EP2085607A1 - Malfunction early recognition for a glow plug supplied with continuous consequence of tension pulses - Google Patents
Malfunction early recognition for a glow plug supplied with continuous consequence of tension pulses Download PDFInfo
- Publication number
- EP2085607A1 EP2085607A1 EP08105784A EP08105784A EP2085607A1 EP 2085607 A1 EP2085607 A1 EP 2085607A1 EP 08105784 A EP08105784 A EP 08105784A EP 08105784 A EP08105784 A EP 08105784A EP 2085607 A1 EP2085607 A1 EP 2085607A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- glow plug
- during
- comparison value
- annealing
- annealing cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/027—Safety devices, e.g. for diagnosing the glow plugs or the related circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P19/00—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
- F02P19/02—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
- F02P19/025—Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2024—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
- F02D2041/2027—Control of the current by pulse width modulation or duty cycle control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D2041/228—Warning displays
Definitions
- the present application relates to a method for early failure detection of at least one glow plug, which is supplied during at least one Glühzyklusses with a continuous train of voltage pulses of a respective electrical voltage, and a motor with at least one glow plug, which is adapted for the early failure detection of the glow plug for performing this method ,
- glow plugs are electrical heating elements which are usually arranged to assist a cold start in the combustion chamber of internal combustion engines and heaters.
- a glow plug in a front part of a filament with a substantially temperature-independent resistor and in a rear part of a control coil whose resistance increases with temperature.
- glow plugs also wear out over time, which can lead to malfunction or even total failure of the glow plug with increasing age. It is therefore desirable to recognize consumed glow plugs with a high probability of failure early.
- the so-called cold resistance of To determine glow plug In the first few seconds after the glow plug is switched on (as a rule within the first 60 s, but preferably 25 s), the current flowing through the glow plug is measured. From this measured current and a voltage assumed to be known, the cold resistance is calculated in a known manner. This is at unconsumed glow plugs, so glow plugs with low probability of failure, usually between 0.3 ⁇ and 1.0 ⁇ . If a higher cold resistance is determined because the current flowing through the glow plug drops, so this has according to experience on the early failure of the glow plug. If the measured cold resistance exceeds a specified threshold, the glow plug must be replaced.
- the resistance of the glow plug is detected, which the glow plug shows during a single voltage pulse.
- the method of the present invention utilizes a higher resolution approach than known methods because it relies on the resistance of the glow plug during a single voltage pulse and not on a mean or rms value of cold resistance determined over many voltage pulses. This results in a much more accurate and reliable prediction of the probability of default than can be achieved by known methods.
- the type of glow plug for the process is irrelevant.
- the method is equally suitable for a low-voltage glow plug as for an on-board glow plug or a ceramic glow plug.
- step (a) It is possible in step (a) to record the time profile of the resistance during the respective voltage pulse.
- the comparison value derived from the resistance in step (b) could be, for example, the mean value or an extreme value of the resistance during the voltage pulse.
- a time-dependent comparison value can be derived, provided z. B. in step (c) a condition for the temporal dependence of the comparison value is specified.
- steps (a) to (e) can also be carried out repeatedly on different individual voltage pulses within the time interval, for example cyclically or sporadically.
- the comparison value may in general be any suitable comparison value.
- the comparison value may be identical to the electrical resistance.
- Another suitable comparative value would be the gradient of the electrical resistance, ie the change with time of the resistor or its derivative with respect to time.
- a resistance gradient with a negative sign can be an indication of the increased probability of failure of a glow plug, because with old and used glow plugs above all the so-called hot resistance of the glow plug, which is usually measured after 25 s or 60 s after the start of Glühzyklusses, within a voltage pulse shows a declining tendency.
- a hot resistance of 0.6 ⁇ to 2.0 ⁇ is common. Like the cold resistance, the hot resistance tends to increase with age of the glow plug.
- the hot resistor offers another observable, which can be exploited to estimate the probability of failure of a glow plug.
- the beginning of the time interval coincides with the beginning of a Glühzyklusses the glow plug.
- the duration of the time interval is preferably 60 s and particularly preferably 25 s, so that the detected electrical resistance corresponds to the cold resistance of the glow plug.
- the time interval begins at least 25 s or preferably 60 s after the start of the annealing cycle, so that the detected electrical resistance corresponds to the hot resistance of the glow plug.
- steps (a) and (b) are carried out for at least one voltage pulse within at least one further time interval, this further time interval and the first time interval being disjunct.
- both time intervals may be within the same annealing cycle, or both of the time intervals may be within different annealing cycles of the glow plug, with the sequence of voltage pulses being suspended between anneal cycles.
- the validity of the method can be increased by detecting both the cold resistance and the hot resistance within a single annealing cycle by determining cold resistance and hot resistance, respectively, according to step (a) for respective disjoint time intervals during an annealing cycle, then respectively b) to perform (e).
- a so-called ring memory is used to store the comparison values, which stores the comparison values of a specific number of, preferably five, annealing cycles as data records in a stack. If the stack is filled, the data sets are successively overwritten with new records starting from the bottom record during execution of the process during the following annealing cycles.
- the comparison value permanently stored and when performing steps (a) to (e) during subsequent annealing cycles in each step (c) respectively read out and used to specify the condition.
- a reference is provided with the original values of the glow plug, which allows an estimate of the absolute aging and wear of the glow plug.
- step (c) when performing step (c) during an annealing cycle, it is preferable to read both the comparison value of the very first annealing cycle and the comparison value of a respective annealing cycle immediately preceding the annealing cycle, and to use these to specify respective conditions for the comparison value of the current annealing cycle; d) checking whether these conditions are met, and wherein in step (e) the signal is output if the comparison value satisfies at least one of the conditions. In this way, the validity of the process is increased again.
- the signal output in step (e) can be used to trigger different reactions, which can take place individually or in any desired combinations.
