inlet. FIG. 6 shows an inflow housing with two integrated inlet lines. 7

Neben der kompakten Abmessungen und den geringen Strömungsverlusten liegt ein besonderer Vorteil der dargestellten Konstruktionen in den geringen Stellkräften der Ventile. So brauchen insbesondere die innen liegenden Regelklappen 10 nur geringe Stellkräfte und insbesondere keine Schnellschlussvorrichtung, da sie in Reihe mit dem Primär-Regelventil 8 und dem Schnellschlussventil 4 geschaltet sind. Außerdem können die innen liegenden Regelklappen ohne Öffnen des Turbinengehäuses aus und eingebaut werden.In addition to the compact dimensions and low flow losses is a particular advantage of the illustrated constructions in the low actuating forces of the valves. Thus, in particular the internal control valves 10 need only low actuating forces and in particular no quick-closing device, since they are connected in series with the primary control valve 8 and the quick-closing valve 4. In addition, the internal control valves without opening the turbine housing and be installed.

Claims (10)

Turbine mit einem Einströmgehäuse, welches einen von einem Schnellschlussventil verschließbaren Einlass für ein anströmendes Arbeitsmedium, eine Mehrzahl von Regelventilen und mindestens zwei Düsengruppen aufweist, wobei der Strom des Arbeitsmediums von dem Einlass in die Düsengruppen mittels der Regelventile steuerbar ist,
dadurch gekennzeichnet,
dass das Einströmgehäuse (1) ein Primär-Regelventil (8) und mindestens ein Sekundär-Regelventil (91) umfasst, dass der Einlass (3) über eine Einlassleitung (7) mit der ersten Düsengruppe (21) verbunden ist, wobei die Einlassleitung (7) durch das Primär-Regelventil (8) geführt ist, dergestalt, dass der Strom des Arbeitsmediums entlang der Einlassleitung (7) mittels des Primär-Regelventils (8) steuerbar ist, und
wobei das Sekundär-Regelventil (91) die erste Düsengruppe (21) mit der zweiten Düsengruppe (22) verbindet, dergestalt, dass der Strom des Arbeitsmediums von der ersten Düsengruppe (21) in die zweite Düsengruppe (22) mittels des Sekundär-Regelventils (91) steuerbar ist.
A turbine having an inflow housing, which has an inlet for an inflowing working medium, a plurality of control valves and at least two nozzle groups, which can be closed by a quick-closing valve, the flow of the working medium being controllable from the inlet into the nozzle groups by means of the control valves,
characterized,
in that the inflow housing (1) comprises a primary control valve (8) and at least one secondary control valve (91), that the inlet (3) is connected to the first nozzle group (21) via an inlet line (7), the inlet line ( 7) through the primary control valve (8) is guided, such that the flow of the working medium along the inlet line (7) by means of the primary control valve (8) is controllable, and
wherein the secondary control valve (91) connects the first nozzle group (21) to the second nozzle group (22) such that the flow of the working medium from the first nozzle group (21) into the second nozzle group (22) by means of the secondary control valve (22) 91) is controllable.
Turbine nach Anspruch 1,
gekennzeichnet durch eine dritte Düsengruppe (23) und durch ein zweites Sekundär-Regelventil (92), wobei das zweite Sekundär-Regelventil (92) die zweite Düsengruppe (22) mit der dritten Düsengruppe (23) verbindet, dergestalt, dass der Strom des Arbeitsmediums von der zweiten Düsengruppe (22) in die dritte Düsengruppe (23) mittels des zweiten Sekundär-Regelventils (92) steuerbar ist.
Turbine according to claim 1,
characterized by a third nozzle group (23) and by a second secondary control valve (92), the second secondary control valve (92) connecting the second nozzle group (22) to the third nozzle group (23), such that the flow of the working medium from the second nozzle group (22) in the third nozzle group (23) by means of the second secondary control valve (92) is controllable.
Turbine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Primär-Regelventil (8) mit einem Vorhub ausgestattet ist.
Turbine according to claim 1 or 2,
characterized in that
the primary control valve (8) is equipped with a forward stroke.
Turbine nach einem der Ansprüche 1 bis 3,
wobei die Turbine einen drehbar im Einströmgehäuse (1) gelagerten Läufer umfasst, wobei die Düsengruppen (21, 22) sich ringsektorförmig auf einem gemeinsamen Durchmesser (D) um den Läufer herum erstrecken, und wobei jedes Sekundär-Regelventil (91, 92) ein Absperrorgan (10) und eine Betätigungsachse (11) aufweist, dadurch gekennzeichnet, dass die Absperrorgane (10) der Sekundär-Regelventile (91, 92) auf dem Durchmesser (D) der Düsengruppen (21, 22, 23) angeordnet sind.
