EP2066884B1 - Cooling circuit for the thermal engine of an automotive vehicle - Google Patents
Cooling circuit for the thermal engine of an automotive vehicle Download PDFInfo
- Publication number
- EP2066884B1 EP2066884B1 EP06831227A EP06831227A EP2066884B1 EP 2066884 B1 EP2066884 B1 EP 2066884B1 EP 06831227 A EP06831227 A EP 06831227A EP 06831227 A EP06831227 A EP 06831227A EP 2066884 B1 EP2066884 B1 EP 2066884B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- bypass
- exchanger
- circuit
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/18—Arrangements or mounting of liquid-to-air heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/165—Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/18—Arrangements or mounting of liquid-to-air heat-exchangers
- F01P2003/182—Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/18—Arrangements or mounting of liquid-to-air heat-exchangers
- F01P2003/185—Arrangements or mounting of liquid-to-air heat-exchangers arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/18—Arrangements or mounting of liquid-to-air heat-exchangers
- F01P2003/187—Arrangements or mounting of liquid-to-air heat-exchangers arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/50—Temperature using two or more temperature sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/02—Intercooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/04—Lubricant cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/04—Lubricant cooler
- F01P2060/045—Lubricant cooler for transmissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/08—Cabin heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/16—Outlet manifold
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0437—Liquid cooled heat exchangers
- F02B29/0443—Layout of the coolant or refrigerant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/32—Liquid-cooled heat exchangers
Definitions
- the invention relates to the field of cooling motor vehicle engines such as passenger cars, trucks, buses or construction site machines.
- a cooling circuit generally passes through a plurality of mechanical members to be cooled and may also heat some heat-energy consuming elements, connected by tubings or other flexible or rigid conduits in which circulates a heat transfer fluid commonly referred to by the term of cooling liquid.
- the invention more particularly relates to a particular arrangement of the cooling circuit for more effectively dissipating heat to the atmosphere and to improve the overall efficiency of heat exchange between the various mechanical components and elements to be heated of the motor vehicle.
- the cooling circuit of a motor vehicle engine comprises a main circuit called "high temperature" for cooling and regulating the temperature of the engine.
- a main circuit thus comprises a radiator for discharging the heat energy released by the engine and conveyed by the coolant.
- This radiator allows a heat exchange with an ambient air flow depending on the speed of the vehicle and / or the actuation of the fan.
- a pump is also part of this main circuit and allows to adjust the flow of coolant in the circuit.
- a thermostat arranged on the main circuit makes it possible to short-circuit the radiator and thus to heat the coolant more quickly
- the main engine cooling circuit can also be used for different applications, and in particular to cool different equipment.
- these elements are for example and in particular a condenser of the air conditioning circuit of the passenger compartment of the motor vehicle, but also a heat exchanger of the engine cooling oil circuit, the gearbox cooling oil circuit, the circuit compressed air supercharging or the exhaust gas recirculation circuit also called "Exhaust Gas Recycling” (EGR).
- EGR exhaust Gas Recycling
- secondary circuits can be connected to the main cooling circuit.
- the coolant can, in a first embodiment as described in the document FR 2,832,185 , go into a radiator dedicated to this secondary loop to lower its temperature below that of the coolant in the main circuit. The coolant then passes into the equipment to be cooled.
- Such a secondary loop is generally referred to as a "low temperature loop" since the coolant temperature is lowered before it is used to cool equipment.
- the different equipment to be cooled do not need to be cooled at low temperature and can be cooled by the main circuit called "high temperature".
- the exhaust gas recirculation system EGR
- the cooling circuit of the recycled gas must allow to lower the temperature of the exhaust gas from a temperature of 600 ° C to about 180 ° C, and therefore a fluid at 110 ° C allows such cooling. It is the same for the cooling circuit of the charge air which must allow to cool the compressed air whose compressor outlet temperature is about 200 ° C to 250 ° C.
- the ventilation air evacuates, in the radiators, all the heat energy generated by the heat sources.
- the air does not however, it may heat up above the temperature of the cooling liquid in the main circuit.
- the secondary circuits may also be devoid of radiators.
- the main circuit radiator must discharge the additional amount of heat supplied to the coolant.
- the object of the invention is to improve the cooling of a thermal installation formed by an engine and all of its ancillary equipment.
- a second object of the invention is to reduce the number of elements, in particular by using a single pump, a single expansion tank and a single degassing system for the two cooling circuits.
- the invention therefore relates to a cooling circuit of a motor vehicle engine comprising a main loop comprising a first heat exchanger capturing the heat of a first heat source.
- This exchange is generally carried out inside ducts in the engine block at the cylinder or in the cylinder head at the combustion chambers.
- the main loop also includes a first radiator and a pump for ensuring a flow rate sufficient to evacuate the heat energy released by the combustion inside the engine.
- the various elements of the main loop are connected in series by means of hoses for the circulation of the coolant. Under normal operating conditions, the temperature of the liquid is maintained at a temperature less than or equal to a predetermined threshold value.
- the cooling circuit is characterized in that it comprises a first branch of the main loop arranged in parallel with respect to the first radiator.
- This first branch comprises successively, in the flow direction of the coolant flow, a second heat exchanger capturing the heat of a second heat source and a second radiator connected in series by means of hoses for the circulation of the coolant.
- the temperature of the coolant at the outlet of the second exchanger is raised to a temperature greater than or equal to the predetermined threshold value.
- the heated coolant is used by passing inside the lines of the engine to directly cool or heat particular equipment of the vehicle with a coolant at higher temperatures.
- some equipment does not require the use of a coolant whose temperature is regulated below the predetermined threshold value.
- the coolant is, in this derivation, brought to a temperature higher than that of the liquid in the main loop.
- the main loop may be referred to as a "high temperature” loop
- the bypass may be referred to as a "very high temperature” bypass.
- the coolant temperature in the main loop, must be kept below the predetermined threshold value of about 110 ° C. Overheating of the engine could have detrimental consequences on the motor seals or on the internal clearances allowing the sliding of the pistons inside the cylinders, and in general on the lubrication of the various mechanical parts in movement.
- the different equipment connected to this "very high temperature" bypass does not require such temperature regulation, and can withstand much higher temperatures.
- the temperature of the coolant at the outlet of the second exchanger is greater than the temperature of the coolant in the main circuit, in rated speed.
- Such a cooling circuit thus makes it possible to improve the heat exchange between the ventilation air passing through the radiators and the cooling liquid, in particular by increasing the temperature difference between these two fluids.
- the heat sources some of the heat energy is removed in the second heat exchanger, may be of different natures.
- the different sources can then be used independently or in combination according to various embodiments of the second exchanger.
- the second heat source of the second heat exchanger may comprise a circuit of the exhaust gas recirculation system.
- the second exchanger is, for example, of the liquid / gas type in which the gases released during combustion inside the engine, are recovered and cooled by means of the exchanger and pass from a temperature of about 600 ° C to about 180 ° C.
- This lowering temperature is due to the heat exchange with the coolant entering the first branch of the main loop of the cooling circuit.
- the Coolant is therefore at a higher temperature than in the main circuit.
- the second heat source of the second heat exchanger may comprise a circuit of the lubricating oil of the heat engine.
- the second exchanger is of the liquid / liquid type in which the coolant is heated by the engine lubricating oil.
- the second heat source of the second heat exchanger may comprise a supercharged compressed air circuit.
- the second exchanger is, for example, of the liquid / gas type in which the coolant stores heat energy conveyed by the air previously compressed by a device of the compressor or turbocharger type.
- the temperature of the air at the outlet of this type of device is generally of the order of 200 to 250 ° C.
- this independent radiator makes it possible to dissipate more heat by increasing the temperature difference between the inlet and the outlet of the exchangers. In addition, this arrangement reduces the size of the radiator of the main circuit.
- radiators of the main loop and the "very high temperature” bypass can be arranged relative to each other in various ways.
- these radiators can be arranged aeraulically in series.
- the air captured by the front face of the vehicle enters successively through the cooling fins of the radiator of the main loop and the first bypass.
- the two radiators are arranged one behind the other, for example perpendicular to the direction of travel of the vehicle corresponding to the direction of the air flow.
