EP2095407A1 - Method for forming microwires and/or nanowires - Google Patents
Method for forming microwires and/or nanowiresInfo
- Publication number
- EP2095407A1 EP2095407A1 EP07857946A EP07857946A EP2095407A1 EP 2095407 A1 EP2095407 A1 EP 2095407A1 EP 07857946 A EP07857946 A EP 07857946A EP 07857946 A EP07857946 A EP 07857946A EP 2095407 A1 EP2095407 A1 EP 2095407A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- trenches
- monocrystalline
- wire
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000002070 nanowire Substances 0.000 title description 7
- 238000000137 annealing Methods 0.000 claims abstract description 51
- 238000005530 etching Methods 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 239000003989 dielectric material Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 230000000717 retained effect Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 27
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- 229960004424 carbon dioxide Drugs 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7853—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
- H01L29/42392—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7853—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
- H01L29/7854—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
- Y10S977/938—Field effect transistors, FETS, with nanowire- or nanotube-channel region
Definitions
- the invention relates to a method for producing microwires and / or nanowires in a substrate, and to a method for producing a coating gate MOS transistor.
- Microfil means here and throughout the rest of the document, a wire whose section dimensions, for example the diameter for a wire of circular section, are between about 1 micron and 1 mm.
- nanowire means a wire whose sectional dimensions are between about 1 nm and 1 micron. The term "wire" will be used in the rest of the document for a microfil or nanowire.
- the present invention proposes a process for producing at least one wire, that is to say a microfil and / or a nanowire, in a layer based on at least one monocrystalline material or amorphous material, comprising at least the steps of: producing at least two trenches in the layer, passing through one face of the layer, separated from each other by at least a portion of the monocrystalline or amorphous layer,
- the annealing removes a portion of said portion of the monocrystalline or amorphous layer, the two trenches then forming a single trench in which a remaining portion of said monocrystalline or amorphous layer portion form the thread.
- the wire obtained is smooth and has no irregularities, unlike the son obtained directly by etching.
- the son obtained by this embodiment are already connected to the material in which the son are formed, the ends of the wire being connected to the remainder of the monocrystalline or amorphous layer. This method therefore makes it possible to dispense with the complex connection steps required with a method of growing wires from a catalyst.
- the present invention also relates to a method for producing a coating gate transistor, comprising at least the steps of: - producing a plurality of trenches in a layer based on at least one material monocrystalline or amorphous, passing through one face of the layer and forming the contour of source, drain and channel zones, at least two trenches of the plurality of trenches being separated from each other by at least a portion of the monocrystalline or amorphous layer intended to form the channel of the transistor,
- annealing under a hydrogenated atmosphere, of the layer, the depths P of said two trenches in the layer, the widths L of the sections of said two trenches and the width D of a section of said portion of the monocrystalline or amorphous layer, the sections being in a plane parallel to said face of the layer, being such that the annealing removes a portion of said portion of the monocrystalline or amorphous layer, said two trenches then forming a single trench in which a remaining portion of said monocrystalline or amorphous layer portion is the wire forming the channel of the transistor.
- the method may comprise, after the annealing step: a step of depositing a dielectric material in the trenches, - a step of etching a portion of the dielectric material at a gate area intended to receive the gate of the transistor,
- a MOS transistor with a coating gate is thus produced, that is to say that the entire surface of the wire forming the channel of the transistor is covered by the gate.
- the trenches can be made by anisotropic etching of the layer on which is disposed an etching mask whose pattern forms the sections of the trenches at least at the level of said face of the layer.
- the etching mask can be kept on the layer during this annealing step.
- the constraints on the trench form factor necessary for forming the wire are reduced. Maintaining the etching mask on the layer during the annealing step also makes it possible to delay in time the breakage of the wire that can occur after a too long annealing with regard to the technological variability of the dimensions of the trenches. Moreover, the realization of all the technological steps of the method with the maintenance of the etching mask during the annealing step allows a planar integration with step breaks only related to the formation of the grid.
- the etching mask may in particular be preserved on the portion of the monocrystalline or amorphous layer of which a portion remaining after the annealing is intended to form the wire. In the case of the method for producing a transistor, the etching mask may in particular be preserved, during annealing, on the portion of the monocrystalline or amorphous layer intended to form the wire forming the channel of the transistor.
- the dimensions P, L and D can be chosen such as:
- FIGS. 1 to 4 show the steps of a method of making wires, object of the According to a particular embodiment, FIGS. 5A, 5B and 6 are graphs representing the size ratios of the trenches made in the substrate making it possible to obtain wires by the method, object of the present invention, FIGS. 19 show the steps of making a MOS transistor gate-coating, also object of the present invention.
- a device 100 shown in the figure
- the device 100 comprises a layer 102, for example flat or substantially flat, based on a monocrystalline or amorphous material, such as a semiconductor material, by example of silicon.
- the device 100 is a SOI (Silicon On Insulator) type substrate comprising monocrystalline or amorphous layer 102, at least one insulating layer 104 on which layer 102 is placed.
- the insulating layer 104 itself being disposed on a substrate 106 for example based on silicon, and / or quartz and / or any other material compatible with the usual techniques for producing an SOI type substrate.
- the insulating layer 104 may be formed by a stack of one or more insulating materials, for example silicon dioxide, silicon nitride or diamond carbon.
- the insulating layer 104 may for example comprise a stack of three sublayers, respectively based on silicon dioxide, silicon nitride and silicon dioxide. silicon dioxide, the silicon dioxide sublayers being in contact with the layer 102 and the substrate 106 to ensure optimized bonding of the layer 102 to the insulating layer 104 and the insulating layer 104 to the substrate 106.
- the monocrystalline or amorphous layer may have a thickness of between approximately 10 nm and 20 ⁇ m, this thickness being able to be adjusted by etching if the original thickness of the layer 102 is too small, or by epitaxial growth (thus making it possible to preserve the crystalline nature of the layer 102) or deposit when the original thickness of the layer 102 is too weak.
- the insulating layer 104 may have a thickness equal to about 145 nm but its thickness may itself be adjusted during the production of the device 100.
- this stack may be formed by a first underlayer based on silicon dioxide and having a thickness equal to about 5 nm, a second silicon nitride-based underlayer having a thickness of about 70 nm, and a third base-based sub-layer. silicon dioxide and a thickness of about 70 nm.
- the substrate 106 may have a thickness of between about 500 ⁇ m and 800 ⁇ m. Preferably, the thickness of the substrate 106 is proportional to the width of the substrate 106 in order to ensure sufficient mechanical rigidity to avoid breakage of the substrate 106 during the process described.
- the material of the layer 102 may also be based on silicon, and / or germanium, and / or silicon-germanium, and / or gallium arsenide, and / or indium phosphide, and / or indium arsenide, and / or gallium aluminum arsenide, and / or gallium and indium arsenide, and / or quartz, and / or any other monocrystalline material.
- This material may also be an amorphous material, for example silicon dioxide and / or silicon nitride.
- an etching mask 108 for example based on silicon dioxide, and / or a stack of carbon dioxide, is produced, for example by photolithography, on an upper main surface 101 of the layer 102. silicon and silicon nitride, and / or a stack of amorphous carbon and silicon dioxide.
- the pattern of the etching mask 108 represents the section of at least two trenches, intended to be made at least in the layer 102, at the face 101.
- two trenches 110 are made in the layer 102, according to the pattern of the etching mask 108, for example by anisotropic etching.
- the two trenches 110 have a similar shape and dimensions but they could also have a shape and / or different dimensions from each other.
- These two trenches 110 are characterized by the distance D separating them, this distance D representing the width, along the x axis represented in FIG.
- the length of the trenches 110 is the size of the trenches 110 along the z axis shown in FIG.
- An annealing is then carried out, under a hydrogenated atmosphere, at a pressure of between about 266 Pa and 100000 Pa and at a temperature of between about 750 0 C and 1150 0 C, of the device 100, for a period of about a few minutes, for example between about 1 and 10 minutes.
- the duration of this annealing can also be longer (several tens of minutes) depending on the size of the son or son that we want to obtain and the amount of material to be migrated to form said wire.
- This annealing results in an enlargement of the trenches 110, eliminating part of the portion 111 at the bottom of the trenches 110, this grouping of the trenches 110 then forming a single trench 114.
- the portion 111 of the layer 102, previously separating the two trenches 110 then only forms a wire 112 suspended above in the trench 114, the ends of the wire 112 being connected to the remainder of the layer 102.
- the wire 112 has a section in the form of a semicircle .
- the final shape of the wire 112 depends on the surface energies of the material or materials forming the layer 102 and the etching mask 108, as well as the interface energy between the material constituting the layer 102 and that constituting the etching mask 108.
- the shape of the section of the wire 112 is also related to the dimensions of this section.
- the shape and dimensions of the section of the wire 112 obtained depend on the initial width of the portion 111 of the layer 102 as well as the depth and width of the trenches 110, that is to say dimensions D, L and P shown in Figure 3, as well as the time during which the device 100 is annealed.
- the length of the wire 112 depends on the length of the trenches 110.
- Constraints exist on the dimensions D, L and P to obtain the wire 112 after annealing.
- the two curves 118 are also present in FIG.
- the annealing of these trenches 110 then causes the formation
- the dimensions D, L and P of the trenches 110 are such that the abscissa point D / L and ordinate P / L is situated outside this zone 116, then either the formation micro-cavities at the trenches 110, or a filling trench 110 without the presence of micro-cavities or wire.
- the area S of the section of one of the son obtained is of the order of L 2 , ie about 2500 nm.
- the radius of the section of this wire is of the order of 28 nm.
- the surface area of the apparent section of the wire obtained is of the order of 0.25 ⁇ 2 , that is, for a wire of substantially circular section, an equivalent radius of the section of the wire of the order of 14 nm.
- the etching mask 108 is present on the layer 102 during the annealing of the device 100.
- the etching mask 108 may be removed from the layer 102 before the annealing of the device. 100. Removal of etching mask 108 prior to annealing device 100 alters the reaction of layer 102 to annealing.
