EP2078824A1 - Double-blade with wings - Google Patents
Double-blade with wings Download PDFInfo
- Publication number
- EP2078824A1 EP2078824A1 EP09150327A EP09150327A EP2078824A1 EP 2078824 A1 EP2078824 A1 EP 2078824A1 EP 09150327 A EP09150327 A EP 09150327A EP 09150327 A EP09150327 A EP 09150327A EP 2078824 A1 EP2078824 A1 EP 2078824A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blade
- blades
- face
- trailing edge
- inner face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007423 decrease Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/146—Shape, i.e. outer, aerodynamic form of blades with tandem configuration, split blades or slotted blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/33—Shrouds which are part of or which are rotating with the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/126—Baffles or ribs
Definitions
- the present invention relates to a blade having a leading edge and a trailing edge.
- leading edge and trailing edge are defined relative to the direction of normal air flow along the blade.
- the air is compressed by several stages of blades arranged axially along the main axis P of the turbomachine, each stage comprising a series of blades arranged along a circumference around this main axis P
- a stage is called a bladed wheel.
- the blades extend from a circumferential platform centered on the main axis P, substantially radially outwardly to an annular housing.
- the height of a blade is the radial dimension of this blade, that is to say substantially the difference between the radius of the casing and the radius of the platform.
- each blade 1 of this bladed wheel extends between the radially outer surface (wall) 81 of the platform 80 and the radially inner surface (wall) 91 of the casing 90.
- This blade 1 consisting of a single blade, is called a single blade.
- the radially inner end 8 of the blade 1 is integral with the platform 80.
- the radially outer end 9 of the blade 1 is fixed to the casing 90 if it is a fixed blade, and is free. it is a moving dawn.
- the bladed wheel therefore comprises this wall 81 of the platform 80, the blades 1, and this wall 91 of the casing 90 according to whether it is blades 1 fixed or mobile.
- Each blade 1 has a leading edge 2 and a trailing edge 3, the axis A (axis of the blade) connecting these two edges being substantially parallel to the main axis P of the turbomachine, or making an acute angle with this main axis P.
- Each blade 1 is curved with respect to its axis A so that one of the faces connecting its leading edge 2 to its trailing edge 3 is convex (convex face 4), while the another face connecting its leading edge to its trailing edge is concave (concave face 5).
- the number of blades on a bladed wheel is a compromise between the reduction of the weight of this bladed wheel, the mechanical strength of a blade (subjected to thermal stresses, and mechanical stresses due to the high speed rotation of the blade). the bladed wheel), and the aerodynamic efficiency of a blade and consequently the performance aerodynamic of the bladed wheel.
- the current geometry of the blades does not allow any significant improvement in the aerodynamic performance of a bladed wheel comprising these blades.
- the invention aims to provide blades that have a better aerodynamic performance, without compromising the mechanical strength of these blades.
- the blade comprises a first blade having an inner face and an outer face which extend between the leading edge and the trailing edge of the blade, a second blade having an inner face. and an outer face extending between its leading edge and its trailing edge, and at least one blade connecting the inner face of the first blade and the inner face of the second blade, the at least one blade extending to the trailing edge.
- the blade according to the invention has an increased mechanical strength compared to a blade consisting of a single blade.
- This increased mechanical strength allows a reduction in the average thickness of each blade constituting the blade.
- This reduction in thickness contributes to improving the aerodynamic efficiency of the blade, since the natural flow of air passing around the blades is less disturbed.
- the blades guide the air between the two blades, this guided air itself helping to guide the air flowing along the outer walls of the two blades at the trailing edge of the blade, in particular thanks to the fact that the blades 30 extend to the trailing edge of the blade.
- the turbulence of the flow at the trailing edge is minimized.
- the aerodynamic efficiency of dawn is further improved.
- the blade comprises at least three blades.
- This larger number of blades makes it possible to stiffen the dawn better, and to better guide the air flowing in the space between the first dawn and the second dawn.
- the invention also relates to a bladed wheel having on its circumference a series of blades according to the invention.
- each of the blades according to the invention allows a greater spacing of the blades between them along the circumference of the wheel platform. bladed relative to the spacing between single-blade vanes on a bladed wheel of the prior art.
- a bladed wheel according to the invention can therefore be equal to or less than a bladed wheel provided with of single-blade blades, and with a higher yield.
- the figure 2 represents a blade 100 according to the invention, mounted on a platform 80.
- the blade 100 comprises a first blade 10, a second blade 20, each of these blades being similar to a single blade and therefore having a convex face, a concave face , a leading edge and a trailing edge. These two blades are aligned side by side so that the concave face 15 of the first blade 10 is, over substantially its entire surface, facing the convex face 24 of the second blade 20. There is thus defined a space 40 between the first blade 10 and the second blade 20.
- the concave face 15 is thus called internal face 15 of the first blade 10, and the convex face 24 is thus called internal face 24 of the second blade 20.
- the convex face 14 of the first blade blade 10 and the concave face 25 of the second blade 20 constitute the outer faces of the blade 100.
- the convex face 14 is therefore called the outer face 14 of the first blade 10
- the concave face 25 is therefore called the outer face 25 of the second blade 20.
- the dawn 100 is called dawn with split blades.
- the inner face 15 of the first blade 10 and the inner face 24 of the second blade 20 are interconnected by one or more blades 30 disposed in the space 40.
- Each blade has a leading edge 32, an edge of 33, and between the two a central portion with a radially lower face 38 (that is to say oriented towards the platform 80) and a radially upper face 39 (that is to say facing the housing 90) .
- Each blade 30 is a continuous connecting element which connects these two internal faces, this connecting element forming both a reinforcement which contributes to the cohesion and the mechanical strength of the blade 100, and a guide, along its length.
- Each blade 30 may have its interior hollow, or full.
- the blades 30 extend substantially from the leading edge 12 of the first blade 10 and the leading edge 22 of the second blade 20 to the trailing edge 13 of the first blade 10 and the trailing edge 23 of the first blade 10. the second blade 20.