- the air which makes it possible to cool the second radiator is at a temperature higher than that of the outside air, for example about 100 ° C. when the outside air is at 40 ° C.
- This increase in air temperature is not detrimental, however, since the coolant circulating in the second radiator is also at a higher temperature.
- the air, even heated, can, in the second radiator, cool the coolant.
- the second radiator preferably has dimensions smaller than or equal to the first radiator, and thus does not generate an increase in the overall width and height of the air intake surface on the front of the vehicle.
- a cooling circuit comprising a "very high temperature” bypass makes it possible to increase the dissipated thermal power.
- the first and second radiators may be arranged aeraulically in parallel.
- the two radiators can be cooled by separate air flows, which generates an overall exchange surface greater than the size of the larger of the two radiators.
- This arrangement makes it possible to improve the overall efficiency of the cooling since, in this case, the flow of air passing through the two radiators is at the same temperature corresponding to the temperature of the external environment.
- the two radiators can also be cooled by the same flow of air deflected after passing through the first radiator.
- the flow of air passing through the second radiator is at a temperature greater than that of the air flow passing through the first radiator.
- a thermostat can be positioned on this loop so as to regulate the coolant flow rate as a function of its temperature.
- the first branch can be arranged downstream, in the direction of flow of the coolant, the thermostat arranged on the main circuit.
- the thermostat blocks the circulation of the coolant inside the first radiator, it also blocks the circulation of the coolant in the first bypass.
- the coolant is not cooled and circulates in closed circuit in the first exchanger.
- the first branch may be arranged upstream, always in the direction of circulation of the coolant, a thermostat arranged on the main circuit.
- the thermostat when the thermostat is actuated, the coolant no longer circulates in the first radiator, but it can however flow in the first bypass.
- the first branch may comprise a second thermostat.
- the first branch may comprise a second thermostat.
- the first branch may comprise a control valve.
- a control valve thus makes it possible to regulate the flow rate of the cooling liquid in the first bypass.
- the cooling circuit may comprise a second branch of the main loop, arranged in parallel with respect to the first radiator and the first heat exchange, this second bypass may have successively in a direction of circulation of the liquid of cooling, a third radiator and a third heat exchanger capturing the heat of a third heat source connected in series by means of hoses for the circulation of the coolant.
- the cooling circuit may also include a second branch to provide heat at a lower temperature than the main loop.
- This second derivation then plays the role of derivation "low temperature”.
- the cooling of the charge air can in particular be carried out in two stages.
- a first cooling by means of the second exchanger of the first bypass "very high temperature” allows a first lowering in contact with the cooling fluid at high temperature.
- a second cooling of the charge air in the third exchanger of the second bypass makes it possible to take advantage of a cooling fluid at low temperature.
- Analogous cycles of using the second heat exchanger as " pre-cooler " and the third heat exchanger as " cooler” can also be used to cool the engine oil or the exhaust gases of the recycling system.
- the first bypass may also include a fourth heat exchanger connected to a circuit for heating the ventilation air of the vehicle cabin.
- This heat exchanger can be arranged parallel to the second radiator, especially at the output of the second heat exchanger of the high temperature loop. Indeed, in this case, the coolant is heated to a very high temperature, before entering the fourth heat exchanger. This supply of heat energy makes it possible in particular to improve the efficiency of the heat transfer.
- the invention relates to a cooling circuit of a motor vehicle engine.
- a cooling circuit of a motor vehicle engine can be reported in particular in the engine compartment of a car, a truck, a coach, a bus or a construction vehicle in particular.
- the cooling circuit can decompose into a main loop 1 on which is reported a bypass 11.
- the main loop 1 comprises a first heat exchanger 2 sensing the heat of a first heat source, a radiator 3 and a pump 4. These different elements are connected in series by means of the hoses 5,6,7,8,9.
- the pump 4 makes it possible to circulate the coolant both in the main loop 1 and in the first bypass 11.
- the pump 4 can be arranged anywhere in the main loop 1 or in one of its derivations.
- the first branch 11 is then arranged in parallel with the first radiator 3.
- "T" connections are then arranged at the junction between the hoses 5 and 6, and 7 and 8 so as to connect the hoses 15 and 17 of the first branch. 11 with the main loop 1.
- the downstream end of the bypass 11 thus opens between the exit of the radiator 3 and the inlet of the first exchanger 2.
- This first branch 11 comprises a second heat exchanger 12 sensing the heat of a second heat source and a second radiator 13. These two elements are connected in series by means of the hose 16.
- the coolant temperature In the main loop 1, the coolant temperature must not exceed a predetermined threshold value T0, generally 110 ° C. Thus, the temperature of the coolant at the outlet of the first heat exchanger 2 and thus in the hoses 5, 6 and 15 is regulated at temperature T1.
- the temperature T2 of the coolant in the hose 16 downstream of the second heat exchanger 12 is greater than the temperature T1 of the coolant in the hose 15 upstream of it.
- the temperature T1 of the coolant in the main loop is substantially equal to the threshold value T0. Therefore, the temperature T2 of the coolant in the bypass 11 is greater than or equal to the predetermined threshold value T0 once the engine is at temperature.
- the first and second radiators 13 may be arranged aeraulically in series.
- the flow of air passing through the first radiator 3 then passes through the second radiator 13 without the need to deflect it.
- the outside temperature can be around 40 ° C. It is then raised after the passage through the first radiator 3.
- This particular arrangement of the two radiators 3.13 one behind the other limits the air intake surface on the front of the vehicle.
- the second heat exchanger 12 positioned on the branch 11, can capture heat from a plurality of different heat sources arranged in parallel or in series.
- the heat energy captured by the coolant in this exchanger 12 switches the coolant from the temperature T1 to the temperature T2 in the hose 16.
- the one or more heat sources may be formed by, in particular, a circuit 50 of the exhaust gas recirculation system and / or a circuit 60 of the engine lubricating oil and / or a compressed air circuit 70. overeating. Indeed, the temperature of these fluids is much higher than the temperature T1 of the coolant. The temperature difference with the coolant in the high temperature loop is sufficient to ensure satisfactory cooling of the coolant in the second radiator. In this way, the overall efficiency of the heat exchange between the different heat sources and the ventilation air is improved.
- the second radiator 33 of the bypass 11 can also be offset laterally with respect to the rear surface of the first radiator 3.
- the air flow passing through the first radiator 3 can be deflected to cool the second radiator 33 , either directly evacuated.
- the amount of heat evacuated with equal capture surface is then increased.
- the ventilation air can be captured laterally with respect to the front face of the vehicle and this arrangement makes it possible to improve the efficiency of the heat exchange in the "very high temperature" loop.
- the first bypass 11 may comprise a valve 20 for regulating the flow of the coolant inside the first bypass 11.
- This regulating valve 20 allows, when the latter is closed, to rapidly heat the temperature of the liquid of the cooling liquid in the exchanger 12.
- the valve 21 When the valve 21 is open, the heat exchanger 12 then dissipates a maximum heat energy.
- the main loop 1 may include a thermostat 19, the first bypass 11 being arranged downstream of the thermostat 19.
- a thermostat 19 increases the speed of rise in temperature of the coolant in the main loop 1 to by means of a hose 49 "short-circuiting" the first radiator 3 and the first bypass 11.
- the first heat exchanger 2 is a closed circuit with the pump 4 and the heat stored by the coolant is not exchanged with the air from the outside environment.
- the cooling circuit may also comprise a second branch 21 arranged in parallel with the first heat exchanger 2 and the first radiator 3 of the main loop 1.
- This second branch 21 comprises successively a third radiator and a third heat exchanger 22 sensing the heat of a third source of heat.
- These two elements are connected in series by means of the hose 27 and connected to the main loop 1 by means of the three hoses 25, 26 and 28.
- This second bypass 21 makes it possible in particular to lower the temperature of the regulated coolant in the loop. at a temperature T1, so as to cool a fluid that may be a particular gas or a liquid in the third heat exchanger 22.
- the second heat exchanger 12 can be used to "pre-cool" air supercharging tablet, the third heat exchanger 2 being used as a "cooler" output of the "pre-cooler”.
