EP2097729A2 - Method and device for detecting and/or quantifying water leaks - Google Patents
Method and device for detecting and/or quantifying water leaksInfo
- Publication number
- EP2097729A2 EP2097729A2 EP07870340A EP07870340A EP2097729A2 EP 2097729 A2 EP2097729 A2 EP 2097729A2 EP 07870340 A EP07870340 A EP 07870340A EP 07870340 A EP07870340 A EP 07870340A EP 2097729 A2 EP2097729 A2 EP 2097729A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- point
- pipe
- downstream
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/28—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
- G01M3/2807—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7088—Measuring the time taken to traverse a fixed distance using electrically charged particles as tracers
Definitions
- the invention relates to a method for detecting and / or quantifying water leaks on a water pipe and a device for carrying out this method.
- the invention aims to overcome the disadvantages of prior art detection methods due to the use, in particular, of plastic pipes and especially to allow the quantification of a very low leakage rate.
- the invention proposes a method for detecting and / or quantifying a water leak on a water pipe of the type consisting in measuring the flow of water in the pipe in at least two points of water. this pipe, one downstream, and the other upstream of the supposed leak.
- the measurement of the water flow is performed by measuring the conductivity of the water.
- the tracer selected for conductivity measurements must first be a good tracer of water, that is to say faithfully reflect the movements of water.
- the tracer In the particular case of drinking water, the tracer must have zero toxicity or acceptable by the water distributors. Therefore, in the invention, the preferred tracer is sodium hypochlorite, NaOCI (bleach) already used in abundance in drinking water to maintain a correct treatment thereof and which will be detected by a measure conductivity meter.
- Other tracers are conceivable such as Cb (already used in drinking water purification objectives) and therefore nontoxic in the context of this application.
- the conductivity measurement is performed using a device comprising two electrodes, the device being placed in the pipe in which the water flows, and imposing an alternating current between the two electrodes, which has the effect of migrating the ions each to an electrode according to its electric charge, and to cause a current.
- Conductivity therefore characterizes the capacity of the solution to conduct the current and is directly proportional to the concentration of ions present in the volume delimited by the measuring cell.
- the tracer is injected instantaneously at a point 11 upstream of the water leak and at a point 12 downstream of the water leak, and a conductivity measurement is performed. continuously in each of these two points of observation to follow the function of passage of the tracer.
- This type of measurement can be renewed at several points of the network, and thus, by successive differences, makes it possible to highlight a possible flow difference which indicates a leak on the water pipe between the two points considered.
- This technique has the advantage of being able to quantify the leakage rate and to locate the leakage between the two measurement points. To locate the leak very precisely, we can then use an acoustic method.
- the measurement of the conductivity of the water circulating upstream and downstream of the assumed leak is performed by positioning in the pipe, upstream and downstream of the assumed leak point, a conductivity measuring cell, each cell consisting of two devices for measuring the conductivity and a tracer injection point. It should be noted that the distance between two cells has no particular impact on both the detection and the quantization of the leak.
- Each measuring device consists of two electrodes, one of which forms the body of the device, this body allowing the passage of water, and the other electrode being electrically connected but isolated from the first electrode (the body of the device ) and dipping directly into the flow of flowing water.
- the electrodes are made of stainless steel.
- Each device is provided with flanges for connection at each end of the water pipe.
- FIG. 1 schematically represents the principle of detection of a leak on a pipe according to the invention
- Figure 2 shows a photograph of a conductivity measuring device according to the invention, connected to a water distribution pipe
- Figure 3 schematically shows the conductivity measuring device according to the invention shown in Figure 2
- Figure 4 shows the conductivity curves obtained at a conductivity measuring cell, in a particular embodiment of the invention.
- FIG. 1 The principle of detecting a water leak on a water pipe according to the invention is schematically illustrated in FIG.
- the method of the invention therefore consists in instantaneously injecting at a point denoted II in FIG. 1, located upstream of the supposed vanishing point, denoted F in FIG. 1, as well as at a point noted 12 in FIG. downstream of the supposed leak point F, a tracer changing the conductivity of the water.
- the conductivity of the water flowing in the pipe is then measured continuously, from the moment t1 of the injection until the moment t2 of return to the initial value of the conductivity, between the points noted A1 and A2 in FIG. 1 on the one hand, and, on the other hand, between the points marked B1 and B2 in FIG.
- the conductivity is measured by placing, at each of the points A1, A2 and B1, B2 conductivity measuring devices denoted respectively 2, 3 and 4, 5 in Figure 1.
- the conductivity measuring device 2 is located downstream of the injection point 11 but upstream of the conductivity measuring device 3, the devices 2 and 3 being situated upstream of the assumed leak point F, and the conductivity measuring device 4 is situated downstream of the injection point 12 and upstream of the point B2 to which is positioned the conductivity measuring device 5.
- FIG. 1 A photograph of a conductivity meter in place in line 1 is shown in FIG.
- the device of the invention consists of a hollow body 6 positioned in the pipe 1 and allowing the circulation of the water in the pipe 1 and the body of the device 6.
- the conductivity measuring device 2 is connected to each end of the pipe 1 by flanges marked 8 and 9 in FIG.
- the structure of the conductivity measuring device according to the invention is more precisely shown schematically in FIG.
- the conductivity measuring device 2 consists of a hollow body 6 forming a first electrode and in which water circulates from the pipe 1 (not shown).
- hollow body 6 is connected by the flanges 8 and 9.
- the hollow body that is to say the electrode 6, and the electrode 7 are made of stainless steel.
- the distances between measurement points, between the injection point and the measuring cell are easily adaptable by those skilled in the art.
- the distance between the injection point and the first measurement point must be sufficient to have a good homogeneity of the tracer in the section when the latter reaches the measurement point.
- This distance called “good mixing” generally follows the following rule: it usually takes a distance of 50x the diameter of the pipe.
- Tests were carried out on a pipe 1 with a diameter of 53 mm and in which the water flow rate is 1000 l / h.
- the devices 2 and 3 are spaced from each other by a distance of 3.8 m, and the devices 4 and 5 are spaced from each other by a distance of 3, 8 m.
- the devices 3 and 4 are spaced from each other by 10 m of the supposed leakage point F.
- the hollow body 6 had a diameter of 53 mm and a volume of 220 cm 3 .
- the hollow body forming the electrode 6 and the electrode 7 are made of stainless steel.