- the leading edge 102 of the blade 100 is thus constituted by the leading edges 12 and 22 of the first blade 10 and the second blade 20, respectively.
- the trailing edge 103 of the blade 100 is formed by the trailing edges 13 and 23 of the first blade 10 and the second blade 20, respectively.
- the blades 30 are oriented in the direction of the leading edge 102 towards the trailing edge 103, substantially perpendicular to the leading edge 102 and the trailing edge 103.
- the blade 100 since it comprises two blades, has an increased mechanical strength compared to a single blade. This increased mechanical strength allows a reduction in the average thickness of each blade constituting the blade 100, that is to say that the first blade 10 and the second blade 20 each have a thickness less than that of a blade monoblade.
- the total weight of the blade 100 may even be substantially equal to the weight of a single blade 1.
- the blade 100 has a better aerodynamic efficiency than a single blade thanks to the blades 30.
- a bladed wheel according to the invention can therefore be equal to or less than a bladed wheel provided with single blades. This results in a reduction in the weight of a turbomachine provided with bladed wheels according to the invention, so its fuel consumption.
- the blade 100 according to the invention has a better resistance to temperature than a single blade, since the blade 100 has more heat exchange surface than a single blade.
- the blade 100 may comprise several blades 30.
- the blade may comprise at least three blades, with a first blade 30 A located between 0% and 30% of the height of the blade 100, a last blade 30 N located between 70% and 100% of the height of the blade 100, and a blade located substantially in the middle of the height of the blade 100, a height of 0% corresponding to the radially inner end of the blade, and a height of 100% corresponding to the radially outer end of the blade.
- the additional blades, if any, are located at regular intervals between these blades.
- first blade 30 A is not too far from the platform 80 (in this case less than 30% of the height of the blade 100) in order to more effectively reduce the turbulence generated by the surface radially 81 outside the platform 80 in the flow.
- last 30 N blade is not too far from the housing 90 (in this case more than 70% of the height of the blade 100) in order to more effectively reduce the turbulence generated by the radially inner surface 91 of the housing 90 in the flow.
- the blade 100 may comprise a number of blades greater than three, for example 4, 5, 6, 7, or more, distributed over its entire height.
- the Figures 2 to 5 represent a blade 100 having five blades 30.
- the blades are not in position. too many.
- the radial distance between two adjacent blades 30 is greater than the distance D between the inner face 15 of the first blade 10 and the inner face 24 of the second blade 20.
- the distance D between the inner face 15 of the first blade 10 and the inner face 24 of the second blade 20 is at most equal to three times the maximum thickness of the first or second blade.
- the distance D is of the order of magnitude of this maximum thickness.
- the distance D between the first blade 10 and the second blade 20 is less than 15 mm.
- the distance D is between 2 and 5 mm.
- This distance D can vary along the blade 30 between its leading edge 32 and its trailing edge 33, in which case the distance D is the average distance between the two blades.
- each of the blades 30 has a profile such that turbulence / vortices of the flow of air along this blade 30 are minimized.
- the blades 30 substantially follow the flow lines of the air flow in the space 40 between the first blade 10 and the second blade 20 as it would take place if these blades 30 were not present, in order to disturb this airflow to a minimum.
- the profile and the disposition of the first blade 30 A which is the closest to the wall (radially outer surface 81) of the platform 80, and the profile and the disposition of the last blade 30 N , which is the most close to the wall (radially inner surface 91) of the housing 90, are of particular importance.
- the flow lines of the flow between the blades are defined in particular by the wall 81 of the platform 80 and the wall 91 of the casing 90 at the radially inner and outer ends respectively of the blade, that is to say to say that the flow lines near these walls are substantially parallel to these walls.
- the first blade 30 A is substantially parallel to the wall 81 of the platform 80
- the last blade 30 N is substantially parallel to the wall 91 of the housing 90, as shown in FIGS. Figures 4 and 5 .
- At least one of the blades 30 is rectilinear.
- At least one of the blades 30 has at least one curvature in a plane extending along the height of said blade (that is to say a radial plane containing the main axis P of the turbomachine).
- the blades 30 do not follow the flow of air in the space 40 as would occur if these blades were not present, and instead that these blades force the air to to flow more towards the foot of the dawn 100.
- a divergence of the flow of air between two blades generally occurs (that is to say that the flow of air flowing between two adjacent blades tends to climb from the foot to the head of dawn when it runs along these blades) which is undesirable.
- the flow of air is influenced between two adjacent blades 100, and thus contributes to reducing the divergence of this flow of air.
- each of the blades 30 is shown with a constant thickness between its leading edge 32 and its trailing edge 33 (the thickness of a blade 30 being its dimension according to the height of the blade 100 to which it belongs).
- the leading edges 32 and the trailing edges 33 of the blades 30 are substantially rectangular.
- the thickness of a blade 30 may decrease from its middle to its leading edge 32 so that the leading edge 32 forms an edge.
- the thickness of a blade 30 may decrease from its center towards its trailing edge 33 so that this trailing edge 33 forms an edge. In this way, the disturbances of the air flow in the space 40 between the first blade 10 and the second blade 20 are decreased relative to a blade of constant thickness.
- This reduction in thickness of the blade 30 may be progressive, or the thickness may be substantially constant along the blade 30, and decrease only in the vicinity of the ends (leading edge 32 and / or trailing edge 33 ), as shown on the figure 5 .
- the profile of the internal / external face of a blade or a blade is defined as the geometry of the surface of this face.
- the profiles of the inner face 15 of the first blade and the inner face 24 of the second blade are identical, and the profiles of the outer face 14 of the first blade and the outer face 25 of the second blade are identical.
- the different geometry of the blade 100 according to the invention with respect to a single blade causes a modification of the aerodynamic characteristics of the blade 100.
- the outer face 14 of the first blade 10, the inner face 15 of the blade first blade 10, the inner face 24 of the second blade 20, and the outer face 25 of the second blade 20, all have different profiles, so that the flow of air in the space 40 between the first blade 10 and the second blade 20 and around the blade 100 is optimized.