- the three radiators 3, 13, 23 can be arranged in various configurations, namely aeraulically in series or in parallel.
- the first branch 11 can be arranged upstream of the first thermostat 29 arranged on the main circuit 1. way, when the first radiator 3 is bypassed by means of the hose 59, the coolant passes inside the first bypass 11, and in particular through the second heat exchanger 12. to increase the rate of rise in temperature of the coolant since it is no longer cooled by the first radiator 3 of the main loop 1.
- a second thermostat 39 can be arranged inside the first bypass 11. This second thermostat 39 can "short-circuit" the second radiator 13 by means of a hose 69 directly connecting the hose 15 with the hose 18.
- a fourth heat exchanger 32 may be arranged in parallel with the second radiator 13 on the first bypass 11 downstream of the second heat exchanger. This fourth heat exchanger 32 can be connected to a circuit for heating the ventilation air of the vehicle cabin.
- This embodiment allows in particular to obtain rapid heating of the cabin, which can be advantageous for defrosting a windshield quickly or simply improve the comfort of the vehicle. It also improves the efficiency of the heat exchange in the fourth heat exchanger 32 since the fluid passing through it is at a temperature greater than that of the main loop 1 on which it is generally arranged.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
L'invention se rapporte au domaine du refroidissement des moteurs thermiques de véhicule automobile tels que les voitures particulières, les camions, bus ou engins de chantiers. Un circuit de refroidissement traverse généralement une pluralité d'organes mécaniques à refroidir et peut permettre également de réchauffer certains éléments consommateurs d'énergie calorifique, reliés par des tubulures ou autres canalisations souples ou rigides dans lesquelles circule un fluide caloporteur couramment désigné par le terme de liquide de refroidissement.The invention relates to the field of cooling motor vehicle engines such as passenger cars, trucks, buses or construction site machines. A cooling circuit generally passes through a plurality of mechanical members to be cooled and may also heat some heat-energy consuming elements, connected by tubings or other flexible or rigid conduits in which circulates a heat transfer fluid commonly referred to by the term of cooling liquid.
L'invention concerne plus particulièrement un agencement particulier du circuit de refroidissement visant dissiper plus efficacement la chaleur vers l'atmosphère et à améliorer le rendement global des échanges thermiques entre les différents organes mécaniques et éléments à réchauffer du véhicule automobile.The invention more particularly relates to a particular arrangement of the cooling circuit for more effectively dissipating heat to the atmosphere and to improve the overall efficiency of heat exchange between the various mechanical components and elements to be heated of the motor vehicle.
De façon générale, le circuit de refroidissement d'un moteur thermique de véhicule automobile comporte un circuit principal dit à "haute température" permettant de refroidir et de réguler la température du moteur thermique. Un tel circuit principal comprend ainsi un radiateur permettant d'évacuer l'énergie calorifique dégagée par le moteur et véhiculée par le liquide de refroidissement. Ce radiateur permet un échange thermique avec un flux d'air ambiant fonction de la vitesse du véhicule et/ou de l'actionnement du ventilateur. Une pompe fait également partie de ce circuit principal et permet d'adapter le débit du liquide de refroidissement dans le circuit. Un thermostat agencé sur le circuit principal permet de court-circuiter le radiateur et ainsi d'échauffer plus rapidement le liquide de refroidissementIn general, the cooling circuit of a motor vehicle engine comprises a main circuit called "high temperature" for cooling and regulating the temperature of the engine. Such a main circuit thus comprises a radiator for discharging the heat energy released by the engine and conveyed by the coolant. This radiator allows a heat exchange with an ambient air flow depending on the speed of the vehicle and / or the actuation of the fan. A pump is also part of this main circuit and allows to adjust the flow of coolant in the circuit. A thermostat arranged on the main circuit makes it possible to short-circuit the radiator and thus to heat the coolant more quickly
Par ailleurs, le circuit principal de refroidissement moteur peut également être utilisé pour différentes applications, et notamment pour refroidir différents équipements. Parmi ces éléments figurent par exemple et en particulier un condenseur du circuit de climatisation de l'habitacle du véhicule automobile, mais également un échangeur du circuit d'huile de refroidissement moteur, du circuit d'huile de refroidissement de boîte de vitesse, du circuit de l'air comprimé de suralimentation ou encore du circuit de recyclage des gaz d'échappement également appelés "Exhaust Gaz Recycling" (EGR).Moreover, the main engine cooling circuit can also be used for different applications, and in particular to cool different equipment. Among these elements are for example and in particular a condenser of the air conditioning circuit of the passenger compartment of the motor vehicle, but also a heat exchanger of the engine cooling oil circuit, the gearbox cooling oil circuit, the circuit compressed air supercharging or the exhaust gas recirculation circuit also called "Exhaust Gas Recycling" (EGR).
Pour refroidir ces différents éléments, des circuits secondaires peuvent donc être connectés au circuit principal de refroidissement. Le liquide de refroidissement peut, dans un premier mode de réalisation tel que décrit dans le document
Cependant, les différents équipements à refroidir n'ont pas besoin d'être refroidis à basse température et peuvent être refroidis par le circuit principal dit à "haute température". Ainsi, le système de recyclage des gaz d'échappement (EGR) peut être refroidi directement par le liquide de refroidissement circulant dans la boucle principale dont la température maximale est de l'ordre de 110°C. En effet, le circuit de refroidissement des gaz recyclés doit permettre de faire baisser la température des gaz d'échappement d'une température de 600°C à environ 180°C, et par conséquent un fluide à 110°C permet un tel refroidissement. Il en est de même pour le circuit de refroidissement de l'air de suralimentation qui doit permettre de refroidir l'air comprimé dont la température en sortie de compresseur est d'environ 200°C à 250°C.However, the different equipment to be cooled do not need to be cooled at low temperature and can be cooled by the main circuit called "high temperature". Thus, the exhaust gas recirculation system (EGR) can be cooled directly by the coolant circulating in the main loop whose maximum temperature is of the order of 110 ° C. Indeed, the cooling circuit of the recycled gas must allow to lower the temperature of the exhaust gas from a temperature of 600 ° C to about 180 ° C, and therefore a fluid at 110 ° C allows such cooling. It is the same for the cooling circuit of the charge air which must allow to cool the compressed air whose compressor outlet temperature is about 200 ° C to 250 ° C.
Ainsi, dans cet art antérieur, l'air de ventilation évacue, dans les radiateurs, l'ensemble de l'énergie calorifique générée par les sources de chaleur. L'air ne peut cependant s'échauffer au-delà de la température du liquide refroidissement présent dans le circuit principale.Thus, in this prior art, the ventilation air evacuates, in the radiators, all the heat energy generated by the heat sources. The air does not however, it may heat up above the temperature of the cooling liquid in the main circuit.
Selon un autre art antérieur, les circuits secondaires peuvent également être dépourvus de radiateurs. Dans ce cas, le radiateur du circuit principal doit évacuer la quantité de chaleur supplémentaire fournie au liquide de refroidissement.According to another prior art, the secondary circuits may also be devoid of radiators. In this case, the main circuit radiator must discharge the additional amount of heat supplied to the coolant.
Cependant, il faut alors augmenter la surface d'échange thermique du radiateur, ce qui peut se révéler incompatible avec l'encombrement disponible au niveau de la face avant du véhicule.However, it is necessary to increase the heat exchange surface of the radiator, which may be incompatible with the space available at the front of the vehicle.
On connaît également, et tel que décrit dans le document
Cependant, une telle installation nécessite de multiplier les éléments propres à chaque boucle de refroidissement indépendante, tel que les pompes et les vases d'expansion.However, such an installation requires to multiply the elements specific to each independent cooling loop, such as pumps and expansion vessels.
Ainsi, le but de l'invention est d'améliorer le refroidissement d'une installation thermique formée par un moteur et l'ensemble de ses équipements annexes.Thus, the object of the invention is to improve the cooling of a thermal installation formed by an engine and all of its ancillary equipment.