- injection point 11 1 mL of sodium hypochlorite (bleach 10% active chlorine), is injected instantaneously at time t1 injection points 11 and 12.
- the injection point 11 is located 2 meters upstream of the device 2, and the injection point 12 is spaced 2 meters from the device 4.
- the conductivity curves obtained at the points A1 and A2 of measurement are represented in FIG. 4 in which the curve recorded at point A1 is denoted 10 and the curve recorded at point A2 is denoted 11. From these curves and those obtained at points B1 and B2, the flow rates Q1 and Q2 upstream and downstream of the leak F are calculated.
- the average time of each curve is obtained by the center of gravity of the curve. This data is easily accessible by the mathematical treatment of a curve. One could also consider taking the average time corresponding to the top of the curve, a value that can be confused with the gravity of the curve in case of perfect Gaussian. Other mathematical curve treatments are conceivable, such as deconvolution treatment. All these methods are known to those skilled in the art.
- Example 2 The same tests as in Example 1 were carried out except that the flow rate of the water flowing in the pipe 1 is 2500 l / h.
- the method of the invention can be applied to all drinking water networks but also to other types of pipe flow for which there is no reliable means of leakage measurement as minimal as it is.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Examining Or Testing Airtightness (AREA)
- Measuring Volume Flow (AREA)
Abstract
The invention relates to a method for detecting and/or quantifying water leaks in a water pipe, and to a device for realising said method. The method of the invention comprises measuring the water flow rate in the pipe in at least two different locations, i.e. one downstream and one upstream relative to the suspected leak, the water flow rate being measured by injecting a tracing agent that modifies the water conductivity instantaneously at an upstream location and a downstream location relative to the suspected leak location, continuously measuring the water conductivity downstream from said locations and, from the conductivity values, calculating the water flow rates upstream and downstream relative to the suspected leak location in the pipe. The method of the invention can be used for quantifying a leak flow rate that can even be a very small one.
Description
PROCEDE ET DISPOSITIF DE DETECTION ET/OU DE QUANTIFICATION METHOD AND DEVICE FOR DETECTION AND / OR QUANTIFICATION
DE FUITES D'EAU.LEAKS OF WATER.
L'invention concerne un procédé de détection et/ou de quantification de fuites d'eau sur une canalisation d'eau ainsi qu'un dispositif pour la mise en oeuvre de ce procédé.The invention relates to a method for detecting and / or quantifying water leaks on a water pipe and a device for carrying out this method.
L'eau est devenue un produit très surveillé et de plus en plus précieux pour la plupart des pays du monde. La distribution d'eau potable fait donc l'objet de toutes les attentions. Selon diverses enquêtes effectuées aussi bien en France qu'à l'étranger, tout tend à prouver qu'une partie non négligeable de l'eau distribuée se perd en raison de fuites sur le réseau de distribution.Water has become a highly guarded and increasingly valuable commodity for most countries around the world. The distribution of drinking water is therefore the subject of all attention. According to various surveys carried out both in France and abroad, everything tends to prove that a significant part of the water distributed is lost due to leaks on the distribution network.
Par exemple, selon une enquête réalisée en 1991 au Canada par l'Association Internationale des Distributions d'Eau (AIDE), la quantité d'eau perdue ou « non comptabilisée » se situerait entre 20 et 30% de la production totale.For example, according to a survey conducted in 1991 in Canada by the International Association of Water Distributions (AIDE), the amount of water lost or "not counted" would be between 20 and 30% of total production.
De même, l'Institut Français de l'Environnement (IFEN) estime que pour environ 6 milliards de mètres cubes d'eau distribués en France en 2001 , seulement les trois quarts de ces volumes ont été facturés aux abonnés, le reste étant constitué pour une faible partie (3%) par des volumes non facturés et surtout par des fuites du réseau de l'ordre de 24%. Ces fuites sont principalement causées par la corrosion, des défauts de matériaux, des installations défectueuses, des mouvements de terrain, des vibrations ou charges trop importantes dues notamment à la circulation, l'absence ou la carence de maintenance...Similarly, the French Institute of the Environment (IFEN) estimates that for about 6 billion cubic meters of water distributed in France in 2001, only three quarters of these volumes were billed to subscribers, the rest being a small part (3%) by unbilled volumes and especially by network leaks of around 24%. These leaks are mainly caused by corrosion, defects in materials, faulty installations, ground movements, vibrations or excessive loads due in particular to traffic, absence or lack of maintenance ...
Outre la perte économique causée par le manque à gagner des distributeurs, d'autres problèmes viennent s'ajouter comme par exemple des risques pour la santé publique à la suite de la pénétration de contaminants dans les réseaux de distribution au niveau des fuites.In addition to the economic loss caused by the shortfall of the distributors, other problems are added, such as public health risks as a result of the leakage of contaminants into the distribution networks.
Les pressions économiques, la menace pour la santé publique et la nécessité d'économiser l'eau poussent les exploitants des réseaux d'eau à mettre en place des programmes de détection et de quantification des fuites afin de les éliminer.
La mise en évidence de fuites importantes sur un réseau est le plus souvent bien maîtrisée par un suivi automatique des débits qui permet de déceler une augmentation inhabituelle de consommation d'eau sur un secteur bien déterminé. La localisation de la fuite peut ensuite se faire selon diverses méthodes dont les plus répandues sont l'utilisation des ultrasons ou des signaux acoustiques, mais aussi par des techniques non acoustiques à savoir l'utilisation de gaz traceur, de géo radars ou encore d'imagerie infrarougeEconomic pressures, the threat to public health and the need to save water are driving water system operators to implement leak detection and quantification programs to eliminate them. The detection of major leaks on a network is most often well controlled by an automatic monitoring of flows that can detect an unusual increase in water consumption in a specific sector. The location of the leak can then be done according to various methods of which the most widespread are the use of ultrasound or acoustic signals, but also by non-acoustic techniques namely the use of tracer gas, geo radars or even infrared imaging
Si ces méthodes paraissent satisfaisantes pour les gestionnaires en ce qui concerne les fuites relativement importantes, une grande sensibilité de mesure est nécessaire pour appréhender et localiser des fuites de plus faible importance qui sont aussi plus « silencieuses ».While these methods appear satisfactory to managers with respect to relatively large leaks, high measurement sensitivity is required to capture and locate smaller leaks that are also "quieter".