- the profile of the outer face 14 of the first blade 10 is different from the profile of the convex face 4 of a single blade
- the profile of the outer face 25 of the second blade 20 is different from the profile of the face. concave 5 of a single blade of the prior art.
- the profiles of the inner and outer faces of the first blade 10 and the profiles of the inner and outer faces of the second blade 20 are respectively different profiles of the inner and outer faces of a first blade and profiles of the inner faces and external of a second blade which would be placed close to each other without blades 30 connecting them.
- the blades 30 extend from the leading edge 102 to the trailing edge 103 of the blade 100, as shown in FIG. figure 5 .
- the blades 30 can start at a distance from the leading edge 102, extending to the trailing edge 103, as shown in FIG. figure 4 .
- the leading edge 32 of the blades 30 starts set back by a distance d with respect to the leading edge 102 of the blade 100.
- This distance d is, for example, less than 10% of the distance between the edge d attack 102 and the trailing edge 103.
- the plane or the surface containing a blade 30 is substantially perpendicular to the inner faces 15, 24 of the blades that this blade 30 joins.
- a blade 30 may be twisted around the median curve which joins the leading edge 32 of the blade to its trailing edge 33. This twist is intended to cause the blades 30 to substantially follow the flow lines of the blade. the flow of air in the space 40 between the first blade 10 and the second blade 20 as would occur if these blades 30 were not present, in order to disturb this airflow to a minimum.
- the blade may be made of various materials: steel, nickel-base or cobalt-based superalloy, titanium alloy, aluminum alloy, composite material with a matrix, for example a polymer, ceramic or metal matrix, reinforced with fibers, for example carbon fibers, kevlar, glass, or metal.
- the blade 100 according to the invention can be manufactured using various methods, depending on the material constituting the blade 100.
- blade 100 includes two blades.
- the blade 100 may comprise more than two blades.
- the blade 100 may further comprise a third blade located between the first blade 10 and the second blade 20, the third blade having a first face and a second face extending between the leading edge 102 and the first blade. trailing edge 103 of the blade 100, the first face being connected to the inner face 15 of the first blade 10 by at least one blade 30 and the second face being connected to the inner face 24 of the second blade 20 by at least this blade 30.
- the blade 100 comprises three blades, the third blade being located between the first blade 10 and the second blade 20. These three blades are aligned side by side so that the concave face 15 of the first blade 10 is, on substantially all of its surface, opposite the convex face (first face) of the third blade, and that the convex face 24 of the second blade 20 is, over substantially its entire surface, facing the concave face of the third blade.
- the blades 30 connecting the first blade 10 to the second blade 20 pass through the third blade (or merge with the third blade at their intersection with the third blade, according to the manufacturing method of the blade). It can also be considered that each blade 30 is in two parts, a first part connecting the first blade 10 and the third blade, and, in the extension of this first part, a second portion connecting the third blade and the second blade 20.
- This blade with three blades is, from an aerodynamic point of view, more effective than a blade 100 with two blades, because the flow of air between these blades and along the outside of this blade is better guided. .
- the invention applies to the case of a turbomachine comprising at least one blade 100 according to the invention.
- the invention has been described in the case of non-cooled LP turbine blades or mobile vanes.
- the invention is also applicable to non-cooled high pressure turbine blades (HP), fixed or mobile.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
La présente invention concerne une aube possédant un bord d'attaque et un bord de fuite.The present invention relates to a blade having a leading edge and a trailing edge.
Dans la description qui suit les termes "bord d'attaque" et "bord de fuite" sont définis par rapport au sens de circulation normal de l'air le long de l'aube.In the following description the terms "leading edge" and "trailing edge" are defined relative to the direction of normal air flow along the blade.
Dans une turbomachine, l'air est comprimé par plusieurs étages d'aubes disposées axialement le long de l'axe principal P de la turbomachine, chaque étage comprenant une série d'aubes disposées le long d'une circonférence autour de cet axe principal P. Un tel étage est appelé roue aubagée. Les aubes s'étendent, depuis une plateforme circonférentielle centrée sur l'axe principal P, sensiblement radialement vers l'extérieur jusqu'à un carter annulaire. La hauteur d'une aube est la dimension radiale de cette aube, c'est-à-dire sensiblement la différence entre le rayon du carter et le rayon de la plateforme.In a turbomachine, the air is compressed by several stages of blades arranged axially along the main axis P of the turbomachine, each stage comprising a series of blades arranged along a circumference around this main axis P Such a stage is called a bladed wheel. The blades extend from a circumferential platform centered on the main axis P, substantially radially outwardly to an annular housing. The height of a blade is the radial dimension of this blade, that is to say substantially the difference between the radius of the casing and the radius of the platform.
Comme représenté sur la
Chaque aube 1 possède un bord d'attaque 2 et un bord de fuite 3, l'axe A (axe de l'aube) reliant ces deux bords étant sensiblement parallèle à l'axe principal P de la turbomachine, ou faisant un angle aigu avec cet axe principal P. Chaque aube 1 est incurvée par rapport à son axe A de telle sorte qu'une des faces reliant son bord d'attaque 2 à son bord de fuite 3 est convexe (face convexe 4), tandis que l'autre face reliant son bord d'attaque à son bord de fuite est concave (face concave 5).Each
Le nombre d'aubes sur une roue aubagée est un compromis entre la réduction du poids de cette roue aubagée, la résistance mécanique d'une aube (soumise à des contraintes thermiques, et à des contraintes mécaniques du fait de la rotation à grande vitesse de la roue aubagée), et le rendement aérodynamique d'une aube et en conséquence le rendement aérodynamique de la roue aubagée. La géométrie actuelle des aubes ne permet pas d'amélioration significative des performances aérodynamiques d'une roue aubagée comportant ces aubes.The number of blades on a bladed wheel is a compromise between the reduction of the weight of this bladed wheel, the mechanical strength of a blade (subjected to thermal stresses, and mechanical stresses due to the high speed rotation of the blade). the bladed wheel), and the aerodynamic efficiency of a blade and consequently the performance aerodynamic of the bladed wheel. The current geometry of the blades does not allow any significant improvement in the aerodynamic performance of a bladed wheel comprising these blades.