- the constraints on the ratios D / L and P / L to obtain the wire 112 from the trenches 110 etched in the layer 102 after annealing are modified in particular.
- FIG. 6 shows the zone 116 in which, when a point of abscissa D / L and of ordinate P / L is situated in this zone 116, D, L and P being the dimensions of the trenches 110, the annealing of the layer 102 having the trenches 110 then causes the formation of a wire 112, when the etching mask 108 is removed from the layer 102 before annealing.
- the zone 116 of FIG. 5A is different from the zone 116 of FIG. 6. In FIG. that the zone 116 lies between a curve 119 and the ordinate axis of the reference of FIG.
- zone 116 is larger in FIG. 5A than in FIG. 6, that is to say when etching mask 108 is preserved on layer 102 during annealing.
- the ranges of dimensions D, L and P of the trenches 110 making it possible to obtain the formation of a wire 112 by the method described above are therefore greater when the etching mask 108 is left on the layer 102 during the annealing.
- the conservation of the etching mask 108 during the annealing step, in particular on the portion 111 intended to form the wire 112 makes it possible to relax the constraints on the shape factor of the trenches made.
- FIGS. 15 to 19 represent the steps of a method of realization of such a transistor.
- Figure 7 is a top view of the layer 102, for example similar to that shown in Figure 1, from which the transistor 200 is intended to be made.
- the transistor 200 could be realized at from an SOI substrate comprising for example the layers 102, 104 and 106, as shown in Figure 1.
- the x, y and z axes shown in Figures 7 and 8 are similar to those shown in Figure 3.
- the active portion of the transistor 200 is defined.
- trenches 201 called STI trenches ("Shallow Trench Isolation" in English, or shallow isolation trenches), which define the contour of the portion, are made.
- This trench 201 can be made by etching, for example in a manner similar to the trenches 110 previously described, from an etching mask (not shown) made on the layer 102 and whose pattern forms the sections of the
- the active portion of the transistor 200 comprises three zones: two end zones 204 and 206 intended respectively to form the source and drain zones of the transistor 200, and a zone 208, which is narrower along the x axis than the source zones 204 and drain 206, intended to form the channel of the transistor 200.
- Figures 8 to 11 and 13 to 14 are sectional views along the axis AA, shown in Figure 7, of the layer 102.
- the dimension D along the x axis of the portion 208 of the layer 102 separating the two trenches 201 corresponds to the width of this portion 208.
- Each trench 201 has a width L, and is made in a depth P in layer 102.
- the dimensions D, L and P correspond for example to those of FIG.
- An annealing, under a hydrogenated atmosphere, of the layer 102 is then carried out, for example similar to the annealing of the device 100 previously described.
- this annealing results in an enlargement of the trenches 201 and a suppression of the base of the portion 208, then forming a single trench 210 shown in FIG. 9, the remaining portion of the portion 208 of the layer 102 then forming a wire 212 whose ends are connected to the source 204 and drain 206 zones.
- the width, length, shape and size of the wire 212 depend on the dimensions D, L and P, as well as the annealing time.
- the dimensions D, L and P shown in FIG. 8 are chosen such that the abscissa point D / L and the ordinate point P / L plotted in the reference numeral of FIG. 6 (the etching mask is here removed before annealing. ) is located in the zone 116. If the etching mask used for the realization of the trenches 201 is preserved on the layer 102 during the annealing, in particular on the portion 208, the dimensions D, L and P are then chosen such that the point of abscissa D / L and ordinate P / L traced in the reference of Figure 5A is located in the area 116.
- the width of the trenches 201 made around these zones is deliberately wide by relative to the engraved depth to not have, after annealing, buried cavity or wire formed at these trenches.
- the width of the portion of the layer 102 intended to form the source 205 and drain 206 zones are chosen such that the trenches 201 situated around these zones round off without forming a buried cavity or wire.
- Sacrificial oxidation of the wire 212 may be performed to reduce the size of the desired section of wire 212. This step consists in a thermal oxidation of the silicon wire 212, transforming into silicon oxide a portion of the silicon of the wire 212, then in a removal of the oxide formed by a solution based on hydrofluoric acid which is selective with respect to silicon. If the etching mask used for making the trenches 201 is based on silicon oxide, it is possible to keep this mask during the annealing step and during this sacrificial oxidation step. In an alternative embodiment of the transistor 200 described, it is possible to make the trenches 201 such that the annealing of the layer 102 leads to the formation of several son connecting the source and drain zones.
- each trench being for example similar to one of the trenches 201 shown in FIG. 8, and respecting the constraints on the dimensions D, L and P previously described (in accordance with FIG. at zones 116 of FIG. 5A or 6)
- the annealing of these trenches then leads to the formation of two wires, each of these wires which can be similar to the wire 212 shown in FIG.
- the trench 210 at the level of the wire 212 and the other trenches 201 delimiting the source 204 and drain 206 zones of the transistor 200 are then filled with a dielectric material 214, for example based on carbon dioxide. silicon.
- the dielectric material 214 deposited in the trench 210 is then locally etched at a gate zone 216 at which the gate of the transistor 200 is intended to be made (FIGS. 11 and 12).
- the dielectric material 214 can also be deposited in the trenches 201 before the annealing is carried out. In this case, the dielectric material 214 located in the trenches 201 at the area 216 where the wire 212 is to be formed is then removed by etching, while protecting with a mask the areas of the dielectric material 214 which is intended to stay in the trenches 210.
- a dielectric layer 218 is formed (see FIG. 13).
- This dielectric layer 218 may for example be based on silicon dioxide when it is formed by a thermal oxidation and / or another dielectric, for example hafnium dioxide, when it is formed by a deposit.
- This dielectric layer 218 is intended to form the gate oxide of transistor 200. If the etching mask used for the realization of the trenches 201 was kept after the annealing, it is removed before the realization of the gate oxide of the transistor 200.
- a gate 220 of the transistor 200 is then produced by the deposition of a gate material, for example based on polysilicon possibly doped in situ, or a stack of materials, for example based on titanium nitride and polysilicon optionally doped in situ, and then by mechanical-chemical polishing removing the previously deposited gate material being outside the gate zone 216. The polishing is then performed until reaching the dielectric material 214 deposited previously.
- the gate 220 made completely surrounds the portion of the wire 212 forming the channel of the transistor 200.
- the dielectric material 214 outside the trenches 201 and 210 is etched. The etching is stopped at the upper face 101 of the layer 102.
- Dielectric spacers 222 are then made around the grid 220 by depositing a base, for example with silicon dioxide, and then a layer of silicon nitride which is then etched anisotropically to leave portions of the nitride layer. silicon that around the gate 220.
- the spacers 222 can electrically isolate the gate 220 from the rest of the transistor 200.
- a dopant implantation is carried out in the source 204 and drain 206 zones, a portion of the channel being then protected by the gate 220 during this implantation.
- FIG. 15 represents a view from above of the transistor 200 obtained.
- Figures 16, 17, 18 and 19 show sectional views of the transistor 200 obtained respectively along the axes AA, BB, CC and DD.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
Abstract
The invention relates to a method for forming a wire (112) in a layer (102) based on an amorphous or monocrystalline material, comprising the following steps in which: two trenches (110) are formed in the layer so as to extend through one face (101) thereof, said trenches being separated from one another by a portion of the layer and formed by etching the layer on which an etching mask (108) has been disposed; and the layer is annealed in a hydrogenated atmosphere, the etching mask being retained on the layer during said annealing step. The depths and widths of the sections of the two trenches and the width of a section of the above-mentioned portion of the layer are such that the annealing process removes part of said portion of the layer, so that the two trenches then form a single trench (114) in which a remaining part of said portion forms the wire.
Description
PROCEDE DE REALISATION DE MICROFILS ET/OU DE NANOFILS METHOD FOR PRODUCING MICROFILS AND / OR NANOWIAS
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEURTECHNICAL FIELD AND PRIOR ART
L' invention concerne un procédé de réalisation de microfils et/ou de nanofils dans un substrat, ainsi qu'un procédé de réalisation d'un transistor MOS à grille enrobante.The invention relates to a method for producing microwires and / or nanowires in a substrate, and to a method for producing a coating gate MOS transistor.
On entend par microfil, ici et dans tout le reste du document, un fil dont les dimensions de la section, par exemple le diamètre pour un fil de section circulaire, sont comprises entre environ 1 μm et 1 mm. De même, on entend par nanofil, un fil dont les dimensions de la section sont comprises entre environ 1 nm et 1 μm. Le terme « fil » sera utilisé dans la suite du document pour désigné un microfil ou un nanofil .Microfil means here and throughout the rest of the document, a wire whose section dimensions, for example the diameter for a wire of circular section, are between about 1 micron and 1 mm. Similarly, nanowire means a wire whose sectional dimensions are between about 1 nm and 1 micron. The term "wire" will be used in the rest of the document for a microfil or nanowire.
Actuellement, il existe deux types de procédés de réalisation de fils dans un matériau semi- conducteur, utilisés par exemple pour des applications microélectroniques : la croissance de fils à partir de catalyseurs ou la gravure d'un empilement comportant le matériau semi-conducteur dans lequel les fils sont destinés à être réalisés. La croissance à partir d'un catalyseur, telle que décrite dans le document « Growth of silicon nanowires by chemical vapour déposition on gold implanted silicon substrates » de T. Stelzner et al., Nanotechnology, Vol. 17, N° 12, 28 juin 2006, pages 2895 à 2898, permet d'obtenir des fils qu'il faut
ensuite connecter pour pouvoir s'en servir comme élément d'un circuit électronique. Cette étape de connexion est généralement complexe, pouvant nécessiter par exemple une optimisation des jonctions entre les fils et le matériau avec lequel un contact électrique doit être établi. De plus, la fabrication collective de fils à l'échelle d'un substrat n'est pas industriellement viable.Currently, there are two types of wire production methods in a semiconductor material, used for example for microelectronic applications: the growth of wires from catalysts or the etching of a stack comprising the semiconductor material in which the wires are intended to be made. Growth from a catalyst, as described in the document "Growth of silicon nanowires by chemical vapor deposition on gold implanted silicon substrates" by T. Stelzner et al., Nanotechnology, Vol. 17, No. 12, June 28, 2006, pages 2895 to 2898, makes it possible to obtain the necessary son then connect to use as part of an electronic circuit. This connection step is generally complex, which may for example require an optimization of the junctions between the wires and the material with which an electrical contact must be established. In addition, the collective manufacture of threads at the scale of a substrate is not industrially viable.