Selon une étude récente menée au Conseil National de Recherches du Canada, les problèmes qui entravent habituellement l'utilisation des instruments acoustiques pour localiser les fuites, par exemple l'interférence provoquée par les bruits de la circulation et l'affaiblissement des signaux le long de conduites, sont accentués dans le cas des conduites en plastique, ce qui amène la plupart des opérateurs à douter de l'efficacité du matériel acoustique de détection. Cela est un problème épineux en raison de la progression de l'utilisation de canalisations en plastique dans les réseaux d'eau partout dans le monde.According to a recent study conducted at the National Research Council of Canada, the problems that usually hinder the use of acoustic instruments to locate leaks, such as interference caused by traffic noise and weakening of signals along are accentuated in the case of plastic pipes, which leads most operators to doubt the effectiveness of acoustic detection equipment. This is a thorny problem because of the increasing use of plastic pipelines in water systems around the world.
Il y a donc une difficulté à appréhender et à localiser des fuites d'eau sur un réseau d'eau potable en utilisant les différentes méthodes connues et sans pouvoir quantifier un débit de fuite, aussi faible soit-il.There is therefore a difficulty in apprehending and locating leaks of water on a drinking water network by using the various known methods and without being able to quantify a leakage flow, as low as it is.
L'invention a pour but de pallier les inconvénients des méthodes de détection de l'art antérieur dues à l'utilisation, en particulier, de canalisations en plastique et surtout de permettre la quantification d'un débit de fuite même très faible.The invention aims to overcome the disadvantages of prior art detection methods due to the use, in particular, of plastic pipes and especially to allow the quantification of a very low leakage rate.
A cet effet, l'invention propose un procédé de détection et/ou de quantification d'une fuite d'eau sur une canalisation d'eau du type consistant à mesurer le débit de l'eau dans la canalisation en au moins deux points de cette canalisation, l'un étant en aval, et l'autre en amont de la fuite supposée.
Dans le procédé de l'invention, la mesure du débit de l'eau est effectuée par mesure de la conductivité de l'eau.For this purpose, the invention proposes a method for detecting and / or quantifying a water leak on a water pipe of the type consisting in measuring the flow of water in the pipe in at least two points of water. this pipe, one downstream, and the other upstream of the supposed leak. In the method of the invention, the measurement of the water flow is performed by measuring the conductivity of the water.
Pour cela, dans le procédé de l'invention, on injecte en amont et en aval du point supposé de fuite d'eau, et de manière instantanée, un traceur modifiant la conductivité de l'eau.For this, in the method of the invention, is injected upstream and downstream of the supposed point of water leakage, and instantaneously, a tracer changing the conductivity of the water.
La conductivité de l'eau, du temps t1 de l'injection du traceur jusqu'au temps t2 où la conductivité de l'eau revient à sa valeur initiale, est alors mesurée.The conductivity of the water, time t1 tracer injection until time t2 where the conductivity of the water returns to its initial value, is then measured.
Le traceur retenu pour les mesures de conductivité doit tout d'abord être un bon traceur de l'eau, c'est-à-dire refléter fidèlement les déplacements de l'eau. Dans le cas particulier de l'eau potable, le traceur doit présenter une toxicité nulle ou acceptable par les distributeurs d'eau. C'est pourquoi, dans l'invention, le traceur préféré est l'hypochlorite de sodium, NaOCI (eau de javel) déjà utilisé en abondance dans les eaux potables pour maintenir un traitement correct de celles-ci et qui sera détecté par une mesure de conductimètre. D'autres traceurs sont envisageables tels que le Cb (déjà utilisé dans des objectifs d'assainissement d'eau potable) et donc non toxique dans le cadre de cette application.The tracer selected for conductivity measurements must first be a good tracer of water, that is to say faithfully reflect the movements of water. In the particular case of drinking water, the tracer must have zero toxicity or acceptable by the water distributors. Therefore, in the invention, the preferred tracer is sodium hypochlorite, NaOCI (bleach) already used in abundance in drinking water to maintain a correct treatment thereof and which will be detected by a measure conductivity meter. Other tracers are conceivable such as Cb (already used in drinking water purification objectives) and therefore nontoxic in the context of this application.
La mesure de la conductivité est effectuée en utilisant un dispositif comprenant deux électrodes, le dispositif étant placé dans la canalisation dans laquelle l'eau s'écoule, et en imposant un courant alternatif entre les deux électrodes, ce qui a pour effet de faire migrer les ions chacun vers une électrode en fonction de sa charge électrique, et de provoquer un courant.The conductivity measurement is performed using a device comprising two electrodes, the device being placed in the pipe in which the water flows, and imposing an alternating current between the two electrodes, which has the effect of migrating the ions each to an electrode according to its electric charge, and to cause a current.
On peut accéder, à partir de la mesure de l'intensité du courant, à la résistivité R et à la conductivité C de la solution selon la relation C = 1/R. La conductivité caractérise donc la capacité de la solution à conduire le courant et est directement proportionnelle à la concentration en ions présents dans le volume délimité par la cellule de mesure.The resistivity R and the conductivity C of the solution can be accessed from the measurement of the intensity of the current according to the relation C = 1 / R. Conductivity therefore characterizes the capacity of the solution to conduct the current and is directly proportional to the concentration of ions present in the volume delimited by the measuring cell.
Ainsi, dans le procédé de l'invention, le traceur est injecté de façon instantanée en un point 11 en amont de la fuite d'eau et en un point 12 en aval de la fuite d'eau, et une mesure de conductivité est effectuée en continu en
chacun des ces deux points d'observation afin de suivre la fonction de passage du traceur.Thus, in the method of the invention, the tracer is injected instantaneously at a point 11 upstream of the water leak and at a point 12 downstream of the water leak, and a conductivity measurement is performed. continuously in each of these two points of observation to follow the function of passage of the tracer.
Après traitement numérique et calcul selon la méthode d'Allen décrite dans « Théorie de la méthode d'Allen et ses conséquences pratiques pour la mesure des débits en conduite », par J. Guizerix et R. Margrita publiée dans la Houille Blanche n°3/4-1976, p291-296, la différence des moments d'ordre 1 des courbes d'évolution de conductivité obtenues permet le calcul de la vitesse moyenne de l'eau et, connaissant la section de la conduite, on accède directement au débit de circulation dans la conduite au niveau des cellules de mesure de conductivité.After numerical processing and computation according to the method of Allen described in "Theory of the method of Allen and its practical consequences for the measurement of flows in pipe", by J. Guizerix and R. Margrita published in the Houille Blanche n ° 3 / 4-1976, p291-296, the difference of the first order moments of the conductivity evolution curves obtained makes it possible to calculate the average speed of the water and, knowing the section of the pipe, the flow is accessed directly. flow in the pipe at the level of the conductivity measuring cells.