L'invention vise à proposer des aubes qui possèdent un meilleur rendement aérodynamique, sans compromettre la résistance mécanique de ces aubes.The invention aims to provide blades that have a better aerodynamic performance, without compromising the mechanical strength of these blades.
Ce but est atteint grâce au fait que l'aube comprend une première pale possédant une face interne et une face externe qui s'étendent entre le bord d'attaque et le bord de fuite de l'aube, une deuxième pale possédant une face interne et une face externe qui s'étendent entre son bord d'attaque et son bord de fuite, et au moins une lame reliant la face interne de la première pale et la face interne de la deuxième pale, la au moins une lame s'étendant jusqu'au bord de fuite.This object is achieved by virtue of the fact that the blade comprises a first blade having an inner face and an outer face which extend between the leading edge and the trailing edge of the blade, a second blade having an inner face. and an outer face extending between its leading edge and its trailing edge, and at least one blade connecting the inner face of the first blade and the inner face of the second blade, the at least one blade extending to the trailing edge.
Grâce à ces dispositions, l'aube selon l'invention a une résistance mécanique accrue comparée à une aube constituée d'une seule pale. Cette résistance mécanique accrue autorise une réduction de l'épaisseur moyenne de chacune des pales constituant l'aube. Cette réduction d'épaisseur contribue à améliorer le rendement aérodynamique de l'aube, puisque l'écoulement naturel de l'air passant autour des pales est moins perturbé. De plus, les lames guident l'air entre les deux pales, cet air guidé contribuant lui-même à guider l'air s'écoulant le long des parois externes des deux pales au niveau du bord de fuite de l'aube, en particulier grâce au fait que les lames 30 s'étendent jusqu'au bord de fuite de l'aube. Ainsi, les turbulences de l'écoulement au niveau du bord de fuite sont minimisées. Par conséquent, le rendement aérodynamique de l'aube est encore amélioré.With these provisions, the blade according to the invention has an increased mechanical strength compared to a blade consisting of a single blade. This increased mechanical strength allows a reduction in the average thickness of each blade constituting the blade. This reduction in thickness contributes to improving the aerodynamic efficiency of the blade, since the natural flow of air passing around the blades is less disturbed. In addition, the blades guide the air between the two blades, this guided air itself helping to guide the air flowing along the outer walls of the two blades at the trailing edge of the blade, in particular thanks to the fact that the
Avantageusement, l'aube comporte au minimum trois lames.Advantageously, the blade comprises at least three blades.
Ce nombre plus important de lames permet de mieux rigidifier l'aube, et de mieux guider l'air s'écoulant dans l'espace entre la première aube et la deuxième aube.This larger number of blades makes it possible to stiffen the dawn better, and to better guide the air flowing in the space between the first dawn and the second dawn.
L'invention concerne également une roue aubagée comportant sur sa circonférence une série d'aubes selon l'invention.The invention also relates to a bladed wheel having on its circumference a series of blades according to the invention.
L'amélioration du rendement aérodynamique de chacune des aubes selon l'invention (par rapport à une aube monopale), rendue possible grâce à leur géométrie, autorise un espacement plus grand des aubes entre elles le long de la circonférence de la plateforme de la roue aubagée par rapport à l'espacement entre des aubes monopale sur une roue aubagée de l'art antérieur. Au total, malgré le fait qu'une aube individuelle selon l'invention puisse être d'un poids supérieur au poids d'une aube monopale, une roue aubagée selon l'invention peut donc être de poids égal ou inférieur à une roue aubagée munie d'aubes monopale, et avec un rendement supérieur.The improvement of the aerodynamic efficiency of each of the blades according to the invention (with respect to a single blade), made possible by their geometry, allows a greater spacing of the blades between them along the circumference of the wheel platform. bladed relative to the spacing between single-blade vanes on a bladed wheel of the prior art. In total, despite the fact that an individual blade according to the invention can be of a weight greater than the weight of a single blade, a bladed wheel according to the invention can therefore be equal to or less than a bladed wheel provided with of single-blade blades, and with a higher yield.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la
figure 1 est une vue en perspective d'aubes selon l'art antérieur, - la
figure 2 est une vue en perspective d'une aube selon l'invention, - la
figure 3 est une coupe transversale selon le plan III-III de l'aube de lafigure 2 , - la
figure 4 est une coupe longitudinale selon le plan IV-IV de l'aube de lafigure 3 , - la
figure 5 est une coupe longitudinale d'un autre mode de réalisation de l'aube de lafigure 3 .
- the
figure 1 is a perspective view of blades according to the prior art, - the
figure 2 is a perspective view of a blade according to the invention, - the
figure 3 is a cross section along the plane III-III of the dawn of thefigure 2 , - the
figure 4 is a longitudinal section along plane IV-IV of the dawn of thefigure 3 , - the
figure 5 is a longitudinal section of another embodiment of the dawn of thefigure 3 .
