[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2074686B1 - Funkenstreckenanordnung für höhere bemessungsspannungen - Google Patents

Funkenstreckenanordnung für höhere bemessungsspannungen Download PDF

Info

Publication number
EP2074686B1
EP2074686B1 EP08831279A EP08831279A EP2074686B1 EP 2074686 B1 EP2074686 B1 EP 2074686B1 EP 08831279 A EP08831279 A EP 08831279A EP 08831279 A EP08831279 A EP 08831279A EP 2074686 B1 EP2074686 B1 EP 2074686B1
Authority
EP
European Patent Office
Prior art keywords
spark gap
spark
arrangement according
gap arrangement
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08831279A
Other languages
English (en)
French (fr)
Other versions
EP2074686A1 (de
Inventor
Arnd Ehrhardt
Michael Waffler
Stephan Hierl
Werner Riel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dehn SE and Co KG
Original Assignee
Dehn and Soehne GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dehn and Soehne GmbH and Co KG filed Critical Dehn and Soehne GmbH and Co KG
Publication of EP2074686A1 publication Critical patent/EP2074686A1/de
Application granted granted Critical
Publication of EP2074686B1 publication Critical patent/EP2074686B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/16Overvoltage arresters using spark gaps having a plurality of gaps arranged in series

Definitions

  • the invention relates to a spark gap arrangement for higher rated voltages, wherein at least two spark gaps having opposite electrodes are connected in series and at least one of the spark gaps is active, i. triggerable, designed for use as a lightning current carrying mains arrester, according to the preamble of patent claim 1.
  • the local spark gaps have a very different inherent capacity, whereby the response voltage of the overall arrangement is determined essentially by the spark gap with the smaller capacity.
  • the partial spark gaps At the lightning current carrying multiple spark gap after EP 1 381 127 A2 is assumed by several, connected in series partial spark gaps, the partial spark gaps, with the exception of the lightning current event case first responding spark gap are connected by impedances, so that they switch through successively. The second and the further spark gaps are connected via the impedances directly to a common reference potential. With the spark gap presented there, the response voltage should be reduced. For this purpose, a trigger voltage is applied to at least the electrodes of one of the partial spark gaps, by means of which the partial spark gap is forced to switch through.
  • a spark arrestor overvoltage protection element with at least two located in a pressure-tight housing main electrodes and a Zündangeselektrode, wherein in the housing volume, a functional assembly is housed to reduce the An Anlagenschreib.
  • This functional module comprises a series connection of a voltage-switching element, an impedance and an isolating distance, so that a simplified, quasi-integrated starting aid is created.
  • a spark gap arrangement according to the preamble of claim 1 is also made DE-A-2 406 577 known. In summary, it belongs to the known state of the art to make spark gaps suitable for use at higher rated voltages by series connection. A simple series connection leads to triggerable spark gaps in addition to the considerable costs to restrictions in terms of protection level and the coordination of the arrester and usually requires an additional complex potential control.
  • spark gaps are used, which are located in a flameproof enclosure and which have at least one pressure equalization opening. Furthermore, the distance between the main electrodes of the passive spark gap bridging insert is provided, which consists of a low-resistance material. This material behaves strongly under current load with respect to the decreasing residual voltage nonlinear.
  • the series connection is formed from two physically separated spark gaps, one of the spark gaps being triggerable and the second spark gap being passive.
  • the spark gaps are accommodated in a common, pressure-resistant, preferably metallic housing.
  • the spark gaps preferably used are rotationally symmetrical.
  • the respective opposing main electrodes comprise a main electrode with Gasumlenkkanal.
  • the bridging, low-impedance insert already mentioned is arranged as a preferably rotationally symmetrical part with a cylindrical opening delimiting the arc combustion chamber.
  • the main electrode opposite the main electrode with the gas deflection channel has a nose portion or a projection which dips into the cylindrical opening, with the wall coming into contact with it. It is understood that the nose portion is to be formed in its outer contour complementary to the shape of the cylindrical opening.
  • the low-resistance material of the insert preferably has a cold resistance of ⁇ 100 ohms.
  • the insert has in one embodiment, a hollow cylindrical shape and is located with one end face over the entire surface of the main electrode with Gasumlenkkanal.
  • the preferably hollow-cylindrical insert in each case with one of its end faces, is in contact with one main electrode in each case over its entire surface.
  • the flashover between the main electrodes takes place only after a comparatively longer period of time or at very high pulse currents, which is of particular interest when the residual voltage of the spark gap is to be above the rated voltage for a plurality of pulse-shaped discharges in order to prevent a Netz Steinstrom ,
  • the clear distance between the respective main electrodes of the spark gaps is substantially greater than that which can be found in the known state of the art in corresponding series circuits, and is at least about 5 mm.
  • the pressure equalization openings are basically oriented in the axial direction of the rotationally symmetric spark gaps and are away from one another in order to prevent unwanted exposure of functionally important parts.
  • a transition part may be provided which has a higher resistance value relative to the insert, but is conductive.
  • the geometric shape of the insert can be subjected to changes in the radial and / or axial direction for adjusting and varying the current density, so that in the preferred rotationally symmetrical basic construction and a desired modular structure by replacing the insert various electrical parameters can be realized.
  • a common central main electrode is preferably provided, which in this case is insulated from the jacket encapsulation.
  • the pressure compensation openings are designed axially and opposite in the region of the external contact of the respective main electrode as channels of small cross section for the slow pressure reduction of the already cooled gas. Also based on the design of the pressure equalization channels and the meandering deflection of the gas flow is to the patent application DE 10 2007 001 093.3 directed.
  • the external trigger circuit for igniting the active spark gap is guided on the trigger electrode of this active spark gap and on the electrical end connection points of the series connection.
  • the necessary follow current limiting is achieved by increasing the arc field strength due to the pressure increase or in combination with the arc cooling by flowing the arc within encapsulated spark gaps.
  • the distances between the main electrodes are at least 5 mm.
  • the low-resistance material of the insert is located within the passive spark gap directly in the region of the arc channel and radially or completely limits the wall-stabilized arc.
  • the material that bridges the distance between the main electrodes of the passive spark gap has a cold resistance of less than 100 ohms and behaves at current load with respect to the falling residual voltage is highly linear, ie the voltage drops despite further increasing current.
  • the material used can momentarily pulse-shaped currents of several kA without lasting damage lead to overturning.
  • the resulting residual voltage is well below 2 kV.
  • the height and the duration of the residual stress can also be set or influenced by influencing the current density distribution in the material itself, by the geometric design of the insert or else by a functional subdivision from a plurality of materials.
  • the inventive passive spark gap does not affect the response, coordination and residual voltage behavior of the entire series connection.
  • the subdivision into partial spark gaps reduces the thermal and dynamic load on each single spark gap and there are many design options.
  • the performance of the series-connected lightning arrester is improved in terms of follow current limiting, lightning current carrying capacity and aging.