Ce type de mesures peut être renouvelé en plusieurs points du réseau, et ainsi, par différences successives, permet de mettre en évidence une éventuelle différence de débit qui signale une fuite sur la canalisation d'eau entre les deux points considérés.This type of measurement can be renewed at several points of the network, and thus, by successive differences, makes it possible to highlight a possible flow difference which indicates a leak on the water pipe between the two points considered.
Cette technique présente l'avantage de pouvoir quantifier le débit de fuite et de localiser la fuite entre les deux points de mesure. Pour localiser très précisément la fuite, on pourra alors employer une méthode acoustique.This technique has the advantage of being able to quantify the leakage rate and to locate the leakage between the two measurement points. To locate the leak very precisely, we can then use an acoustic method.
Plus précisément, la mesure de la conductivité de l'eau circulant en amont et en aval de la fuite supposée, est effectuée en positionnant dans la canalisation, en amont et en aval du point de fuite supposée, une cellule de mesure de la conductivité, chaque cellule étant constituée de deux dispositifs de mesure de la conductivité et d'un point d'injection du traceur. On notera que la distance entre 2 cellules n'a pas d'incidence particulière tant sur la détection que sur la quantification de la fuite.More specifically, the measurement of the conductivity of the water circulating upstream and downstream of the assumed leak is performed by positioning in the pipe, upstream and downstream of the assumed leak point, a conductivity measuring cell, each cell consisting of two devices for measuring the conductivity and a tracer injection point. It should be noted that the distance between two cells has no particular impact on both the detection and the quantization of the leak.
Chaque dispositif de mesure est constitué de deux électrodes dont l'une forme le corps du dispositif, ce corps permettant le passage de l'eau, et l'autre électrode étant liée, mais isolée électriquement, de la première électrode (le corps du dispositif) et plongeant directement dans le flux d'eau en écoulement.Each measuring device consists of two electrodes, one of which forms the body of the device, this body allowing the passage of water, and the other electrode being electrically connected but isolated from the first electrode (the body of the device ) and dipping directly into the flow of flowing water.
De préférence, les électrodes sont en inox.
Chaque dispositif est muni de brides pour liaison à chaque extrémité de la canalisation d'eau.Preferably, the electrodes are made of stainless steel. Each device is provided with flanges for connection at each end of the water pipe.
L'invention sera mieux comprise et d'autres caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lumière de la description explicative et des exemples qui suivent, et qui sont donnés en référence aux figures dans lesquelles : la figure 1 représente schématiquement le principe de détection d'une fuite sur une canalisation selon l'invention, la figure 2 représente une photographie d'un dispositif de mesure de conductivité selon l'invention, relié à une canalisation de distribution d'eau, la figure 3 représente schématiquement le dispositif de mesure de conductivité selon l'invention représenté en figure 2, et la figure 4 représente les courbes de conductivité obtenues au niveau d'une cellule de mesure de conductivité, dans un mode de réalisation particulier de l'invention.The invention will be better understood and other features and advantages thereof will appear more clearly in the light of the explanatory description and the examples which follow, which are given with reference to the figures in which: FIG. 1 schematically represents the principle of detection of a leak on a pipe according to the invention, Figure 2 shows a photograph of a conductivity measuring device according to the invention, connected to a water distribution pipe, Figure 3 schematically shows the conductivity measuring device according to the invention shown in Figure 2, and Figure 4 shows the conductivity curves obtained at a conductivity measuring cell, in a particular embodiment of the invention.
Le principe de la détection d'une fuite d'eau sur une canalisation d'eau selon l'invention est schématiquement illustré en figure 1.The principle of detecting a water leak on a water pipe according to the invention is schematically illustrated in FIG.
Le procédé de l'invention consiste donc à injecter de manière instantanée en un point noté II en figure 1 , situé en amont du point de fuite supposée, noté F en figure 1 , ainsi qu'en un point noté 12 en figure 1 , situé en aval du point de fuite supposée F, un traceur modifiant la conductivité de l'eau.The method of the invention therefore consists in instantaneously injecting at a point denoted II in FIG. 1, located upstream of the supposed vanishing point, denoted F in FIG. 1, as well as at a point noted 12 in FIG. downstream of the supposed leak point F, a tracer changing the conductivity of the water.
La conductivité de l'eau circulant dans la canalisation, notée 1 en figure 1 , est alors mesurée en continu, du moment t1 de l'injection jusqu'au moment t2 de retour à la valeur initiale de la conductivité, entre les points notés A1 et A2 en figure 1 d'une part, et, d'autre part, entre les points notés B1 et B2 en figure 1.The conductivity of the water flowing in the pipe, denoted 1 in FIG. 1, is then measured continuously, from the moment t1 of the injection until the moment t2 of return to the initial value of the conductivity, between the points noted A1 and A2 in FIG. 1 on the one hand, and, on the other hand, between the points marked B1 and B2 in FIG.
La conductivité est mesurée en plaçant, en chacun des points A1 , A2 et B1 , B2 des dispositifs de mesure de la conductivité notés respectivement 2, 3 et 4, 5 en figure 1.The conductivity is measured by placing, at each of the points A1, A2 and B1, B2 conductivity measuring devices denoted respectively 2, 3 and 4, 5 in Figure 1.
Comme on le voit en figure 1 , le dispositif de mesure de conductivité 2, est situé en aval du point d'injection 11 mais en amont du
dispositif de mesure de conductivité 3, les dispositifs 2 et 3 étant situés en amont du point de fuite supposée F, et le dispositif de mesure de conductivité 4 est situé en aval du point d'injection 12 et en amont du point B2 auquel est positionné le dispositif de mesure de conductivité 5.As can be seen in FIG. 1, the conductivity measuring device 2 is located downstream of the injection point 11 but upstream of the conductivity measuring device 3, the devices 2 and 3 being situated upstream of the assumed leak point F, and the conductivity measuring device 4 is situated downstream of the injection point 12 and upstream of the point B2 to which is positioned the conductivity measuring device 5.