La
La face interne 15 de la première pale 10 et la face interne 24 de la deuxième pale 20 sont reliées entre elles par une ou plusieurs lames 30, disposées dans l'espace 40. Chaque lame possède un bord d'attaque 32, un bord de fuite 33, et entre les deux une partie centrale avec une face radialement inférieure 38 (c'est-à-dire orientée vers la plateforme 80) et une face radialement supérieure 39 (c'est-à-dire orientée vers le carter 90).The
Chaque lame 30 est un élément de liaison continu qui relie ces deux faces internes, cet élément de liaison formant à la fois un renfort qui participe à la cohésion et à la résistance mécanique de l'aube 100, et un guide, le long de sa face radialement inférieure 38, et de sa face radialement supérieure 39, pour l'écoulement de l'air entre la première pale 10 et la deuxième pale 20. Chaque lame 30 peut avoir son intérieur creux, ou plein.Each
Les lames 30 s'étendent sensiblement depuis le bord d'attaque 12 de la première pale 10 et le bord d'attaque 22 de la deuxième pale 20 jusqu'au bord de fuite 13 de la première pale 10 et au bord de fuite 23 de la deuxième pale 20. Le bord d'attaque 102 de l'aube 100 est ainsi constitué par les bords d'attaque 12 et 22 de la première pale 10 et de la deuxième pale 20, respectivement. Le bord de fuite 103 de l'aube 100 est constitué par les bords de fuite 13 et 23 de la première pale 10 et de la deuxième pale 20, respectivement. Les lames 30 sont orientées selon la direction du bord d'attaque 102 vers le bord de fuite 103, sensiblement perpendiculairement au bord d'attaque 102 et au bord de fuite 103.The
L'aube 100, puisqu'elle comprend deux pales, possède une résistance mécanique accrue comparée à une aube monopale. Cette résistance mécanique accrue autorise une réduction de l'épaisseur moyenne de chacune des pales constituant l'aube 100, c'est-à-dire que la première pale 10 et la deuxième pale 20 ont chacune une épaisseur moindre que celle d'une aube monopale. Le poids total de l'aube 100 peut même être sensiblement égal au poids d'une aube monopale 1. De plus, comme expliqué plus haut, l'aube 100 a un meilleur rendement aérodynamique qu'une aube monopale, grâce aux lames 30. Sur une roue aubagée comportant des aubes 100 selon l'invention, cette amélioration du rendement aérodynamique autorise un espacement plus grand des aubes 100 entre elles le long de la circonférence de la plateforme 80 de la roue aubagée par rapport à l'espacement entre des aubes monopale sur une roue aubagée de l'art antérieur. Au total, une roue aubagée selon l'invention peut donc être de poids égal ou inférieur à une roue aubagée munie d'aubes monopale. Il en résulte une diminution du poids d'une turbomachine munie de roues aubagées selon l'invention, donc de sa consommation en carburant.The
De plus, l'aube 100 selon l'invention possède une meilleure tenue à la température qu'une aube monopale, puisque l'aube 100 possède plus de surface d'échange thermique qu'une aube monopale.In addition, the
L'aube 100 peut comporter plusieurs lames 30. Par exemple, l'aube peut comporter au minimum trois lames, avec une première lame 30A située entre 0% et 30% de la hauteur de l'aube 100, une dernière lame 30N située entre 70% et 100% de la hauteur de l'aube 100, et une lame située sensiblement au milieu de la hauteur de l'aube 100, une hauteur de 0% correspondant à l'extrémité radialement interne de l'aube, et une hauteur de 100% correspondant à l'extrémité radialement externe de l'aube. Les lames supplémentaires, le cas échéant, sont situées à intervalles réguliers entre ces lames.The
Il est important que la première lame 30A ne soit pas trop éloignée de la plateforme 80 (en l'espèce à moins de 30% de la hauteur de l'aube 100) afin de pouvoir plus efficacement diminuer les turbulences générées par la surface radialement extérieure 81 de la plateforme 80 dans l'écoulement. De même, il est important que la dernière lame 30N ne soit pas trop éloignée du carter 90 (en l'espèce à plus de 70% de la hauteur de l'aube 100) afin de pouvoir plus efficacement diminuer les turbulences générées par la surface radialement intérieure 91 du carter 90 dans l'écoulement.It is important that the
L'aube 100 peut comporter un nombre de lames supérieur à trois, par exemple 4, 5, 6, 7, ou plus, réparties sur toute sa hauteur. Les
La distance D entre la face interne 15 de la première pale 10 et la face interne 24 de la deuxième pale 20 est au plus égale à trois fois l'épaisseur maximale de la première ou deuxième pale. Par exemple, la distance D est de l'ordre de grandeur de cette épaisseur maximale.The distance D between the
De préférence la distance D entre la première pale 10 et la deuxième pale 20 est inférieure à 15 mm. Par exemple la distance D est comprise entre 2 et 5 mm. Cette distance D peut varier le long de la lame 30 entre son bord d'attaque 32 et son bord de fuite 33, dans ce cas la distance D est la distance moyenne entre les deux pales.Preferably the distance D between the
Avantageusement, dans une roue aubagée comportant des aubes 100, chacune des lames 30 possède un profil tel que les turbulences/tourbillons de l'écoulement de l'air le long de cette lame 30 sont minimisées. Par exemple, les lames 30 suivent sensiblement les lignes de flux de l'écoulement d'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 tel qu'il aurait lieu si ces lames 30 n'étaient pas présentes, afin de perturber au minimum cet écoulement d'air.Advantageously, in a bladed
Notamment, le profil et la disposition de la première lame 30A, qui est la plus proche de la paroi (surface radialement extérieure 81) de la plateforme 80, et le profil et la disposition de la dernière lame 30N, qui est la plus proche de la paroi (surface radialement intérieure 91) du carter 90, ont une importance particulière.In particular, the profile and the disposition of the