Le document US 5 965 914 décrit une gravure d'un empilement comportant un matériau semi-conducteur, dans lequel les fils sont destinés à être réalisés, permet d'obtenir de nombreux fils empilés les uns au dessus des autres. Les fils ainsi réalisés comportent des irrégularités importantes, complexifiant les étapes technologiques réalisées ultérieurement, telles que des étapes de photolithographie.Document US Pat. No. 5,965,914 describes an etching of a stack comprising a semiconductor material, in which the wires are intended to be made, making it possible to obtain numerous wires stacked one above the other. The son thus produced have significant irregularities, complicating subsequent technological steps, such as photolithography steps.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
Nous proposons donc une solution pour former des fils ne comportant pas d' irrégularités importantes, en mettant en œuvre un nouveau procédé de réalisation qui ne nécessite pas d'étapes ultérieures complexes de connexions ou autres.We therefore propose a solution for forming wires without significant irregularities, by implementing a new production method that does not require complex subsequent steps of connections or others.
Pour cela, la présente invention propose un procédé de réalisation d'au moins un fil, c'est-à-dire d'un microfil et/ou d'un nanofil, dans une couche à base d'au moins un matériau monocristallin ou amorphe, comprenant au moins les étapes de : réalisation d'au moins deux tranchées dans la couche, traversant une face de la couche,
séparées l'une de l'autre par au moins une portion de la couche monocristalline ou amorphe,For this, the present invention proposes a process for producing at least one wire, that is to say a microfil and / or a nanowire, in a layer based on at least one monocrystalline material or amorphous material, comprising at least the steps of: producing at least two trenches in the layer, passing through one face of the layer, separated from each other by at least a portion of the monocrystalline or amorphous layer,
- recuit, sous atmosphère hydrogénée, de la couche, les profondeurs P des deux tranchées dans la couche, les largeurs L des sections des deux tranchées et la largeur D d'une section de ladite portion de la couche monocristalline ou amorphe, les sections étant dans un plan parallèle à ladite face de la couche, étant telles que le recuit supprime une partie de ladite portion de la couche monocristalline ou amorphe, les deux tranchées formant alors une seule tranchée dans laquelle une partie restante de ladite portion de couche monocristalline ou amorphe forme le fil.annealing, under a hydrogenated atmosphere, of the layer, the depths P of the two trenches in the layer, the widths L of the sections of the two trenches and the width D of a section of said portion of the monocrystalline or amorphous layer, the sections being in a plane parallel to said face of the layer, being such that the annealing removes a portion of said portion of the monocrystalline or amorphous layer, the two trenches then forming a single trench in which a remaining portion of said monocrystalline or amorphous layer portion form the thread.
Avec un tel procédé de réalisation, et grâce au recuit sous atmosphère hydrogénée, le fil obtenu est lisse et ne comporte pas d'irrégularités, contrairement aux fils obtenus directement par gravure. De plus, les fils obtenus par ce procédé de réalisation sont déjà connectés au matériau dans lequel sont formés les fils, les extrémités du fil étant reliées au reste de la couche monocristalline ou amorphe. Ce procédé permet donc de s'affranchir des étapes de connexion complexes nécessaires avec un procédé de croissance de fils à partir d'un catalyseur.With such a method of production, and thanks to annealing under a hydrogenated atmosphere, the wire obtained is smooth and has no irregularities, unlike the son obtained directly by etching. In addition, the son obtained by this embodiment are already connected to the material in which the son are formed, the ends of the wire being connected to the remainder of the monocrystalline or amorphous layer. This method therefore makes it possible to dispense with the complex connection steps required with a method of growing wires from a catalyst.
La présente invention concerne également un procédé de réalisation d'un transistor à grille enrobante, comportant au moins les étapes de : - réalisation d'une pluralité de tranchées dans une couche à base d' au moins un matériau
monocristallin ou amorphe, traversant une face de la couche et formant le contour de zones de source, de drain et de canal, au moins deux tranchées parmi la pluralité de tranchées étant séparées l'une de l'autre par au moins une portion de la couche monocristalline ou amorphe destinée à former le canal du transistor,The present invention also relates to a method for producing a coating gate transistor, comprising at least the steps of: - producing a plurality of trenches in a layer based on at least one material monocrystalline or amorphous, passing through one face of the layer and forming the contour of source, drain and channel zones, at least two trenches of the plurality of trenches being separated from each other by at least a portion of the monocrystalline or amorphous layer intended to form the channel of the transistor,
- recuit, sous atmosphère hydrogénée, de la couche, les profondeurs P desdites deux tranchées dans la couche, les largeurs L des sections desdites deux tranchées et la largeur D d'une section de ladite portion de la couche monocristalline ou amorphe, les sections étant dans un plan parallèle à ladite face de la couche, étant telles que le recuit supprime une partie de ladite portion de la couche monocristalline ou amorphe, lesdites deux tranchées formant alors une seule tranchée dans laquelle une partie restante de ladite portion de couche monocristalline ou amorphe est le fil formant le canal du transistor.annealing, under a hydrogenated atmosphere, of the layer, the depths P of said two trenches in the layer, the widths L of the sections of said two trenches and the width D of a section of said portion of the monocrystalline or amorphous layer, the sections being in a plane parallel to said face of the layer, being such that the annealing removes a portion of said portion of the monocrystalline or amorphous layer, said two trenches then forming a single trench in which a remaining portion of said monocrystalline or amorphous layer portion is the wire forming the channel of the transistor.
Le procédé peut comporter, après l'étape de recuit : une étape de dépôt d'un matériau diélectrique dans les tranchées, - une étape de gravure d'une portion du matériau diélectrique au niveau d'une zone de grille destinée à recevoir la grille du transistor,The method may comprise, after the annealing step: a step of depositing a dielectric material in the trenches, - a step of etching a portion of the dielectric material at a gate area intended to receive the gate of the transistor,
- une étape d'oxydation, au niveau de la zone de grille, du fil, de la tranchée comportant le fil et d'une partie de la couche monocristalline ou amorphe, formant une couche diélectrique,
- une étape de réalisation d'une grille sur la couche diélectrique entourant le fil au niveau de la zone de grille, une étape de gravure du matériau diélectrique se trouvant sur la couche monocristalline ou amorphe, hors des tranchées, une étape de réalisation d'espaceurs diélectriques autour de la grille, sur la couche monocristalline ou amorphe, et - une étape d'implantation de dopants dans les zones de source et de drain.an oxidation step, at the gate area, of the wire, the trench comprising the wire and a part of the monocrystalline or amorphous layer, forming a dielectric layer, a step of producing a gate on the dielectric layer surrounding the wire at the gate area, a step of etching the dielectric material on the monocrystalline or amorphous layer, outside the trenches, a step of carrying out dielectric spacers around the gate, on the monocrystalline or amorphous layer, and - a dopant implantation step in the source and drain zones.
On réalise ainsi un transistor MOS à grille enrobante, c'est-à-dire que toute la surface du fil formant le canal du transistor est recouverte par la grille.A MOS transistor with a coating gate is thus produced, that is to say that the entire surface of the wire forming the channel of the transistor is covered by the gate.
Les tranchées peuvent être réalisées par une gravure anisotrope de la couche sur laquelle est disposé un masque de gravure dont le motif forme les sections des tranchées au moins au niveau de ladite face de la couche.The trenches can be made by anisotropic etching of the layer on which is disposed an etching mask whose pattern forms the sections of the trenches at least at the level of said face of the layer.
Le masque de gravure peut être conservé sur la couche lors de cette étape de recuit.The etching mask can be kept on the layer during this annealing step.
Ainsi, on réduit les contraintes sur le facteur de forme des tranchées nécessaire à la formation du fil (microfil et/ou nanofil) . Le maintien du masque de gravure sur la couche lors de l'étape de recuit permet également de retarder dans le temps la rupture du fil qui peut se produire au terme d'un recuit trop long en regard des la variabilité technologique des dimensions des tranchées. De plus, la réalisation de l'ensemble des étapes technologiques du
procédé avec le maintien du masque de gravure lors de l'étape de recuit permet une intégration planaire avec des sauts de marche uniquement liés à la formation de la grille. Lors de l'étape de recuit, le masque de gravure peut notamment être conservé sur la portion de la couche monocristalline ou amorphe dont une partie restante après le recuit est destinée à former le fil. Dans le cas du procédé de réalisation d'un transistor, le masque de gravure peut notamment être conservé, lors du recuit, sur la portion de la couche monocristalline ou amorphe destinée à former le fil formant le canal du transistor .Thus, the constraints on the trench form factor necessary for forming the wire (microfil and / or nanowire) are reduced. Maintaining the etching mask on the layer during the annealing step also makes it possible to delay in time the breakage of the wire that can occur after a too long annealing with regard to the technological variability of the dimensions of the trenches. Moreover, the realization of all the technological steps of the method with the maintenance of the etching mask during the annealing step allows a planar integration with step breaks only related to the formation of the grid. During the annealing step, the etching mask may in particular be preserved on the portion of the monocrystalline or amorphous layer of which a portion remaining after the annealing is intended to form the wire. In the case of the method for producing a transistor, the etching mask may in particular be preserved, during annealing, on the portion of the monocrystalline or amorphous layer intended to form the wire forming the channel of the transistor.