Un second objectif de l'invention est de réduire le nombre d'éléments, notamment en utilisant une seule pompe, un seul vase d'expansion et un seul système de dégazage pour les deux circuits de refroidissement.A second object of the invention is to reduce the number of elements, in particular by using a single pump, a single expansion tank and a single degassing system for the two cooling circuits.
L'invention concerne donc un circuit de refroidissement d'un moteur thermique de véhicule automobile comportant une boucle principale comprenant un premier échangeur captant la chaleur d'une première source de chaleur. Cet échange s'effectue généralement à l'intérieur de conduites ménagées dans le bloc moteur au niveau des cylindres ou dans la culasse au niveau des chambres de combustion. La boucle principale comprend également un premier radiateur et une pompe permettant d'assurer un débit suffisant pour évacuer l'énergie calorifique dégagée par la combustion à l'intérieur du moteur. Les différents éléments de la boucle principale sont connectés en série au moyen de durites permettant la circulation du liquide de refroidissement. En conditions normales de fonctionnement, la température du liquide est maintenue à une température inférieure ou égale à une valeur de seuil prédéterminée.The invention therefore relates to a cooling circuit of a motor vehicle engine comprising a main loop comprising a first heat exchanger capturing the heat of a first heat source. This exchange is generally carried out inside ducts in the engine block at the cylinder or in the cylinder head at the combustion chambers. The main loop also includes a first radiator and a pump for ensuring a flow rate sufficient to evacuate the heat energy released by the combustion inside the engine. The various elements of the main loop are connected in series by means of hoses for the circulation of the coolant. Under normal operating conditions, the temperature of the liquid is maintained at a temperature less than or equal to a predetermined threshold value.
Selon l'invention, le circuit de refroidissement se caractérise en ce qu'il comporte une première dérivation de la boucle principale agencée en parallèle par rapport au premier radiateur. Cette première dérivation comprend successivement, selon le sens de circulation du flux du liquide de refroidissement, un second échangeur captant la chaleur d'une seconde source de chaleur et un second radiateur connectés en série au moyen de durites permettant la circulation du liquide de refroidissement. En conditions normales de fonctionnement, la température du liquide de refroidissement en sortie du second échangeur est portée à une température supérieure ou égale à la valeur de seuil prédéterminée.According to the invention, the cooling circuit is characterized in that it comprises a first branch of the main loop arranged in parallel with respect to the first radiator. This first branch comprises successively, in the flow direction of the coolant flow, a second heat exchanger capturing the heat of a second heat source and a second radiator connected in series by means of hoses for the circulation of the coolant. Under normal operating conditions, the temperature of the coolant at the outlet of the second exchanger is raised to a temperature greater than or equal to the predetermined threshold value.
Autrement dit, on utilise le liquide de refroidissement échauffé par le passage à l'intérieur des conduites du moteur thermique pour directement refroidir ou réchauffer des équipements particuliers du véhicule avec un fluide de refroidissement à plus haute température. En effet, certains équipements ne nécessitent pas d'utiliser un liquide de refroidissement dont la température est régulée en dessous de la valeur de seuil prédéterminée. Le liquide de refroidissement est donc, dans cette dérivation, porté à une température supérieure à celle du liquide dans la boucle principale. Ainsi, la boucle principale peut être désignée comme étant une boucle "haute température", tandis que la dérivation peut être désignée comme étant une dérivation "très haute température".In other words, the heated coolant is used by passing inside the lines of the engine to directly cool or heat particular equipment of the vehicle with a coolant at higher temperatures. Indeed, some equipment does not require the use of a coolant whose temperature is regulated below the predetermined threshold value. The coolant is, in this derivation, brought to a temperature higher than that of the liquid in the main loop. Thus, the main loop may be referred to as a "high temperature" loop, while the bypass may be referred to as a "very high temperature" bypass.
Plus précisément, dans la boucle principale, la température du liquide de refroidissement doit être maintenue inférieure à la valeur de seuil prédéterminée d'environ 110°C. La surchauffe du moteur pourrait avoir des conséquences préjudiciables sur les joints moteurs ou encore sur les jeux internes permettant le coulissement des pistons à l'intérieur des cylindres, et de manière générale sur la lubrification des différentes pièces mécaniques en mouvement. Cependant, les différents équipements connectés à cette dérivation "très haute température" ne nécessitent pas une telle régulation en température, et peuvent supporter des températures bien supérieures. Ainsi, la température du liquide de refroidissement en sortie du second échangeur est supérieure à la température du liquide de refroidissement dans le circuit principal, en régime nominal.Specifically, in the main loop, the coolant temperature must be kept below the predetermined threshold value of about 110 ° C. Overheating of the engine could have detrimental consequences on the motor seals or on the internal clearances allowing the sliding of the pistons inside the cylinders, and in general on the lubrication of the various mechanical parts in movement. However, the different equipment connected to this "very high temperature" bypass does not require such temperature regulation, and can withstand much higher temperatures. Thus, the temperature of the coolant at the outlet of the second exchanger is greater than the temperature of the coolant in the main circuit, in rated speed.
Un tel circuit de refroidissement permet donc d'améliorer l'échange thermique entre l'air de ventilation traversant les radiateurs et le liquide de refroidissement grâce notamment à l'augmentation de l'écart de température entre ces deux fluides.Such a cooling circuit thus makes it possible to improve the heat exchange between the ventilation air passing through the radiators and the cooling liquid, in particular by increasing the temperature difference between these two fluids.
Comme déjà évoqué, les sources de chaleur, dont une partie de l'énergie calorifique est évacuée dans le second échangeur, peuvent être de natures différentes. Les différentes sources peuvent alors être utilisées de manière indépendante ou combinée selon divers modes de réalisation du second échangeur.As already mentioned, the heat sources, some of the heat energy is removed in the second heat exchanger, may be of different natures. The different sources can then be used independently or in combination according to various embodiments of the second exchanger.
Selon un premier mode de réalisation de l'invention, la seconde source de chaleur du second échangeur peut comporter un circuit du système de recyclage des gaz d'échappement.According to a first embodiment of the invention, the second heat source of the second heat exchanger may comprise a circuit of the exhaust gas recirculation system.
Dans ce cas, le second échangeur est, par exemple, du type liquide / gaz dans lequel les gaz dégagés lors de combustions à l'intérieur du moteur, sont récupérés et refroidis au moyen de l'échangeur et passent d'une température d'environ 600°C à environ 180°C. Cet abaissement de température est dû à l'échange thermique avec le liquide de refroidissement pénétrant dans la première dérivation de la boucle principale du circuit de refroidissement. A la sortie du second échangeur, le liquide de refroidissement est donc à une température plus élevée que dans le circuit principal.In this case, the second exchanger is, for example, of the liquid / gas type in which the gases released during combustion inside the engine, are recovered and cooled by means of the exchanger and pass from a temperature of about 600 ° C to about 180 ° C. This lowering temperature is due to the heat exchange with the coolant entering the first branch of the main loop of the cooling circuit. At the exit of the second exchanger, the Coolant is therefore at a higher temperature than in the main circuit.
Selon un second mode de réalisation, la seconde source de chaleur du second échangeur peut comporter un circuit de l'huile de lubrification du moteur thermique. Dans ce cas, le second échangeur est du type liquide/liquide dans lequel le liquide de refroidissement est échauffé par l'huile de lubrification du moteur.According to a second embodiment, the second heat source of the second heat exchanger may comprise a circuit of the lubricating oil of the heat engine. In this case, the second exchanger is of the liquid / liquid type in which the coolant is heated by the engine lubricating oil.
Selon un troisième mode de réalisation, la seconde source de chaleur du second échangeur peut comporter un circuit d'air comprimé de suralimentation.According to a third embodiment, the second heat source of the second heat exchanger may comprise a supercharged compressed air circuit.
Dans ce cas, le second échangeur est, par exemple, du type liquide/gaz dans lequel le liquide de refroidissement emmagasine de l'énergie calorifique véhiculée par l'air préalablement comprimé par un dispositif du type compresseur ou turbocompresseur. En effet, la température de l'air en sortie de ce type de dispositif est généralement de l'ordre de 200 à 250°C.In this case, the second exchanger is, for example, of the liquid / gas type in which the coolant stores heat energy conveyed by the air previously compressed by a device of the compressor or turbocharger type. Indeed, the temperature of the air at the outlet of this type of device is generally of the order of 200 to 250 ° C.