En effet, les lignes de flux de l'écoulement entre les pales sont notamment définies par la paroi 81 de la plateforme 80 et la paroi 91 du carter 90 aux extrémités respectivement radialement interne et externe de l'aube, c'est-à-dire que les lignes de flux à proximité de ces parois sont sensiblement parallèles à ces parois. Ainsi, la première lame 30A est sensiblement parallèle à la paroi 81 de la plateforme 80, et la dernière lame 30N est sensiblement parallèle à la paroi 91 du carter 90, comme représenté sur les
Par exemple, au moins une des lames 30 est rectiligne.For example, at least one of the
Par exemple, au moins une des lames 30 possède au moins une courbure dans un plan s'étendant selon la hauteur de ladite aube (c'est-à-dire un plan radial contenant l'axe principal P de la turbomachine).For example, at least one of the
Il est possible également que les lames 30 ne suivent pas l'écoulement d'air dans l'espace 40 tel qu'il aurait lieu si ces lames 30 n'étaient pas présentes, et au contraire que ces lames forcent l'air à s'écouler davantage vers le pied de l'aube 100. En effet, il est connu qu'il se produit en général une divergence de l'écoulement d'air entre deux aubes (c'est-à-dire que le flux d'air circulant entre deux aubes adjacentes a tendance à monter du pied vers la tête de l'aube lorsqu'il longe ces aubes) qui est indésirable. En forçant le flux d'air dans l'espace 40 à s'écouler davantage vers le pied de l'aube 100, on influence l'écoulement d'air entre deux aubes 100 adjacentes, et on contribue ainsi à réduire aussi la divergence de cet écoulement d'air.It is also possible that the
Sur les
Cette diminution d'épaisseur de la lame 30 peut être progressive, ou l'épaisseur peut être sensiblement constante le long de la lame 30, et ne diminuer qu'au voisinage des extrémités (bord d'attaque 32 et/ou bord de fuite 33), comme représenté sur la
Le profil de la face interne/externe d'une aube ou d'une pale est défini comme la géométrie de la surface de cette face. Par exemple les profils de la face interne 15 de la première pale et de la face interne 24 de la deuxième pale sont identiques, et les profils de la face externe 14 de la première pale et de la face externe 25 de la deuxième pale sont identiques. Cependant, la géométrie différente de l'aube 100 selon l'invention par rapport à une aube monopale entraîne une modification des caractéristiques aérodynamiques de l'aube 100. Avantageusement, la face externe 14 de la première pale 10, la face interne 15 de la première pale 10, la face interne 24 de la deuxième pale 20, et la face externe 25 de la deuxième pale 20, ont toutes des profils différents, de telle sorte que l'écoulement de l'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 et autour de l'aube 100 est optimisé. De plus, le profil de la face externe 14 de la première pale 10 est différent du profil de la face convexe 4 d'une aube monopale, et le profil de la face externe 25 de la deuxième pale 20 est différent du profil de la face concave 5 d'une aube monopale de l'art antérieur. En particulier, les profils des faces interne et externe de la première pale 10 et les profils des faces interne et externe de la deuxième pale 20 sont différents respectivement des profils des faces interne et externe d'une première pale et des profils des faces interne et externe d'une deuxième pale qui seraient placées à proximité l'une de l'autre sans lames 30 les reliant entre elles.The profile of the internal / external face of a blade or a blade is defined as the geometry of the surface of this face. For example, the profiles of the
Les lames 30 s'étendent depuis le bord d'attaque 102 jusqu'au bord de fuite 103 de l'aube 100, comme représenté sur la
Le plan ou la surface contenant une lame 30 est sensiblement perpendiculaire aux faces internes 15, 24 des pales que cette lame 30 joint. Alternativement, une lame 30 peut être en torsion autour de la courbe médiane qui joint le bord d'attaque 32 de la lame à son bord de fuite 33. Cette torsion est destinée à faire en sorte que lames 30 suivent sensiblement les lignes de flux de l'écoulement d'air dans l'espace 40 entre la première pale 10 et la deuxième pale 20 tel qu'il aurait lieu si ces lames 30 n'étaient pas présentes, afin de perturber au minimum cet écoulement d'air.The plane or the surface containing a
L'aube peut être réalisée en divers matériaux : acier, superalliage à base nickel ou cobalt, alliage de titane, alliage d'aluminium, matériau composite avec une matrice, par exemple une matrice polymère, céramique, ou métallique, renforcée par des fibres, par exemple des fibres de carbone, de kevlar, de verre, ou de métal.The blade may be made of various materials: steel, nickel-base or cobalt-based superalloy, titanium alloy, aluminum alloy, composite material with a matrix, for example a polymer, ceramic or metal matrix, reinforced with fibers, for example carbon fibers, kevlar, glass, or metal.
L'aube 100 selon l'invention peut être fabriquée en utilisant divers procédés, selon le matériau constituant l'aube 100.The
Dans la description ci-dessus, l'aube 100 comprend deux pales. Alternativement, l'aube 100 peut comporter plus de deux pales. Par exemple, l'aube 100 peut comporter en outre une troisième pale située entre la première pale 10 et la deuxième pale 20, la troisième pale possédant une première face et une seconde face qui s'étendent entre le bord d'attaque 102 et le bord de fuite 103 de l'aube 100, la première face étant reliée à la face interne 15 de la première pale 10 par au moins une lame 30 et la seconde face étant reliée à la face interne 24 de la deuxième pale 20 par au moins cette lame 30.In the above description,