- the output signal, the operation of the glow plug to protect it at a predetermined voltage level, preferably the intended operating voltage, or below restrict or cause the glow plug to turn off.
- the signal may be responsible for the output of an optical, audible or haptic warning signal at a human machine interface (HMI). Further, the signal may cause a diagnostic message to be written to a fault memory that may be read out and further processed by a microprocessor.
- HMI human machine interface
- a glow plug 1 protrudes into the combustion chamber 2 of an engine 3 of a motor vehicle, not shown.
- An electronic Glühzeit Kunststoff Kunststoff 4 supplies the glow plug 1 with a pulse width modulated voltage, which generates it from the on-board voltage.
- a microcontroller 5 with an evaluation unit 6 is provided for measuring the current flowing through the glow plug 1 and for determining its resistance by means of the known voltage applied to the glow plug.
- the microcontroller 5 is connected to a human-machine interface or HMI 7, which is set up to output an optical and / or audible warning signal, and to a fault memory 19.
- An annealing cycle of the glow plug 1 is understood to be the time during which the glow plug 1 is continuously supplied with a sequence of voltage pulses of a respective electrical voltage in order to support a cold start of the motor.
- the power supply of the glow plug 1 and the annealing cycle end as soon as the engine 3 no longer requires support by the glow plug 1, where as the driving cycle, the time between starting and stopping the engine 3 is understood regardless of whether the vehicle is actually moving.
- the glow plug 1 assists the cold start of the engine 3 and the engine 3 usually does not cease operation at the end of the glow cycle of the glow plug 1, the start of a drive cycle coincides with the beginning of a respective glow cycle of the glow plug 1, but the drive cycle lasts usually longer than the annealing cycle.
- FIG. 2 now shows three consecutive annealing cycles 8, 9, 10 of the glow plug 1, the respective driving cycles of the motor 3 correspond and may be of different duration. Because the start of each of the annealing cycles 8, 9, 10 coincides with the beginning of a respective driving cycle, a respective driving cycle ends at a time between two respective ones of the annealing cycles 8, 9, 10 so that the engine 3 immediately before the start of each annealing cycle 8, 9, 10 is switched off, wherein the time between the driving cycles or the annealing cycles 8, 9, 10 is generally irregular and arbitrary.
- a time interval 11 is drawn, whose beginning is identical to the beginning of the Glühzyklusses 8 and whose duration is less than 25 s.
- the glow plug 1 has not yet reached its operating temperature. Accordingly, a resistance determined by the microcontroller 5 during a voltage pulse 17 in the time interval 11 is a cold resistance of the glow plug 1
- a time interval 12 is drawn in, the earliest 60 s after the start of the Glühzyklusses 8 begins.
- the glow plug 1 has reached its operating temperature, and a resistance determined by the microcontroller 5 during a voltage pulse in the time interval 12 is accordingly a hot resistance of the glow plug 1.
- FIG. 3a are in a resistance-time diagram to see the time course of the cold resistance of the glow plug 1 after 3000 annealing cycles and after 10,000 annealing cycles during two individual successive voltage pulses, wherein the graph provided with the reference numeral 13 represents the cold resistance 13 of the glow plug 1 after 3000 annealing cycles while the graph provided with the reference numeral 14 represents the cold resistance 14 of the glow plug 1 after 10000 annealing cycles.
- the graph provided with the reference numeral 13 represents the cold resistance 13 of the glow plug 1 after 3000 annealing cycles
- the graph provided with the reference numeral 14 represents the cold resistance 14 of the glow plug 1 after 10000 annealing cycles.
- the cold resistance 14 of the older glow plug exceeds the value of 0.5 ⁇ already at the beginning of the first voltage pulse and grows in the further course of the voltage pulse to above 0.6 ⁇ , while in the course of the second voltage pulse with slight slope values between 0 , 5 ⁇ and 0.6 ⁇ .
- the hot resistance of the glow plug 1 also after 3000 Glühzyklen and after 10,000 annealing cycles during two individual successive voltage pulses, the glow plug 1 after 3000 annealing cycles, the hot resistor 15 and after 10000 annealing cycles has the hot resistor 16. It is striking that the younger glow plug 1 after 3000 Glühzyklen during both voltage pulses has a nearly constant resistance between 1.2 ⁇ and 1.4 ⁇ , while the older glow plug after 10000 Glühzyklen at the beginning of each voltage pulse has a higher resistance of over 1.4 ⁇ , which drops in the course of the voltage pulse, however. Accordingly, the older glow plug 1 is characterized by a falling course of the hot resistor 14 during a voltage pulse. In other words, the change with time or the gradient of the hot resistor 14 is negative.
- step S1 the cold resistance of the glow plug 1 during a single voltage pulse 17 is determined by the microcontroller 5 in step S2 detected within the time interval 11 of the Glühzyklusses 8. From this cold resistance, a comparison value is derived by the evaluation unit 6 in the subsequent step S3, which in the simplest case is identical to the cold resistance. From the evaluation unit 6, a condition for the comparison value is specified in step S4. Again, in the simplest case, this condition consists of a threshold that must not be exceeded by the comparison value. For example, in the case of FIGS. 3a ) and 3b ) a threshold value of 0.6 ⁇ can be specified.
- step S5 it is checked in step S5 whether the comparison value or the cold resistance satisfies the predetermined condition, ie in the present case whether the cold resistance of the glow plug 1 is greater than 0.6 ⁇ . If this is the case, signals are output from the microcontroller 5 to the glow time control device 4 and to the HMI 7 in step S6 to cause the glow time control device 4 to supply the glow plug 1 with only a predetermined operating voltage in the following, while the HMI 7 for Issue of an optical and / or audible warning signal is caused.
- step S7 If, on the other hand, it is determined in step S5 that the cold resistance is less than 0.6 ⁇ , no signal is output by the microcontroller 5 and the method ends with step S8.