A partir des courbes de conductivité obtenues aux points A1 , A2 et B1 , B2, le débit d'eau Q1 circulant dans la canalisation 1 en amont du point de fuite supposée F ainsi que le débit d'eau Q2 circulant dans la canalisation 1 en aval du point de fuite supposée F, sont calculés par la méthode d'Allen. Si une différence entre les débits Q1 et Q2 est constatée, cela révèle une fuite d'eau entre les points 11 et 12. De plus, le débit de cette fuite est quantifié.From the conductivity curves obtained at the points A1, A2 and B1, B2, the flow of water Q1 flowing in the pipe 1 upstream of the supposed leak point F and the flow of water Q2 flowing in the pipe 1 in downstream of the assumed vanishing point F, are calculated by the Allen method. If a difference between the flow rates Q1 and Q2 is found, this reveals a water leak between points 11 and 12. In addition, the flow rate of this leak is quantified.
Une photographie d'un dispositif de mesure de la conductivité en place dans la canalisation 1 est montrée en figure 2.A photograph of a conductivity meter in place in line 1 is shown in FIG.
Comme on le voit en figure 2, où le dispositif de mesure de la conductivité de l'invention est noté 2, le dispositif de l'invention est constitué d'un corps creux 6 positionné dans la canalisation 1 et permettant la circulation de l'eau dans la canalisation 1 et le corps du dispositif 6.As seen in FIG. 2, in which the device for measuring the conductivity of the invention is denoted 2, the device of the invention consists of a hollow body 6 positioned in the pipe 1 and allowing the circulation of the water in the pipe 1 and the body of the device 6.
Le dispositif de mesure de conductivité 2 est relié à chaque extrémité de la canalisation 1 par des brides notées 8 et 9 en figure 2.The conductivity measuring device 2 is connected to each end of the pipe 1 by flanges marked 8 and 9 in FIG.
Dans le corps creux 6 du dispositif 2, plonge une électrode notée 7 en figure 2.In the hollow body 6 of the device 2, plunges an electrode denoted 7 in FIG.
La structure du dispositif de mesure de conductivité selon l'invention est plus précisément montrée schématiquement en figure 3.The structure of the conductivity measuring device according to the invention is more precisely shown schematically in FIG.
Comme on le voit en figure 3, le dispositif 2 de mesure de conductivité selon l'invention est constitué d'un corps creux 6 formant une première électrode et dans lequel circule l'eau en provenance de la canalisation 1 (non montrée) auquel ce corps creux 6 est relié par les brides 8 et 9.As can be seen in FIG. 3, the conductivity measuring device 2 according to the invention consists of a hollow body 6 forming a first electrode and in which water circulates from the pipe 1 (not shown). hollow body 6 is connected by the flanges 8 and 9.
Une seconde électrode 7 isolée électriquement du corps creux 6, mais reliée à celui-ci, est positionnée pour plonger dans le flux d'eau s'écoulant dans le corps creux 6.A second electrode 7 electrically isolated from the hollow body 6, but connected thereto, is positioned to plunge into the flow of water flowing in the hollow body 6.
De préférence, le corps creux, c'est-à-dire l'électrode 6, ainsi que l'électrode 7 sont en inox.
On va maintenant décrire à titre purement illustratif et non limitatif plusieurs exemples de mise en oeuvre du procédé de l'invention.Preferably, the hollow body, that is to say the electrode 6, and the electrode 7 are made of stainless steel. Several examples of implementation of the method of the invention will now be described by way of illustration and not limitation.
En particulier, les distances entre points de mesure, entre point d'injection et cellule de mesure sont aisément adaptables par l'homme du métier. Ainsi, la distance entre le point d'injection et le premier point de mesure doit-elle être suffisante pour avoir une bonne homogénéité du traceur dans la section lorsque ce dernier atteint le point de mesure. Cette distance dite « de bon mélange » suite globalement la règle suivante : il faut en général une distance de 5Ox le diamètre de la conduite.In particular, the distances between measurement points, between the injection point and the measuring cell, are easily adaptable by those skilled in the art. Thus, the distance between the injection point and the first measurement point must be sufficient to have a good homogeneity of the tracer in the section when the latter reaches the measurement point. This distance called "good mixing" generally follows the following rule: it usually takes a distance of 50x the diameter of the pipe.
Exemple 1Example 1
Cet exemple sera décrit en référence aux figures 1 et 4.This example will be described with reference to FIGS. 1 and 4.
Des essais ont été effectués sur une canalisation 1 d'un diamètre de 53 mm et dans laquelle le débit d'eau est de 1000 l/h.Tests were carried out on a pipe 1 with a diameter of 53 mm and in which the water flow rate is 1000 l / h.
Quatre dispositifs de mesure 2, 3, 4, 5 de conductivité ont été placés dans cette canalisation 1.Four conductivity measuring devices 2, 3, 4, 5 have been placed in this pipe 1.
Dans cet exemple, les dispositifs 2 et 3 sont espacés l'un de l'autre d'une distance de 3,8 m, et les dispositifs 4 et 5 sont espacés l'un de l'autre d'une distance de 3,8 m.In this example, the devices 2 and 3 are spaced from each other by a distance of 3.8 m, and the devices 4 and 5 are spaced from each other by a distance of 3, 8 m.
Les dispositifs 3 et 4 sont espacés l'un de l'autre de 10 m du point de fuite supposée F. Le corps creux 6 avait un diamètre de 53mm et un volume de 220 cm3.The devices 3 and 4 are spaced from each other by 10 m of the supposed leakage point F. The hollow body 6 had a diameter of 53 mm and a volume of 220 cm 3 .
Le corps creux formant l'électrode 6 et l'électrode 7 sont en inox.The hollow body forming the electrode 6 and the electrode 7 are made of stainless steel.
1 mL d'hypochlorite de sodium (eau de javel à 10% de chlore actif), est injecté de manière instantanée au temps t1 aux points d'injection 11 et 12. Le point d'injection 11 est situé à 2 mètres en amont du dispositif 2, et le point d'injection 12 est espacé de 2 mètres du dispositif 4.1 mL of sodium hypochlorite (bleach 10% active chlorine), is injected instantaneously at time t1 injection points 11 and 12. The injection point 11 is located 2 meters upstream of the device 2, and the injection point 12 is spaced 2 meters from the device 4.