Ainsi, l'aube 100 comprend trois pales, la troisième pale se situant entre la première pale 10 et la deuxième pale 20. Ces trois pales sont alignées côte à côte de telle sorte que la face concave 15 de la première pale 10 est, sur sensiblement toute sa surface, en regard de la face convexe (première face) de la troisième pale, et que la face convexe 24 de la deuxième pale 20 est, sur sensiblement toute sa surface, en regard de la face concave de la troisième pale. Les lames 30 reliant la première pale 10 à la deuxième pale 20 traversent la troisième pale (ou se fondent avec cette troisième pale à leur intersection avec cette troisième pale, selon le mode de fabrication de l'aube). On peut également considérer que chaque lame 30 est en deux parties, une première partie reliant la première pale 10 et la troisième pale, et, dans le prolongement de cette première partie, une seconde partie reliant la troisième pale et la deuxième pale 20.Thus, the
Cette aube 100 à trois pales est, d'un point de vue aérodynamique, plus efficace qu'une aube 100 à deux pales, car l'écoulement d'air entre ces pales et le long de l'extérieur de cette aube est mieux guidé. En conséquence, il est possible de diminuer le nombre total d'aubes 100 sur une roue aubagée en les espaçant davantage, jusqu'à obtenir une roue aubagée plus légère qu'une roue aubagée avec des aubes monopale.This blade with three blades is, from an aerodynamic point of view, more effective than a
L'invention s'applique au cas d'une turbomachine comportant au moins une aube 100 selon l'invention.The invention applies to the case of a turbomachine comprising at least one
L'invention a été décrite dans le cas d'aubes fixes ou mobiles de turbine BP non-refroidies. L'invention s'applique également à des aubes de turbine haute pression (HP) non-refroidies, fixes ou mobiles.The invention has been described in the case of non-cooled LP turbine blades or mobile vanes. The invention is also applicable to non-cooled high pressure turbine blades (HP), fixed or mobile.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0850120A FR2926322B1 (en) | 2008-01-10 | 2008-01-10 | DAWN BI-BLADE WITH BLADES. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2078824A1 true EP2078824A1 (en) | 2009-07-15 |
EP2078824B1 EP2078824B1 (en) | 2018-11-07 |
Family
ID=39832654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09150327.6A Active EP2078824B1 (en) | 2008-01-10 | 2009-01-09 | Blade with double airfoils, corresponding bladed rotor and turbomachine |
Country Status (6)
Country | Link |
---|---|
US (1) | US8021113B2 (en) |
EP (1) | EP2078824B1 (en) |
JP (1) | JP5474358B2 (en) |
CA (1) | CA2649397C (en) |
FR (1) | FR2926322B1 (en) |
RU (1) | RU2492330C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3081913A1 (en) * | 2018-06-04 | 2019-12-06 | Safran Aircraft Engines | BLADE OF TURBOMACHINE COMPRISING AN ANTI-VIRTUAL FIN |
FR3087828A1 (en) * | 2018-10-26 | 2020-05-01 | Safran Helicopter Engines | MOBILE TURBOMACHINE BLADES |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10145253B2 (en) * | 2012-04-05 | 2018-12-04 | Safran Aircraft Engines | Stator vane formed by a set of vane parts |
US9506353B2 (en) | 2012-12-19 | 2016-11-29 | United Technologies Corporation | Lightweight shrouded fan blade |
US20180017037A1 (en) * | 2016-07-14 | 2018-01-18 | James L. Kissel | Hub and Rotor Assemby for Wind Turbines with Conjoined Turbine Blades |
US20190101128A1 (en) * | 2017-10-01 | 2019-04-04 | Papa Abdoulaye MBODJ | Wing or blade design for wingtip device, rotor, propeller, turbine, and compressor blades with energy regeneration |
JP7390920B2 (en) * | 2020-02-14 | 2023-12-04 | 三菱重工業株式会社 | Boosting equipment, carbon dioxide cycle plants and combined cycle plants |
US12123391B2 (en) | 2023-01-10 | 2024-10-22 | United Arab Emirates University | Wind turbine blade having air passage with air cleaning member |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3692425A (en) * | 1969-01-02 | 1972-09-19 | Gen Electric | Compressor for handling gases at velocities exceeding a sonic value |
FR2574113A1 (en) * | 1984-12-05 | 1986-06-06 | Lejeloux Patrick | Helical rotating machine rotor |
US5257908A (en) * | 1991-11-15 | 1993-11-02 | Ortolano Ralph J | Turbine lashing structure |
EP0781929A1 (en) * | 1995-12-28 | 1997-07-02 | Institut Francais Du Petrole | Device for pumping or compressing a multi-phase fluid comprising tandem blading |
WO2005040559A1 (en) * | 2003-10-17 | 2005-05-06 | Paolo Pietricola | High lift rotor or stator blades with multiple adjacent airfoils cross-section |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE573799C (en) * | 1930-12-05 | 1933-04-05 | Johanna Langhans Geb Ulrich | Blading for gas and steam turbines |
US2714499A (en) * | 1952-10-02 | 1955-08-02 | Gen Electric | Blading for turbomachines |
US3040971A (en) * | 1960-03-02 | 1962-06-26 | American Mach & Foundry | Methods of compressing fluids with centripetal compressors |
US3335483A (en) * | 1961-12-19 | 1967-08-15 | Gen Electric | Method of manufacturing a stator assembly for turbomachines |
US3164367A (en) * | 1962-11-21 | 1965-01-05 | Gen Electric | Gas turbine blade |
US3388888A (en) * | 1966-09-14 | 1968-06-18 | Gen Electric | Cooled turbine nozzle for high temperature turbine |
US3883268A (en) * | 1971-11-01 | 1975-05-13 | Gen Electric | Blunted leading edge fan blade for noise reduction |
US3957392A (en) * | 1974-11-01 | 1976-05-18 | Caterpillar Tractor Co. | Self-aligning vanes for a turbomachine |
US4195396A (en) * | 1977-12-15 | 1980-04-01 | Trw Inc. | Method of forming an airfoil with inner and outer shroud sections |
US4464094A (en) * | 1979-05-04 | 1984-08-07 | Trw Inc. | Turbine engine component and method of making the same |
SU1460433A2 (en) * | 1986-10-21 | 1989-02-23 | Свердловский горный институт им.В.В.Вахрушева | Axial=flow fan vane |
US5088894A (en) * | 1990-05-02 | 1992-02-18 | Westinghouse Electric Corp. | Turbomachine blade fastening |
JPH05280495A (en) * | 1992-03-31 | 1993-10-26 | Ishikawajima Harima Heavy Ind Co Ltd | Fan moving blade |
US5368440A (en) * | 1993-03-11 | 1994-11-29 | Concepts Eti, Inc. | Radial turbo machine |