Les dimensions P, L et D peuvent être choisies telles que :
The dimensions P, L and D can be chosen such as:
En respectant ce critère, on obtient, avec la mise en œuvre d'un procédé de réalisation décrit précédemment, la formation d'un fil.By respecting this criterion, one obtains, with the implementation of a production method described above, the formation of a wire.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels :The present invention will be better understood on reading the description of exemplary embodiments given purely by way of indication and in no way limiting, with reference to the appended drawings in which:
- les figures 1 à 4 représentent les étapes d'un procédé de réalisation de fils, objet de la
présente invention, selon un mode de réalisation particulier, les figures 5A, 5B et 6 sont des graphiques représentant les rapports de dimensions des tranchées réalisées dans le substrat permettant d'obtenir des fils par le procédé, objet de la présente invention, les figures 7 à 19 représentent les étapes de réalisation d'un transistor MOS à grille enrobante, également objet de la présente invention.FIGS. 1 to 4 show the steps of a method of making wires, object of the According to a particular embodiment, FIGS. 5A, 5B and 6 are graphs representing the size ratios of the trenches made in the substrate making it possible to obtain wires by the method, object of the present invention, FIGS. 19 show the steps of making a MOS transistor gate-coating, also object of the present invention.
Des parties identiques, similaires ou équivalentes des différentes figures décrites ci-après portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre. Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles .Identical, similar or equivalent parts of the different figures described below bear the same numerical references so as to facilitate the passage from one figure to another. The different parts shown in the figures are not necessarily in a uniform scale, to make the figures more readable.
Les différentes possibilités (variantes et modes de réalisation) doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles.The different possibilities (variants and embodiments) must be understood as not being exclusive of each other and can be combined with one another.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Un procédé de réalisation de fils, selon un mode de réalisation particulier, va maintenant être décrit en liaison avec les figures 1 à 6.A method of producing wires, according to a particular embodiment, will now be described in connection with FIGS. 1 to 6.
Un dispositif 100, représenté sur la figureA device 100, shown in the figure
1, comporte une couche 102, par exemple plane ou sensiblement plane, à base d'un matériau monocristallin ou amorphe, tel un matériau semi-conducteur, par
exemple du silicium. Dans ce mode de réalisation, le dispositif 100 est un substrat de type SOI (« Silicon On Insulator » en anglais, ou silicium sur isolant) comportant la couche 102 monocristalline ou amorphe, au moins une couche isolante 104 sur laquelle est disposée la couche 102, la couche isolante 104 étant elle-même disposée sur un substrat 106 par exemple à base de silicium, et/ou de quartz et/ou de tout autre matériau compatible avec les techniques usuelles de réalisation d'un substrat de type SOI. La couche isolante 104 peut être formée par un empilement d'un ou plusieurs matériaux isolants, par exemple du dioxyde de silicium, du nitrure de silicium ou du carbone diamant.1, comprises a layer 102, for example flat or substantially flat, based on a monocrystalline or amorphous material, such as a semiconductor material, by example of silicon. In this embodiment, the device 100 is a SOI (Silicon On Insulator) type substrate comprising monocrystalline or amorphous layer 102, at least one insulating layer 104 on which layer 102 is placed. , the insulating layer 104 itself being disposed on a substrate 106 for example based on silicon, and / or quartz and / or any other material compatible with the usual techniques for producing an SOI type substrate. The insulating layer 104 may be formed by a stack of one or more insulating materials, for example silicon dioxide, silicon nitride or diamond carbon.
Dans le cas où la couche 102 monocristalline ou amorphe et le substrat 106 sont à base de silicium, la couche isolante 104 peut par exemple comporter un empilement de trois sous-couches, respectivement à base de dioxyde de silicium, de nitrure de silicium et de dioxyde de silicium, les sous-couches de dioxyde de silicium étant en contact avec la couche 102 et le substrat 106 pour assurer un collage optimisé de la couche 102 sur la couche isolante 104 et de la couche isolante 104 sur le substrat 106. La couche 102 monocristalline ou amorphe peut par exemple avoir une épaisseur comprise entre environ 10 nm et 20 μm, cette épaisseur pouvant être ajustée par gravure si l'épaisseur d'origine de la couche 102 est trop faible, ou par épitaxie (permettant alors de conserver la nature cristalline de la couche 102) ou dépôt lorsque l'épaisseur d'origine de la
couche 102 est trop faible. La couche isolante 104 peut avoir une épaisseur égale à environ 145 nm mais son épaisseur peut elle-même être ajustée lors de la réalisation du dispositif 100. Lorsque la couche isolante 104 comporte un empilement, cet empilement peut être formé par une première sous-couche à base de dioxyde de silicium et d'épaisseur égale à environ 5 nm, d'une seconde sous-couche à base de nitrure de silicium et d'épaisseur égale à environ 70 nm, et d'une troisième sous-couche à base de dioxyde de silicium et d'une épaisseur égale à environ 70 nm. Enfin, le substrat 106 peut avoir une épaisseur comprise entre environ 500 μm et 800 μm. De préférence, l'épaisseur du substrat 106 est proportionnelle à la largeur du substrat 106 afin d'assurer une rigidité mécanique suffisante pour éviter la casse du substrat 106 durant le procédé décrit.In the case where the monocrystalline or amorphous layer 102 and the substrate 106 are based on silicon, the insulating layer 104 may for example comprise a stack of three sublayers, respectively based on silicon dioxide, silicon nitride and silicon dioxide. silicon dioxide, the silicon dioxide sublayers being in contact with the layer 102 and the substrate 106 to ensure optimized bonding of the layer 102 to the insulating layer 104 and the insulating layer 104 to the substrate 106. The layer For example, the monocrystalline or amorphous layer may have a thickness of between approximately 10 nm and 20 μm, this thickness being able to be adjusted by etching if the original thickness of the layer 102 is too small, or by epitaxial growth (thus making it possible to preserve the crystalline nature of the layer 102) or deposit when the original thickness of the layer 102 is too weak. The insulating layer 104 may have a thickness equal to about 145 nm but its thickness may itself be adjusted during the production of the device 100. When the insulating layer 104 comprises a stack, this stack may be formed by a first underlayer based on silicon dioxide and having a thickness equal to about 5 nm, a second silicon nitride-based underlayer having a thickness of about 70 nm, and a third base-based sub-layer. silicon dioxide and a thickness of about 70 nm. Finally, the substrate 106 may have a thickness of between about 500 μm and 800 μm. Preferably, the thickness of the substrate 106 is proportional to the width of the substrate 106 in order to ensure sufficient mechanical rigidity to avoid breakage of the substrate 106 during the process described.
Le matériau de la couche 102 peut également être à base de silicium, et/ou de germanium, et/ou de silicium-germanium, et/ou d' arséniure de gallium, et/ou de phosphure d' indium, et/ou d' arséniure d' indium, et/ou d' arséniure de gallium et d'aluminium, et/ou d' arséniure de gallium et d' indium, et/ou de quartz, et/ou tout autre matériau monocristallin. Ce matériau peut également être un matériau amorphe, par exemple du dioxyde de silicium et/ou du nitrure de silicium.The material of the layer 102 may also be based on silicon, and / or germanium, and / or silicon-germanium, and / or gallium arsenide, and / or indium phosphide, and / or indium arsenide, and / or gallium aluminum arsenide, and / or gallium and indium arsenide, and / or quartz, and / or any other monocrystalline material. This material may also be an amorphous material, for example silicon dioxide and / or silicon nitride.
Comme représenté sur la figure 2, on réalise, par exemple par photolithogravure, sur une face principale supérieure 101 de la couche 102, un masque de gravure 108 par exemple à base de dioxyde de silicium, et/ou d'un empilement de dioxyde de silicium
et de nitrure de silicium, et/ou encore d'un empilement de carbone amorphe et de dioxyde de silicium. Le motif du masque de gravure 108 représente la section d'au moins deux tranchées, destinées à être réalisées au moins dans la couche 102, au niveau de la face 101.As represented in FIG. 2, an etching mask 108, for example based on silicon dioxide, and / or a stack of carbon dioxide, is produced, for example by photolithography, on an upper main surface 101 of the layer 102. silicon and silicon nitride, and / or a stack of amorphous carbon and silicon dioxide. The pattern of the etching mask 108 represents the section of at least two trenches, intended to be made at least in the layer 102, at the face 101.
Sur la figure 3, deux tranchées 110 sont réalisées dans la couche 102, selon le motif du masque de gravure 108, par exemple par une gravure anisotrope. Dans ce mode de réalisation, les deux tranchées 110 ont une forme et des dimensions similaires mais elles pourraient également avoir une forme et/ou des dimensions différentes l'une de l'autre. Ces deux tranchées 110 sont caractérisées par la distance D les séparant, cette distance D représentant la largeur, selon l'axe x représenté sur la figure 3, de la portion 111 de la couche 102 séparant les deux tranchées 110, par leur profondeur P, selon l'axe y représenté sur la figure 3, allant de la face 101 jusqu'au fond des tranchées 110, et par leur largeur L, c'est-à-dire la dimension des tranchées 110, selon l'axe x, parallèle à la largeur de la portion 111. Enfin, la longueur des tranchées 110 est la dimension des tranchées 110 selon l'axe z représenté sur la figure 3.In FIG. 3, two trenches 110 are made in the layer 102, according to the pattern of the etching mask 108, for example by anisotropic etching. In this embodiment, the two trenches 110 have a similar shape and dimensions but they could also have a shape and / or different dimensions from each other. These two trenches 110 are characterized by the distance D separating them, this distance D representing the width, along the x axis represented in FIG. 3, of the portion 111 of the layer 102 separating the two trenches 110, by their depth P, along the axis y shown in Figure 3, from the face 101 to the bottom of the trenches 110, and their width L, that is to say the size of the trenches 110, along the x axis, parallel to the width of the portion 111. Finally, the length of the trenches 110 is the size of the trenches 110 along the z axis shown in FIG.