- step S2 instead of the cold resistance of the glow plug 1 whose hot resistance is measured, for example, during a single voltage pulse 18, which is within the in the FIG. 2 shown time interval 12 of the Glühzyklusses 8 is located.
- step S3 the Gradient of the hot resistance derived from this and used as a reference. Since a glow plug 1 shortly before failure has a negative hot resistance gradient during a voltage pulse, it is expedient in step S4 to predetermine for the comparison value as a condition that the comparison value must be negative or less than zero.
- step S5 the sign of the comparison value is checked. If this is negative, ie if the hot resistance has a negative gradient, steps S6 and S7 take place successively. On the other hand, if the sign is zero or positive, step S8 occurs.
- the two described methods can also be combined by detecting both the cold resistance during the voltage pulse 17 and the hot resistance during the voltage pulse 18 and, as explained above, the cold resistance and the gradient of the hot resistance are derived as respective comparison values and respective conditions for these comparison values be explained above.
- step S5 these conditions are then checked for both the cold resistance and the gradient of the hot resistance, and steps S6 and S7 are carried out as far as either the cold resistance or the gradient of the hot resistance or both satisfy the respective condition.
- the method can be executed with any number of comparison values and respective conditions for these comparison values.
- comparison values in addition to the cold resistance and the gradient of the hot resistance, the hot resistance itself and / or the gradient of the cold resistance can be used alternatively or in combination in particular.
- the measured resistances and / or the comparison values are stored in order to enable them during execution of the method during a subsequent annealing cycle for specifying the condition in step S4 use.
- the measured cold and hot resistances and / or the comparative values derived therefrom such as cold resistance, hot resistance and gradient of the cold resistance and gradient of the hot resistance are stored in a ring memory.
- the stored comparison values of the previous annealing cycle 9 are read from the ring memory in step S4.
- read-out comparison values are used to specify suitable conditions for the comparison values obtained during the annealing cycle 10.
- suitable conditions for the comparison values obtained during the annealing cycle 10.
- one possible condition would be that the difference in the cold resistances of the annealing cycles 9 and 10 should not exceed a predetermined threshold. In this way, sudden changes in resistance of the glow plug 1 between individual annealing cycles 8, 9, 10 can be detected.
- the differences between the comparison values of the annealing cycles 9 and 10 are written into the ring memory as additional comparison values with the remaining comparison values of the annealing cycle 10, in order to be read out in a subsequent annealing cycle as described in step S4 and used to specify suitable conditions.
- the comparative values of this very first annealing cycle are permanently stored as a so-called "primary vector" for the entire service life of the glow plug when the method is performed during the very first annealing cycle immediately after startup of the glow plug.
- this initial vector is read out during the execution of the method during each subsequent annealing cycle and used to specify conditions for the comparison values of the respective annealing cycle.
- the comparison values be that they may not deviate from a given value of corresponding components of the original vector. Is it, for example, in the annealing cycle 8 in the FIG.
- step S3 the comparison values derived in step S3 during the annealing cycle 8 are permanently stored as the original vector.
- this initial vector is read out in step S4 and the condition is specified that the comparison values of the respective annealing cycle may not deviate from the comparison values in the original vector by more than predefined threshold values . If it is determined in step S5 that the deviation of a comparison value from the corresponding comparison value of the original vector exceeds the predetermined threshold value, steps S6 and S7 are executed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Resistance Heating (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Description
Die vorliegende Anmeldung betrifft ein Verfahren zur Ausfallfrüherkennung wenigstens einer Glühkerze, die während wenigstens eines Glühzyklusses mit einer kontinuierlichen Folge von Spannungspulsen einer jeweiligen elektrischen Spannung versorgt wird, sowie einen Motor mit wenigstens einer Glühkerze, der für die Ausfallfrüherkennung der Glühkerze zur Durchführung dieses Verfahrens eingerichtet ist.The present application relates to a method for early failure detection of at least one glow plug, which is supplied during at least one Glühzyklusses with a continuous train of voltage pulses of a respective electrical voltage, and a motor with at least one glow plug, which is adapted for the early failure detection of the glow plug for performing this method ,
Als Glühkerzen werden gemeinhin elektrische Heizelemente bezeichnet, die für gewöhnlich zur Unterstützung eines Kaltstarts im Brennraum von Verbrennungsmotoren und Heizungen angeordnet sind. Normalerweise weist eine Glühkerze in einem vorderen Teil eine Glühwendel mit einem im Wesentlichen temperaturunabhängigen Widerstand und in einem hinteren Teil eine Regelwendel auf, deren Widerstand mit der Temperatur ansteigt. Dadurch wird ein schnelles Aufheizen des vorderen Teils der Glühkerze und mit Erreichen bestimmter Temperaturbereiche eine Rückkopplung des Aufheizvorgangs erzielt.Commonly referred to as glow plugs are electrical heating elements which are usually arranged to assist a cold start in the combustion chamber of internal combustion engines and heaters. Normally, a glow plug in a front part of a filament with a substantially temperature-independent resistor and in a rear part of a control coil whose resistance increases with temperature. As a result, a rapid heating of the front part of the glow plug and upon reaching certain temperature ranges, a feedback of the heating process is achieved.