Turbine according to one of claims 1 to 3,
the turbine comprising a rotor rotatably mounted in the inflow housing (1), the nozzle groups (21, 22) extending around the rotor in a donut-shaped fashion on a common diameter (D), and each secondary control valve (91, 92) being a shut-off member (10) and an actuating shaft (11), characterized in that the shut-off elements (10) of the secondary control valves (91, 92) on the diameter (D) of the nozzle groups (21, 22, 23) are arranged.
Turbine nach Anspruch 4,
dadurch gekennzeichnet, dass
die Betätigungsachsen (11) der Sekundär-Regelventile (91, 92) sich radial zur Drehachse des Läufers erstrecken.
Turbine according to claim 4,
characterized in that
the actuating axes (11) of the secondary control valves (91, 92) extend radially to the axis of rotation of the rotor.
Turbine nach Anspruch 5,
dadurch gekennzeichnet, dass
die Absperrorgane (10) der Sekundär-Regelventile (91, 92) rotatorisch schaltbar sind, sodass es sich bei der Betätigungsachse (11) um eine Drehachse handelt.
Turbine according to claim 5,
characterized in that
the shut-off elements (10) of the secondary control valves (91, 92) are rotationally switchable so that the actuating axis (11) is a rotation axis.
Turbine nach einem der Ansprüche 4, 5 oder 6,
dadurch gekennzeichnet, dass
das Einströmgehäuse (1) im Wesentlichen ringförmig und in mindestens zwei Gehäusehälften (1a, 1b) unterteilt ist, wobei die Einlassleitung (7) integraler Bestandteil einer Gehäusehälfte (1b) ist.
Turbine according to one of claims 4, 5 or 6,
characterized in that
the inflow housing (1) is substantially annular and is divided into at least two housing halves (1a, 1b), the inlet line (7) being an integral part of a housing half (1b).
Turbine nach einem der vorhergehenden Ansprüche,
wobei die Düsengruppen (21, 22, 23) jeweils mit einer Vielzahl von auf den Läufer gerichtete Düsen versehen sind, dadurch gekennzeichnet, dass die Düse axial auf den Läufer gerichtet sind, sodass die Turbine als Axial-Turbine parallel zur Drehachse ihres Läufers von dem Arbeitsmedium durchströmt wird.
Turbine according to one of the preceding claims,
wherein the nozzle groups (21, 22, 23) are each provided with a plurality of nozzles directed towards the rotor, characterized in that the nozzles are directed axially on the rotor, so that the turbine as an axial turbine parallel to the axis of rotation of its rotor of the Working medium is flowed through.
Turbine nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
es sich bei dem anströmenden Arbeitsmedium um Wasserdampf handelt.
Turbine according to one of the preceding claims,
characterized in that
it is the incoming working medium is water vapor.
Verfahren zum Betrieb einer Turbine nach Anspruch 3, insbesondere zum Anfahren, gekennzeichnet durch die folgenden Schritte: a) Öffnen des Schnellschlussventils (4), b) Öffnen des Vorhubs des Primär-Regelventils (8), c) Nach Erreichen der Betriebs-Drehzahl des Läufers vollständiges Öffnen des Primär-Regelventils (8), d) Öffnen des ersten Sekundär-Regelventils (91). Method for operating a turbine according to claim 3, in particular for starting, characterized by the following steps: a) opening the quick-closing valve (4), b) opening the advance of the primary control valve (8), c) after reaching the operating speed of the rotor complete opening of the primary control valve (8), d) opening the first secondary control valve (91).
EP07011268A 2007-06-08 2007-06-08 Turbine with a compact inflow casing due to inner control valves Withdrawn EP2000632A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP07011268A EP2000632A1 (en) 2007-06-08 2007-06-08 Turbine with a compact inflow casing due to inner control valves
CA002689224A CA2689224A1 (en) 2007-06-08 2008-04-25 Turbine having compact inflow housing thanks to internal control valves
US12/602,891 US20100178153A1 (en) 2007-06-08 2008-04-25 Turbine Having Compact Inflow Housing Thanks to Internal Control Valves
BRPI0812409-4A2A BRPI0812409A2 (en) 2007-06-08 2008-04-25 TURBINE WITH COMPACT INPUT FLOW ACCOMMODATION THANKS TO INTERNAL CONTROL VALVES
PCT/EP2008/055045 WO2008148607A1 (en) 2007-06-08 2008-04-25 Turbine having compact inflow housing thanks to internal control valves
CN200880019281A CN101680308A (en) 2007-06-08 2008-04-25 Turbine having compact inflow housing thanks to internal control valves
EP08736568A EP2153029A1 (en) 2007-06-08 2008-04-25 Turbine having compact inflow housing thanks to internal control valves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07011268A EP2000632A1 (en) 2007-06-08 2007-06-08 Turbine with a compact inflow casing due to inner control valves