On réalise ensuite un recuit, sous atmosphère hydrogénée, à une pression comprise entre environ 266 Pa et 100000 Pa et à une température comprise entre environ 7500C et 11500C, du dispositif 100, pendant une durée de quelques minutes environ, par exemple comprise entre environ 1 et 10 minutes. La durée de ce recuit peut également être plus longue (plusieurs dizaines de minutes) en fonction de la
taille du ou des fils que l'on veut obtenir et de la quantité de matière à faire migrer pour former ledit fil.An annealing is then carried out, under a hydrogenated atmosphere, at a pressure of between about 266 Pa and 100000 Pa and at a temperature of between about 750 0 C and 1150 0 C, of the device 100, for a period of about a few minutes, for example between about 1 and 10 minutes. The duration of this annealing can also be longer (several tens of minutes) depending on the size of the son or son that we want to obtain and the amount of material to be migrated to form said wire.
Ce recuit entraîne un élargissement des tranchées 110, supprimant une partie de la portion 111 au niveau du fond des tranchées 110, ce regroupement des tranchées 110 formant alors une unique tranchée 114. La portion 111 de la couche 102, séparant auparavant les deux tranchées 110, ne forme alors plus qu'un fil 112 suspendu au-dessus dans la tranchée 114, les extrémités du fil 112 étant reliées au reste de la couche 102. Sur la figure 4, le fil 112 a une section en forme de demi-cercle. La forme finale du fil 112 dépend des énergies de surface du ou des matériaux formant la couche 102 et du masque de gravure 108, ainsi que de l'énergie d'interface entre le matériau constituant la couche 102 et celui constituant le masque de gravure 108. La forme de la section du fil 112 est également liée aux dimensions de cette section. La forme et les dimensions de la section du fil 112 obtenu dépendent de la largeur initiale de la portion 111 de la couche 102 ainsi que de la profondeur et de la largeur des tranchées 110, c'est-à-dire des dimensions D, L et P représentées sur la figure 3, ainsi que du temps pendant lequel le dispositif 100 est recuit. La longueur du fil 112 dépend de la longueur des tranchées 110.This annealing results in an enlargement of the trenches 110, eliminating part of the portion 111 at the bottom of the trenches 110, this grouping of the trenches 110 then forming a single trench 114. The portion 111 of the layer 102, previously separating the two trenches 110 , then only forms a wire 112 suspended above in the trench 114, the ends of the wire 112 being connected to the remainder of the layer 102. In Figure 4, the wire 112 has a section in the form of a semicircle . The final shape of the wire 112 depends on the surface energies of the material or materials forming the layer 102 and the etching mask 108, as well as the interface energy between the material constituting the layer 102 and that constituting the etching mask 108. The shape of the section of the wire 112 is also related to the dimensions of this section. The shape and dimensions of the section of the wire 112 obtained depend on the initial width of the portion 111 of the layer 102 as well as the depth and width of the trenches 110, that is to say dimensions D, L and P shown in Figure 3, as well as the time during which the device 100 is annealed. The length of the wire 112 depends on the length of the trenches 110.
Des contraintes existent sur les dimensions D, L et P pour obtenir le fil 112 après recuit. Une zone 116, délimitée par deux courbes 118 tracées dans un repère ayant pour abscisse le rapport D/L et pour
ordonnée le rapport P/L des tranchées 110, est représentée sur la figure 5A. Les deux courbes 118 sont également présentes sur la figure 5B, sur laquelle est représentée l'évolution de la surface de la section du fil représentée par le rapport S/L2 (S étant la valeur de la surface) en ordonnée en fonction du rapport D/L en abscisse, les différentes valeurs du rapport P/L étant représentées sur ce graphique par les lignes continues situées entre les deux courbes 118, chacune d'entre elles représentant une valeur constante de P/L indiquée au-dessus de chacune d'elle.Constraints exist on the dimensions D, L and P to obtain the wire 112 after annealing. An area 116 delimited by two curves 118 plotted in a reference having the abscissa ratio D / L and for ordinate the P / L ratio of the trenches 110, is shown in Figure 5A. The two curves 118 are also present in FIG. 5B, on which is represented the evolution of the surface of the section of the wire represented by the ratio S / L 2 (S being the value of the surface) in ordinate according to the ratio D / L on the abscissa, the various values of the ratio P / L being represented on this graph by the continuous lines situated between the two curves 118, each of them representing a constant value of P / L indicated above each of 'she.
Lorsque les tranchées 110 ont des dimensions D, L et P telles que le point d'abscisse D/L et d'ordonnée P/L est situé dans la zone 116 de la figure 5A, le recuit de ces tranchées 110 entraîne alors la formation du fil 112. Par contre, lorsque les dimensions D, L et P des tranchées 110 sont telles que le point d'abscisse D/L et d'ordonnée P/L est situé hors de cette zone 116, on obtient alors soit la formation de micro-cavités au niveau des tranchées 110, soit un rebouchage des tranchées 110 sans présence de micro-cavités ni de fil.When the trenches 110 have dimensions D, L and P such that the abscissa point D / L and the ordinate P / L is situated in the zone 116 of FIG. 5A, the annealing of these trenches 110 then causes the formation On the other hand, when the dimensions D, L and P of the trenches 110 are such that the abscissa point D / L and ordinate P / L is situated outside this zone 116, then either the formation micro-cavities at the trenches 110, or a filling trench 110 without the presence of micro-cavities or wire.
Pour un matériau dont l'énergie de surface est isotrope, les frontières supérieures (P/L)sup et inférieures (P/L)inf 118 illustrées sur la figure 5A peuvent être exprimés par les équations suivantes :For a material of which surface energy is isotropic, the upper borders (P / L) Upper and lower (P / L) inf 118 illustrated in Figure 5A may be expressed by the following equations:
Par exemple, pour des tranchées telles que L = D = 50 nm et PlL ≈ 5,5, la surface S de la section d'un des fils obtenus est de l'ordre de L2, soit environ 2500 nm. En considérant un fil de section sensiblement circulaire, le rayon de la section de ce fil est de l'ordre de 28 nm. Dans un autre exemple, pour des tranchées telles que L = D = 50 nm et P/L≈3,05, la surface de la section apparente du fil obtenu est de l'ordre de 0,25xZ2, soit, pour un fil de section sensiblement circulaire, un rayon équivalent de la section du fil de l'ordre de 14 nm. For example, for trenches such as L = D = 50 nm and PlL ≈ 5.5, the area S of the section of one of the son obtained is of the order of L 2 , ie about 2500 nm. Considering a wire of substantially circular section, the radius of the section of this wire is of the order of 28 nm. In another example, for trenches such as L = D = 50 nm and P / L≈3.05, the surface area of the apparent section of the wire obtained is of the order of 0.25 × 2 , that is, for a wire of substantially circular section, an equivalent radius of the section of the wire of the order of 14 nm.
Dans le procédé décrit précédemment, le masque de gravure 108 est présent sur la couche 102 lors du recuit du dispositif 100. Dans une variante de ce mode de réalisation, le masque de gravure 108 peut être retiré de la couche 102 avant le recuit du dispositif 100. Le retrait du masque de gravure 108 avant le recuit du dispositif 100 modifie la réaction de la couche 102 au recuit. Les contraintes sur les rapports D/L et P/L pour obtenir le fil 112 à partir des tranchées 110 gravées dans la couche 102 après un recuit sont notamment modifiées. La figure 6 représente la zone 116 dans laquelle, lorsqu'un point d'abscisse D/L et d'ordonnée P/L est situé dans cette zone 116, D, L et P étant les dimensions des tranchées 110, le recuit de la couche 102 comportant les tranchées 110 entraîne alors la formation d'un fil 112, lorsque le masque de gravure 108 est retiré de la couche 102 avant le recuit. La zone 116 de la figure 5A est différente de la zone 116 de la figure 6. Sur la figure 6, on voit
que la zone 116 est comprise entre une courbe 119 et l'axe des ordonnées du repère de la figure 6.In the method described above, the etching mask 108 is present on the layer 102 during the annealing of the device 100. In an alternative embodiment of this embodiment, the etching mask 108 may be removed from the layer 102 before the annealing of the device. 100. Removal of etching mask 108 prior to annealing device 100 alters the reaction of layer 102 to annealing. The constraints on the ratios D / L and P / L to obtain the wire 112 from the trenches 110 etched in the layer 102 after annealing are modified in particular. FIG. 6 shows the zone 116 in which, when a point of abscissa D / L and of ordinate P / L is situated in this zone 116, D, L and P being the dimensions of the trenches 110, the annealing of the layer 102 having the trenches 110 then causes the formation of a wire 112, when the etching mask 108 is removed from the layer 102 before annealing. The zone 116 of FIG. 5A is different from the zone 116 of FIG. 6. In FIG. that the zone 116 lies between a curve 119 and the ordinate axis of the reference of FIG.
En comparant les figures 5A et 6, on remarque que la zone 116 est plus grande sur la figure 5A que sur la figure 6, c'est-à-dire lorsque le masque de gravure 108 est conservé sur la couche 102 pendant le recuit. Les plages des dimensions D, L et P des tranchées 110 permettant d'obtenir la formation d'un fil 112 par le procédé décrit précédemment sont donc plus importantes lorsque le masque de gravure 108 est laissé sur la couche 102 pendant le recuit. Ainsi, la conservation du masque de gravure 108 lors de l'étape de recuit, notamment sur la portion 111 destinée à former le fil 112, permet de relâcher les contraintes sur le facteur de forme des tranchées réalisées.Comparing FIGS. 5A and 6, it will be noted that zone 116 is larger in FIG. 5A than in FIG. 6, that is to say when etching mask 108 is preserved on layer 102 during annealing. The ranges of dimensions D, L and P of the trenches 110 making it possible to obtain the formation of a wire 112 by the method described above are therefore greater when the etching mask 108 is left on the layer 102 during the annealing. Thus, the conservation of the etching mask 108 during the annealing step, in particular on the portion 111 intended to form the wire 112, makes it possible to relax the constraints on the shape factor of the trenches made.