Ces différents modes de réalisation peuvent, lorsqu'ils sont combinés, être intégrés au sein d'un même échangeur à multiples canaux, permettant de véhiculer plusieurs fluides et étant séparés au moyen d'une surface d'échange thermique. De nombreux types d'échangeurs peuvent notamment être utilisés, tels que par exemple les échangeurs de type "à plaques", ou les échangeurs tubulaires.These different embodiments may, when combined, be integrated within a single multi-channel exchanger, for conveying a plurality of fluids and being separated by means of a heat exchange surface. Many types of exchangers can be used, such as for example "plate type" exchangers, or tubular exchangers.
L'utilisation d'un radiateur séparé pour la dérivation permet d'améliorer le rendement de l'échange thermique entre l'air et le fluide à refroidir à une température supérieure. En effet, à un débit d'air de ventilation donné, ce radiateur indépendant permet de dissiper plus de chaleur en augmentant l'écart de température entre l'entrée et la sortie des échangeurs. De plus, cet agencement permet de réduire le dimensionnement du radiateur du circuit principal.The use of a separate radiator for the bypass makes it possible to improve the efficiency of the heat exchange between the air and the fluid to be cooled to a higher temperature. In fact, at a given ventilation air flow rate, this independent radiator makes it possible to dissipate more heat by increasing the temperature difference between the inlet and the outlet of the exchangers. In addition, this arrangement reduces the size of the radiator of the main circuit.
Par ailleurs, les radiateurs de la boucle principale et de la dérivation "très haute température", peuvent être agencés l'un par rapport à l'autre de diverses manières.Furthermore, the radiators of the main loop and the "very high temperature" bypass, can be arranged relative to each other in various ways.
Selon une première variante, ces radiateurs peuvent être agencés aérauliquement en série. Dans ce cas, l'air capté par la face avant du véhicule pénètre successivement au travers des ailettes de refroidissement du radiateur de la boucle principale puis de la première dérivation. Autrement dit, les deux radiateurs sont agencés l'un derrière l'autre, par exemple perpendiculairement à la direction d'avancement du véhicule correspondant à la direction du flux d'air.According to a first variant, these radiators can be arranged aeraulically in series. In this case, the air captured by the front face of the vehicle enters successively through the cooling fins of the radiator of the main loop and the first bypass. In other words, the two radiators are arranged one behind the other, for example perpendicular to the direction of travel of the vehicle corresponding to the direction of the air flow.
Dans ce cas l'air qui permet de refroidir le second radiateur est à une température supérieure par rapport à celle de l'air extérieur, soit par exemple d'environ 100°C lorsque l'air extérieur est à 40°C. Cette augmentation de température de l'air n'est toutefois pas préjudiciable, puisque le liquide de refroidissement circulant dans le second radiateur est également à une température supérieure. Ainsi l'air, même échauffé, peut, dans le second radiateur, refroidir le liquide de refroidissement.In this case, the air which makes it possible to cool the second radiator is at a temperature higher than that of the outside air, for example about 100 ° C. when the outside air is at 40 ° C. This increase in air temperature is not detrimental, however, since the coolant circulating in the second radiator is also at a higher temperature. Thus the air, even heated, can, in the second radiator, cool the coolant.
Par ailleurs, le second radiateur présente de préférence des dimensions inférieures ou égales au premier radiateur, et ainsi ne génère pas d'augmentation de l'encombrement en largeur et hauteur de la surface de captation de l'air en face avant du véhicule. Ainsi, à surface frontale totale égale, un tel circuit de refroidissement comprenant une dérivation "très haute température" permet d'augmenter la puissance thermique dissipée.Furthermore, the second radiator preferably has dimensions smaller than or equal to the first radiator, and thus does not generate an increase in the overall width and height of the air intake surface on the front of the vehicle. Thus, with equal total frontal area, such a cooling circuit comprising a "very high temperature" bypass makes it possible to increase the dissipated thermal power.
Selon une seconde variante, les premier et second radiateurs peuvent être agencés aérauliquement en parallèle. Dans ce cas, les deux radiateurs peuvent être refroidis par des flux d'air distincts, ce qui engendre une surface globale d'échange supérieure à la dimension du plus grand des deux radiateurs. Cet agencement permet cependant d'améliorer le rendement global du refroidissement puisque, dans ce cas, le flux d'air traversant les deux radiateurs est à la même température correspondant à la température du milieu extérieur.According to a second variant, the first and second radiators may be arranged aeraulically in parallel. In this case, the two radiators can be cooled by separate air flows, which generates an overall exchange surface greater than the size of the larger of the two radiators. This arrangement, however, makes it possible to improve the overall efficiency of the cooling since, in this case, the flow of air passing through the two radiators is at the same temperature corresponding to the temperature of the external environment.
Les deux radiateurs peuvent également être refroidis par un même flux d'air dévié après le passage au travers du premier radiateur. Dans ce cas, le flux d'air traversant le second radiateur est à une température supérieure à celle du flux d'air traversant le premier radiateur.The two radiators can also be cooled by the same flow of air deflected after passing through the first radiator. In this case, the flow of air passing through the second radiator is at a temperature greater than that of the air flow passing through the first radiator.
De manière à améliorer la rapidité de montée en température du liquide de refroidissement dans la boucle principale, un thermostat peut être positionné sur cette boucle de manière à réguler le débit de liquide de refroidissement en fonction de sa température.In order to improve the rate of rise in temperature of the coolant in the main loop, a thermostat can be positioned on this loop so as to regulate the coolant flow rate as a function of its temperature.
Selon un premier mode de réalisation, la première dérivation peut être agencée en aval, selon le sens de circulation du liquide de refroidissement, du thermostat agencé sur le circuit principal. Dans ce cas, lorsque le thermostat bloque la circulation du liquide de refroidissement à l'intérieur du premier radiateur, il bloque par la même occasion la circulation du liquide de refroidissement dans la première dérivation. Le liquide de refroidissement n'est donc pas refroidi et circule en circuit fermé dans le premier échangeur.According to a first embodiment, the first branch can be arranged downstream, in the direction of flow of the coolant, the thermostat arranged on the main circuit. In this case, when the thermostat blocks the circulation of the coolant inside the first radiator, it also blocks the circulation of the coolant in the first bypass. The coolant is not cooled and circulates in closed circuit in the first exchanger.
Selon un second mode de réalisation, la première dérivation peut être agencée en amont, toujours selon le sens de circulation du liquide de refroidissement, d'un thermostat agencé sur le circuit principal. Dans ce cas, lorsque le thermostat est actionné, le liquide de refroidissement ne circule plus dans le premier radiateur, mais il peut cependant circuler dans la première dérivation.According to a second embodiment, the first branch may be arranged upstream, always in the direction of circulation of the coolant, a thermostat arranged on the main circuit. In this case, when the thermostat is actuated, the coolant no longer circulates in the first radiator, but it can however flow in the first bypass.
Avantageusement, dans ce cas, la première dérivation peut comporter un second thermostat. De cette manière, il est possible d'augmenter la rapidité de chauffe du liquide de refroidissement, en ne le faisant circuler que dans les premier et second échangeurs de chaleur sans réaliser son refroidissement dans les premier et second radiateurs.Advantageously, in this case, the first branch may comprise a second thermostat. In this way, it is possible to increase the speed of heating the coolant, by circulating it in the first and second heat exchangers without cooling in the first and second radiators.
Par ailleurs, la première dérivation peut comporter une valve de régulation. Une telle valve permet ainsi de réguler le débit du liquide refroidissement dans la première dérivation.Moreover, the first branch may comprise a control valve. Such a valve thus makes it possible to regulate the flow rate of the cooling liquid in the first bypass.