  • Compared to a series connection of two triggerable arresters there is the advantage that both space and costs for the second or multiple ignition units can be saved.
  • a conventional series connection of triggerable spark gaps namely either a simultaneous ignition must be done, which makes high demands on the spark gaps, the trigger circuit and the potential control, or the trigger circuit must be able to compensate the Zündverzugs founded the individual spark gaps, since usually trigger circuits only one time and energy provide limited ignition pulse.
  • the Fig. 1 shows a series connection (sectional view) of a triggered spark gap 1 (active spark gap) and an ungetriggered (passive) spark gap 2.
  • the trigger circuit 3 of the active spark gap 1 has a connection 4 which is connected to a connection 5 of a main electrode 8 of the passive spark gap 2. Another connection of the trigger circuit 3 leads to the main electrode 8 of the active spark gap 1, which also has the trigger contact through an insulation 20, led out of the pressure-resistant metallic encapsulation 21.
  • Pressure compensation openings 6 of the spark gaps 1 and 2 and the gas flow direction 7 (arrow) within the spark gaps 1 and 2 are oriented opposite.
  • Both spark gaps 1 and 2 each have a plurality of independent ventilation openings 6 for better control of the flow and for effective cooling of the gases formed during ignition and firing of the arc.
  • one of the main electrodes 8 has an opening 22, which forms part of a Gasumlenkkanals, which merges into the pressure equalization openings 6.
  • the triggerable spark gap 1 has two main electrodes, namely the main electrode 8 and 9, and an auxiliary electrode 10, which is in electrical connection with the trigger contact 20.
  • the spark gap 1 has at least one insulation gap 12, which is located between the main electrodes 8 and 9 of this spark gap.
  • the passive spark gap 2 also has two main electrodes 8 and 9.
  • a trained as a spacer 13 insert between the main electrodes 8 and 9 of the passive spark gap is preferably made in one piece from a very low-resistance material.
  • da 15 mm
  • di 5 mm
  • the spacer 13 is to prevent flashovers in the contacting region between the nose portion 23 of the main electrode 9 and the plate-shaped electrode holder 14 is insulated from the latter via the part 15.
  • the immersion depth of the nose portion 23 of the electrode 9 in the spacer 13 increases with the desired level of performance of the arrester and decreases with increasing erosion resistance of the electrode material.
  • the immersion depth is in this case dimensioned such that both the axial burnup of the nose electrode 9 and the radial erosion of the spacer 13 do not lead to an insulating separation path between the parts 13 and 9.
  • a spark generation is realized during the overturning of the insulation gap, which causes ionization, whereby the flashover is promoted.
  • the isolation is designed so that the Breakover voltage does not affect the response voltage and residual voltage of the spark gap.
  • the flashover voltage is so low that when the mains voltage is applied, the passive spark gap would always respond without series connection with the triggerable spark gap. Thus, this is virtually controlled and permanently loaded with electricity to burn. It follows that after ignition of the triggerable spark gap, the passive spark gap itself only at mains voltage current. The insulation is thus virtually absent and it ignites the passive spark gap with insulated electrodes as well due to the immediate current flow as well as without isolation. The function is identical to this. Only the current density distribution and the ionization lead to a rapid ignition of the main line of the passive spark gap.
  • the Fig. 2 shows an exemplary geometry as a cross-sectional representation of a passive spark gap. Again, two opposite main electrodes 8 and 9 are present. The electrodes are isolated in a metallic enclosure 21 located.
  • the spacer 13 can also be varied in the circumference of the hollow cylinder in both the radial and in the axial direction with respect to the electrical conductivity. In this way, in addition to the control of the electric current density in the spacer 13 and effects of thermal insulation with respect to the electrodes 8 and 9 are effected. In addition, the Variation of the materials used in the discharge channel of the division of functions or used to influence the temperature and pressure resistance and the better aging quality and to reduce the burnup.
  • the Fig. 2 shows here, for example, a substantially only axial function distribution.
  • the two electrodes 8 and 9 in Fig. 1 only 9) with respect to the metallic encapsulation 21 isolated.
  • the Fig. 3 shows a further embodiment of a possible geometry in cross-sectional view for the passive spark gap. 2
  • a flashover between the main electrodes 8 and 9 should be done only at a comparatively long period of time or very high pulse currents.
  • the spacer 13 is contacted on both sides of the entire surface with the respective main electrodes 8 and 9 in order to effect a largely homogeneous current density within the spacer 13.
  • increases in the electric field strength, in particular in the rollover area can be avoided.
  • FIG. 4 Let us illustrate a basic embodiment of two spark gaps in a cross-sectional view, which are located within a common metallic encapsulation 21.
  • Both spark gaps have a common center electrode 9, which is insulated from the flameproof enclosure 21. In the area of the passive spark gap 2, however, there is a low-resistance connection between the center electrode 9 and the main electrode 8 there. In contrast to the representation after Fig. 1 , in which at both spark gaps 1 and 2 in each case the main electrode 8 is in direct contact with the metallic shell 21, at least in one of the spark gaps 1 and 2 as shown Fig. 4 both main electrodes with respect to the jacket or the enclosure 21 isolated.
  • Fig. 4 This is the case with the passive spark gap 2.
  • main electrodes 8 and 9 which are insulated with respect to the metallic encapsulation 21.
  • the insulation of the main electrodes 8 and 9 is preferred over an insulating interruption of the pressure-resistant metallic shell 21 due to a better overload behavior.
  • the spark gaps accordingly Fig. 4 own as well as in Fig. 1 represented, opposite venting and pressure equalization openings or channels 6.
  • the main electrodes each have at least a distance of substantially 5 mm in both spark gaps 1 and 2.
  • the pressure in the discharge region, which is completely or partially enclosed by the insert 13, is up to several 100 bar in the case of impulse and subsequent static discharges. For prospective net sequence currents in the range of> 500 A to several kA, pressures of at least 10 bar are achieved.
  • the illustrated series circuit of two spark gaps can basically be extended as desired.
  • the series connection of a spark gap with insulation and a quasi-shorted spark gap has compared to two spark gaps, each with isolated separation distance per se the disadvantage that only one separation section provides an immediate consolidation after the current zero crossing.
  • the instant solidification voltage is in the range of about 300 V.
  • the danger of reignitions In order to be able to work with only one insulation distance, despite this disadvantage, the effect is used that the spark gaps used make use of the pressure increase that forms to delete the secondary current.
  • the material of the spacer can be homogeneous, but also inhomogeneous. For example, a radially decreasing conductivity ( Fig. 5a ) will be realized. It is also possible to carry out a segmented conductivity in the periphery down to conductive webs (see Fig. 5b and 5c ).
  • the region 1 is a high-impedance region, while the region 2 is low-resistance. If the spacer 13 is made homogeneous, the current density can be determined or adjusted by the electrically conductive contact surface and the positioning of this contact surface.
  • the contacts between the spacer 13 and the part 8 are reduced, for example, by a smaller inner radius of the disc or the insulating film on the part 8, less current flows in the spacer 13 until the flashover, since the current density in the interior of the part 13 increases.
  • the contact area between the parts 12 and 23 limited only to a limited height and the contact in the circumference, the current density increases in the inner tube region, ie in the discharge region of the spacer 13.
  • a lower current density is achieved, for example, at the end-face support of the part 13 on the plate of the electrode holder 14.