Dans une variante du procédé décrit, il est possible de réaliser plus de deux tranchées les unes à côté des autres, chaque portion de la couche 102 séparant ces tranchées étant alors susceptibles de former un fil.In a variant of the method described, it is possible to make more than two trenches next to each other, each portion of the layer 102 separating these trenches then being capable of forming a wire.
La réalisation de fils selon le procédé précédemment décrit peut également être obtenue lors de la réalisation d'un transistor 200 de type MOS à grille enrobante, représenté sur les figures 15 à 19. Les figures 7 à 19 représentent les étapes d'un procédé de réalisation d'un tel transistor.The production of yarns according to the method described above can also be obtained during the production of a MOS type transistor 200 with a coating grid, represented in FIGS. 15 to 19. FIGS. 7 to 19 represent the steps of a method of realization of such a transistor.
La figure 7 est une vue de dessus de la couche 102, par exemple similaire à celle représentée sur la figure 1, à partir de laquelle le transistor 200 est destiné à être réalisé. Dans une variante de réalisation, le transistor 200 pourrait être réalisé à
partir d'un substrat SOI comportant par exemple les couches 102, 104 et 106, tel que représenté sur la figure 1. Les axes x, y et z représentés sur les figures 7 et 8 sont similaires à ceux représentés sur la figure 3.Figure 7 is a top view of the layer 102, for example similar to that shown in Figure 1, from which the transistor 200 is intended to be made. In an alternative embodiment, the transistor 200 could be realized at from an SOI substrate comprising for example the layers 102, 104 and 106, as shown in Figure 1. The x, y and z axes shown in Figures 7 and 8 are similar to those shown in Figure 3.
Dans la couche 102, on défini la portion active du transistor 200. Pour cela, on réalise des tranchées 201, appelées tranchées STI (« Shallow Trench Isolation » en anglais, ou tranchées d'isolation peu profondes) , définissant le contour de la portion active du transistor 200. Ces tranchées 201 peuvent être réalisées par gravure, par exemple de manière similaire aux tranchées 110 précédemment décrites, à partir d'un masque de gravure (non représenté) réalisé sur la couche 102 et dont le motif forme les sections des tranchées 201. La portion active du transistor 200 comporte trois zones : deux zones d'extrémités 204 et 206 destinées à former respectivement les zones de source et de drain du transistor 200, et une zone 208, moins large selon l'axe x que les zones de source 204 et de drain 206, destinée à former le canal du transistor 200.In the layer 102, the active portion of the transistor 200 is defined. For this, trenches 201, called STI trenches ("Shallow Trench Isolation" in English, or shallow isolation trenches), which define the contour of the portion, are made. This trench 201 can be made by etching, for example in a manner similar to the trenches 110 previously described, from an etching mask (not shown) made on the layer 102 and whose pattern forms the sections of the The active portion of the transistor 200 comprises three zones: two end zones 204 and 206 intended respectively to form the source and drain zones of the transistor 200, and a zone 208, which is narrower along the x axis than the source zones 204 and drain 206, intended to form the channel of the transistor 200.
Les figures 8 à 11 et 13 à 14 sont des vues en coupe selon l'axe AA, représenté sur la figure 7, de la couche 102.Figures 8 to 11 and 13 to 14 are sectional views along the axis AA, shown in Figure 7, of the layer 102.
Sur la figure 8, la dimension D selon l'axe x de la portion 208 de la couche 102 séparant les deux tranchées 201 correspond à la largeur de cette portion 208. Chaque tranchée 201 a une largeur L, et est réalisée dans une profondeur P dans la couche 102. Les
dimensions D, L et P correspondent par exemple à celles de la figure 3.In FIG. 8, the dimension D along the x axis of the portion 208 of the layer 102 separating the two trenches 201 corresponds to the width of this portion 208. Each trench 201 has a width L, and is made in a depth P in layer 102. The dimensions D, L and P correspond for example to those of FIG.
On réalise ensuite un recuit, sous atmosphère hydrogénée, de la couche 102, par exemple similaire au recuit du dispositif 100 précédemment décrit. De manière analogue à la réalisation du fil 112 décrite précédemment, ce recuit entraîne un élargissement des tranchées 201 et une suppression de la base de la portion 208, formant alors une unique tranchée 210 représentée sur la figure 9, la partie restante de la portion 208 de la couche 102 formant alors un fil 212 dont les extrémités sont reliées aux zones de source 204 et de drain 206.An annealing, under a hydrogenated atmosphere, of the layer 102 is then carried out, for example similar to the annealing of the device 100 previously described. In a similar manner to the production of the wire 112 described above, this annealing results in an enlargement of the trenches 201 and a suppression of the base of the portion 208, then forming a single trench 210 shown in FIG. 9, the remaining portion of the portion 208 of the layer 102 then forming a wire 212 whose ends are connected to the source 204 and drain 206 zones.
De manière similaire au procédé de réalisation de fils décrit précédemment, la largeur, la longueur, la forme et la taille du fil 212 dépendent des dimensions D, L et P, ainsi que du temps de recuit.Similar to the thread forming method described above, the width, length, shape and size of the wire 212 depend on the dimensions D, L and P, as well as the annealing time.
Les dimensions D, L et P représentées sur la figure 8 sont choisies telles que le point d'abscisse D/L et d'ordonnée P/L tracé dans le repère de la figure 6 (le masque de gravure étant ici retiré avant le recuit) est situé dans la zone 116. Si le masque de gravure utilisé pour la réalisation des tranchées 201 est conservé sur la couche 102 lors du recuit, notamment sur la portion 208, les dimensions D, L et P sont alors choisies telles que le point d'abscisse D/L et d'ordonnée P/L tracé dans le repère de la figure 5A est situé dans la zone 116.The dimensions D, L and P shown in FIG. 8 are chosen such that the abscissa point D / L and the ordinate point P / L plotted in the reference numeral of FIG. 6 (the etching mask is here removed before annealing. ) is located in the zone 116. If the etching mask used for the realization of the trenches 201 is preserved on the layer 102 during the annealing, in particular on the portion 208, the dimensions D, L and P are then chosen such that the point of abscissa D / L and ordinate P / L traced in the reference of Figure 5A is located in the area 116.
Au niveau des zones de source 204 et de drain 206, la largeur des tranchées 201 réalisées autour de ces zones est prise volontairement large par
rapport à la profondeur gravée pour ne pas avoir, après recuit, de cavité enterrée ou de fil formé au niveau de ces tranchées. La largeur de la portion de la couche 102 destinée à former les zones de source 205 et de drain 206 sont choisies telles que les tranchées 201 situées autour de ces zones s'arrondissent, sans former de cavité enterrée ou de fil.At the source zone 204 and the drain zone 206, the width of the trenches 201 made around these zones is deliberately wide by relative to the engraved depth to not have, after annealing, buried cavity or wire formed at these trenches. The width of the portion of the layer 102 intended to form the source 205 and drain 206 zones are chosen such that the trenches 201 situated around these zones round off without forming a buried cavity or wire.
Une oxydation sacrificielle du fil 212 peut être réalisée afin de diminuer la dimension de la section du fil 212 souhaitée. Cette étape consiste en une oxydation thermique du fil 212 de silicium, transformant en oxyde de silicium une partie du silicium du fil 212, puis en un retrait de l'oxyde formé par une solution à base d' acide fluorhydrique qui est sélective par rapport au silicium. Si le masque de gravure utilisé pour la réalisation des tranchées 201 est à base d'oxyde de silicium, il est possible de conserver ce masque pendant l'étape de recuit et pendant cette étape d'oxydation sacrificielle. Dans une variante du procédé de réalisation du transistor 200 décrit, il est possible de réaliser les tranchées 201 telles que le recuit de la couche 102 entraîne la formation de plusieurs fils reliant les zones de source et de drain. Par exemple, en réalisant trois tranchées les unes à côté des autres, chaque tranchée étant par exemple similaire à l'une des tranchées 201 représentées sur la figure 8, et en respectant les contraintes sur les dimensions D, L et P décrites précédemment (conforme aux zones 116 des figures 5A ou 6) , le recuit de ces tranchées entraîne alors la formation de deux fils, chacun de ces fils
pouvant être similaire au fil 212 représenté sur la figure 9.Sacrificial oxidation of the wire 212 may be performed to reduce the size of the desired section of wire 212. This step consists in a thermal oxidation of the silicon wire 212, transforming into silicon oxide a portion of the silicon of the wire 212, then in a removal of the oxide formed by a solution based on hydrofluoric acid which is selective with respect to silicon. If the etching mask used for making the trenches 201 is based on silicon oxide, it is possible to keep this mask during the annealing step and during this sacrificial oxidation step. In an alternative embodiment of the transistor 200 described, it is possible to make the trenches 201 such that the annealing of the layer 102 leads to the formation of several son connecting the source and drain zones. For example, by making three trenches next to each other, each trench being for example similar to one of the trenches 201 shown in FIG. 8, and respecting the constraints on the dimensions D, L and P previously described (in accordance with FIG. at zones 116 of FIG. 5A or 6), the annealing of these trenches then leads to the formation of two wires, each of these wires which can be similar to the wire 212 shown in FIG.
Comme représenté sur la figure 10, la tranchée 210 au niveau du fil 212 et les autres tranchées 201 délimitant les zones de source 204 et de drain 206 du transistor 200 sont ensuite remplies d'un matériau diélectrique 214, par exemple à base de dioxyde de silicium.As shown in FIG. 10, the trench 210 at the level of the wire 212 and the other trenches 201 delimiting the source 204 and drain 206 zones of the transistor 200 are then filled with a dielectric material 214, for example based on carbon dioxide. silicon.
On grave ensuite localement le matériau diélectrique 214 déposé dans la tranchée 210 au niveau d'une zone 216 de grille, au niveau de laquelle la grille du transistor 200 est destinée à être réalisée (figures 11 et 12) .The dielectric material 214 deposited in the trench 210 is then locally etched at a gate zone 216 at which the gate of the transistor 200 is intended to be made (FIGS. 11 and 12).