Du temps t1 d'injection au temps t2 auquel la conductivité de l'eau revient à son niveau initial, l'évolution de la conductivité est enregistrée sous forme de courbes aux points A1 , A2 et B1 , B2.From the injection time t1 to the time t2 at which the conductivity of the water returns to its initial level, the evolution of the conductivity is recorded as curves at points A1, A2 and B1, B2.
Les courbes de conductivité obtenues au niveau des points A1 et A2 de mesure sont représentées en figure 4 dans laquelle la courbe
enregistrée au point A1 est notée 10 et la courbe enregistrée au point A2 est notée 11. A partir de ces courbes et de celles obtenues aux points B1 et B2, les débits Q1 et Q2 en amont et en aval de la fuite F sont calculés.The conductivity curves obtained at the points A1 and A2 of measurement are represented in FIG. 4 in which the curve recorded at point A1 is denoted 10 and the curve recorded at point A2 is denoted 11. From these curves and those obtained at points B1 and B2, the flow rates Q1 and Q2 upstream and downstream of the leak F are calculated.
Chaque débit Q1 et Q2 est obtenu par la formule Q=V/Δt où V représente le volume de la section entre les deux cellules et où Δt représente la différence entre le temps moyen de la première courbe et le temps moyen de la seconde courbe. Le temps moyen de chacune des courbes est obtenu par le centre de gravité de la courbe. Cette donnée est aisément accessible par le traitement mathématique d'une courbe. On pourrait également envisager de prendre le temps moyen correspondant au sommet de la courbe, valeur qui peut se confondre avec la gravité de la courbe en cas de gaussienne parfaite. D'autres traitements mathématiques de courbe sont envisageables comme le traitement par déconvolution. Toutes ces méthodes sont connues de l'homme du métier.Each flow Q1 and Q2 is obtained by the formula Q = V / Δt where V represents the volume of the section between the two cells and where Δt represents the difference between the average time of the first curve and the average time of the second curve. The average time of each curve is obtained by the center of gravity of the curve. This data is easily accessible by the mathematical treatment of a curve. One could also consider taking the average time corresponding to the top of the curve, a value that can be confused with the gravity of the curve in case of perfect Gaussian. Other mathematical curve treatments are conceivable, such as deconvolution treatment. All these methods are known to those skilled in the art.
Les valeurs des fuites calculées sont reportées dans le tableau 1 ci-dessous.The calculated leakage values are reported in Table 1 below.
Tableau 1
Exemple 2Table 1 Example 2
Les mêmes essais qu'à l'exemple 1 ont été réalisés sauf que le débit de l'eau s'écoulant dans la canalisation 1 est de 2500 l/h.The same tests as in Example 1 were carried out except that the flow rate of the water flowing in the pipe 1 is 2500 l / h.
Les valeurs des fuites calculées sont reportées dans le tableau 2 ci-dessous.The calculated leakage values are reported in Table 2 below.
Tableau 2Table 2
Ainsi, on voit à partir de la différence Q1 - Q2 que, par la méthode de l'invention, de faibles débits de fuite peuvent être détectés et quantifiés, ces faibles débits de fuite correspondant à des fuites de 5 à 10% du débit nominal. De plus, on a constaté que l'écart entre les valeurs mesurées par la méthode d'Allen et les valeurs réelles de fuite est globalement inférieur à 5% et de l'ordre de 15% pour des débits d'écoulement très faible. On notera de plus que plus le débit est important, meilleure est la sensibilité.Thus, it can be seen from the difference Q1 - Q2 that, by the method of the invention, low leakage rates can be detected and quantified, these low leakage rates corresponding to leakages of 5 to 10% of the nominal flow rate. . In addition, it has been found that the difference between the values measured by the Allen method and the actual leakage values is globally less than 5% and of the order of 15% for very low flow rates. Note also that the higher the flow is important, the better the sensitivity.
Les mêmes essais ont été réalisés pour une conduite de diamètre de 100 mm. Les résultats obtenus sont identiques.The same tests were carried out for a pipe diameter of 100 mm. The results obtained are identical.
Le procédé de l'invention peut s'appliquer à tous les réseaux d'eau potable mais aussi à d'autres types d'écoulement en conduite pour lesquels il n'existe pas de moyen fiable de mesure de fuite aussi minime soit-elle.
The method of the invention can be applied to all drinking water networks but also to other types of pipe flow for which there is no reliable means of leakage measurement as minimal as it is.
Claims
1. Procédé de détection et/ou de quantification d'une fuite d'eau (F) sur une canalisation d'eau (1) du type consistant à mesurer le débit de l'eau s'écoulant dans la canalisation (1) en au moins deux points distincts, l'un en aval du point de fuite F supposée, et l'autre en amont du point de fuite F supposée, caractérisé en ce que : la mesure du débit de l'eau est effectuée en injectant de manière instantanée en un point 11 en amont du point de fuite F supposée et un point 12 en aval du point de fuite F supposée, un traceur modifiant la conductivité de l'eau, et en mesurant la conductivité de l'eau en continu en aval des chacun des points II et 12 pendant une période commençant au temps t1 de l'injection jusqu'au temps t2 auquel la conductivité de l'eau revient à sa valeur avant injection du traceur, et en calculant à partir de ces valeurs les débits Q1 et Q2 d'eau s'écoulant en amont, et en aval du point de fuite F supposée dans la canalisation (1).1. A method for detecting and / or quantifying a water leak (F) on a water pipe (1) of the type comprising measuring the flow rate of the water flowing in the pipe (1) in at least two distinct points, one downstream of the assumed leakage point F, and the other upstream of the assumed leakage point F, characterized in that: the measurement of the flow of the water is carried out by injecting at a point 11 upstream of the assumed leakage point F and a point 12 downstream of the assumed leakage point F, a tracer changing the conductivity of the water, and by measuring the continuous water conductivity downstream of the each of the points II and 12 during a period starting at the time t1 of the injection until the time t2 at which the conductivity of the water returns to its value before injection of the tracer, and calculating from these values the flow rates Q1 and Q2 of water flowing upstream, and downstream of the leakage point F assumed in the pipe (1).
2. Procédé selon la revendication 1 caractérisé en ce que le traceur est de l'eau de javel (NaOCI).2. Method according to claim 1 characterized in that the tracer is bleach (NaOCI).