Publications (1)

Publication Number Publication Date
EP2000632A1 true EP2000632A1 (en) 2008-12-10

Family

ID=38668641

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07011268A Withdrawn EP2000632A1 (en) 2007-06-08 2007-06-08 Turbine with a compact inflow casing due to inner control valves
EP08736568A Withdrawn EP2153029A1 (en) 2007-06-08 2008-04-25 Turbine having compact inflow housing thanks to internal control valves

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08736568A Withdrawn EP2153029A1 (en) 2007-06-08 2008-04-25 Turbine having compact inflow housing thanks to internal control valves

Country Status (6)

Country Link
US (1) US20100178153A1 (en)
EP (2) EP2000632A1 (en)
CN (1) CN101680308A (en)
BR (1) BRPI0812409A2 (en)
CA (1) CA2689224A1 (en)
WO (1) WO2008148607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041704A1 (en) 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Regulating valve for controlling flow volume inside pipeline, is arranged in pipeline rotatable around rotational axis and corresponding to its rotational position decontrols flow cross-section inside pipeline

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010608B4 (en) * 2009-02-25 2011-06-16 Siemens Aktiengesellschaft Design of the inflow chamber with radial inflow and distribution of live steam flow in 2 sections
ITMI20091740A1 (en) 2009-10-12 2011-04-13 Alstom Technology Ltd AXIAL STEAM TURBINE POWERED HIGH TEMPERATURE RADIAL
JP6448974B2 (en) * 2014-10-03 2019-01-09 三菱日立パワーシステムズ株式会社 Steam chamber of geothermal turbine, geothermal turbine provided with the same, and steam supply method of geothermal turbine
US10480417B2 (en) * 2016-07-14 2019-11-19 Hamilton Sundstrand Corporation Air turbine start system
JP6938139B2 (en) * 2016-11-28 2021-09-22 三菱パワー株式会社 Steam turbine equipment
CN113027544A (en) * 2021-05-13 2021-06-25 西安热工研究院有限公司 Equal-nozzle-number multi-arc-section high-regulation valve-nozzle group arrangement structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE676982C (en) * 1937-11-02 1939-06-16 Fried Krupp Germaniawerft Akt High pressure single seat valve for steam turbines
DE679924C (en) * 1936-08-30 1939-08-17 Erich Koepke Switching device for steam turbines
DE690631C (en) * 1939-02-12 1940-05-03 Siemens Schuckertwerke Akt Ges
DE1915267A1 (en) * 1969-03-26 1970-10-15 Siemens Ag Turbine, especially steam turbine, with nozzle group control and single-flow box
JPS57143106A (en) * 1981-02-26 1982-09-04 Toshiba Corp Geothermal turbine
JPS5990703A (en) * 1982-11-15 1984-05-25 Fuji Electric Co Ltd Stage for adjusting speed of steam turbine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1473690A (en) * 1922-05-31 1923-11-13 Oscar H Wolner Serial-flow turbine
US2304993A (en) * 1941-06-20 1942-12-15 Westinghouse Electric & Mfg Co Steam turbine apparatus
US2376212A (en) * 1945-03-22 1945-05-15 Gen Electric Elastic fluid turbine arrangement
US4456032A (en) * 1982-01-18 1984-06-26 Elliott Turbomachinery Company, Inc. Fluid admission valve structure
DE4214775A1 (en) * 1992-05-04 1993-11-11 Abb Patent Gmbh Steam turbine with a rotary valve
US6398518B1 (en) * 2000-03-29 2002-06-04 Watson Cogeneration Company Method and apparatus for increasing the efficiency of a multi-stage compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE679924C (en) * 1936-08-30 1939-08-17 Erich Koepke Switching device for steam turbines
DE676982C (en) * 1937-11-02 1939-06-16 Fried Krupp Germaniawerft Akt High pressure single seat valve for steam turbines
DE690631C (en) * 1939-02-12 1940-05-03 Siemens Schuckertwerke Akt Ges
DE1915267A1 (en) * 1969-03-26 1970-10-15 Siemens Ag Turbine, especially steam turbine, with nozzle group control and single-flow box
JPS57143106A (en) * 1981-02-26 1982-09-04 Toshiba Corp Geothermal turbine
JPS5990703A (en) * 1982-11-15 1984-05-25 Fuji Electric Co Ltd Stage for adjusting speed of steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041704A1 (en) 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Regulating valve for controlling flow volume inside pipeline, is arranged in pipeline rotatable around rotational axis and corresponding to its rotational position decontrols flow cross-section inside pipeline