Le matériau diélectrique 214 peut également être déposé dans les tranchées 201 avant la réalisation du recuit. Dans ce cas, le matériau diélectrique 214 se trouvant dans les tranchées 201 au niveau de la zone 216 où le fil 212 est destiné à être formé sont supprimé ensuite par gravure, tout en protégeant par un masque les zones du matériau diélectrique 214 qui est destiné à rester dans les tranchées 210.The dielectric material 214 can also be deposited in the trenches 201 before the annealing is carried out. In this case, the dielectric material 214 located in the trenches 201 at the area 216 where the wire 212 is to be formed is then removed by etching, while protecting with a mask the areas of the dielectric material 214 which is intended to stay in the trenches 210.
On forme ensuite, au niveau de la zone 216 de grille, du fil 212, de la tranchée 210 et d'une partie de la couche 102, une couche de diélectrique 218 (voir figure 13) . Cette couche de diélectrique 218 peut par exemple être à base de dioxyde de silicium lorsqu'elle est formée par une oxydation thermique et/ou d'un autre diélectrique, par exemple du dioxyde d'hafnium, lorsqu'elle est formée par un dépôt. Cette couche diélectrique 218 est destinée à former l'oxyde de grille du transistor 200. Si le masque de gravure
utilisé pour la réalisation des tranchées 201 a été conservé après le recuit, il est supprimé avant la réalisation de l'oxyde de grille du transistor 200.Then, at the grid zone 216, the wire 212, the trench 210 and a portion of the layer 102, a dielectric layer 218 is formed (see FIG. 13). This dielectric layer 218 may for example be based on silicon dioxide when it is formed by a thermal oxidation and / or another dielectric, for example hafnium dioxide, when it is formed by a deposit. This dielectric layer 218 is intended to form the gate oxide of transistor 200. If the etching mask used for the realization of the trenches 201 was kept after the annealing, it is removed before the realization of the gate oxide of the transistor 200.
Comme représenté sur la figure 14, on réalise ensuite une grille 220 du transistor 200 par le dépôt d'un matériau de grille, par exemple à base de polysilicium éventuellement dopé in situ, ou d'un empilement de matériaux, par exemple à base de nitrure de titane et de polysilicium éventuellement dopé in situ, puis par un polissage mécano-chimique supprimant les matériaux de grille précédemment déposés se trouvant en dehors de la zone 216 de grille. Le polissage est alors réalisé jusqu'à atteindre le matériau diélectrique 214 déposé précédemment. La grille 220 réalisée entoure complètement la partie du fil 212 formant le canal du transistor 200.As shown in FIG. 14, a gate 220 of the transistor 200 is then produced by the deposition of a gate material, for example based on polysilicon possibly doped in situ, or a stack of materials, for example based on titanium nitride and polysilicon optionally doped in situ, and then by mechanical-chemical polishing removing the previously deposited gate material being outside the gate zone 216. The polishing is then performed until reaching the dielectric material 214 deposited previously. The gate 220 made completely surrounds the portion of the wire 212 forming the channel of the transistor 200.
Enfin, on grave le matériau diélectrique 214 se trouvant en dehors des tranchées 201 et 210. La gravure est stoppée au niveau de la face supérieure 101 de la couche 102.Finally, the dielectric material 214 outside the trenches 201 and 210 is etched. The etching is stopped at the upper face 101 of the layer 102.
On réalise ensuite des espaceurs diélectrique 222 autour de la grille 220 en déposant une base, par exemple à de dioxyde de silicium, puis une couche de nitrure de silicium qui est alors gravée de façon anisotrope pour ne laisser des portions de la couche de nitrure de silicium qu'autour de la grille 220. Les espaceurs 222 permettent d'isoler électriquement la grille 220 du reste du transistor 200. Enfin, on réalise une implantation de dopants dans les zones de source 204 et de drain 206,
une partie du canal étant alors protégé par la grille 220 durant cette implantation.Dielectric spacers 222 are then made around the grid 220 by depositing a base, for example with silicon dioxide, and then a layer of silicon nitride which is then etched anisotropically to leave portions of the nitride layer. silicon that around the gate 220. The spacers 222 can electrically isolate the gate 220 from the rest of the transistor 200. Finally, a dopant implantation is carried out in the source 204 and drain 206 zones, a portion of the channel being then protected by the gate 220 during this implantation.
La figure 15 représente une vue de dessus du transistor 200 obtenu. Les figures 16, 17, 18 et 19 représentent des vues en coupe du transistor 200 obtenu, respectivement selon les axes AA, BB, CC et DD.
FIG. 15 represents a view from above of the transistor 200 obtained. Figures 16, 17, 18 and 19 show sectional views of the transistor 200 obtained respectively along the axes AA, BB, CC and DD.
Claims
1. Procédé de réalisation d'au moins un fil (112) dans une couche (102) à base d'au moins un matériau monocristallin ou amorphe, comprenant au moins les étapes de : réalisation d'au moins deux tranchéesA method of producing at least one wire (112) in a layer (102) based on at least one monocrystalline or amorphous material, comprising at least the steps of: producing at least two trenches
(110) dans la couche (102), traversant une face (101) de la couche (102), séparées l'une de l'autre par au moins une portion (111) de la couche (102) monocristalline ou amorphe, par une gravure anisotrope de la couche (102) sur laquelle est disposé un masque de gravure (108) dont le motif forme les sections des tranchées (110) au moins au niveau de ladite face (101) de la couche (102) ,(110) in the layer (102), passing through a face (101) of the layer (102), separated from each other by at least a portion (111) of the monocrystalline or amorphous layer (102), by an anisotropic etching of the layer (102) on which is disposed an etching mask (108) whose pattern forms the sections of the trenches (110) at least at said face (101) of the layer (102),
- recuit, sous atmosphère hydrogénée, de la couche (102), le masque de gravure (108) étant conservé sur la couche (102) lors de cette étape de recuit, les profondeurs P des deux tranchées (110) dans la couche (102), les largeurs L des sections des deux tranchées (110) et la largeur D d'une section de ladite portion (111) de la couche (102) monocristalline ou amorphe, les sections étant dans un plan parallèle à ladite face (101) de la couche (102), étant telles que le recuit supprime une partie de ladite portion (111) de la couche (102) monocristalline ou amorphe, les deux tranchées (110) formant alors une seule tranchée (114) dans laquelle une partie restante de ladite portionannealing, under a hydrogenated atmosphere, of the layer (102), the etching mask (108) being preserved on the layer (102) during this annealing step, the depths P of the two trenches (110) in the layer (102); ), the widths L of the sections of the two trenches (110) and the width D of a section of said portion (111) of the monocrystalline or amorphous layer (102), the sections being in a plane parallel to said face (101) of the layer (102) being such that annealing removes a portion of said portion (111) from the monocrystalline or amorphous layer (102), the two trenches (110) then forming a single trench (114) in which a remaining portion of said portion
(111) de la couche (102) monocristalline ou amorphe forme le fil (112) . (111) of the monocrystalline or amorphous layer (102) forms the wire (112).
2. Procédé selon la revendication 1, les tranchées (110) étant de forme et de dimensions similaires .2. Method according to claim 1, the trenches (110) being of similar shape and size.
3. Procédé de réalisation d'un transistor3. Method for producing a transistor
(200) à grille (220) enrobante, comportant au moins les étapes de :Coating (220) comprising at least the steps of:
- réalisation d'une pluralité de tranchées- realization of a plurality of trenches
(201) dans une couche (102) à base d'au moins un matériau monocristallin ou amorphe, traversant une face(201) in a layer (102) based on at least one monocrystalline or amorphous material, passing through one face
(101) de la couche (102) et formant le contour de zones de source (204), de drain (206) et de canal (208), au moins deux tranchées (201) parmi la pluralité de tranchées (201) étant séparées l'une de l'autre par au moins une portion (208) de la couche (102) monocristalline ou amorphe destinée à former le canal du transistor (200), par une gravure anisotrope de la couche (102) sur laquelle est disposé un masque de gravure (108) dont le motif forme les sections des tranchées (201) au moins au niveau de ladite face (101) de la couche (102),(101) of the layer (102) and forming the contour of source (204), drain (206) and channel (208) areas, at least two trenches (201) out of the plurality of trenches (201) being separated from each other by at least a portion (208) of the monocrystalline or amorphous layer (102) for forming the channel of the transistor (200), by anisotropic etching of the layer (102) on which is disposed a etching mask (108) whose pattern forms the sections of the trenches (201) at least at said face (101) of the layer (102),
- recuit sous atmosphère hydrogénée de la couche (102), le masque de gravure (108) étant conservé sur la couche (102) lors de cette étape de recuit, les profondeurs P desdites deux tranchées- Annealing in a hydrogen atmosphere of the layer (102), the etching mask (108) being preserved on the layer (102) during this annealing step, the depths P of said two trenches
(201) dans la couche (102), les largeurs L des sections desdites deux tranchées (201) et la largeur D d'une section de ladite portion (208) de la couche (102) monocristalline ou amorphe, les sections étant dans un plan parallèle à ladite face (101) de la couche (102), étant telles que le recuit supprime une partie de ladite portion (208) de la couche (102) monocristalline ou amorphe, lesdites deux tranchées (201) formant alors une seule tranchée (210) dans laquelle une partie restante de ladite portion (208) de la couche (102) monocristalline ou amorphe est le fil (212) formant le canal du transistor (200).(201) in the layer (102), the widths L of the sections of said two trenches (201) and the width D of a section of said portion (208) of the monocrystalline or amorphous layer (102), the sections being in a plane parallel to said face (101) of the layer (102), being such that annealing removes a portion of said portion (208) of the monocrystalline or amorphous layer (102), said two trenches (201) then forming a single trench (210) in which a remaining portion of said portion (208) of the monocrystalline or amorphous layer (102) is the wire (212) forming the channel of the transistor (200).