Wie bei allen technischen Bauteilen stellen sich auch bei Glühkerzen mit der Zeit Abnutzungserscheinungen ein, die mit zunehmendem Alter zu Fehlfunktionen oder gar Totalausfällen der Glühkerze führen können. Man ist daher bestrebt, verbrauchte Glühkerzen mit einer hohen Ausfallwahrscheinlichkeit frühzeitig zu erkennen. Zu diesem Zweck ist es bekannt, den so genannten Kaltwiderstand der Glühkerze zu bestimmen. Dazu wird in den ersten Sekunden nach dem Einschalten der Glühkerze (in der Regel innerhalb der ersten 60 s, bevorzugt jedoch 25 s) der durch die Glühkerze fließende Strom gemessen. Aus diesem gemessenen Strom und einer als bekannt angenommenen Spannung berechnet sich der Kaltwiderstand auf bekannte Weise. Dieser liegt bei unverbrauchten Glühkerzen, also bei Glühkerzen mit geringer Ausfallwahrscheinlichkeit, in der Regel zwischen 0,3 Ω und 1,0 Ω. Wird ein höherer Kaltwiderstand ermittelt weil der durch die Glühkerze fließende Strom abfällt, so weist dies erfahrungsgemäß auf das baldige Ausfallen der Glühkerze hin. Überschreitet der gemessene Kaltwiderstand einen vorgegebenen Schwellenwert, muss die Glühkerze ausgetauscht werden.As with all technical components, glow plugs also wear out over time, which can lead to malfunction or even total failure of the glow plug with increasing age. It is therefore desirable to recognize consumed glow plugs with a high probability of failure early. For this purpose it is known, the so-called cold resistance of To determine glow plug. For this purpose, in the first few seconds after the glow plug is switched on (as a rule within the first 60 s, but preferably 25 s), the current flowing through the glow plug is measured. From this measured current and a voltage assumed to be known, the cold resistance is calculated in a known manner. This is at unconsumed glow plugs, so glow plugs with low probability of failure, usually between 0.3 Ω and 1.0 Ω. If a higher cold resistance is determined because the current flowing through the glow plug drops, so this has according to experience on the early failure of the glow plug. If the measured cold resistance exceeds a specified threshold, the glow plug must be replaced.
Bei diesem bekannten Verfahren wird der Strom jedoch ohne Berücksichtigung der Art und Weise, wie die Kerze mit elektrischer Spannung versorgt wird, gemessen. Mit anderen Worten messen bekannte Verfahren zur Ausfallerkennung von Glühkerzen den durch die Glühkerze fließenden Effektivstrom und ermitteln folglich nur einen effektiven Kaltwiderstand der Glühkerze. Dies trifft auch auf Glühkerzen zu, die mit einer pulsweitenmodulierten Spannung versorgt werden, also mit einer kontinuierlichen Folge von Spannungspulsen einer elektrischen Spannung. Pulsweitenmoduliert heißt dabei, dass ein Tastverhältnis der Spannungspulse bei konstanter Frequenz moduliert wird. In Kraftfahrzeugmotoren wird beispielsweise eine pulsweitenmodulierte Spannung zur Versorgung von Glühkerzen mittels eines elektronischen Glühzeitsteuergerätes aus der Bordspannung erzeugt. Bisher wurden vor allem Niederspannungsglühkerzen mit einer Betriebsspannung von unter 11 V mit einer pulsweitenmodulierten Spannung versorgt. In neuerer Zeit wird eine solche Spannungsversorgung aber immer mehr auch für Bordspannungsglühkerzen mit einer Betriebsspannung von 11 V und darüber eingesetzt.In this known method, however, the current is measured without regard to the manner in which the candle is supplied with electrical voltage. In other words, known methods for failure detection of glow plugs measure the current flowing through the glow plug RMS and thus determine only an effective cold resistance of the glow plug. This also applies to glow plugs which are supplied with a pulse-width-modulated voltage, that is to say with a continuous series of voltage pulses of an electrical voltage. Pulse width modulated means that a duty cycle of the voltage pulses is modulated at a constant frequency. In motor vehicle engines, for example, a pulse-width-modulated voltage for supplying glow plugs by means of an electronic glow time control device is generated from the on-board voltage. So far, especially low-voltage glow plugs were supplied with an operating voltage of less than 11 V with a pulse width modulated voltage. Recently, such a power supply but more and more for on-board glow plugs with an operating voltage of 11 V and above is used.
Insbesondere für mit einer pulsweitenmodulierten Spannung betriebene Glühkerzen erweisen sich bekannte Verfahren zur Ausfallfrüherkennung von Glühkerzen als wenig zuverlässig.In particular, for glow plugs operated with a pulse-width-modulated voltage, known methods for early failure detection of glow plugs prove to be less reliable.
Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Ausfallfrüherkennung einer mit einer pulsweitenmodulierten Spannung versorgten Glühkerze sowie einen zur Ausführung eines solchen Verfahrens eingerichteten Motor zu schaffen, bei denen die Verlässlichkeit der Ausfallfrüherkennung erhöht ist.It is the object of the present invention to provide a method for early failure detection of a supplied with a pulse width modulated voltage glow plug and an engine adapted to carry out such a method, in which the reliability of the early failure detection is increased.
Diese Aufgabe wird durch das Verfahren mit den Merkmalen des Anspruchs 1 sowie einen Motor mit den Merkmalen des Anspruchs 10 gelöst.This object is achieved by the method with the features of claim 1 and a motor having the features of
Im Gegensatz zu bekannten Verfahren, die lediglich Effektivwerte für den gemessenen Strom und damit nur den effektiven Kaltwiderstand über viele Spannungspulse ermitteln, wird beim erfindungsgemäßen Verfahren der Widerstand der Glühkerze erfasst, den die Glühkerze während eines einzelnen Spannungspulses zeigt. Anders ausgedrückt befleißigt sich das erfindungsgemäße Verfahren einer höher aufgelösten Sichtweise als bekannte Verfahren, da es auf den Widerstand der Glühkerze während eines einzelnen Spannungspulses abstellt und nicht auf einen über viele Spannungspulse ermittelten Mittel- oder Effektivwert des Kaltwiderstands. Dies führt im Ergebnis zu einer weit präziseren und verlässlicheren Vorhersage der Ausfallwahrscheinlichkeit, als sie bekannte Verfahren zu liefern vermögen. Dabei ist die Art der Glühkerze für das Verfahren unerheblich. Beispielsweise ist das Verfahren gleichermaßen für eine Niederspannungsglühkerze wie für eine Bordspannungsglühkerze oder eine keramische Glühkerze geeignet.In contrast to known methods, which only determine effective values for the measured current and thus only the effective cold resistance over many voltage pulses, in the method according to the invention the resistance of the glow plug is detected, which the glow plug shows during a single voltage pulse. In other words, the method of the present invention utilizes a higher resolution approach than known methods because it relies on the resistance of the glow plug during a single voltage pulse and not on a mean or rms value of cold resistance determined over many voltage pulses. This results in a much more accurate and reliable prediction of the probability of default than can be achieved by known methods. The type of glow plug for the process is irrelevant. For example, the method is equally suitable for a low-voltage glow plug as for an on-board glow plug or a ceramic glow plug.