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que la mesure du débit Q1 et du débit Q2 est effectuée : a) en plaçant au moins quatre dispositifs (2, 3, 4, 5) de mesure de la conductivité de l'eau, chaque dispositif comprenant deux électrodes (6,7) isolées électriquement, dont l'une (6) constitue le corps de la cellule et l'autre (7) est en position centrale directement dans le flux d'eau en écoulement dans la canalisation 1, le corps du dispositif constitué par l'électrode 6 permettant le passage de l'eau, et b) en imposant un courant alternatif entre les deux électrodes (6) et (7), le premier dispositif (2) étant situé dans la canalisation en un point A1 en aval du point d'injection 11 et en amont du point de fuite F supposée, le deuxième dispositif de mesure (3) étant situé en un point A2 en aval du point A1 et en amont du point de fuite F supposée, le troisième dispositif (4) étant situé en un point B1 situé en aval du point d'injection 12, et le quatrième dispositif (5) étant situé en un point B2 en aval du point B1. 3. Method according to claim 1 or 2 characterized in that the measurement of the flow rate Q1 and the flow rate Q2 is carried out: a) by placing at least four devices (2, 3, 4, 5) for measuring the conductivity of the water, each device comprising two electrodes (6,7) electrically insulated, one (6) of which constitutes the body of the cell and the other (7) is in a central position directly in the flow of water flowing in the pipe 1, the body of the device constituted by the electrode 6 allowing the passage of water, and b) by imposing an alternating current between the two electrodes (6) and (7), the first device (2) being located in the pipe at a point A1 downstream of the injection point 11 and upstream of the assumed leakage point F, the second measuring device (3) being located at an A2 point downstream of the A1 point and upstream of the vanishing point; F assumed, the third device (4) being located at a point B1 located downstream of the injection point 12, and the fourth device (5) being located at a point B2 downstream of the point B1.
4. Procédé selon la revendication 3 caractérisé en ce que les électrodes (6, 7) de chaque dispositif (2, 3, 4, 5) sont en inox.4. Method according to claim 3 characterized in that the electrodes (6, 7) of each device (2, 3, 4, 5) are stainless steel.
5. Dispositif de mesure (2) de la conductivité de l'eau pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend : un corps creux (6), constituant une première électrode, dont le diamètre est de préférence égal au diamètre de la canalisation (1), une seconde électrode (7) reliée au corps creux (6) mais isolé électriquement de celui-ci, et centrée dans le corps creux (6), et deux brides (8, 9) de fixation pour fixer chaque extrémité du corps creux (6) respectivement à une extrémité de la canalisation (1).5. Device (2) for measuring the conductivity of water for carrying out the process according to any one of the preceding claims, characterized in that it comprises: a hollow body (6) constituting a first electrode, whose diameter is preferably equal to the diameter of the pipe (1), a second electrode (7) connected to the hollow body (6) but electrically isolated therefrom, and centered in the hollow body (6), and two flanges (8, 9) for fixing each end of the hollow body (6) respectively to one end of the pipe (1).
6. Dispositif de mesure (2) selon la revendication 5 caractérisé en ce que les électrodes (6, 7) sont en inox. 6. Measuring device (2) according to claim 5 characterized in that the electrodes (6, 7) are stainless steel.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0610800A FR2909764B1 (en) | 2006-12-12 | 2006-12-12 | METHOD AND DEVICE FOR DETECTING AND / OR QUANTIFYING WATER LEAKS. |
PCT/FR2007/001942 WO2008081089A2 (en) | 2006-12-12 | 2007-11-27 | Method and device for detecting and/or quantifying water leaks |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2097729A2 true EP2097729A2 (en) | 2009-09-09 |
Family
ID=38255022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07870340A Withdrawn EP2097729A2 (en) | 2006-12-12 | 2007-11-27 | Method and device for detecting and/or quantifying water leaks |
Country Status (6)
Country | Link |
---|---|
US (1) | US8342006B2 (en) |
EP (1) | EP2097729A2 (en) |
JP (1) | JP5027244B2 (en) |
CA (1) | CA2672255A1 (en) |
FR (1) | FR2909764B1 (en) |
WO (1) | WO2008081089A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2935800B1 (en) * | 2008-09-09 | 2010-11-19 | R & I Alliance | METHOD AND DEVICE FOR DETECTING LEAKS IN A UNDERGROUND LIQUID CONDUIT, IN PARTICULAR A WATER CONDUIT |
WO2013052657A1 (en) | 2011-10-04 | 2013-04-11 | Aseptia, Inc. | Conductivity measurement of fluids |
WO2016077509A1 (en) * | 2014-11-13 | 2016-05-19 | Daniel Sterling | Interactive water monitoring system |
US9933329B2 (en) * | 2015-08-11 | 2018-04-03 | Electro Scan, Inc. | Multi-sensor inspection for identification of pressurized pipe defects that leak |
CN106969885B (en) * | 2017-04-21 | 2023-06-13 | 西安热工研究院有限公司 | Power plant condenser leakage detection system and detection method |
US10539480B2 (en) * | 2017-10-27 | 2020-01-21 | Mueller International, Llc | Frequency sub-band leak detection |
FI128387B (en) * | 2018-05-11 | 2020-04-15 | Varo Teollisuuspalvelut Oy | Detecting leakage in a soda recovery boiler |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1616481A (en) * | 1922-10-02 | 1927-02-08 | Charles M Allen | Method of measuring the rate of flow of liquid |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3695094A (en) * | 1970-07-16 | 1972-10-03 | Halliburton Co | Leak detection method and system |
US4407158A (en) * | 1979-12-17 | 1983-10-04 | Petroff Peter D | Flow analyzer |
FR2491618B1 (en) * | 1980-10-07 | 1985-06-07 | Renault | DIFFERENTIAL TYPE TRANSIT TIME IONIC SENSOR |
JPS6018737A (en) * | 1983-07-12 | 1985-01-30 | Kishimoto Boring Kk | Method for investigating leaking water from reservoir |
JP2568620B2 (en) * | 1988-03-29 | 1997-01-08 | 愛知時計電機株式会社 | Electromagnetic flow meter |