Selon un mode de réalisation particulier, le circuit de refroidissement peut comporter une seconde dérivation de la boucle principale, agencée en parallèle par rapport au premier radiateur et au premier échange de chaleur, cette seconde dérivation pouvant avoir successivement selon un sens de circulation du liquide de refroidissement, un troisième radiateur et un troisième échangeur captant la chaleur d'une troisième source de chaleur connectés en série au moyen de durites permettant la circulation du liquide de refroidissement.According to a particular embodiment, the cooling circuit may comprise a second branch of the main loop, arranged in parallel with respect to the first radiator and the first heat exchange, this second bypass may have successively in a direction of circulation of the liquid of cooling, a third radiator and a third heat exchanger capturing the heat of a third heat source connected in series by means of hoses for the circulation of the coolant.
En effet, le circuit de refroidissement peut également comporter une seconde dérivation permettant de fournir de la chaleur à une température inférieure à celle de la boucle principale. Cette seconde dérivation joue alors le rôle de dérivation "basse température". Dans ce cas, le refroidissement de l'air de suralimentation peut notamment s'effectuer en deux étapes. Un premier refroidissement au moyen du second échangeur de la première dérivation "très haute température" permet un premier abaissement au contact du fluide de refroidissement à haute température. Un second refroidissement de l'air de suralimentation dans le troisième échangeur de la seconde dérivation permet de tirer avantage d'un fluide de refroidissement à basse température. Des cycles analogues, consistant à utiliser le second échangeur comme «pré-cooler» et le troisième échangeur comme «cooler», peuvent également être utilisés pour refroidir l'huile moteur ou les gaz d'échappement du système de recyclage.Indeed, the cooling circuit may also include a second branch to provide heat at a lower temperature than the main loop. This second derivation then plays the role of derivation "low temperature". In this case, the cooling of the charge air can in particular be carried out in two stages. A first cooling by means of the second exchanger of the first bypass "very high temperature" allows a first lowering in contact with the cooling fluid at high temperature. A second cooling of the charge air in the third exchanger of the second bypass makes it possible to take advantage of a cooling fluid at low temperature. Analogous cycles of using the second heat exchanger as " pre-cooler " and the third heat exchanger as " cooler " can also be used to cool the engine oil or the exhaust gases of the recycling system.
En pratique, la première dérivation peut également comporter un quatrième échangeur de chaleur connecté à un circuit de réchauffage de l'air de ventilation de la cabine du véhicule.In practice, the first bypass may also include a fourth heat exchanger connected to a circuit for heating the ventilation air of the vehicle cabin.
En effet, et notamment en hiver, il peut être nécessaire de chauffer rapidement la cabine du véhicule. Cet échangeur de chaleur peut être agencé parallèlement par rapport au second radiateur, notamment au niveau de la sortie du second échangeur de chaleur de la boucle haute température. En effet, dans ce cas, le liquide de refroidissement est porté à très haute température, avant de pénétrer dans le quatrième échangeur de chaleur. Cet apport d'énergie calorifique permet notamment d'améliorer l'efficacité du transfert thermique.Indeed, and especially in winter, it may be necessary to quickly heat the vehicle cabin. This heat exchanger can be arranged parallel to the second radiator, especially at the output of the second heat exchanger of the high temperature loop. Indeed, in this case, the coolant is heated to a very high temperature, before entering the fourth heat exchanger. This supply of heat energy makes it possible in particular to improve the efficiency of the heat transfer.
La manière de réaliser l'invention ainsi que les avantages qui en découlent, ressortiront bien de la description du mode de réalisation qui suit, donné à titre indicatif et non limitatif, à l'appui des figures annexées dans lesquelles :
- ■ la
figure 1 est une représentation schématique d'un circuit de refroidissement conforme à l'invention ; - ■ la
figure 2 est une représentation schématique d'un second échangeur de chaleur captant la chaleur dégagée par différents éléments du véhicule ; - ■ les
figures 3 à 5 représentent différentes variantes du circuit de refroidissement conforme à l'invention.
- ■ the
figure 1 is a schematic representation of a cooling circuit according to the invention; - ■ the
figure 2 is a schematic representation of a second heat exchanger capturing the heat released by different elements of the vehicle; - ■ the
Figures 3 to 5 represent different variants of the cooling circuit according to the invention.
Comme déjà évoqué, l'invention concerne un circuit de refroidissement d'un moteur thermique de véhicule automobile. Un tel circuit peut notamment être rapporté dans le compartiment moteur d'une voiture, d'un camion, d'un autocar, d'un autobus ou d'un véhicule de chantier notamment.As already mentioned, the invention relates to a cooling circuit of a motor vehicle engine. Such a circuit can be reported in particular in the engine compartment of a car, a truck, a coach, a bus or a construction vehicle in particular.
Tel que représenté à la
La première dérivation 11 est alors agencée en parallèle du premier radiateur 3. Des raccords en "T" sont alors agencés à la jonction entre les durites 5 et 6, et 7 et 8 de manière à connecter les durites 15 et 17 de la première dérivation 11 avec la boucle principale 1. L'extrémité aval de la dérivation 11 débouche ainsi entre la sortie du radiateur 3 et l'entrée du premier échangeur 2.The
Cette première dérivation 11 comprend un second échangeur 12 captant la chaleur d'une seconde source de chaleur et un second radiateur 13. Ces deux éléments sont connectés en série au moyen de la durite 16.This
Dans la boucle principale 1, la température du liquide de refroidissement ne doit pas dépasser une valeur de seuil prédéterminée T0, généralement de 110°C. Ainsi, on régule à la température T1 la température du liquide de refroidissement à la sortie du premier échangeur de chaleur 2, et donc dans les durites 5,6 et 15.In the main loop 1, the coolant temperature must not exceed a predetermined threshold value T0, generally 110 ° C. Thus, the temperature of the coolant at the outlet of the
Par ailleurs, de par la circulation du liquide dans le second échangeur de chaleur 12, la température T2 du liquide de refroidissement dans la durite 16 en aval du second échangeur 12 est supérieure à la température T1 du liquide de refroidissement dans la durite 15 en amont de celui-ci. Or, lorsque le véhicule se trouve en conditions normales de fonctionnement, la température T1 du liquide de refroidissement, dans la boucle principale, est sensiblement égale à la valeur de seuil T0. Par conséquent, la température T2 du liquide de refroidissement dans la dérivation 11 est supérieure ou égale à la valeur de seuil prédéterminée T0 une fois le moteur à température.Furthermore, due to the circulation of the liquid in the
Par ailleurs, et tel que représenté dans ce mode de réalisation, les premier et second radiateurs 13 peuvent être agencés aérauliquement en série. Ainsi, le flux d'air traversant le premier radiateur 3 passe ensuite au travers du second radiateur 13 sans qu'il n'y ait besoin de le dévier. La température extérieure peut, dans les cas extrêmes, être d'environ 40°C. Celle-ci est alors élevée après le passage au travers du premier radiateur 3. Cet agencement particulier des deux radiateurs 3,13 l'un derrière l'autre, permet de limiter la surface de captation d'air sur la face avant du véhicule.Moreover, and as shown in this embodiment, the first and
Tel que représenté à la
La ou les différentes sources de chaleur peuvent être formées par notamment un circuit 50 du système de recyclage des gaz d'échappement et/ou un circuit 60 de l'huile de lubrification du moteur thermique et/ou un circuit 70 d'air comprimé de suralimentation. En effet, la température de ces fluides est bien supérieure à la température T1 du liquide de refroidissement. L'écart de température avec le fluide de refroidissement dans la boucle haute température est suffisant pour assurer un refroidissement satisfaisant du liquide de refroidissement dans le second radiateur. De cette manière, on améliore le rendement global de l'échange thermique entre les différentes sources de chaleur et l'air de ventilation.The one or more heat sources may be formed by, in particular, a
Tel que représenté à la
Par ailleurs, la première dérivation 11 peut comporter une valve 20 de régulation du débit du liquide de refroidissement à l'intérieur de la première dérivation 11. Cette valve de régulation 20 permet, lorsque celle-ci est fermée, d'échauffer rapidement la température du liquide du liquide refroidissement dans l'échangeur 12. Lorsque la valve 21 est ouverte l'échangeur 12 dissipe alors une énergie calorifique maximale.Furthermore, the
Par ailleurs, la boucle principale 1 peut comporter un thermostat 19, la première dérivation 11 étant agencée en aval de ce thermostat 19. Un tel thermostat 19 permet d'augmenter la rapidité de montée en température du liquide de refroidissement dans la boucle principale 1 au moyen d'une durite 49 « court-circuitant » le premier radiateur 3 et la première dérivation 11. Ainsi, le premier échangeur de chaleur 2 est un circuit fermé avec la pompe 4 et la chaleur emmagasinée par le liquide de refroidissement n'est pas échangé avec l'air du milieu extérieur.Furthermore, the main loop 1 may include a
Tel que représenté à la
Les trois radiateurs 3, 13, 23 peuvent être agencés suivant diverses configurations, à savoir aérauliquement en série ou en parallèle.The three
Tel que représenté à la
Par ailleurs, un second thermostat 39 peut être agencé à l'intérieur de la première dérivation 11. Ce second thermostat 39 permet de « court-circuiter » le second radiateur 13 au moyen d'une durite 69 connectant directement la durite 15 avec la durite 18.Furthermore, a
Par ailleurs, un quatrième échangeur de chaleur 32 peut être agencé en parallèle avec le second radiateur 13 sur la première dérivation 11 en aval du second échangeur. Ce quatrième échangeur de chaleur 32 peut être connecté à un circuit de réchauffage de l'air de ventilation de la cabine du véhicule.Furthermore, a
Ce mode de réalisation permet notamment d'obtenir un chauffage rapide de la cabine, ce qui peut être avantageux pour dégivrer rapidement un pare-brise ou simplement améliorer le confort du véhicule. Il permet également d'améliorer le rendement de l'échange thermique dans le quatrième échangeur 32 puisque le fluide qui le traverse est à une température supérieure à celle de la boucle principale 1 sur laquelle il est en général agencé.This embodiment allows in particular to obtain rapid heating of the cabin, which can be advantageous for defrosting a windshield quickly or simply improve the comfort of the vehicle. It also improves the efficiency of the heat exchange in the
Il ressort de ce qui précède qu'un circuit de refroidissement conforme à l'invention présente de multiples avantages, notamment :
- ■ il permet d'améliorer le rendement global d'un échange thermique généré par l'ensemble des équipements chauffants ou à chauffer du véhicule ;
- ■ à rendement équivalent, il permet de réduire la surface de captation en air frais au niveau de la surface avant du véhicule ;
- ■ il permet d'améliorer le confort général du véhicule en améliorant la rapidité de chauffage de la cabine notamment.