4. Procédé selon la revendication 3, comportant en outre, après l'étape de recuit : - une étape de dépôt d'un matériau diélectrique (214) dans les tranchées (210, 201),4. The method of claim 3, further comprising, after the annealing step: a step of depositing a dielectric material (214) in the trenches (210, 201),
- une étape de gravure d'une portion du matériau diélectrique (214) au niveau d'une zone (216) de grille destinée à recevoir la grille (220) du transistor (200),a step of etching a portion of the dielectric material (214) at a gate area (216) for receiving the gate (220) of the transistor (200),
- une étape de formation, au niveau de la zone (216) de grille, du fil (212), de la tranchée (210) comportant le fil (212) et d'une partie de la couche (102) monocristalline ou amorphe, d'une couche diélectrique (218), une étape de réalisation d'une grille (220) sur la couche diélectrique (218) entourant le fil (212) au niveau de la zone (216) de grille, une étape de gravure du matériau diélectrique (214) se trouvant sur la couche (102) monocristalline ou amorphe, hors des tranchées (201, 210), une étape de réalisation d'espaceurs diélectriques (222) autour de la grille (220), sur la couche (102) monocristalline ou amorphe, et - une étape d' implantation de dopants dans les zones de source (204) et de drain (206) .a step of forming, at the level of the gate area (216), the wire (212), the trench (210) comprising the wire (212) and a part of the monocrystalline or amorphous layer (102), a dielectric layer (218), a step of producing a gate (220) on the dielectric layer (218) surrounding the wire (212) at the gate area (216), a step of etching the material dielectric (214) on the monocrystalline or amorphous layer (102), out of the trenches (201, 210), a step of producing dielectric spacers (222) around the gate (220), on the layer (102) monocrystalline or amorphous, and a step of implanting dopants in the source (204) and drain (206) zones.
5. Procédé selon l'une des revendications 3 ou 4, comportant en outre, entre l'étape de recuit et l'étape de réalisation de la grille, une étape d'oxydation du fil (212).5. Method according to one of claims 3 or 4, further comprising, between the annealing step and the step of producing the gate, a step of oxidation of the wire (212).
6. Procédé selon l'une des revendications précédentes, le recuit étant réalisé à une température comprise entre environ 7500C et 11500C et/ou à une pression comprise entre environ 266 Pa et 100000 Pa.6. Method according to one of the preceding claims, the annealing being carried out at a temperature between about 750 0 C and 1150 0 C and / or at a pressure between about 266 Pa and 100000 Pa.
7. Procédé selon l'une des revendications précédentes, la couche (102) monocristalline ou amorphe étant une couche de silicium d'un substrat SOI (102, 104, 106) .7. Method according to one of the preceding claims, the monocrystalline or amorphous layer (102) being a silicon layer of an SOI substrate (102, 104, 106).
8. Procédé selon l'une des revendications précédentes, les dimensions P, L et D étant choisies telles que : 8. Method according to one of the preceding claims, the dimensions P, L and D being chosen such that:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0655822A FR2910456B1 (en) | 2006-12-21 | 2006-12-21 | METHOD FOR PRODUCING MICROFILS AND / OR NANOWIAS |
PCT/EP2007/064325 WO2008074862A1 (en) | 2006-12-21 | 2007-12-20 | Method for forming microwires and/or nanowires |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2095407A1 true EP2095407A1 (en) | 2009-09-02 |
Family
ID=38543650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07857946A Withdrawn EP2095407A1 (en) | 2006-12-21 | 2007-12-20 | Method for forming microwires and/or nanowires |
Country Status (4)
Country | Link |
---|---|
US (1) | US7985632B2 (en) |
EP (1) | EP2095407A1 (en) |
FR (1) | FR2910456B1 (en) |
WO (1) | WO2008074862A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8022393B2 (en) * | 2008-07-29 | 2011-09-20 | Nokia Corporation | Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process |
US8481400B2 (en) * | 2010-09-17 | 2013-07-09 | Infineon Technologies Ag | Semiconductor manufacturing and semiconductor device with semiconductor structure |
CN103378148B (en) * | 2012-04-13 | 2016-02-03 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacture method thereof |
RU2503084C1 (en) * | 2012-08-09 | 2013-12-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Method of forming single-crystal nanowires in matrix of native oxide |
US9136343B2 (en) * | 2013-01-24 | 2015-09-15 | Intel Corporation | Deep gate-all-around semiconductor device having germanium or group III-V active layer |
CN104078324B (en) * | 2013-03-29 | 2018-01-02 | 中国科学院微电子研究所 | Stacked nanowire fabrication method |
KR102083627B1 (en) * | 2013-09-24 | 2020-03-02 | 삼성전자주식회사 | Semiconductor device and method for forming the same |
US9362397B2 (en) * | 2013-09-24 | 2016-06-07 | Samsung Electronics Co., Ltd. | Semiconductor devices |
FR3021814B1 (en) | 2014-08-08 | 2018-06-15 | Commissariat Energie Atomique | CONNECTOR FOR THE MATRIX CONNECTION BETWEEN A HOUSING AND A SUPPORT COMPRISING A MAIN BODY |
WO2020081912A1 (en) * | 2018-10-18 | 2020-04-23 | Georgia Tech Research Corporation | Chemical etching methods for fabricating nanostructures |
CN111435678B (en) * | 2019-01-11 | 2021-08-20 | 中国科学院上海微系统与信息技术研究所 | Preparation method of gate-all-around transistor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH118390A (en) | 1997-06-18 | 1999-01-12 | Mitsubishi Electric Corp | Semiconductor device and its manufacture |
US7452778B2 (en) * | 2004-06-10 | 2008-11-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor nano-wire devices and methods of fabrication |
FR2873491B1 (en) | 2004-07-20 | 2006-09-22 | Commissariat Energie Atomique | METHOD FOR PRODUCING A STRUCTURE COMPRISING AT LEAST ONE AREA OF ONE OR MORE SEMICONDUCTOR NANOCRYSTALS LOCALLY LOCATED WITH PRECISION |
KR100585157B1 (en) * | 2004-09-07 | 2006-05-30 | 삼성전자주식회사 | Metal-Oxide-Semiconductor transistor comprising multiple wire bridge channels and method of manufacturing the same |
US8080481B2 (en) * | 2005-09-22 | 2011-12-20 | Korea Electronics Technology Institute | Method of manufacturing a nanowire device |
FR2923652B1 (en) | 2007-11-09 | 2010-06-11 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING PARALLEL NANOWILS WITH THEIR SUPPORT SUBSTRATE |
-
2006
- 2006-12-21 FR FR0655822A patent/FR2910456B1/en not_active Expired - Fee Related
-
2007
- 2007-12-20 WO PCT/EP2007/064325 patent/WO2008074862A1/en active Application Filing
- 2007-12-20 EP EP07857946A patent/EP2095407A1/en not_active Withdrawn
- 2007-12-20 US US12/520,385 patent/US7985632B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2008074862A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008074862A1 (en) | 2008-06-26 |
FR2910456A1 (en) | 2008-06-27 |
US7985632B2 (en) | 2011-07-26 |
US20100047973A1 (en) | 2010-02-25 |
FR2910456B1 (en) | 2018-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2095407A1 (en) | Method for forming microwires and/or nanowires | |
EP1869712B1 (en) | Structure and method for realizing a microelectronic device provided with a number of quantum wires capable of forming one or more transistor channels | |
EP2342744B1 (en) | Process for forming a single-crystal film in the microelectronics field | |
EP1145300B1 (en) | Method of manufacturing a mis transistor on a semiconductor substrate | |
EP2075826B1 (en) | Method of manufacturing a semiconductor-on-insulant substrate comprising a step with localised Ge enrichment | |
EP1091417A1 (en) | Method for fabricating a semiconductor device with a gate-all-around and device formed thereby | |
FR3051970A1 (en) | IMPLEMENTING A SHAPED CHANNEL STRUCTURE OF A PLURALITY OF CONTAINING SEMICONDUCTOR BARS | |
EP3847693B1 (en) | Method for manufacturing a cfet device | |
FR2795554A1 (en) | Making silicon-on-nothing architecture for high-speed CMOS signal- and low voltage power devices, includes formation of internal passivated or insulated cavities in stacked semiconductor assemblies | |
EP3127142B1 (en) | Method for manufacture of a semiconductor wafer suitable for the manufacture of an soi substrate, and soi substrate wafer thus obtained | |
FR3060841A1 (en) | METHOD FOR MAKING A SEMICONDUCTOR DEVICE HAVING SELF-ALIGNED INTERNAL SPACERS | |
FR2967813A1 (en) | METHOD FOR PRODUCING A BENTALLIC METAL LAYER STRUCTURE | |
FR2860919A1 (en) | Semiconductor on Insulator regions destined to receive components with an over thickness, notably for the fabrication of MOS transistor | |
FR2935067A1 (en) | METHOD FOR MANUFACTURING A SEMICONDUCTOR STRUCTURE BODY MASS PLAN | |
EP1337683B1 (en) | Method for automatic organisation of microstructures or nanostructures and related device obtained | |
EP1407486B1 (en) | Method for making a transistor on a soi substrate | |
EP0085607A2 (en) | Process for the simultaneous production of hyperfrequency diodes having an incorported encapsulation and diodes made by said process | |
EP2765607A1 (en) | Method for manufacturing a semiconductor layer having at least two different thicknesses | |
FR3085085A1 (en) | TRANSISTOR WITH SUPERIMPOSED BARS AND DOUBLE-GRID STRUCTURE | |
EP3490007A1 (en) | Method for manufacturing fin-fet type cmos transistor pairs at low temperature | |
EP4006996A2 (en) | Quantum device and method for manufacturing same | |
FR3027451A1 (en) | SUBSTRATE AND METHOD FOR MANUFACTURING SUBSTRATE | |
EP2628172A1 (en) | Field-effect transistor on a self-assembled semiconductor well | |
EP4095889A1 (en) | Method for manufacturing a transistor with gate all-around structure | |
WO2006070154A1 (en) | Improved semiconductor thin-film transistor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090622 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
17Q | First examination report despatched |
Effective date: 20100625 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150701 |