Also Published As

Publication number Publication date
EP2153029A1 (en) 2010-02-17
BRPI0812409A2 (en) 2014-12-02
CN101680308A (en) 2010-03-24
CA2689224A1 (en) 2008-12-11
WO2008148607A1 (en) 2008-12-11
US20100178153A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
DE112015005540B4 (en) Exhaust gas turbocharger with combined setting device for bypass valve and flow connection
EP2000632A1 (en) Turbine with a compact inflow casing due to inner control valves
EP1967739B1 (en) Device for hydraulic adjustment of the rotor blades of a wheel of an axial ventilator
DE2046810C3 (en) Twin-shaft gas turbine plant
DE4127250C2 (en) Device for distributing a fluid pressure
EP3186498A1 (en) Gas turbine arrangement
DE102007035966A1 (en) Radial compressor for a turbocharger
EP2726785B1 (en) Mixing device in a bypass steam line
EP1530671B1 (en) Exhaust gas turbocharger for an internal combustion engine
DE102011014120A1 (en) Apparatus for introducing gas stream into turbine of exhaust gas turbocharger or turbo-compound system through exhaust pipe, has gas supply line for gas stream, where connection is formed by multiple bores, which work together with slider
DE102010035393B4 (en) Turbine and method for operating a turbine for a CAES system
WO2014082613A1 (en) Exhaust gas turbocharger turbine with two wheel outlet cross sections
EP1632650B1 (en) Steam turbine
DE3203442A1 (en) CONTROL METHOD FOR A MULTI-STAGE HYDROPOWER
DE102017004299A1 (en) Device for speed control and synchronization of hydraulic actuators
EP2478276B1 (en) Valve for a turbo machine
EP0894184A1 (en) Control arrangement and method for introducing overload steam into a steam turbine
DE102019000252A1 (en) Axial slide turbine with axially displaceable guide rail carrier
DE102007017844B4 (en) Exhaust gas turbocharger, internal combustion engine with this exhaust gas turbocharger and method for regulating the boost pressure of the exhaust gas turbocharger
EP1637783B1 (en) Valve combination for a steam turbine with a fast closing valve and a regulating valve
DE3808006C2 (en)
DE102014201502A1 (en) steam turbine
EP3173161A1 (en) Mobile high pressure cleaning device with switchable gear drive
DE102013204002B3 (en) Steam turbine for use in nuclear-, geothermal- , solar thermal-, biomass- or other power plants for generating electrical energy, has flow path assembly with forwarding channel, which forms partial section of one of flow paths
WO2003027507A1 (en) Hydraulic cylinder comprising valves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090611

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566