US5524341A (en) * | 1994-09-26 | 1996-06-11 | Westinghouse Electric Corporation | Method of making a row of mix-tuned turbomachine blades |
JPH08159090A (en) * | 1994-12-01 | 1996-06-18 | Sharp Corp | Axial flow fan |
DE69526840T2 (en) * | 1994-12-28 | 2003-01-23 | Ebara Corp., Tokio/Tokyo | Turbo machine with flow control devices with variable angle |
US5797725A (en) * | 1997-05-23 | 1998-08-25 | Allison Advanced Development Company | Gas turbine engine vane and method of manufacture |
JP3668413B2 (en) * | 2000-04-27 | 2005-07-06 | サンキテクノス株式会社 | Axial flow fan with multi guide vane |
US6599092B1 (en) * | 2002-01-04 | 2003-07-29 | General Electric Company | Methods and apparatus for cooling gas turbine nozzles |
DE10355241A1 (en) * | 2003-11-26 | 2005-06-30 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid flow machine with fluid supply |
US7195454B2 (en) * | 2004-12-02 | 2007-03-27 | General Electric Company | Bullnose step turbine nozzle |
US7520728B2 (en) * | 2006-09-07 | 2009-04-21 | Pratt & Whitney Canada Corp. | HP turbine vane airfoil profile |
-
2008
- 2008-01-10 FR FR0850120A patent/FR2926322B1/en active Active
-
2009
- 2009-01-08 CA CA2649397A patent/CA2649397C/en active Active
- 2009-01-09 US US12/351,323 patent/US8021113B2/en active Active
- 2009-01-09 EP EP09150327.6A patent/EP2078824B1/en active Active
- 2009-01-09 JP JP2009003165A patent/JP5474358B2/en active Active
- 2009-01-11 RU RU2009100686/06A patent/RU2492330C2/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3692425A (en) * | 1969-01-02 | 1972-09-19 | Gen Electric | Compressor for handling gases at velocities exceeding a sonic value |
FR2574113A1 (en) * | 1984-12-05 | 1986-06-06 | Lejeloux Patrick | Helical rotating machine rotor |
US5257908A (en) * | 1991-11-15 | 1993-11-02 | Ortolano Ralph J | Turbine lashing structure |
EP0781929A1 (en) * | 1995-12-28 | 1997-07-02 | Institut Francais Du Petrole | Device for pumping or compressing a multi-phase fluid comprising tandem blading |
WO2005040559A1 (en) * | 2003-10-17 | 2005-05-06 | Paolo Pietricola | High lift rotor or stator blades with multiple adjacent airfoils cross-section |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3081913A1 (en) * | 2018-06-04 | 2019-12-06 | Safran Aircraft Engines | BLADE OF TURBOMACHINE COMPRISING AN ANTI-VIRTUAL FIN |
FR3087828A1 (en) * | 2018-10-26 | 2020-05-01 | Safran Helicopter Engines | MOBILE TURBOMACHINE BLADES |
Also Published As
Publication number | Publication date |
---|---|
CA2649397A1 (en) | 2009-07-10 |
RU2492330C2 (en) | 2013-09-10 |
FR2926322A1 (en) | 2009-07-17 |
US20090220348A1 (en) | 2009-09-03 |
EP2078824B1 (en) | 2018-11-07 |
RU2009100686A (en) | 2010-07-20 |
FR2926322B1 (en) | 2012-08-03 |
US8021113B2 (en) | 2011-09-20 |
JP2009168024A (en) | 2009-07-30 |
CA2649397C (en) | 2016-05-10 |
JP5474358B2 (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2078824B1 (en) | Blade with double airfoils, corresponding bladed rotor and turbomachine | |
EP2252770B1 (en) | Blade with non-axisymmetric platform | |
EP2844841B1 (en) | Metal reinforcement for a composite blade of a turbomachine | |
EP1726783B1 (en) | Hollow rotor blade for the turbine of a gas turbine engine, provided with a tip cup | |
EP2310690B1 (en) | Compressor impeller blade with variable elliptic connection | |
EP3212373B1 (en) | Composite blade comprising a platform equipped with a stiffener | |
EP2257694B1 (en) | Blade with 3d platform comprising an inter-blade bulb | |
EP2090747B1 (en) | Leading edge of a turbomachine part made of superelastic material | |
EP2260179A2 (en) | Blade with non-axisymmetric platform | |
FR2855439A1 (en) | PROCESS FOR THE MANUFACTURE OF A HOLLOW BLADE FOR A TURBOMACHINE. | |
FR2855441A1 (en) | HOLLOW BLADE FOR A TURBOMACHINE AND METHOD FOR MANUFACTURING SUCH A BLADE. | |
FR3029242A1 (en) | TURBOMACHINE TURBINE, COMPRISING INTERCROSSED PARTITIONS FOR AIR CIRCULATION IN DIRECTION OF THE LEAK EDGE | |
FR2965843A1 (en) | ROTOR FOR TURBOMACHINE | |
FR2855440A1 (en) | PROCESS FOR THE MANUFACTURE OF A HOLLOW BLADE FOR A TURBOMACHINE. | |
EP3394396B1 (en) | Leading edge sheath | |
EP3983652B1 (en) | Annular component for supporting a turbine engine bearing | |
WO2016174358A1 (en) | Variable-pitch stator blade comprising criss-cross transverse partitions and method of manufacturing such a blade | |
FR2953252A1 (en) | Distribution sector for low pressure turbine of e.g. turbojet of airplane, has outer platform sector comprising stiffeners located in extension of vanes and extended along axis parallel to tangent at upstream and downstream edges of vanes | |
FR3103855A1 (en) | Improved dawn leading edge structure. | |
FR3028494A1 (en) | TURBOMACHINE BLADE, COMPRISING PONTETS EXTENDING FROM THE WALL OF INTRADOS TO THE WALL OF EXTRADOS | |
WO2021181025A1 (en) | Ventilation system for an engine | |
FR3101107A1 (en) | DAWN FOR AN AIRCRAFT TURBOMACHINE | |
FR2954420A1 (en) | Outer shell part for rectifier of high pressure compressor in jet engine of aircraft, has reinforcement fixedly arranged on outer surface of core, between two directly consecutive holes, so as to be supported against each of flanges | |
FR3055352A1 (en) | DUST FOR TURBOMACHINE WITH A STRUCTURE REDUCING THE RISK OF CREAM APPEARANCE | |
FR3081521A1 (en) | TURBOMACHINE DAWN, WHOSE SECTIONS PRESENT AN INJURY PORTION OF REDUCED THICKNESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20100310 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180524 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAFRAN AIRCRAFT ENGINES |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009055451 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009055451 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231219 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231219 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231219 Year of fee payment: 16 |