US5247836A (en) * | 1992-01-24 | 1993-09-28 | Lew Hyok S | Convective electric current flowmeter |
JP3082162B2 (en) * | 1992-06-09 | 2000-08-28 | 日昌興業株式会社 | How to detect leaks in underground water pipes |
US5304800A (en) * | 1992-11-10 | 1994-04-19 | Nalco Chemical Company | Leak detection and responsive treatment in industrial water processes |
JPH0896039A (en) * | 1994-09-29 | 1996-04-12 | Akira Hayashi | Water pipeline information management device |
JPH08304127A (en) * | 1995-05-09 | 1996-11-22 | Toshiba Corp | Apparatus for measuring flow speed and flow rate in pipe |
FI106224B (en) * | 1996-10-21 | 2000-12-15 | Grundfos Management As | Method and apparatus for measuring runoff water in a sewerage system |
US6314795B1 (en) * | 1997-07-22 | 2001-11-13 | Ferret Technology Limited | Leak tracing |
US6393925B1 (en) * | 1999-05-26 | 2002-05-28 | University Of Waterloo | Groundwater velocity probe |
US7007545B1 (en) * | 1999-10-26 | 2006-03-07 | Peter Martinek | Method and measurement probe for the performance of measurements in water supply systems |
FR2860588B1 (en) * | 2003-10-06 | 2005-12-16 | Inst Rech Developpement Ird | METHOD AND APPARATUS FOR MEASURING THE SPEED OF A LOW FLOW OF WATER |
JP4665502B2 (en) * | 2004-05-20 | 2011-04-06 | 横河電機株式会社 | Electromagnetic flow meter and method for manufacturing electromagnetic flow meter |
US7279903B2 (en) * | 2005-05-02 | 2007-10-09 | Invensys Systems, Inc. | Non-metallic flow-through electrodeless conductivity sensor with leak and temperature detection |
AT501993B1 (en) * | 2006-02-20 | 2007-06-15 | Guenter Dipl Ing Fh Weilguny | Fluid e.g. gas, flow velocity measuring device for aircraft, has sensor electrode whose projection surface is smaller in adjacent cross section surface of fluid flow so that flow is measured over electrode, and velocity value is calculated |
US7861601B2 (en) * | 2008-03-06 | 2011-01-04 | Colorado State University Research Foundation | Measurement of liquid flow in porous media by tracer dilution without continuous mixing |
-
2006
- 2006-12-12 FR FR0610800A patent/FR2909764B1/en not_active Expired - Fee Related
-
2007
- 2007-11-27 WO PCT/FR2007/001942 patent/WO2008081089A2/en active Application Filing
- 2007-11-27 CA CA002672255A patent/CA2672255A1/en not_active Abandoned
- 2007-11-27 JP JP2009540804A patent/JP5027244B2/en not_active Expired - Fee Related
- 2007-11-27 US US12/518,850 patent/US8342006B2/en not_active Expired - Fee Related
- 2007-11-27 EP EP07870340A patent/EP2097729A2/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1616481A (en) * | 1922-10-02 | 1927-02-08 | Charles M Allen | Method of measuring the rate of flow of liquid |
Also Published As
Publication number | Publication date |
---|---|
US20100064776A1 (en) | 2010-03-18 |
JP5027244B2 (en) | 2012-09-19 |
WO2008081089A3 (en) | 2008-09-04 |
US8342006B2 (en) | 2013-01-01 |
WO2008081089A2 (en) | 2008-07-10 |
JP2010512476A (en) | 2010-04-22 |
FR2909764A1 (en) | 2008-06-13 |
CA2672255A1 (en) | 2008-07-10 |
FR2909764B1 (en) | 2009-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2097729A2 (en) | Method and device for detecting and/or quantifying water leaks | |
FR3074818B1 (en) | METHOD FOR EVALUATING THE STATE OF A WATER DISTRIBUTION SYSTEM | |
FR2740215A1 (en) | METHOD AND DEVICE FOR MEASURING A PARAMETER OF A VARIABLE DENSITY FLUID | |
FR3068067A1 (en) | TOTAL THICKNESS DIAGRAM BASED ON FOUCAULT RUNNING FIELD | |
FR2803032A1 (en) | METHOD AND DEVICE FOR MEASURING CIRCULATING FLUID FLOW IN A PIPE | |
EP0352203A2 (en) | Method and apparatus for simultaneously measuring in a pipe the density, the concentration, the flowing rate, the delivery and the temperature of a liquid or a pasty fluid by ultrasonic transmission | |
CN203745413U (en) | Marine hydraulic pipeline cleaning oil on-line detection device | |
FR3030102B1 (en) | DIAGNOSTIC DEVICE FOR IMMERSE ELECTRIC TRANSFORMER AND ELECTRIC TRANSFORMER COMPRISING SUCH A DEVICE. | |
WO2017076756A1 (en) | Method for measuring corrosion degradation of a metal pipe and mobile measuring apparatus implementing such a method | |
EP0077757B1 (en) | Process for detecting failures in a dielectric coating on the surface of an electrically conducting substrate | |
EP2264355A1 (en) | Method for reducing the pressure loss of a liquid flowing in a pipe taking into account the degradation of drag reducing agents | |
WO2018162249A1 (en) | Method for measuring a speed of a fluid | |
CN103743793A (en) | Online detection device for hydraulic pipeline washing oil for ship | |
FR3121212A1 (en) | Method for predicting the risk of freezing of a liquid | |
FR2955659A1 (en) | METHOD FOR DETECTING MECHANICAL STRESS SUBJECTED BY A PIECE OF FERROMAGNETIC MATERIAL | |
CN101482516A (en) | Method for image on-line measurement of river silt sediment concentration | |
EP3692352A1 (en) | Continuous monitoring device for detecting defects in a section of piping and a monitoring system fitted with at least two monitoring devices | |
WO2018162250A1 (en) | Method for measuring a speed of a fluid | |
EP4158639A1 (en) | Detection of change in the physico-chemical composition of a liquid | |
FR3126781A1 (en) | Device for inspecting a pipe, in particular with regard to clandestine tapping | |
FR3031591B1 (en) | METHOD AND DEVICE FOR DETECTING ENCRASION FOR PIPING SYSTEMS | |
FR2962919A1 (en) | Method for starting cleaning of filter with large volume of e.g. waste water to avoid clogging of filter in pumping station, involves emitting warning signal warning detection of fault cleaning of filter | |
FR2471177A1 (en) | Blood flow measuring device - includes two input impedance meter performing correlation between values at spaced pairs of electrodes | |
Shiddiqi et al. | Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks | |
FR3034517A1 (en) | DEVICE FOR EVALUATING THE FLOW OF A FIRST FLUID TO A SECOND FLUID THROUGH A WALL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090710 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091002 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151120 |