Landscapes

  • Spark Plugs (AREA)
  • Thermistors And Varistors (AREA)
  • Breakers (AREA)
  • Control Of Eletrric Generators (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

  • Die Erfindung betrifft eine Funkenstreckenanordnung für höhere Bemessungsspannungen, wobei mindestens zwei, gegenüberliegende Elektroden aufweisende Funkenstrecken in Reihe geschaltet sind und mindestens eine der Funkenstrecken aktiv, d.h. triggerbar ausgeführt ist, für den Einsatz als blitzstromtragfähiger Netzableiter, gemäß Oberbegriff des Patentanspruchs 1.
  • Eine Reihenschaltung von zwei Funkenstrecken für die Begrenzung von Überspannungen in Niederspannungsanlagen, bestehend aus drei Elektroden, wobei für die Schaffung jeder Funkenstrecke zwei dieser Elektroden sich jeweils mit einer Fläche gegenüberliegen und durch eine Isolationsschicht voneinander im Abstand gehalten sind, ist aus der DE 39 14 624 C2 vorbekannt. Die dortigen Funkenstrecken besitzen eine stark unterschiedliche Eigenkapazität, wodurch die Ansprechspannung der Gesamtanordnung im Wesentlichen durch die Funkenstrecke mit der kleineren Kapazität bestimmt wird.
  • Aus der DE 42 40 138 A1 ist eine ausblasende Funkenstrecke vorbekannt, bei welcher in Reihe zu einer kurzen Funkenstrecke mit Isolationsmaterial eine oder mehrere Funkenstrecken mit niederohmigem Material in Reihe geschaltet sind. Hierbei definiert die Funkenstrecke mit dem Isolationsmaterial die Ansprechspannung der Gesamtanordnung.
  • Bei der blitzstromtragfähigen Mehrfachfunkenstrecke nach EP 1 381 127 A2 wird von mehreren, in Reihe geschalteten Teilfunkenstrecken ausgegangen, wobei die Teilfunkenstrecken mit Ausnahme der im Blitzstromereignisfall ersten ansprechenden Funkenstrecke durch Impedanzen geschaltet sind, so dass diese sukzessive durchschalten. Die zweite und die weiteren Funkenstrecken sind über die Impedanzen direkt an ein gemeinsames Bezugspotential angeschlossen. Mit der dort vorgestellten Funkenstrecke soll die Ansprechspannung reduziert werden. Hierfür ist an mindestens die Elektroden einer der Teilfunkenstrecken eine Triggerspannung angelegt, mittels derer die Teilfunkenstrecke zum Durchschalten gezwungen wird.
  • Ähnliche Anordnungen mit mehreren Teilfunkenstrecken sind in der WO 07/003706 und der US 4,860,156 B1 für Anwendungen im Hochspannungsbereich offenbart.
  • Aus der DE 10 2004 006 988 A1 ist ein Überspannungsschutzelement auf Funkenstreckenbasis mit mindestens zwei in einem druckdichten Gehäuse befindlichen Hauptelektroden und einer Zündhilfselektrode vorbekannt, wobei im Gehäusevolumen eine Funktionsbaugruppe zum Reduzieren der Ansprechspannung untergebracht ist. Diese Funktionsbaugruppe umfasst eine Reihenschaltung eines spannungsschaltenden Elements, einer Impedanz und einer Trennstrecke, so dass eine vereinfachte, quasi integrierte Zündhilfe entsteht. Eine Funkenstreckenanordnung, gemäß Oberbegriff des Anspruchs 1 ist auch aus DE-A-2 406 577 bekannt.
    Zusammenfassend gehört es zum bekannten Stand der Technik, Funkenstrecken durch Reihenschaltung für den Einsatz bei höheren Bemessungsspannungen zu ertüchtigen. Eine einfache Reihenschaltung führt bei triggerbaren Funkenstrecken neben den erheblichen Kosten zu Einschränkungen hinsichtlich des Schutzpegels sowie der Koordinierbarkeit des Ableiters und erfordert im Regelfall auch eine zusätzliche aufwendige Potentialsteuerung.
  • Aus dem Vorgenannten ist es daher Aufgabe der Erfindung, eine weiterentwickelte Funkenstreckenanordnung für höhere Bemessungsspannungen anzugeben, wobei mindestens zwei, gegenüberliegende Elektroden aufweisende Funkenstrecken in Reihe geschaltet sind und mindestens eine der Funkenstrecken aktiv, d.h. triggerbar ausgeführt ist. Erfindungsgemäß soll hinsichtlich des Ansprechverhaltens und der Koordination ausschließlich die triggerbare, d.h. aktive Funkenstrecke der Gesamtanordnung dominieren. Bei dem Auftreten von Netzfolgeströmen soll die Anordnung wie eine übliche Reihenschaltung von Funkenstrecken wirken. Die Lichtbogenspannung setzt sich aus den Teilspannungen der beiden Funkenstrecken zusammen und es teilt sich auch nach dem Stromnulldurchgang die wiederkehrende Netzspannung auf die Funkenstrecken auf. Damit gilt es aufgabengemäß, zwischen der getriggerten und der passiven Funkenstrecke eine belastungsabhängige Funktionsteilung zu sichern.
  • Die Lösung der Aufgabe erfolgt durch eine Funkenstreckenanordnung gemäß der Merkmalskombination nach Patentanspruch 1, wobei die Unteransprüche mindestens zweckmäßige Ausgestaltungen und Weiterbildungen darstellen.
  • Bei der erfindungsgemäßen Reihenschaltung werden Funkenstrecken eingesetzt, die sich in einer druckfesten Kapselung befinden und welche mindestens eine Druckausgleichsöffnung aufweisen. Weiterhin ist ein den Abstand der Hauptelektroden der passiven Funkenstrecke überbrückender Einsatz vorgesehen, der aus einem niederohmigen Material besteht. Dieses Material verhält sich bei Strombelastung hinsichtlich der abfallenden Restspannung stark nichtlinear.
  • Bei einer ersten Ausführungsvariante wird die Reihenschaltung aus zwei körperlich separierten Funkenstrecken gebildet, wobei eine der Funkenstrecken triggerbar und die zweite Funkenstrecke passiv ausgeführt ist. Bei einer weiteren Ausführungsform sind die Funkenstrecken in einem gemeinsamen, druckfesten, bevorzugt metallischen Gehäuse untergebracht.
  • Die bevorzugt eingesetzten Funkenstrecken sind rotationssymmetrisch ausgeführt. Die jeweiligen gegenüberliegenden Hauptelektroden umfassen eine Hauptelektrode mit Gasumlenkkanal. Bezüglich der Grundkonstruktion der eingesetzten Funkenstrecken sei auf die Lehre nach Patent DE 10 2005 024 658 B4 verwiesen.
  • Zwischen den sich gegenüberliegenden Hauptelektroden der mindestens einen passiven Funkenstrecke ist der bereits erwähnte überbrückende, niederohmige Einsatz als bevorzugt rotationssymmetrisches Teil mit zylinderförmiger, den Lichtbogenbrennraum begrenzender Öffnung angeordnet. Die der Hauptelektrode mit Gasumlenkkanal gegenüberliegende Hauptelektrode weist einen Nasenabschnitt oder einen Vorsprung auf, welcher in die zylinderförmige Öffnung, mit der Wandung dieser in Kontakt kommend, eintaucht. Es versteht sich, dass der Nasenabschnitt in seiner Außenkontur komplementär zur Gestalt der zylinderförmigen Öffnung auszubilden ist.
  • Das niederohmige Material des Einsatzes weist bevorzugt einen Kaltwiderstand von < 100 Ohm auf.
  • Der Einsatz besitzt bei einer Ausführungsvariante eine Hohlzylinderform und liegt mit einer Stirnseite vollflächig an der Hauptelektrode mit Gasumlenkkanal an.
  • Weiterhin besteht die Möglichkeit, dass der bevorzugt hohlzylinderförmige Einsatz mit jeweils einer seiner Stirnseiten jeweils vollflächig in Kontakt mit jeweils einer Hauptelektrode steht.
    Bei dieser Ausführungsform erfolgt der Überschlag zwischen den Hauptelektroden erst nach einer vergleichsweise längeren Zeitdauer oder bei sehr hohen Impulsströmen, was insbesondere dann von Interesse ist, wenn die Restspannung der Funkenstrecke bei einer Vielzahl von impulsförmigen Entladungen oberhalb der Nennspannung liegen soll, um einen Netzfolgestrom zu unterbinden.
  • Der lichte Abstand zwischen den jeweiligen Hauptelektroden der Funkenstrecken ist wesentlich größer als derjenige, wie er im bekannten Stand der Technik bei entsprechenden Reihenschaltungen zu finden ist, und liegt mindestens bei ca. 5 mm.
  • Die Druckausgleichsöffnungen sind grundsätzlich in axiale Richtung der rotationssymmetrischen Funkenstrecken orientiert und weisen voneinander weg, um eine unerwünschte Berußung von funktionswichtigen Teilen zu verhindern.
  • Zwischen dem rotationssymmetrischen Teil mit zylinderförmiger Öffnung und der Hauptelektrode mit Nasenabschnitt kann bei einer weiteren Ausführungsform ein Übergangsteil vorgesehen sein, welches gegenüber dem Einsatz einen höheren Widerstandswert aufweist, jedoch leitfähig ist.
  • Die geometrische Gestalt des Einsatzes kann in radialer und/oder axialer Richtung zur Einstellung und Variation der Stromdichte Veränderungen unterworfen werden, so dass bei der bevorzugten rotationssymmetrischen Grundkonstruktion und einem gewünschten modulartigen Aufbau durch Austausch des Einsatzes verschiedenartige elektrische Parameter verwirklicht werden können.
  • Bei einer Anordnung von zwei Funkenstrecken in einem gemeinsamen, druckfesten Gehäuse ist bevorzugt eine gemeinsame Mittel-Hauptelektrode vorgesehen, welche in diesem Fall gegenüber der Mantelkapselung isoliert ist.
  • Die Druckausgleichsöffnungen sind axial und gegenüberliegend im Bereich der Außenkontaktierung der jeweiligen Hauptelektrode als Kanäle kleinen Querschnitts zum langsamen Druckabbau des bereits abgekühlten Gases ausgeführt. Auch bezogen auf die Ausbildung der Druckausgleichskanäle und der mäanderförmigen Umlenkung der Gasströmung sei auf die Patentanmeldung DE 10 2007 001 093.3 verwiesen.
  • Die externe Triggerschaltung zum Zünden der aktiven Funkenstrecke ist auf die Triggerelektrode dieser aktiven Funkenstrecke und auf die elektrischen Endanschlusspunkte der Reihenschaltung geführt.
  • Zusammenfassend gelingt es, mit der vorgestellten Funkenstreckenanordnung Standard-Funkenstrecken in gekapselter, druckfester Ausführung mit Druckausgleichsöffnungen für höhere Nennspannungen durch Reihenschaltung zu ertüchtigen, wobei in einer einfachen Basisvariante nur eine einzige getriggerte Funkenstrecke mit einer einzigen passiven Funkenstrecke in Reihe verschaltet wird. Bei der Erfindungslehre wird die notwendige Folgestrombegrenzung durch die Erhöhung der Lichtbogenfeldstärke infolge der Druckerhöhung bzw. in Kombination mit der Lichtbogenkühlung durch Beströmen des Lichtbogens innerhalb von gekapselten Funkenstrecken erreicht. Dabei betragen die Abstände der Hauptelektroden mindestens 5 mm. Das niederohmige Material des Einsatzes befindet sich innerhalb der passiven Funkenstrecke unmittelbar im Bereich des Lichtbogenkanals und begrenzt radial vollständig oder teilweise den wandstabilisierten Lichtbogen.
  • Das Material, das den Abstand zwischen den Hauptelektroden der passiven Funkenstrecke überbrückt, weist einen Kaltwiderstand von weniger als 100 Ohm auf und verhält sich bei Strombelastung hinsichtlich der abfallenden Restspannung stark linear, d.h. die Spannung fällt trotz weiter steigendem Strom ab. Das eingesetzte Material kann kurzzeitig impulsförmige Ströme von mehreren kA ohne nachhaltige Schädigung bis zum Überschlagen führen. Die dabei entstehende Restspannung liegt deutlich unter 2 kV. Die Höhe und die Dauer der Restspannung kann zudem über die Beeinflussung der Stromdichteverteilung im Material selbst, durch die geometrische Gestaltung des Einsatzes bzw. aber auch durch eine funktionale Unterteilung aus mehreren Materialien eingestellt bzw. beeinflusst werden.
  • Die erfindungsgemäße passive Funkenstrecke beeinflusst nicht das Ansprech-, Koordinations- und Restspannungsverhalten der gesamten Reihenschaltung. Durch die Unterteilung in Teilfunkenstrecken sinkt die thermische und dynamische Belastung jeder Einzelfunkenstrecke und es ergeben sich vielfältige konstruktive Gestaltungsmöglichkeiten. Das Leistungsvermögen des sich aus der Reihenschaltung ergebenden Blitzstromableiters ist hinsichtlich der Folgestrombegrenzung, des Blitzstromtragvermögens und der Alterung verbessert. Gegenüber einer Reihenschaltung von zwei triggerbaren Ableitern ergibt sich der Vorteil, dass sowohl Raum als auch Kosten für die zweite bzw. mehrere Zündeinheiten eingespart werden können. Bei einer üblichen Reihenschaltung von triggerbaren Funkenstrecken muss nämlich entweder eine zeitgleiche Zündung erfolgen, was hohe Anforderungen an die Funkenstrecken, die Triggerschaltung und die Potentialsteuerung stellt, oder es muss die Triggerschaltung die Zündverzugszeiten der einzelnen Funkenstrecken ausgleichen können, da üblicherweise Triggerschaltungen nur einen zeitlich und energetisch begrenzten Zündimpuls liefern. Durch den Einsatz einer oder mehrerer passiver Funkenstrecken in der erfindungsgemäßen Ausführungsform der Reihenschaltung können die Kosten für zusätzliche Zündschaltungen eingespart werden.
  • Die Erfindung soll nachstehend anhand von Ausführungsbeispielen sowie unter Zuhilfenahme von Figuren näher erläutert werden.
  • Hierbei zeigen:
  • Fig. 1
    eine Reihenschaltung einer getriggerten Funkenstrecke und einer passiven, ungetriggerten Funkenstrecke als diskrete Elemente in jeweils druckfester Kapselung;
    Fig. 2
    eine beispielhafte Geometrie einer passiven Funkenstrecke, wie sie für die Reihenschaltung gemäß der Erfindung zur Anwendung kommt;
    Fig. 3
    eine weitere Ausführungsform einer Geometrie einer passiven Funkenstrecke, wie sie erfindungsgemäß bei der Reihenschaltung zur Anwendung kommt;
    Fig. 4
    eine besonders bauraumsparende Anordnung einer getriggerten und einer passiven Funkenstrecke in einer gemeinsamen, metallischen druckfesten Kapselung mit gegenüberliegenden Druckausgleichsöffnungen in Form von Kanälen kleinen Querschnitts; und
    Fig. 5
    beispielhafte Ausführungsformen des Einsatz- oder Distanzstücks.
  • Die Fig. 1 zeigt eine Reihenschaltung (Schnittdarstellung) einer getriggerten Funkenstrecke 1 (aktive Funkenstrecke) und einer ungetriggerten (passiven) Funkenstrecke 2.
  • Die Triggerschaltung 3 der aktiven Funkenstrecke 1 weist einen Anschluss 4 auf, der mit einem Anschluss 5 einer Hauptelektrode 8 der passiven Funkenstrecke 2 in Verbindung steht. Ein weiterer Anschluss der Triggerschaltung 3 führt zur Hauptelektrode 8 der aktiven Funkenstrecke 1, die auch den Triggerkontakt durch eine Isolation 20, herausgeführt aus der druckfesten metallischen Kapselung 21 besitzt.
  • Druckausgleichsöffnungen 6 der Funkenstrecken 1 und 2 und die Gasströmungsrichtung 7 (Pfeildarstellung) innerhalb der Funkenstrecken 1 und 2 sind entgegengesetzt orientiert.
  • Beide Funkenstrecken 1 und 2 besitzen jeweils mehrere unabhängige Entlüftungsöffnungen 6 zur besseren Steuerung der Strömung und zur effektiven Abkühlung der beim Zünden und Brennen des Lichtbogens entstehenden Gase. Jeweils eine der Hauptelektroden 8 besitzt eine Öffnung 22, die einen Teil eines Gasumlenkkanals bildet, der in die Druckausgleichsöffnungen 6 übergeht.
  • Die triggerbare Funkenstrecke 1 besitzt zwei Hauptelektroden, nämlich die Hauptelektrode 8 und 9, sowie eine Hilfselektrode 10, die mit dem Triggerkontakt 20 in elektrischer Verbindung steht.
  • Weiterhin weist die Funkenstrecke 1 mindestens eine Isolationsstrecke 12 auf, die sich zwischen den Hauptelektroden 8 und 9 dieser Funkenstrecke befindet.
  • Auch die passive Funkenstrecke 2 weist zwei Hauptelektroden 8 und 9 auf. Ein als Distanzstück 13 ausgebildeter Einsatz zwischen den Hauptelektroden 8 und 9 der passiven Funkenstrecke ist bevorzugt einstückig aus einem sehr niederohmigen Material gefertigt. Bei einer bevorzugten Geometrie von da = 15 mm, di = 5 mm und h = 5 mm ergibt sich bei einem Prüfstrom von wenigen mA ein Kaltwiderstand von < 100 Ohm.
  • Das Distanzstück 13 ist bevorzugt als Hohlzylinder ausgeführt und liegt gemäß der Darstellung nach Fig. 1 mit einer seiner Stirnseiten vollflächig auf der Hauptelektrode 8 auf. In den Innenraum des Einsatzes 13 , d.h. der dort vorhandenen zylindrischen Öffnung, ragt ein Nasenabschnitt 23 der Hauptelektrode 9 hinein, wodurch sich ein radialer Kontakt mit dem Einsatz bzw. dem Distanzstück 13 ergibt.
  • Das Distanzstück 13 ist zur Vermeidung von Überschlägen im Kontaktierungsbereich zwischen dem Nasenabschnitt 23 der Hauptelektrode 9 und der tellerförmigen Elektrodenhalterung 14 gegen diese über das Teil 15 isoliert.
  • Die Eintauchtiefe des Nasenabschnitts 23 der Elektrode 9 in das Distanzstück 13 steigt mit der gewünschten Höhe der Leistungsfähigkeit des Ableiters und sinkt bei steigender Abbrandfestigkeit des Elektrodenmaterials. Die Eintauchtiefe ist hierbei so bemessen, dass sowohl der axiale Abbrand der Nasenelektrode 9 als auch der radiale Abbrand des Distanzstücks 13 nicht zu einer isolierenden Trennstrecke zwischen den Teilen 13 und 9 führt.
    Nach dem Ansprechen der Funkenstrecke 1 bei Impulsbelastung fließt ein Strom bis zu mehreren kA über das Distanzstück 13, bis der Weg zwischen den Elektroden 8 und 9 der passiven Funkenstrecke 2 überschlagen wird. Infolge des nichtlinearen Verhaltens des Materials des Distanzstücks 13 wird nur eine geringe Restspannung über dem Material des Distanzstücks 13 erzeugt, welche den Schutzpegel des gesamten Ableiters nicht erhöht.
  • Aufgrund von Fertigungs- und Materialtoleranzen, Verschmutzungen oder extremer Belastung können jedoch Kontaktprobleme oder ein verändertes Überschlagsverhalten des Distanzstücks 13 auftreten, wodurch sich unerwünschte Rückwirkungen auf die Restspannung des Ableiters ergeben können. Dies kann bei hohen Anforderungen an die Höhe und Dauer der Restspannung des Ableiters durch einen in der Triggerschaltung 3 integrierten Überspannungsfeinschutz und durch die Art der Kontaktierung, welche die passive Funkenstrecke umfasst, ausgeglichen werden.
  • Bei reproduzierbaren Fertigungs- und Materialeigenschaften bzw. nicht besonders hohen Beanspruchungen und/oder geringeren Anforderungen an die Schutzpegel kann die Kontaktierung der Triggereinrichtung auch zwischen den beiden Funkenstrecken, also nur an den Anschlüssen der Funkenstrecke 1, erfolgen.
  • Die Höhe und die Dauer des Stroms durch das Distanzstück 13 sowie das Überschlagsverhalten können neben den Materialeigenschaften dieses Teils auch durch die Steuerung der Stromdichte und die Stromverteilung im Distanzstück 13 beeinflusst werden. Dies kann neben der Beeinflussung der Restspannung auch zur Steuerung des Leistungsumsatzes, des Abbrands und der thermischen Belastung der Funkenstrecke und insbesondere des Einsatzstücks 13 genutzt werden. Die Hauptelektroden 8 und 9 der passiven Funkenstrecke 2 können gegenüber dem Distanzstück 13 vollständig oder teilweise isoliert werden. Die partielle Isolation dient der Steuerung des Stromübergangsbereichs, um die Stromdichteverteilung und die Überschlagsgeschwindigkeit zu beeinflussen. Die vollständige Isolation der Elektroden 8 und 9 gegenüber dem Distanzstück 13 dient demselben Ziel, d.h. der Konzentration der Stromdichte im bevorzugten Überschlagsbereich, insbesondere im Innenrohr des Distanzstücks.
  • Zusätzlich wird beim Überschlagen der Isolationsstrecke eine Funkenerzeugung realisiert, welche eine Ionisation bewirkt, wodurch der Überschlag gefördert wird. Die Isolation ist jedoch so ausgeführt, dass die Überschlagsspannung die Ansprechspannung und Restspannung der Funkenstrecke nicht beeinflusst. Des weiteren ist die Überschlagsspannung so gering, dass bei anliegender Netzspannung die passive Funkenstrecke ohne Reihenschaltung mit der triggerbaren Funkenstrecke stets ansprechen würde. Damit ist diese quasi durchgesteuert und permanent mit Strom belastet bis zum Abbrand. Hieraus ergibt sich, dass nach dem Zünden der triggerbaren Funkenstrecke die passive Funkenstrecke selbst nur bei Netzspannung Strom führt. Die Isolation ist damit quasi nicht vorhanden und es zündet die passive Funkenstrecke mit isolierten Elektroden ebenso infolge des sofortigen Stromflusses wie ohne Isolation. Die Funktion ist damit identisch. Nur die Stromdichteverteilung und die Ionisation führen zu einem raschen Zünden der Hauptstrecke der passiven Funkenstrecke.
  • Die Fig. 2 zeigt eine beispielhafte Geometrie als Querschnittsdarstellung für eine passive Funkenstrecke. Auch hier sind zwei gegenüberliegende Hauptelektroden 8 und 9 vorhanden. Die Elektroden sind isoliert in einer metallischen Kapselung 21 befindlich.
  • Die gezeigten Hauptelektroden 8 und 9 können gegenüber dem Einsatzstück 13 auch isoliert werden, wobei die Überschlagspannung der Isolation jedoch deutlich unterhalb des gewünschten Schutzpegels und auch unterhalb der Restspannung der Triggerschaltung liegen muss.
  • Alternativ zu einer Isolation ist ein definierter Übergangsbereich mit einer dünnen und gegenüber dem Distanzstück 13 hochohmigeren, jedoch elektrisch leitenden Schicht 16 möglich. Beide geschilderten Maßnahmen bedingen eine höhere Stromdichte an der quasi Kanalinnenseite des als Hohlzylinder ausgeführten Distanzstücks 13 und führen zu einem beschleunigten Überschlagsverhalten. Zusätzlich wird eine Vorionisation im isolierten bzw. hochohmigeren Bereich bewirkt.
  • Das Distanzstück 13 kann zudem im Umfang des Hohlzylinders sowohl in radialer als auch in axialer Richtung hinsichtlich der elektrischen Leitfähigkeit variiert werden. Hierdurch können neben der Steuerung der elektrischen Stromdichte im Distanzstück 13 auch Effekte einer thermischen Isolation gegenüber den Elektroden 8 und 9 bewirkt werden. Darüber hinaus kann die Variation der Materialien im Entladungskanal der Funktionsteilung dienen bzw. zur Beeinflussung der Temperatur- und Druckfestigkeit sowie der besseren Alterungsqualität und zur Reduzierung des Abbrands genutzt werden.
  • Die Fig. 2 zeigt hier beispielsweise eine im Wesentlichen nur axiale Funktionsaufteilung. Im Gegensatz zur Darstellung nach Fig. 1 sind gemäß Fig. 2 die beiden Elektroden 8 und 9 (in Fig. 1 nur 9) hinsichtlich der metallischen Kapselung 21 isoliert.
  • Die Fig. 3 zeigt eine weitere Ausführungsform einer möglichen Geometrie in Querschnittsdarstellung für die passive Funkenstrecke 2.
  • Bei dieser Funkenstrecke 2 soll ein Überschlag zwischen den Hauptelektroden 8 und 9 erst bei einer vergleichsweise langen Zeitdauer oder sehr hohen Impulsströmen erfolgen.
  • Dies ist insbesondere dann von Interesse, wenn die Restspannung der Funkenstrecke 2 bei einer Vielzahl von impulsförmigen Entladungen oberhalb der Nennspannung liegen soll, um einen Netzfolgestrom zu unterbinden.
  • Zu diesem Zweck wird das Distanzstück 13 an beiden Stirnseiten vollflächig mit den jeweiligen Hauptelektroden 8 und 9 kontaktiert, um eine weitestgehend homogene Stromdichte innerhalb des Distanzstücks 13 zu bewirken. Zusätzlich können Erhöhungen der elektrischen Feldstärke, insbesondere im Überschlagsbereich vermieden werden.
  • Mit Hilfe der Fig. 4 sei eine prinzipielle Ausführungsform von zwei Funkenstrecken in Querschnittsdarstellung illustriert, die sich innerhalb einer gemeinsamen metallischen Kapselung 21 befinden.
  • Beide Funkenstrecken besitzen eine gemeinsame Mittelelektrode 9, welche gegenüber der druckfesten Kapselung 21 isoliert ist. Im Bereich der passiven Funkenstrecke 2 ist jedoch eine niederohmige Verbindung zwischen der Mittelelektrode 9 zur dortigen Hauptelektrode 8 vorhanden. Im Gegensatz zur Darstellung nach Fig. 1, bei welcher bei beiden Funkenstrecken 1 und 2 jeweils die Hauptelektrode 8 unmittelbar mit dem metallischen Mantel 21 in Kontakt steht, werden mindestens bei einer der Funkenstrecken 1 und 2 gemäß Darstellung nach Fig. 4 beide Hauptelektroden gegenüber dem Mantel bzw. der Kapselung 21 isoliert.
  • Gemäß der Darstellung nach Fig. 4 ist dies bei der passiven Funkenstrecke 2 der Fall. Alternativ können auch die Funkenstrecke 1 oder aber auch beide Funkenstrecken mit gegenüber der metallischen Kapselung 21 isolierenden Hauptelektroden 8 und 9 ausgeführt werden. Die Isolation der Hauptelektroden 8 und 9 wird gegenüber einer isolierenden Unterbrechung des druckfesten metallischen Mantels 21 aufgrund eines besseren Überlastverhaltens bevorzugt. Die Funkenstrecken entsprechend Fig. 4 besitzen ebenso wie in Fig. 1 dargestellt, entgegengesetzte Entlüftungs- und Druckausgleichsöffnungen oder Kanäle 6.
  • Die Hauptelektroden weisen bei beiden Funkenstrecke 1 und 2 jeweils mindestens einen Abstand von im Wesentlichen 5 mm auf. Der Druck im Entladungsbereich, welcher vom Einsatz 13 vollständig oder teilweise umschlossen wird, beträgt bei Impuls- und Folgestromentladungen bis zu mehreren 100 bar. Bei prospektiven Netzfolgeströmen im Bereich von > 500 A bis zu mehreren kA werden Drücke von mindestens 10 bar erreicht.
  • Zur Steuerung der Ansprechspannung und zur Zündung der Funkenstrecken ist keine aufwendige und überlastungsgefährdete, externe, zusätzliche kapazitive oder ohmsche Spannungssteuerung erforderlich, welche zudem über den gesamten relevanten Frequenzbereich abgestimmt werden müsste. Die gezeigte Reihenschaltung von zwei Funkenstrecken ist grundsätzlich beliebig erweiterbar.
  • Die Reihenschaltung aus einer Funkenstrecke mit Isolation und einer quasi kurzgeschlossenen Funkenstrecke besitzt gegenüber zwei Funkenstrecken mit jeweils isolierter Trennstrecke an sich den Nachteil, dass nur eine Trennstrecke eine Sofortverfestigung nach dem Stromnulldurchgang bereitstellt. Die Sofortverfestigungsspannung liegt im Bereich von ca. 300 V. Bei dem Einsatz einer solchen Funkenstrecke bei höheren Betriebsspannungen, insbesondere bei Spannungen über der Sofortverfestigungsspannung besteht die Gefahr von Wiederzündungen. Um ungeachtet dieses Nachteils mit nur einer Isolationsstrecke arbeiten zu können, wird der Effekt genutzt, dass die eingesetzten Funkenstrecken die sich ausbildende Druckerhöhung zur Löschung des Folgestroms nutzen. Durch die Verwendung des Drucks zur Löschung des Folgestroms besteht auch nach dem Stromnulldurchgang, insbesondere bei einem allmählichen Druckabbau, die Möglichkeit, den relativ hohen Druck für die Erhöhung der dielektrischen Spannungsfestigkeit der Trennstrecke wirksam werden zu lassen. Die Spannungsfestigkeit nach dem Stromnulldurchgang kann somit proportional mit der Druckerhöhung gesteigert werden, wodurch Wiederzündungen vermeidbar sind. Dies ermöglicht in überraschender Weise den Einsatz der vorgeschlagenen Funkenstreckenkombination auch bei Nennspannungen deutlich oberhalb der Sofortverfestigungsspannung für eine Trennstrecke.
  • Mit Hilfe der Fig. 5 soll ein beispielhafter Aufbau des Distanzstücks näher erläutert werden.
  • Das Material des Distanzstücks kann homogen, aber auch inhomogen sein. So kann z.B. eine radial abnehmende Leitfähigkeit (Fig. 5a) realisiert werden. Auch besteht die Möglichkeit, eine segmentierte Leitfähigkeit im Umfang hin bis zu leitfähigen Stegen auszuführen (siehe Fig. 5b und 5c). Der Bereich 1 ist dabei ein hochohmiger Bereich, der Bereich 2 hingegen ist niederohmig ausgeführt. Wenn das Distanzstück 13 homogen ausgeführt wird, kann die Stromdichte durch die elektrisch leitfähige Kontaktfläche und die Positionierung dieser Kontaktfläche bestimmt bzw. eingestellt werden.
  • Wenn z.B. gemäß Fig. 1 auf der Seite der Zylinderelektrode die Kontakte zwischen dem Distanzstück 13 und dem Teil 8 reduziert werden, z.B. durch einen kleineren Innenradius der Scheibe oder der Isolationsfolie auf dem Teil 8, fließt weniger Strom im Distanzstück 13 bis zum Überschlag, da die Stromdichte im Innenbereich des Teiles 13 ansteigt.
    Wenn sich unter Hinweis auf Fig. 1 auf der Seite der Nasenelektrode die Kontaktfläche zwischen den Teilen 12 und 23 nur auf eine begrenzte Höhe und den Kontakt im Umfang beschränkt, erhöht sich die Stromdichte im Innenrohrbereich, d.h. im Entladungsbereich des Distanzstücks 13. Eine geringere Stromdichte wird z.B. bei stirnseitiger Auflage des Teiles 13 am Teller der Elektrodenhalterung 14 erreicht.
  • Bezugszeichenliste
  • 1
    aktive Funkenstrecke
    2
    passive Funkenstrecke
    3
    Triggerschaltung
    4
    Anschluss
    5
    Anschluss einer Hauptelektrode
    6
    Druckausgleichsöffnung
    7
    Gasströmungsrichtung
    8; 9
    Hauptelektrode
    10
    Hilfselektrode
    12
    Isolationsstrecke
    13
    Einsatz oder Distanzstück
    14
    tellerförmige Elektrodenhalterung
    15
    Isolationsteil
    16
    hochohmigere, elektrisch leitende Schicht
    20
    Isolation für Triggerkontakt
    21
    metallische, druckfeste Kapselung
    22
    Öffnung im Gasumlenkbereich einer Hauptelektrode / Gasumlenkkanal
    23
    Nasenabschnitt

Claims (14)

  1. Funkenstreckenanordnung für höhere Bemessungsspannungen, wobei mindestens zwei gegenüberliegende Elektroden aufweisende Funkenstrecken in Reihe geschaltet sind und mindestens eine der Funkenstrecken aktiv, d.h. triggerbar ausgeführt ist für den Einsatz als blitzstromtragfähiger Netzableiter,
    dadurch gekennzeichnet, dass
    die Funkenstrecken (1; 2) in einer druckfesten Kapselung (21) mit mindestens einer Druckausgleichsöffnung (6) befindlich sind und ein den Abstand der Hauptelektroden (8; 9) der passiven Funkenstrecke (2) überbrückender Einsatz (13) aus einem niederohmigen Material besteht, welches sich bei Strombelastung hinsichtlich der abfallenden Restspannung stark nichtlinear verhält.
  2. Funkenstreckenanordnung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Funkenstrecken (1; 2) jeweils einzeln, von einer druckfesten Kapselung (21) umgeben sind, wobei die Druckausgleichsöffnungen (6) voneinander weg weisend orientiert sind.
  3. Funkenstreckenanordnung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Funkenstrecken (1; 2) von einem gemeinsamen, druckfesten Gehäuse (21) umgeben sind, welches die Druckausgleichsöffnungen (6) aufweist.
  4. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    die Funkenstrecken (1; 2) rotationssymmetrisch ausgeführt sind und sich die jeweiligen Hauptelektroden (8; 9) gegenüberliegen und jeweils eine der Hauptelektroden (8) einen Gasumlenkkanal (22) aufweist, weiterhin zwischen den sich gegenüberliegenden Hauptelektroden (8; 9) der mindestens einen passiven Funkenstrecke (2) der überbrückende niederohmige Einsatz (13) als rotationssymmetrisches Teil mit zylinderförmiger, den Lichtbogenbrennraum begrenzender Öffnung angeordnet ist, wobei die der Hauptelektrode mit Gasumlenkkanal (22) gegenüberliegende Hauptelektrode (9) einen Nasenabschnitt (23) aufweist, welcher in die zylinderförmige Öffnung, mit der Wandung dieser in Kontakt kommend, eintaucht.
  5. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    das niederohmige Material des Einsatzes einen Kaltwiderstandswert von <100 Ohm besitzt.
  6. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    der Einsatz (13) eine bevorzugte Hohlzylinderform aufweist und mit einer Stirnseite vollflächig an der Hauptelektrode mit Gasumlenkkanal (22) anliegt.
  7. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    der bevorzugt hohlzylinderförmige Einsatz (13) mit jeweils einer seiner Stirnseiten vollflächig in Kontakt mit jeweils einer Hauptelektrode (8; 9) steht.
  8. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    der lichte Abstand zwischen den jeweiligen Hauptelektroden (8; 9) der Funkenstrecken im Bereich von mindestens 5 mm liegt.
  9. Funkenstreckenanordnung nach einem der Ansprüche 4 bis 8,
    dadurch gekennzeichnet, dass
    die Druckausgleichsöffnungen (6) in axialer Richtung der rotationssymmetrischen Funkenstrecken orientiert sind.
  10. Funkenstreckenanordnung nach Anspruch 4,
    dadurch gekennzeichnet, dass
    zwischen dem rotationssymmetrischen Teil mit zylinderförmiger Öffnung und der Hauptelektrode mit Nasenabschnitt (23) ein Übergangsteil (16) vorgesehen ist, welches gegenüber dem Einsatz (13) einen höheren Widerstandswert aufweist und leitfähig ist.
  11. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
    der Einsatz (13) in radialer und/oder axialer Richtung in seiner geometrischen Gestalt zur Einstellung der Stromdichte variierbar ist.
  12. Funkenstreckenanordnung nach einem der Ansprüche 3 bis 11,
    dadurch gekennzeichnet, dass
    bei einer Anordnung von zwei Funkenstrecken in einer gemeinsamen druckfesten Kapselung (21) eine gemeinsame Mittel-Hauptelektrode (9) vorgesehen ist, welche eine Isolation gegenüber der Mantelkapselung (21) aufweist.
  13. Funkenstreckenanordnung nach Anspruch 12,
    dadurch gekennzeichnet, dass
    die Druckausgleichsöffnungen (6) axial und gegenüberliegend im Bereich der Außenkontaktierung der jeweiligen Hauptelektroden als Kanäle kleinen Querschnitts zum langsamen Druckabbau des bereits abgekühlten Gases ausgeführt sind.
  14. Funkenstreckenanordnung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    die externe Triggerschaltung (3) auf die Triggerelektrode (10) der aktiven Funkenstrecke (1) und auf die elektrischen Endanschlusspunkte der Reihenschaltung führt.
EP08831279A 2007-10-15 2008-10-14 Funkenstreckenanordnung für höhere bemessungsspannungen Active EP2074686B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007049319 2007-10-15
DE102008049471A DE102008049471A1 (de) 2007-10-15 2008-09-29 Funkenstreckenanordnung für höhere Bemessungsspannungen
PCT/EP2008/063757 WO2009050148A1 (de) 2007-10-15 2008-10-14 Funkenstreckenanordnung für höhere bemessungsspannungen

Publications (2)

Publication Number Publication Date
EP2074686A1 EP2074686A1 (de) 2009-07-01
EP2074686B1 true EP2074686B1 (de) 2010-01-27

Family

ID=40340749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08831279A Active EP2074686B1 (de) 2007-10-15 2008-10-14 Funkenstreckenanordnung für höhere bemessungsspannungen

Country Status (4)

Country Link
EP (1) EP2074686B1 (de)
AT (1) ATE456875T1 (de)
DE (2) DE102008049471A1 (de)
WO (1) WO2009050148A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016010102A1 (de) 2016-08-24 2018-03-01 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Abtastender Optischer Abstandssensor
DE102021208076B4 (de) * 2021-07-27 2023-06-22 Dehn Se Überspannungsschutz-Funkenstreckenanordnung und Verfahren zum Betreiben einer Überspannungsschutz-Funkenstreckenanordnung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7316628A (nl) * 1973-12-04 1975-06-06 Coq Bv Overspanningsafleider voor hoge spanning.
SE458894B (sv) 1987-09-04 1989-05-16 Asea Ab Anordning foer oeverspaenningsskydd
DE3914624A1 (de) 1989-05-03 1990-11-08 Dehn & Soehne Anordnung mit zumindest zwei funkenstrecken fuer die begrenzung von ueberspannungen
DE4240138C2 (de) 1992-11-28 1995-05-24 Dehn & Soehne Blitzstromtragfähige Anordnung mit zumindest zwei in Reihe geschalteten Funkenstrecken
DE10230827A1 (de) 2002-07-09 2004-02-05 Obo Bettermann Gmbh & Co. Kg Blitzstromtragfähige Funkenstrecke
DE102004006988B4 (de) 2003-11-28 2014-02-06 Dehn + Söhne Gmbh + Co. Kg Überspannungsschutzeinrichtung auf Funkenstreckenbasis, umfassend mindestens zwei in einem druckdichten Gehäuse befindliche Hauptelektroden
DE102005024658B4 (de) 2005-05-30 2007-02-15 Dehn + Söhne Gmbh + Co. Kg Gekapselte, druckfest ausgeführte, nicht hermetisch dichte, rotationssymmetrische Hochleistungsfunkenstrecke
FI121765B (fi) 2005-07-01 2011-03-31 Alstom Grid Oy Menetelmä ja sovitelma sarjakipinävälin liipaisemiseksi

Also Published As

Publication number Publication date
DE102008049471A1 (de) 2009-11-12
ATE456875T1 (de) 2010-02-15
WO2009050148A1 (de) 2009-04-23
EP2074686A1 (de) 2009-07-01
DE502008000350D1 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
EP3331111B1 (de) Überspannungsschutzeinrichtung auf funkenstreckenbasis, umfassend mindestens zwei in einem druckdichten gehäuse befindliche hauptelektroden
EP2606542B1 (de) Anordnung zur zündung von funkenstrecken
EP1258066B1 (de) Druckfest gekapselte funkenstreckenanordnung zum ableiten von schädlichen störgrössen durch überspannungen
EP0789434A1 (de) Verfahren zur Beeinflussung des Folgestromlöschvermögens von Funkenstreckenanordnungen und Funkenstreckenanordnungen hierfür
EP1456921B1 (de) Überspannungsschutzeinrichtung
DE10018012B4 (de) Druckfest gekapselte Funkenstreckenanordnung zum Ableiten von schädlichen Störgrößen durch Überspannungen
EP2064787B1 (de) Funkenstreckenanordnung für höhere bemessungsspannungen
DE102007002429B4 (de) Gekapselter, druckfest ausgeführter blitzstromtragfähiger Überspannungsableiter mit Netzfolgestromlöschvermögen
EP2074686B1 (de) Funkenstreckenanordnung für höhere bemessungsspannungen
DE102008038486A1 (de) Überspannungsschutzeinrichtung
EP1961088B1 (de) Gekapselte, druckfest ausgeführte, nicht hermetisch dichte hochleistungsfunkenstrecke
DE10118210B4 (de) Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung
EP1833130B1 (de) Gekapselter Überspannungsableiter
DE10025239A1 (de) Teil- oder vollgekapselte Funkenstreckenanordnung
DE102017119288B4 (de) Gekapselter Überspannungsableiter auf Funkenstreckenbasis
DE10212697A1 (de) Überspannungsschutzeinrichtung
DE102023108834A1 (de) Getriggerte Zweifachfunkenstrecke
DE10060426A1 (de) Gekapselter Überspannungsableiter mit mindestens einer Funkenstrecke
DE29622886U1 (de) Funkenstreckenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008000350

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

BERE Be: lapsed

Owner name: DEHN + SOHNE G.M.B.H. + CO KG

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100127

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121014

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 456875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008000350

Country of ref document: DE

Owner name: DEHN SE, DE

Free format text: FORMER OWNER: DEHN + SOEHNE GMBH + CO. KG, 92318 NEUMARKT, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000350

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008000350

Country of ref document: DE

Owner name: DEHN SE + CO KG, DE

Free format text: FORMER OWNER: DEHN + SOEHNE GMBH + CO. KG, 92318 NEUMARKT, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000350

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000350

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000350

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008000350

Country of ref document: DE

Owner name: DEHN SE, DE

Free format text: FORMER OWNER: DEHN SE + CO KG, 92318 NEUMARKT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 16

Ref country code: DE

Payment date: 20231018

Year of fee payment: 16