Es ist möglich, im Schritt (a) den zeitlichen Verlauf des Widerstandes während des jeweiligen Spannungspulses zu erfassen. In einem solchen Fall könnte der im Schritt (b) aus dem Widerstand abgeleitete Vergleichswert beispielsweise der Mittelwert oder ein Extremwert des Widerstands während des Spannungspulses sein. Andererseits kann ein zeitabhängiger Vergleichswert abgeleitet werden, sofern z. B. im Schritt (c) eine Bedingung für die zeitliche Abhängigkeit des Vergleichswerts vorgegeben wird.It is possible in step (a) to record the time profile of the resistance during the respective voltage pulse. In such a case, the comparison value derived from the resistance in step (b) could be, for example, the mean value or an extreme value of the resistance during the voltage pulse. On the other hand, a time-dependent comparison value can be derived, provided z. B. in step (c) a condition for the temporal dependence of the comparison value is specified.
Sofern im vorgegebenen Zeitintervall mehrere Spannungspulse auftreten, können die Schritte (a) bis (e) innerhalb des Zeitintervalls auch wiederholt an verschiedenen einzelnen Spannungspulsen ausgeführt werden, beispielsweise zyklisch oder sporadisch.If a plurality of voltage pulses occur in the predetermined time interval, steps (a) to (e) can also be carried out repeatedly on different individual voltage pulses within the time interval, for example cyclically or sporadically.
Bei dem Vergleichswert kann es sich ganz allgemein um einen beliebigen geeigneten Vergleichswert handeln. Beispielsweise kann der Vergleichswert mit dem elektrischen Widerstand identisch sein. Ein weiterer geeigneter Vergleichswert wäre der Gradient des elektrischen Widerstands, also die zeitliche Änderung des Widerstandes bzw. dessen Ableitung nach der Zeit. Ein Widerstandsgradient mit negativem Vorzeichen kann ein Indiz für die erhöhte Ausfallwahrscheinlichkeit einer Glühkerze sein, da bei alten und verbrauchten Glühkerzen vor allem der so genannte Heißwiderstand der Glühkerze, der gewöhnlicherweise nach 25 s bzw. 60 s nach Beginn des Glühzyklusses gemessen wird, innerhalb eines Spannungspulses eine abfallende Tendenz zeigt. Für neuwertige Glühkerzen ist ein Heißwiderstand von 0,6 Ω bis 2,0 Ω üblich. Wie der Kaltwiderstand zeigt auch der Heißwiderstand die Tendenz, mit zunehmendem Alter der Glühkerze anzuwachsen. Mit dem Heißwiderstand bietet sich eine weitere Observable, die zur Abschätzung der Ausfallwahrscheinlichkeit einer Glühkerze ausgenutzt werden kann.The comparison value may in general be any suitable comparison value. For example, the comparison value may be identical to the electrical resistance. Another suitable comparative value would be the gradient of the electrical resistance, ie the change with time of the resistor or its derivative with respect to time. A resistance gradient with a negative sign can be an indication of the increased probability of failure of a glow plug, because with old and used glow plugs above all the so-called hot resistance of the glow plug, which is usually measured after 25 s or 60 s after the start of Glühzyklusses, within a voltage pulse shows a declining tendency. For new glow plugs, a hot resistance of 0.6 Ω to 2.0 Ω is common. Like the cold resistance, the hot resistance tends to increase with age of the glow plug. The hot resistor offers another observable, which can be exploited to estimate the probability of failure of a glow plug.
Bei einer bevorzugten Ausführung des Verfahrens fällt der Beginn des Zeitintervalls mit dem Beginn eines Glühzyklusses der Glühkerze zusammen. Vorzugsweise beträgt die Dauer des Zeitintervalls in diesem Fall 60 s und besonders bevorzugt 25 s, damit der erfasste elektrische Widerstand dem Kaltwiderstand der Glühkerze entspricht. Oder aber das Zeitintervall beginnt wenigstens 25 s oder bevorzugt 60 s nach dem Beginn des Glühzyklusses, so dass der erfasste elektrische Widerstand dem Heißwiderstand der Glühkerze entspricht.In a preferred embodiment of the method, the beginning of the time interval coincides with the beginning of a Glühzyklusses the glow plug. In this case, the duration of the time interval is preferably 60 s and particularly preferably 25 s, so that the detected electrical resistance corresponds to the cold resistance of the glow plug. Or the time interval begins at least 25 s or preferably 60 s after the start of the annealing cycle, so that the detected electrical resistance corresponds to the hot resistance of the glow plug.