- It makes it possible to improve the overall efficiency of a heat exchange generated by all the heating or heating equipment of the vehicle;
- ■ with equivalent efficiency, it reduces the fresh air intake area at the front surface of the vehicle;
- ■ It improves the overall comfort of the vehicle by improving the speed of heating the cabin in particular.
Claims (12)
- A cooling circuit for a motor vehicle combustion engine, comprising a main loop (1) comprising a first exchanger (2) that collects the heat from a first heat source, a first radiator (3) and a pump (4) which are connected in series using hoses (5, 6, 7, 8) allowing the circulation of a liquid coolant, the temperature of said coolant being, under normal operating conditions, kept at a temperature (T1) lower than or equal to a predetermined threshold value (T0), a first bypass (11) of the main loop (1) arranged in parallel with said first radiator (3), characterized in that said first bypass (11) comprises, in succession, in the direction in which the coolant flows, a second exchanger (12) collecting heat from a second heat source and a second radiator (13), these being connected in series by means of hoses (15-18) allowing the circulation of said liquid coolant, the temperature of said coolant leaving said second exchanger (12) being, under normal operating conditions, raised to a temperature (T2) higher than or equal to the predetermined threshold value (T0).
- The cooling circuit as claimed in claim 1, characterized in that the second heat source of the second exchanger (12) comprises a circuit (50) of the exhaust gas recirculation system.
- The cooling circuit as claimed in claim 1, characterized in that the second heat source of the second exchanger (12) comprises a circuit (60) of the combustion engine lubricating oil.
- The cooling circuit as claimed in claim 1, characterized in that the second heat source of the second exchanger comprises a compressed charge air circuit (70).
- The cooling circuit as claimed in claim 1, characterized in that said first (3) and second (13) radiators are arranged, in terms of air flow, in series.
- The cooling circuit as claimed in claim 1, characterized in that said first (3) and second (33) radiators are arranged, in terms of air flow, in parallel.
- The cooling circuit as claimed in claim 1, characterized in that the first bypass (11) is arranged downstream, in the direction in which the coolant flows, of a first thermostat (19) arranged on the main circuit (1).
- The cooling circuit as claimed in claim 1, characterized in that the first bypass (11) is arranged upstream, in the direction in which the coolant flows, of a first thermostat (29) arranged on the main circuit (1).
- The cooling circuit as claimed in claim 8, characterized in that the first bypass (11) comprises a second thermostat (39).
- The cooling circuit as claimed in claim 1, characterized in that the first bypass (11) comprises a regulating valve (20).
- The cooling circuit as claimed in claim 1, characterized in that it comprises a second bypass (21) of the main loop (1), arranged in parallel with respect to said first radiator (3) and to said first heat exchanger (2), said second bypass (21) comprising, in succession, in the direction in which the coolant flows, a third radiator (23) and a third exchanger (22) collecting heat from a third heat source, these being connected in series by means of hoses (25-28) allowing the circulation of said liquid coolant.
- The cooling circuit as claimed in claim 1, characterized in that the first bypass (11) comprises a fourth heat exchanger (32) connected to a circuit for heating the air with which the cab or cabin of the vehicle is ventilated.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2006/050939 WO2008034959A1 (en) | 2006-09-22 | 2006-09-22 | Cooling circuit for the thermal engine of an automotive vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2066884A1 EP2066884A1 (en) | 2009-06-10 |
EP2066884B1 true EP2066884B1 (en) | 2011-08-24 |
Family
ID=37622175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06831227A Not-in-force EP2066884B1 (en) | 2006-09-22 | 2006-09-22 | Cooling circuit for the thermal engine of an automotive vehicle |
Country Status (4)
Country | Link |
---|---|
US (1) | US8127722B2 (en) |
EP (1) | EP2066884B1 (en) |
AT (1) | ATE521798T1 (en) |
WO (1) | WO2008034959A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220176773A1 (en) * | 2020-12-07 | 2022-06-09 | Hyundai Motor Company | Integrated thermal management system for vehicle |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE532729C2 (en) * | 2008-08-22 | 2010-03-23 | Scania Cv Ab | Cooling system of a vehicle powered by an internal combustion engine |
US8393314B2 (en) * | 2009-10-12 | 2013-03-12 | International Engine Intellectual Property Company, Llc. | FLEX dual stage EGR cooling |
SE535877C2 (en) * | 2010-05-25 | 2013-01-29 | Scania Cv Ab | Cooling arrangement of a vehicle driven by a supercharged internal combustion engine |
US8742701B2 (en) * | 2010-12-20 | 2014-06-03 | Cummins Inc. | System, method, and apparatus for integrated hybrid power system thermal management |
US20120207624A1 (en) * | 2011-02-14 | 2012-08-16 | Paul Finestone | Liquid Water Removal Apparatus |
US20140202669A1 (en) * | 2013-01-21 | 2014-07-24 | Denso International America, Inc. | Dual radiator engine cooling module - single coolant loop |
JP5993759B2 (en) * | 2013-02-27 | 2016-09-14 | カルソニックカンセイ株式会社 | Engine intake cooling system |
US9255518B2 (en) | 2013-10-24 | 2016-02-09 | Norfolk Southern Corporation | System and method for an aftercooler bypass |
US10156387B2 (en) * | 2014-12-18 | 2018-12-18 | Lg Electronics Inc. | Outdoor device for an air conditioner |
JP6086132B2 (en) * | 2015-07-28 | 2017-03-01 | トヨタ自動車株式会社 | Vehicle heat exchanger |
FR3043719B1 (en) * | 2015-11-13 | 2019-07-05 | Novares France | COOLING CIRCUIT FOR A MOTOR VEHICLE |
DE102017213777B4 (en) * | 2017-08-08 | 2022-02-17 | Audi Ag | Method for operating a drive device of a motor vehicle with several coolant coolers and corresponding drive device |
US10653941B2 (en) | 2017-11-28 | 2020-05-19 | Matt Lyons | Lag winner determination and training apparatus and method of use |
JP6954138B2 (en) * | 2018-01-15 | 2021-10-27 | 株式会社デンソー | Heat storage device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1223196B (en) * | 1962-12-24 | 1966-08-18 | Kloeckner Humboldt Deutz Ag | Liquid cooling system for supercharged internal combustion engines |
US3752132A (en) * | 1971-04-19 | 1973-08-14 | Caterpillar Tractor Co | Dual cooling system for engines |
FR2341041A1 (en) * | 1976-02-10 | 1977-09-09 | Chausson Usines Sa | DEVICE FOR REGULATING THE TEMPERATURE OF A SUPERCHARGED DIESEL ENGINE |
US4520767A (en) * | 1983-09-16 | 1985-06-04 | Cummins Engine Company | Low flow cooling system and apparatus |
JPS6419157A (en) * | 1987-07-10 | 1989-01-23 | Kubota Ltd | Waste heat recovering device for water cooled engine |
DE3738412A1 (en) * | 1987-11-12 | 1989-05-24 | Bosch Gmbh Robert | ENGINE COOLING DEVICE AND METHOD |