Bei einem weiteren bevorzugten Verfahren werden wenigstens die Schritte (a) und (b) für wenigstens einen Spannungspuls innerhalb wenigstens eines weiteren Zeitintervalls ausgeführt, wobei dieses weitere Zeitintervall und das erste Zeitintervall disjunkt sind. Grundsätzlich können sich beide Zeitintervalle innerhalb desselben Glühzyklusses befinden oder es können sich beide Zeitintervalle innerhalb verschiedener Glühzyklen der Glühkerze befinden, wobei zwischen den Glühzyklen die Folge von Spannungspulsen ausgesetzt wird. Beispielsweise kann die Validität des Verfahrens durch Erfassen von sowohl des Kaltwiderstands als auch des Heißwiderstands innerhalb eines einzigen Glühzyklusses gesteigert werden, indem Kaltwiderstand und Heißwiderstand jeweils gemäß dem Schritt (a) für jeweilige disjunkte Zeitintervalle während eines Glühzyklusses ermittelt werden, um dann jeweils die Schritte (b) bis (e) auszuführen. Andererseits können zum Erkennen sprunghafter Eigenschaftsänderungen der Glühkerze zwischen Glühzyklen zum Beispiel Kaltwiderstand und/oder Heißwiderstand in aufeinander folgenden Glühzyklen erfasst werden, wobei für einen jeweiligen Glühzyklus gewonnene Vergleichswerte zum Vorgeben der Bedingung im jeweiligen nachfolgenden Glühzyklus verwendet werden. In diesem Zusammenhang ist es vorteilhaft, bei Ausführung der Schritte (a) und (b) während eines ersten Glühzyklusses die erhaltenen Vergleichswerte zu speichern und bei Ausführung der Schritte (a) bis (e) während eines nachfolgenden zweiten Glühzyklusses im Schritt (c) auszulesen und zum Vorgeben der Bedingung zu verwenden. Vorzugsweise wird zum Speichern der Vergleichswerte ein so genannter Ringspeicher verwendet, der die Vergleichswerte einer bestimmten Anzahl von, vorzugsweise fünf, Glühzyklen als Datensätze in einem Stapel speichert. Ist der Stapel gefüllt, werden bei Ausführung des Verfahrens während folgender Glühzyklen die Datensätze beginnend vom untersten Datensatz sukzessive mit neuen Datensätzen überschrieben.In a further preferred method, at least steps (a) and (b) are carried out for at least one voltage pulse within at least one further time interval, this further time interval and the first time interval being disjunct. In principle, both time intervals may be within the same annealing cycle, or both of the time intervals may be within different annealing cycles of the glow plug, with the sequence of voltage pulses being suspended between anneal cycles. For example, the validity of the method can be increased by detecting both the cold resistance and the hot resistance within a single annealing cycle by determining cold resistance and hot resistance, respectively, according to step (a) for respective disjoint time intervals during an annealing cycle, then respectively b) to perform (e). On the other hand, to detect sudden changes in the characteristics of the glow plug between annealing cycles, for example, cold resistance and / or hot resistance can be detected in successive annealing cycles, using comparative values obtained for each annealing cycle to specify the condition in the respective subsequent annealing cycle. In this connection, it is advantageous to store the comparative values obtained during execution of steps (a) and (b) during a first annealing cycle and during execution of steps (a) to (e) during a first annealing cycle subsequent second Glühzyklusses in step (c) read and use to specify the condition. Preferably, a so-called ring memory is used to store the comparison values, which stores the comparison values of a specific number of, preferably five, annealing cycles as data records in a stack. If the stack is filled, the data sets are successively overwritten with new records starting from the bottom record during execution of the process during the following annealing cycles.
Ganz besonders bevorzugt wird bei Ausführung der Schritte (a) und (b) während des allerersten Glühzyklusses der Glühkerze nach deren Inbetriebnahme der Vergleichswert dauerhaft gespeichert und bei Ausführung der Schritte (a) bis (e) während nachfolgender Glühzyklen im jeweiligen Schritt (c) jeweils ausgelesen und zur Vorgabe der Bedingung verwendet. Auf diese Weise ist mit den ursprünglichen Werten der Glühkerze eine Referenz geschaffen, die eine Einschätzung der absoluten Alterung und Abnutzung der Glühkerze erlaubt. Insbesondere ist bevorzugt, bei Ausführung des Schrittes (c) während eines Glühzyklusses sowohl den Vergleichswert des allerersten Glühzyklusses als auch den Vergleichswert eines jeweiligen dem Glühzyklus unmittelbar vorhergehenden Glühzyklusses auszulesen und zur Vorgabe jeweiliger Bedingungen für den Vergleichswert des aktuellen Glühzyklusses zu verwenden, wobei im Schritt (d) geprüft wird, ob diese Bedingungen erfüllt sind, und wobei im Schritt (e) das Signal ausgegeben wird, wenn der Vergleichswert wenigstens eine der Bedingungen erfüllt. Auf diese Weise wird die Validität des Verfahrens noch einmal gesteigert.Most preferably, in the execution of steps (a) and (b) during the very first Glühzyklusses the glow plug after their commissioning, the comparison value permanently stored and when performing steps (a) to (e) during subsequent annealing cycles in each step (c) respectively read out and used to specify the condition. In this way, a reference is provided with the original values of the glow plug, which allows an estimate of the absolute aging and wear of the glow plug. In particular, when performing step (c) during an annealing cycle, it is preferable to read both the comparison value of the very first annealing cycle and the comparison value of a respective annealing cycle immediately preceding the annealing cycle, and to use these to specify respective conditions for the comparison value of the current annealing cycle; d) checking whether these conditions are met, and wherein in step (e) the signal is output if the comparison value satisfies at least one of the conditions. In this way, the validity of the process is increased again.
Das im Schritt (e) ausgegebene Signal lässt sich zum Auslösen unterschiedlicher Reaktionen verwenden, die jeweils einzeln oder auch in beliebigen Kombinationen erfolgen können. So kann das ausgegebene Signal den Betrieb der Glühkerze zu deren Schonung auf einem vorbestimmten Spannungsniveau, vorzugsweise der vorgesehenen Betriebsspannung, oder darunter beschränken oder ein Ausschalten der Glühkerze bewirken. Andererseits kann das Signal für die Ausgabe eines optischen, akustischen oder haptischen Warnsignals an einer Mensch-Maschineschnittstelle (human machine interface; HMI) ursächlich sein. Ferner kann das Signal bewirken, dass eine Diagnosebotschaft in einen Fehlerspeicher geschrieben wird, die von einem Mikroprozessor ausgelesen und weiterverarbeitet werden kann.The signal output in step (e) can be used to trigger different reactions, which can take place individually or in any desired combinations. Thus, the output signal, the operation of the glow plug to protect it at a predetermined voltage level, preferably the intended operating voltage, or below restrict or cause the glow plug to turn off. On the other hand, the signal may be responsible for the output of an optical, audible or haptic warning signal at a human machine interface (HMI). Further, the signal may cause a diagnostic message to be written to a fault memory that may be read out and further processed by a microprocessor.
Nachfolgend wird die Erfindung anhand von Zeichnungen näher erläutert.
- Figur 1
- stellt schematisch einen Motor eines Kraftfahrzeuges mit einer Glühkerze dar;
Figur 2- stellt nicht maßstabsgerecht Spannungspulse und Zeitintervalle für verschiedene Glühzyklen der Glühkerze dar;
- Figur 3a)
- ist ein Diagramm, das den zeitlichen Widerstandsverlauf während zweier einzelner Spannungspulse der kalten Glühkerze nach unterschiedlich vielen Glühzyklen zeigt;
- Figur 3b)
- ist ein Diagramm, das den zeitlichen Widerstandsverlauf während zweier einzelner Spannungspulse der heißen Glühkerze nach unterschiedlich vielen Glühzyklen zeigt; und
Figur 4- zeigt ein Flussdiagramm des erfindungsgemäßen Verfahrens.
- FIG. 1
- schematically illustrates an engine of a motor vehicle with a glow plug;
- FIG. 2
- does not scale to voltage pulses and time intervals for different annealing cycles of the glow plug;
- FIG. 3a)
- is a diagram showing the time course of resistance during two individual voltage pulses of the cold glow plug after different number of Glühzyklen;
- FIG. 3b)
- is a diagram showing the time course of resistance during two individual voltage pulses of the hot glow plug after different number of Glühzyklen; and
- FIG. 4
- shows a flowchart of the method according to the invention.
Gemäß
Der Verlauf der pulsweitenmodulierten Spannung ist im Diagramm der
Für den Glühzyklus 8 ist in
In der
In
Im erfindungsgemäßen Verfahren wird nun der unterschiedliche Widerstandsverlauf während eines einzelnen Spannungspulses bei neueren und älteren Glühkerzen 1 ausgenutzt.In the method according to the invention, the different resistance characteristic during a single voltage pulse is now utilized in newer and older glow plugs 1.
Mittels des Flussdiagramms der
Bei einer anderen Ausführung des erfindungsgemäßen Verfahrens wird im Schritt S2 statt des Kaltwiderstandes der Glühkerze 1 deren Heißwiderstand beispielsweise während eines einzelnen Spannungspulses 18 gemessen, der sich innerhalb des in der
Die beiden beschriebenen Verfahren können auch kombiniert werden, indem sowohl der Kaltwiderstand während des Spannungspulses 17 als auch der Heißwiderstand während des Spannungspulses 18 erfasst werden, und wie oben erläutert der Kaltwiderstand und der Gradient des Heißwiderstands als jeweilige Vergleichswerte abgeleitet sowie jeweilige Bedingungen für diese Vergleichswerte wie oben erläutert vorgegeben werden. Im Schritt S5 werden diese Bedingungen dann sowohl für den Kaltwiderstand als auch für den Gradienten des Heißwiderstands geprüft, und die Schritte S6 und S7 werden ausgeführt, sofern entweder der Kaltwiderstand oder der Gradient des Heißwiderstands oder beide die jeweilige Bedingung erfüllen. Entsprechend kann das Verfahren mit beliebig vielen Vergleichswerten und jeweiligen Bedingungen für diese Vergleichswerte ausgeführt werden. Als Vergleichswerte können alternativ oder in Kombination neben dem Kaltwiderstand und dem Gradienten des Heißwiderstands insbesondere auch der Heißwiderstand selbst und/oder der Gradient des Kaltwiderstands verwendet werden.The two described methods can also be combined by detecting both the cold resistance during the
Gemäß einer weiteren Ausführung der Erfindung werden bei Durchführung des Verfahrens die gemessenen Widerstände und/oder die Vergleichswerte gespeichert, um diese bei Durchführung des Verfahrens während eines nachfolgenden Glühzyklusses zur Vorgabe der Bedingung im Schritt S4 zu verwenden. Werden die Schritte S1-S3 in der
Schließlich werden bei einer weiteren Ausführungsform der Erfindung bei Durchführung des Verfahrens während des allerersten Glühzyklusses unmittelbar nach Inbetriebnahme der Glühkerze die Vergleichswerte dieses allerersten Glühzyklusses dauerhaft als sogenannter "Urvektor" für die gesamte Lebensdauer der Glühkerze gespeichert. Als Alternative oder zusätzlich zu den oben beschriebenen Vorgehensweisen wird dieser Urvektor bei Durchführung des Verfahrens während jedes nachfolgenden Glühzyklusses ausgelesen und zur Vorgabe von Bedingungen für die Vergleichswerte des jeweiligen Glühzyklusses verwendet. Als mögliche Bedingung kann für die Vergleichswerte festgelegt werden, dass sie nicht über einen vorgegebenen Wert von entsprechenden Komponenten des Urvektors abweichen dürfen. Handelt es sich zum Beispiel bei dem Glühzyklus 8 in der
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200810007391 DE102008007391A1 (en) | 2008-02-04 | 2008-02-04 | Early failure detection on a glow plug supplied with a continuous train of voltage pulses |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2085607A1 true EP2085607A1 (en) | 2009-08-05 |
Family
ID=40436501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08105784A Withdrawn EP2085607A1 (en) | 2008-02-04 | 2008-11-12 | Malfunction early recognition for a glow plug supplied with continuous consequence of tension pulses |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2085607A1 (en) |
DE (1) | DE102008007391A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160195056A1 (en) * | 2012-12-27 | 2016-07-07 | Bosch Corporation | Glow plug diagnosis method and vehicle glow plug drive control apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009061079B4 (en) * | 2009-05-05 | 2016-09-29 | Borgwarner Ludwigsburg Gmbh | Method for determining the heating characteristic of a glow plug |
DE102009020148B4 (en) | 2009-05-05 | 2011-09-01 | Beru Ag | Method for determining the heating characteristic of a glow plug |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359848A1 (en) * | 1988-09-20 | 1990-03-28 | Siemens Aktiengesellschaft | Device for preventing DC powered heating resistors from overheating |
DE19718750A1 (en) * | 1996-05-10 | 1997-11-13 | Volkswagen Ag | Temperature measurement method for diesel engine heater plug |
US6148258A (en) * | 1991-10-31 | 2000-11-14 | Nartron Corporation | Electrical starting system for diesel engines |
DE102006010083A1 (en) * | 2005-09-21 | 2007-06-06 | Beru Ag | Glow plugs group controlling method for diesel engine, involves calculating electric resistance of glow plugs by subtracting resistance of supply line of plug glowing element during engine operation |
DE102006025834A1 (en) * | 2006-06-02 | 2007-12-06 | Beru Ag | Method for controlling a glow plug in a diesel engine |
-
2008
- 2008-02-04 DE DE200810007391 patent/DE102008007391A1/en not_active Withdrawn
- 2008-11-12 EP EP08105784A patent/EP2085607A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359848A1 (en) * | 1988-09-20 | 1990-03-28 | Siemens Aktiengesellschaft | Device for preventing DC powered heating resistors from overheating |
US6148258A (en) * | 1991-10-31 | 2000-11-14 | Nartron Corporation | Electrical starting system for diesel engines |
DE19718750A1 (en) * | 1996-05-10 | 1997-11-13 | Volkswagen Ag | Temperature measurement method for diesel engine heater plug |
DE102006010083A1 (en) * | 2005-09-21 | 2007-06-06 | Beru Ag | Glow plugs group controlling method for diesel engine, involves calculating electric resistance of glow plugs by subtracting resistance of supply line of plug glowing element during engine operation |
DE102006025834A1 (en) * | 2006-06-02 | 2007-12-06 | Beru Ag | Method for controlling a glow plug in a diesel engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160195056A1 (en) * | 2012-12-27 | 2016-07-07 | Bosch Corporation | Glow plug diagnosis method and vehicle glow plug drive control apparatus |
US9822755B2 (en) * | 2012-12-27 | 2017-11-21 | Bosch Corporation | Glow plug diagnosis method and vehicle glow plug drive control apparatus |
EP2940288A4 (en) * | 2012-12-27 | 2018-01-10 | Bosch Corporation | Glow plug diagnosis method and device for controlling driving of vehicle glow plug |
Also Published As
Publication number | Publication date |
---|---|
DE102008007391A1 (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1344003B1 (en) | Method for conducting a cooking process with a cooking process probe | |
DE69433701T2 (en) | Device for testing the electrical components of an inverter | |
EP0440757B1 (en) | Process and device for checking the operability of an exhaust gas probe heater and its supply system | |
DE102014217402A1 (en) | Method and device for diagnosing the function of an exhaust gas sensor | |
DE102007034251A1 (en) | Error analysis method for a lambda probe | |
DE10255583B4 (en) | Misfire detection device for an internal combustion engine | |
DE102013004114A1 (en) | Oxygen sensor control device | |
EP2249025A2 (en) | Method for determining the heating characteristics and the type of a glow plug | |
DE102008007398A1 (en) | Method and device for detecting the change of glow plugs in an internal combustion engine | |
DE102011119005A1 (en) | Method for determining characteristic quantity of individual cell or battery composite cell, involves charging individual cell or cell assembly with current pulse | |
EP0816816B1 (en) | Method for model-supported simulation of the temperature of the cooling means in a motor vehicle | |
DE102005037717B3 (en) | Method of treating or identifying faults in an exterior temperature sensor of a vehicle based on temperature gradient | |
DE102019217538A1 (en) | METHODS AND SYSTEMS FOR CARRYING OUT DIAGNOSTIC PROCESSES WITH REDUCED PROCESSING TIME | |
DE19839073A1 (en) | Diagnosis method for automobile ignition system | |
EP2085607A1 (en) | Malfunction early recognition for a glow plug supplied with continuous consequence of tension pulses | |
DE10319530A1 (en) | Monitoring electromechanical actuator, especially piezo-actuator for injector, involves controlling actuator with electrical test signal with alternating component when determining actuator operating parameter | |
DE102013011868A1 (en) | Oxygen sensor control device, method for controlling an oxygen sensor and computer readable recording medium | |
DE102008007397A1 (en) | Method for monitoring at least one glow plug of an internal combustion engine and device for this purpose | |
WO2021058302A1 (en) | Method and device for determining an item of temperature information describing a temperature of a resistance temperature detector, inverter, vehicle and computer program | |
EP2652297B1 (en) | Method for detecting the operational readiness of a jump lambda sensor | |
DE102009056261A1 (en) | Method for heating a glow plug | |
DE102007035188B4 (en) | Method for heating a gas sensor | |
DE102012222312A1 (en) | Method for characterizing temperature sensor, involves supplying amount of energy to temperature sensor to effect change in temperature, where change of resistance value of temperature sensor is detected | |
DE3939630A1 (en) | SYSTEM FOR DETECTING ABNORMALITIES IN ELECTRICAL CIRCUITS | |
DE102017007303A1 (en) | MOTOR CONTROL DEVICE, CONTROL METHOD AND CONTROL PROGRAM FOR SPECIFYING A TYPE OF TEMPERATURE SENSOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20100205 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130601 |