DE4104093A1 (en) * | 1991-02-11 | 1992-08-13 | Behr Gmbh & Co | COOLING SYSTEM FOR A COMBUSTION ENGINE VEHICLE |
JP3952545B2 (en) * | 1997-07-24 | 2007-08-01 | 株式会社デンソー | Air conditioner for vehicles |
US6564757B2 (en) * | 2000-06-22 | 2003-05-20 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine including heat accumulation system, and heat carrier supply control system |
PE20020276A1 (en) * | 2000-06-30 | 2002-04-06 | Elan Pharm Inc | SUBSTITUTE AMINE COMPOUNDS AS ß-SECRETASE INHIBITORS FOR THE TREATMENT OF ALZHEIMER |
FR2816004B1 (en) * | 2000-10-27 | 2003-06-20 | Mark Iv Systemes Moteurs Sa | COOLING ASSEMBLY FOR MOTOR VEHICLES |
DE10146346A1 (en) * | 2001-09-20 | 2003-04-10 | Behr Gmbh & Co | Coolant circuit |
DE10154926A1 (en) * | 2001-11-08 | 2003-05-22 | Daimler Chrysler Ag | Coolant circuit for an internal combustion engine |
DE10228355A1 (en) | 2002-06-25 | 2004-01-15 | Daimlerchrysler Ag | Internal combustion engine heat regulation involves controlling influencing devices according to prevailing state associated with certain coolant temperatures and/or other operating parameter values |
DE10302170A1 (en) * | 2003-01-22 | 2004-08-12 | Daimlerchrysler Ag | Combustion engine coolant circuit has a link to a gearbox oil cooler circuit that is controlled by the position of a control unit actuator so that gearbox oil can be heated or cooled as necessary |
GB0310120D0 (en) * | 2003-05-02 | 2003-06-04 | Ford Global Tech Llc | Engine cooling systems |
JP4013832B2 (en) * | 2003-05-30 | 2007-11-28 | アイシン精機株式会社 | Vehicle cooling system |
US7261068B1 (en) * | 2006-02-16 | 2007-08-28 | Deere & Company | Vehicular thermostatically-controlled dual-circuit cooling system and associated method |
-
2006
- 2006-09-22 WO PCT/FR2006/050939 patent/WO2008034959A1/en active Application Filing
- 2006-09-22 EP EP06831227A patent/EP2066884B1/en not_active Not-in-force
- 2006-09-22 US US12/439,205 patent/US8127722B2/en not_active Expired - Fee Related
- 2006-09-22 AT AT06831227T patent/ATE521798T1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220176773A1 (en) * | 2020-12-07 | 2022-06-09 | Hyundai Motor Company | Integrated thermal management system for vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP2066884A1 (en) | 2009-06-10 |
WO2008034959A1 (en) | 2008-03-27 |
US8127722B2 (en) | 2012-03-06 |
ATE521798T1 (en) | 2011-09-15 |
US20100012054A1 (en) | 2010-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2066884B1 (en) | Cooling circuit for the thermal engine of an automotive vehicle | |
AU2010224799B2 (en) | Method and apparatus for oiling rotating or oscillating components | |
EA019697B1 (en) | System for cooling an engine | |
EP3564504B1 (en) | Cooling circuit of an engine with two thermostatic valves and a rankine circuit | |
EP1170498B1 (en) | Device for thermal control of the intake air of an internal combustion engine of an automotive vehicle | |
EP1963657B1 (en) | Device for cooling intake air and recycled exhaust gases | |
WO2020183104A1 (en) | Air conditioning system equipped with a system for the thermal management of oil and of pressurized air | |
US10662862B2 (en) | Engine cooling system with two cooling circuits | |
EP3676516B1 (en) | Cooling circuit assembly for a heat engine and a gearbox | |
EP2039906B1 (en) | Method of controlling the temperature of an internal combustion engine with turbo charger and intercooler | |
EP3002443A1 (en) | Air intake module of an internal combustion engine of a motor vehicle | |
WO2008132369A1 (en) | System and method for cooling the propulsion unit of an automobile | |
WO2015052424A1 (en) | Cooling of an alternative internal combustion engine | |
EP2126309A1 (en) | System and method for cooling a motor propulsion unit on a motor vehicle | |
FR2950572A1 (en) | SYSTEM AND METHOD FOR CONTROLLING THE TEMPERATURE OF THE HABITACLE OF A MOTOR VEHICLE | |
JPH11257084A (en) | Lubricating unit for turbo charger in internal combustion engine | |
FR2951778A1 (en) | Liquid coolant cooling device for use in vehicle e.g. car, has radiator element cooling low temperature liquid coolant circulating inside low temperature cooling circuit, and another radiator element cooling high temperature liquid coolant | |
FR2978206A1 (en) | Temperature control device for car, has recycled gas radiator connected between port and connection point, and valve system for circulating fluids of principal and secondary circuits in recycled gas radiator | |
FR2936393A1 (en) | Vehicle i.e. diesel hybrid vehicle, has supply circuit for supplying fuel to heat engine and including branch traversed by cooler exchanger of electrical system, where fuel is used as coolant in exchanger | |
EP3835701A1 (en) | Double heat exchanger with orthogonal gas flow | |
FR3074525A1 (en) | MOTORIZING GROUP COOLING CIRCUIT OPTIMIZING THE RISE IN TEMPERATURE OF A GEARBOX | |
FR3111388A1 (en) | Cooling circuit for double flow module | |
FR3125559A1 (en) | ENGINE ASSEMBLY WITH A COOLANT-LUBRICATED TURBOCHARGER | |
FR2661953A1 (en) | System for cooling the turbocharging (boost) air of an internal combustion engine, using the cooling circuit of the engine | |
FR2935309A1 (en) | Motor vehicle, has cooling circuit including radiator that is cooled with air and is arranged in front wheel house of vehicle, and associated with supercharged air cooler mounted on supercharged engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090320 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20100614 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006024078 Country of ref document: DE Effective date: 20111027 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110824 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111224 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111226 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 521798 Country of ref document: AT Kind code of ref document: T Effective date: 20110824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111125 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: RENAULT TRUCKS Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
26N | No opposition filed |
Effective date: 20120525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006024078 Country of ref document: DE Effective date: 20120525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602006024078 Country of ref document: DE Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602006024078 Country of ref document: DE Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE Effective date: 20141219 Ref country code: DE Ref legal event code: R081 Ref document number: 602006024078 Country of ref document: DE Owner name: VOLVO TRUCK CORP., SE Free format text: FORMER OWNER: RENAULT TRUCKS, SAINT PRIEST, FR Effective date: 20141219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: VOLVO LASTVAGNAR AKTIEBOLAG, SE Effective date: 20150209 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190926 Year of fee payment: 14 Ref country code: FR Payment date: 20190926 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191129 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006024078 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |