[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2060484B1 - Rudder for ships - Google Patents

Rudder for ships Download PDF

Info

Publication number
EP2060484B1
EP2060484B1 EP07024061A EP07024061A EP2060484B1 EP 2060484 B1 EP2060484 B1 EP 2060484B1 EP 07024061 A EP07024061 A EP 07024061A EP 07024061 A EP07024061 A EP 07024061A EP 2060484 B1 EP2060484 B1 EP 2060484B1
Authority
EP
European Patent Office
Prior art keywords
rudder
cross
section
rudder blade
propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07024061A
Other languages
German (de)
French (fr)
Other versions
EP2060484A1 (en
EP2060484B2 (en
Inventor
Mathias Kluge
Henning Kuhlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becker Marine Systems GmbH and Co KG
Original Assignee
Becker Marine Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38955296&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2060484(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Becker Marine Systems GmbH and Co KG filed Critical Becker Marine Systems GmbH and Co KG
Priority to PL07024061T priority Critical patent/PL2060484T5/en
Priority to TW097105007A priority patent/TWI352677B/en
Priority to SG200801245-2A priority patent/SG152963A1/en
Priority to US12/070,346 priority patent/US7802531B2/en
Priority to JP2008056222A priority patent/JP4841578B2/en
Priority to KR1020080030871A priority patent/KR101281977B1/en
Priority to CN2008100930289A priority patent/CN101434294B/en
Priority to DE202008014375U priority patent/DE202008014375U1/en
Priority to EP08018925A priority patent/EP2060486B1/en
Priority to PT08018925T priority patent/PT2060486E/en
Priority to PT08018924T priority patent/PT2060485E/en
Priority to AT08018925T priority patent/ATE457925T1/en
Priority to DE502008000377T priority patent/DE502008000377D1/en
Priority to EP08018924A priority patent/EP2060485B1/en
Priority to ES08018924T priority patent/ES2341393T3/en
Priority to AT08018924T priority patent/ATE458670T1/en
Priority to DE502008000400T priority patent/DE502008000400D1/en
Priority to ES08018925T priority patent/ES2340741T3/en
Priority to TW097143317A priority patent/TWI370084B/en
Priority to TW097143320A priority patent/TWI363728B/en
Priority to KR1020080111796A priority patent/KR101466991B1/en
Priority to KR1020080112137A priority patent/KR20090049551A/en
Priority to CN2008101895507A priority patent/CN101531248B/en
Priority to CN2008101895511A priority patent/CN101531249B/en
Priority to JP2008289824A priority patent/JP5175690B2/en
Priority to JP2008289823A priority patent/JP4901843B2/en
Publication of EP2060484A1 publication Critical patent/EP2060484A1/en
Priority to HK09107784.6A priority patent/HK1129639A1/en
Priority to HK09110620.8A priority patent/HK1132718A1/en
Priority to HK09110623.5A priority patent/HK1132719A1/en
Priority to HR20100156T priority patent/HRP20100156T1/en
Priority to HR20100291T priority patent/HRP20100291T1/en
Publication of EP2060484B1 publication Critical patent/EP2060484B1/en
Priority to HRP20110353TT priority patent/HRP20110353T4/en
Priority to KR1020120119775A priority patent/KR101433465B1/en
Priority to KR1020130034026A priority patent/KR101421375B1/en
Publication of EP2060484B2 publication Critical patent/EP2060484B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H2025/388Rudders with varying angle of attack over the height of the rudder blade, e.g. twisted rudders

Definitions

  • the invention relates to a rudder for ships, comprising a rudder blade, which has a nose strip and an end strip, wherein the rudder blade has two superimposed rudder blade sections whose nose strip sections and / or Endolinnabitese are offset from each other such that the one nose strip section and / or Endolinnabterrorism to port or starboard and the other leading edge portion and / or end portion are offset to starboard and port, and that the one leading ridge portion and / or end ridge portion has a port offset surface projecting beyond the other leading ridge portion and / or the other end ridge portion and the other leading ridge portion and / or Endologicalnabites has a starboard offset surface which projects beyond the one leading edge portion and / or Endolinnabterrorism.
  • rudders are known in the art and are often referred to as twisted rudders.
  • the rudder blade is divided into upper and lower halves, and upper and lower rudder blade sections along a cutting plane that is normally generally horizontally aligned with a built-in rudder.
  • the dividing line between the two rudder blade sections in a profile view can also be formed non-rectilinear, for example stepped.
  • the two rudder sections are arranged adjacent to each other and firmly connected.
  • Each rudder blade section includes a nose strip section and a tail strip section.
  • the front nose strip areas or (sections) of the two rudder sections are against each other offset or arranged twisted, whereas the two side wall surfaces of the respective rudder blade sections converge into a single, continuous end bar.
  • the offset or the twisting of the rudder blade therefore occurs in these embodiments only in the front region, which faces the propeller on.
  • multi-twisted rudders are also known in which the front nose bar is divided into three or more sections, wherein a portion is arranged offset relative to its adjacent sections.
  • the propeller facing away Endangnabterrorisme the individual rudder blade sections are offset from each other.
  • the opposite, facing the propeller nose strip sections run together in this embodiment in a continuous, single bar.
  • both the rudder blade sections of the nose rail and the end bar are offset from each other, in this embodiment typically the nose and the end bar of a rudder blade section to different sides, ie one bar to starboard and the other bar to port , are offset.
  • the rudder blade When installed in a ship, the rudder blade is arranged on a driven propeller axis and associated with the hull propeller, the rudder blade is arranged in the direction of travel of the ship behind the propeller and the rudder blade is arranged such that the (front) leading edge of the propeller facing and the (rear) end bar facing away from the propeller. Further, the rudder usually includes in addition to the rudder blade a rudder and a rudder stock.
  • the statement that the rudder blade sections are arranged one above the other refers to the installed state of the rudder blade, in which usually one section is arranged above the other. Generally spoken the two rudder blade sections are therefore arranged adjacent to each other. Due to the staggered arrangement of the anterior lobes to each other, arises at each leading edge in the region in which the two lobes abut each other, each an offset surface, which, usually laterally, in each case over the other front lumbar or protrudes. Thus, in the transition region between the two leading edge ledges, there is one (90 °) edge on each side, which opens into one of the offset surfaces. On the inside of the offset surfaces, another (90 °) edge is created.
  • the Fig. 7 and 8th show examples of known from the prior art, twisted oars with staggered nose strips (sections).
  • the rudder blade 100 each has two superimposed rudder blade sections 10, 20, wherein the front nose strip sections 11, 21 are offset such that the one leading edge (or leading edge portion) 11 to port BB and the other leading edge (or leading edge portion) 21 to starboard SB are offset.
  • the two side wall surfaces 100a, 100b of the rudder blade 100 or both rudder blade sections 10, 20 merge into a single, continuous end bar 30. Since the two front nose strips 11, 21 are to be arranged staggered in the twisted rudder, one leading edge must always be offset to starboard and the other to port side.
  • offset surface 18th Die in Fig. 8 shown offset surface 18 is formed by that part of the underside of the upper nose strip 11, which passes over the lower nose strip 21.
  • the existing on the opposite side offset surface (not shown here) is correspondingly formed by that part of the top of the lower edge 21, which extends beyond the upper edge 11.
  • FIG. 9 shows a further example of a known from the prior art, twisted rudder, in which the two rudder blade sections 10, 20 of the rudder blade 100 in the region of their Endologicalnabête 30a, 30b are offset from one another.
  • the propeller in the installed state facing front nose strip 11, however, is formed continuously. Due to the staggered arrangement, an offset surface 18 also results in this embodiment on each rudder side, the offset surfaces 18 being formed between the transitions of the end strips 30a, 30b. In the FIG. 9 shown offset surface 18 is formed by that part of the upper side of the lower end bar 30b, which laterally beyond the upper end bar 30a.
  • Costa pears are relatively large pear- or zeppelin-like bodies that are provided on rudder blades.
  • Costa pears are generally known and sometimes referred to as propulsion pear. They are provided as an extension of the propeller (shaft) axis in the area of the rudder blade and project clearly from the rudder blade in the direction of the propeller and over the rudder blade.
  • Oars with such Costa bulbs are for example in the JP 09 011990 A or the DE 11 40 484 B shown.
  • Costa pears stand so far from the rudder blade that they come (almost) to the propeller hub to the plant.
  • the distance between Costa bulb and propeller or propeller hub should generally be as low as possible, so that as far as possible the entire flow of water generated by the propeller flows along the outside of the Costa bulb and not between Costa bulb and propeller hub.
  • the JP 06 305487 A which is considered to be the closest prior art, shows a rudder blade whose nose bar assumes an oblique course locally in the area of the ship's propeller, so that in the area of the propeller axis there is a displacement of the local nose strip areas.
  • a pear is also provided, which does not approach the propeller hub like a Costa pear, but protrudes clearly beyond the leading edge in the direction of the propeller hub.
  • the areas of the leading edge not lying in the area of the ship's propeller are not offset or twisted.
  • a flow body or a shaped body is provided in the region of each offset surface or transition region between the two front leading edge strips and / or end strips.
  • the flow or also shaped body is designed on the one hand in such a way that it is limited with regard to its dimensions or physical extent to the region of the offset surfaces or the transition region between the two nose strips and / or end strips.
  • the flow body is dimensioned such that it is present only locally in the region of the offset surfaces and does not protrude or protrude only to a small extent into other regions of the rudder or protrudes beyond this.
  • the flow body substantially flush with at least one of the leading edge strips or rear end strips.
  • the closed design of the rudder profile is further improved and it is ensured that the flow body does not adversely affect the Propulsionssystem or - behavior of the ship.
  • “Substantially flush” in this context means, for example, that the flow body, while encompassing the nose strip or end bar on its side facing the propeller, while projecting only slightly or not at all over the bars.
  • the flow body with respect to its size or shape is adapted to the offset surface or the transition region of the two nose strips and / or end strips. In other words, he is a perfect fit educated.
  • the flow body is not, such as a Costa bulb, over a large area over the rudder blade before.
  • the rudder according to the invention is formed or produced with the exclusion of a Costa- or Propulsionsbirne. It is therefore not a propulsion rudder (rudder with Costa pear). In particular, therefore, the flow or molding does not have to lie on the propeller shaft axis, as is absolutely necessary with the Costa bulb. On the contrary, the flow or shaped body can be arranged without offset relative to the propeller shaft axis, in particular upwards or downwards (in the installed state of the rudder).
  • the flow body in contrast to the Costa bulb, spaced from the propeller hub, since it does not or not significantly protrudes beyond the front leading edge.
  • the flow body is designed such that it substantially covers the offset surfaces or the transition region between the two front leading edge strips and / or end strips.
  • the flow body thus rests against the offset surfaces on the rudder blade and covers them so that the water flows along the flow body instead of the offset surfaces. This reduces the risk of flow turbulence.
  • the flow or molding or the walls of the molding thus form a lateral bridging or covering the transition region between the upper and the lower rudder blade section.
  • the term "masking" is to be understood in the present case such that the flow body at least largely covers the offset surfaces.
  • An advantage of such a rudder is that the risk of tearing off of the flow can be reduced by a flow body formed only locally in the area of the offset surfaces and covering the offset surfaces, the flow body simultaneously having no influence on the propulsion behavior of the vessel due to its relatively small dimensions. This creates a "propulsion-neutral effect". Furthermore, the flow body can be easily attached to existing rudders without complex tests must be performed and thus high costs. Thus, the present invention is suitable both for new buildings as well as existing rudders for retrofitting. Furthermore, the probability of occurrence of turbulence or turbulence in the transition region is reduced.
  • the flow body can be made of any known from the prior art and suitable material for this purpose.
  • the flow body is made of wrought iron.
  • the present invention can be used in multi-twisted rowing, in each case at least one flow body is then provided in each transition region between the individual sections of the front leading edge and / or the rear end strip.
  • the shape of the flow body is designed such that the flow body fluidly closes the rudder profile in the region of the offset surfaces.
  • the flow body forms a flow-conducting transition from one leading edge or end strip to the other.
  • the flow body provides a flow guide for a tear-free flow of the flow from one leading edge or end bar to the other.
  • the flow body applied to the rudder in the area of the offset surfaces forms a transition for the flow between the two staggered leading edge strips or end strips.
  • the transition is essentially edgeless or continuous.
  • edgeless in the present context is to be understood that the transition has no strongly offset, projecting edges, as is the case with a normal twisted rudder without flow body in the region of the offset surfaces. There are each offset at the edge of the offset surfaces (90 ° -) edges.
  • a substantially edgeless transition for example, by a rounded flow body or a rounded transition between the rudder blade sections can be achieved.
  • the flow body could be formed as a substantially oblique guide surface, which extends from the outer edge of an offset surface obliquely to the other, leading edge bar or rear end bar, so that the edge regions between rudder blade and flow body are less pronounced. This further reduces the likelihood of turbulence occurring.
  • the flow body prefferably protrude beyond the nose strip or the end strip by a maximum of 10%, preferably a maximum of 7%, particularly preferably a maximum of 5% of the mean profile length of the rudder blade 100. This ensures that the flow body has only a slight board against the rudder blade and thus the propulsion behavior is not negatively affected, as in a Costa bulb. Costa pears stand out for much longer, generally with a length of 20% and more of the rudder length, over the rudder blade.
  • the (maximum) length of the flow body substantially the length of the offset surface and / or the maximum width of the flow body of the largest profile thickness of Rudder, in particular the largest profile thickness of the rudder in the transition region between the two rudder sections corresponds.
  • the length of the flow body is thus approximately equal to the length of the offset surface and the width of the flow body is less than / equal to the largest profile thickness of the rudder. This ensures that the flow body does not project or only slightly beyond the actual rudder profile out, as is the case for example with a Costa bulb and the propulsion behavior is adversely affected.
  • the length of the flow body 1/5 to 1 ⁇ 2 by weight, particularly preferably 1 ⁇ 4 to 1/3 of the length of the rudder blade.
  • the height of a flow body is preferably 1 / 10-1 / 4, particularly preferably 1 / 8-1 / 6th of the height of the rudder blade.
  • the flow body may for example have a spherical or hemispherical shape or even a slightly rounded shape.
  • the flow body is designed such that it is arranged in both offset surface regions or both side regions of the transition region between the two nose strips or end strips.
  • the flow body can be provided both in one piece and in several pieces. It is particularly preferred if the flow body is formed in this embodiment spherical, drop, lenticular, cylindrical and / or torpedo-shaped.
  • a combination of different basic shapes for example a cylindrical base body with a hemispherical end region, is also possible.
  • a flow body having such a shape will consist of at least two individual parts which are each arranged on a rudder blade side in the region of an offset surface area and together form a closed flow body. From both items together with the rudder blade area located therebetween, the overall shape of the body, for example cylindrical, drop-shaped, etc., results.
  • Such flow profiles are particularly optimal in terms of flow.
  • two flow bodies are provided, each arranged in a respective offset surface area.
  • Such flow bodies are particularly preferably in the form of an inclined plane or surface with respect to the rudder blade side wall and extend obliquely from the outer edge of the offset surface of a leading edge or end bar to the other leading edge bar or end bar.
  • the flow body may be rounded in the transition regions to the rudder blade.
  • Such flow or shaped bodies can be designed, in particular, in the manner of a side plate, which may have a rounded design.
  • the size of the cross-sectional area of the rudder blade decreases from the upper region of the rudder blade to the lower region of the rudder blade.
  • the upper rudder blade portion of the rudder blade has a cross-sectional profile extending from a front of the leading edge bar to the rear end bar and up to a maximum profile thickness conically widening front surface and a to the front Surface subsequent to the rear end bar conically tapered rear surface is formed, wherein the two of a longitudinal axis of the rudder blade extending front surface portions have different sizes, of which the larger surface portion is lying on the port side and the smaller surface portion is starboard side, wherein the two surface sections formed by the center line in the rear region of the cross-sectional profile are formed the same, and that the lower rudder blade portion of the rudder blade has a cross-sectional profile extending from a front of the leading edge bar to the rear end bar extending and conically widening to a maximum profile thickness front surface and one adjoining the front surface and the the rear surface is formed, wherein the two of a longitudinal axis of the rudder blade extending front surface portions have different sizes,
  • the two propeller-facing cross-sectional surface sections of the cross-sectional profile of the upper rudder blade section have edge regions with a flat arc and a strongly arched arc and the two propeller-facing cross-sectional surface sections of the cross-sectional profile of the upper rudder blade section tangentially extending edge regions, wherein the cross-sectional surface portion with his The edge region with a strongly arched arc is located starboard side, and the two propeller-side cross-sectional surface portions of the cross-sectional profile of the lower rudder blade portion edge portions having a flat arc and having a highly curved arc, the two facing away from the propeller cross-sectional surface portions of the cross-sectional profile of the lower rudder blade portion tangentially extending edge regions the cross-sectional area section with its Ran d Scheme with strongly arched bow course is lying on the port side, so that port side and starboard side, the two-sided Edge regions of the upper rudder blade portion and the lower rudder blade portion
  • the propeller facing nose strips have a rounded profile.
  • the flow body is also rounded at least in the region of the front, the propeller-facing rudder.
  • the rudder is designed such that a rudder trunk bearing is provided as a cantilever with a central inner longitudinal bore for receiving a rudder stock for the rudder blade and extending into the rudder end connected to the rudder blade, wherein for storage of the rudder stock a bearing in the inner longitudinal bore of the rudder rod bearing is arranged, which extends with its free end into a recess, confiscation o.
  • a rudder trunk bearing is provided as a cantilever with a central inner longitudinal bore for receiving a rudder stock for the rudder blade and extending into the rudder end connected to the rudder blade, wherein for storage of the rudder stock a bearing in the inner longitudinal bore of the rudder rod bearing is arranged, which extends with its free end into a recess, confiscation o.
  • a rudder trunk bearing is provided as a cantilever with a central inner longitudinal bore for receiving a rudder stock for the rudder blade and extending into
  • the rudder stock is led out in its end with a portion of the rudder trunk and connected to the end of this section with the rudder blade , wherein no bearing between the rudder blade and the rudder trunk bearing is provided and wherein the connection of the rudder stock with the rudder blade is above the propeller shaft center, wherein the bottom bracket for the storage of the rudder stock in the rudder trunk in the end of the rudder rlagers is arranged.
  • the Fig. 1a to 1d show perspective views of an embodiment of the rudder according to the invention obliquely from the front, from the front, from the side and from below.
  • the figures each show a rudder 100, which consists of an upper and a lower rudder blade section 10, 20.
  • the upper rudder blade section 10 each has an upper, front nose strip 11 and the lower rudder blade section has a lower, front nose strip 21, wherein the nose strips 11, 21 are offset or rotated relative to one another. In particular, this is in Fig. 1b to recognize.
  • the upper nose strip 11 is offset to port and the lower leading edge 21 to starboard.
  • a flow body 41 is provided in the transition region 40 between the upper nose strip 11 and the lower nose strip 21, a flow body 41 is provided.
  • the flow body 41 is made of wrought iron and is substantially teardrop-shaped, wherein it is substantially flush with the upper nose strip 11 with respect to the propeller side facing the rudder 100. On the resulting by the offset of the two nose strips 11, 21 offset surfaces of these covering, drop-shaped flow body 41 is placed. Thus, in the transition region 40, a rounded transition between the two nose strips 11, 21 and the rudder profile is fluidically closed. The stepped, edged transition between the two profiles 11, 21 in the region of the offset surfaces is covered by the flow body 11, so that the offset surfaces in the Fig. 1a to 1d not visible are. In Fig. 1b It can also be seen that the width of the flow body 41 is slightly less than the maximum width of the rudder blade 100.
  • the flow may flow along the rounded transition, or flow guide surface provided by the flow body 41, without causing turbulence, stall or the like.
  • the drop-shaped flow body 41 has a front, hemispherical region which encompasses and / or embraces both nose strips 11, 21 at their region facing the propeller. He is not or only slightly above the nose strips 11, 21 before.
  • the rear part of the flow body 41 converges like a truncated cone.
  • the Fig. 2a to 2d show similar representations of another embodiment of the invention.
  • two flow body 41a, 41b are arranged in the transition region 40, wherein each flow body is assigned in each case to an offset surface of a nose strip 11, 21.
  • the flow bodies 41a, 41b form guide surfaces which run obliquely, with respect to a vertical axis, from the outer edge of a leading edge of the nose to the other leading edge of the nose. In the front, the propeller facing area they are rounded.
  • the flow bodies 41a, 41b may, for example, consist of several layers of wrought iron, which are placed on the rudder blade 100 in the transition region 40. By the flow body 41 a, 41 b, the profile of the rudder blade 100 is closed fluidically.
  • Fig. 3 shows a further side view of a rudder according to the invention, wherein there are an upper, a lower and an average cross-sectional area, which is located in the transition region between the two rudder blade sections 20, 21, are located.
  • the flow body 41 which are arranged in the transition region between the nose strips 11, 21, are for the sake of clarity at the Fig. 3, 3a and 3b omitted.
  • the upper leading edge 11 is offset to port and the other, lower leading edge 21 to starboard.
  • the two side wall surfaces 100a, 100b of the rudder blade 100 run together in an end bar 30 facing away from the propeller.
  • the upper and lower rudder blade sections 10, 20 of the rudder blade 100 are formed as follows:
  • the upper rudder blade section 10 has according to Fig. 3a a cross-sectional profile 12, which is formed by a front surface 14 conically widening from the front nose strip 11 to a largest profile thickness 13. At this front surface 14, a rear end face 15 extending to the end bar 30 connects, which tapers to the end bar 30.
  • the front surface 14 is subdivided by a center line M1 extending in the longitudinal direction of the rudder blade 100 into two surface sections 14a, 14b which have different sizes.
  • the larger surface portion 14a is located on the port side and the smaller surface portion 14b facing the starboard side.
  • the rear surface 15 is also divided from the center line M1 into two surface portions 15a, 15b.
  • the two surface portions 15a, 15b are the same size and have the same shapes.
  • the two propeller-side surface sections 14a, 14b of the cross-sectional profile 12 of the upper rudder blade section 10 have edge regions 16, 16a with a flat curved path 16'a, the two propeller 220 facing away from the surfaces 15a, 15b of the cross-sectional profile 12 of the upper rudder blade section 10 tangentially extending edge regions 17th 17a.
  • the surface portion 14b with the edge region 16a with a strongly arched curve 16'a is located on the starboard side.
  • the lower rudder blade section 20 has according to Fig. 3b a mirrored cross-sectional profile 22.
  • This cross-sectional profile 20 extends from a conically widening from the leading edge 21 to the end bar 30 and to a maximum profile thickness 23 surface.
  • At this front surface 24 is followed by an end strip 30 extending to surface 25, which tapers to the end bar 30.
  • the front surface 24 is subdivided by a center line M2 running in the longitudinal direction of the rudder blade 100 into two surface sections 24a, 24b which have different sizes.
  • the larger surface portion 24b is located starboard side and the small surface portion 24a is facing the port side.
  • the rear surface 25 is also divided from the center line M2 into two surface portions 25a, 25b.
  • the two surface portions 25a, 25b are the same size and have the same shape.
  • the two propeller-side surface portions 24a, 24b of the cross-sectional profile 22 of the upper rudder blade section 20 have edge regions 26, 26a with a flat arc 26 'and a curved arc 26'a, the two facing away from the propeller 220 surfaces 25a, 25b of the cross-sectional profile 22 of the lower Ruderblattabiteses 20 tangentially extending edge regions 27, 27a have.
  • the surface portion 24b with the edge region 26'a with a strongly arched curve 26'a is located on the port side.
  • the design and arrangement of the two rudder blade sections 10, 20 provides that the propeller 220 associated nose strip 11 of the upper rudder blade section 10 port side to the center line M1 and the nose strip 21 of the lower rudder blade section 20 starboard side lying to the center line M2, the two rudder blade sections 10, 20th in the rear region of the rudder blade 100 are brought together in an end strip 30.
  • 3a, 3b are the two rudder blade sections 10, 20 of the rudder blade 100 with their cross-sectional profiles 12, 22 arranged to each other such that the side wall portions of the rudder blade, which are in the region of the highly curved curved curves 16'a and 26'a of the surface portions 14b and 24b starboard side and port side, then the surface portion 14b of the cross-sectional profile 12 of the starboard side and the surface portion 24b of the cross-sectional profile 22 of the port side are facing, so that the nose strips 11, 21 of the two rudder blade sections 10, 20 are port side and starboard side.
  • the rudder can also be designed such that the two rudder blade sections 10, 20 of the rudder blade 100 are arranged with their cross-sectional profiles 12, 22 to each other such that the side wall portions of the rudder blade, in the region of the highly curved curved curves 16'a and 26'a of Surface portions 14b and 24b are port side and starboard side, in which case the surface portion 14b of the port side cross-sectional profile 12 and the surface portion 24b of the starboard side cross-sectional profile 22 are facing, so that the nose strips 11, 21 of the two rudder blade sections 10, 20 are starboard and port side.
  • Fig. 4 110 is a hull, with 120 a rudder trunk bearing, with 100 a rudder blade and 140 a rudder shaft.
  • the rudder blade 100 is associated with a propeller 220.
  • This in Fig. 4 shown rudder blade is also twisted, which is not recognizable in the page presentation.
  • the flow body between the offset front nose strips for clarity in the representation in Fig. 4 omitted.
  • the Fig. 5 shows a section through the bearing assembly of the rudder bearing Fig. 4 and Fig. 6 shows a schematic representation of a bearing assembly between the rudder shaft and the rudder trunk.
  • the rudder trunk bearing 120 is provided as a cantilever with a central inner longitudinal bore 125 for receiving the rudder stock 140 for the rudder blade 100.
  • the rudder trunk bearing 120 is sufficiently formed to the rudder blade 100 connected to the rudder end.
  • the rudder trunk bearing 120 In its inner bore 125, the rudder trunk bearing 120 has a bearing 150 for supporting the rudder stock 140, wherein preferably this bearing 150 is arranged in the lower end region 120b of the rudder trunk bearing 120.
  • the rudder stock 140 is led out with its end 140 b with its free portion 145 from the rudder trunk bearing 120.
  • the free lower end of this extended portion 145 of the rudder stock 140 is fixedly connected to the rudder blade 100 at 170, but also here a connection is provided, the release of the rudder blade 100 of the rudder stock 140 allows when the propeller shaft is to be replaced.
  • connection of the rudder stock 140 in the area 170 with the rudder blade 100 is above the propeller shaft center 225, so that only the rudder blade 100 must be removed from the rudder stock 140 for the expansion of the propeller shaft, while not taking out the rudder stock 140 from the rudder trunk bearing 120 is necessary, since both the free lower end 120b of the rudder trunk bearing 120 and the free lower end of the rudder stock 140 are above the propeller shaft center.
  • only a single inner bearing 150 is provided for the storage of the rudder stock 140 and the rudder trunk bearing 120; a further bearing for the rudder blade 100 on the outer wall of the rudder trunk bearing 120 is omitted.
  • the rudder blade 100 is provided with a recess or recess indicated at 160.
  • the rudder trunk bearing 120 is provided as a cantilever with a central inner longitudinal bore 125 for receiving the rudder stock 140 for the rudder blade 100. Furthermore, the rudder trunk bearing 120 is up in formed in the rudder end connected rudder blade 100 reaching in and has in its inner bore 125 a bearing 150 for supporting the rudder stock 140 in the rudder trunk bearing 120. With its free end 120 b, the rudder trunk bearing 120 extends into a recess 160 in the rudder blade 100, the rudder stock 140 being led out of the rudder trunk bearing 120 in its end region 140 b with a section 145.
  • this extended portion 145 of the rudder stock 140 is connected to the rudder blade 100, wherein the connection of the rudder stock 140 with the rudder blade 100 above the propeller shaft center 225 is lying.
  • the inner bearing 150 is preferably provided in the end region 120b of the rudder trunk bearing 120.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Soil Working Implements (AREA)
  • Toys (AREA)
  • Steroid Compounds (AREA)
  • Traffic Control Systems (AREA)
  • Blinds (AREA)
  • Superstructure Of Vehicle (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Revetment (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The rudder (200) has a slim profile provided with a small profile thickness with maximum suspension rudder blade (100) that are made of two rudder blade sections (10,20) arranged lying one upon another. Two leading edges (11,21) and a trailing edge (15) are provided, which run under deduction of the cross-section areas from an upper area (OB) to a lower area (UB) of the rudder blade. The distance between that flat arc-shaped running side panel sections is larger than the distance between the thick arc-shaped running side panel sections.

Description

Die Erfindung betrifft ein Ruder für Schiffe, umfassend ein Ruderblatt, welches eine Nasenleiste und eine Endleiste aufweist, wobei das Ruderblatt zwei übereinander liegende Ruderblattabschnitte aufweist, deren Nasenleistenabschnitte und/oder Endleistenabschnitte derart zueinander versetzt sind, dass der eine Nasenleistenabschnitt und/oder Endleistenabschnitt nach Backbord oder Steuerbord und der andere Nasenleistenabschnitt und/oder Endleistenabschnitt nach Steuerbord oder Backbord versetzt sind, und dass der eine vordere Nasenleistenabschnitt und/oder Endleistenabschnitt eine backbordseitige Versatzfläche aufweist, die über den anderen vorderen Nasenleistenabschnitt und/oder den anderen Endleistenabschnitt vorsteht und der andere vordere Nasenleistenabschnitt und/oder Endleistenabschnitt eine steuerbordseitige Versatzfläche aufweist, die über den einen vorderen Nasenleistenabschnitt und/oder Endleistenabschnitt vorsteht.The invention relates to a rudder for ships, comprising a rudder blade, which has a nose strip and an end strip, wherein the rudder blade has two superimposed rudder blade sections whose nose strip sections and / or Endleistenabschnitte are offset from each other such that the one nose strip section and / or Endleistenabschnitt to port or starboard and the other leading edge portion and / or end portion are offset to starboard and port, and that the one leading ridge portion and / or end ridge portion has a port offset surface projecting beyond the other leading ridge portion and / or the other end ridge portion and the other leading ridge portion and / or Endleistenabschnitt has a starboard offset surface which projects beyond the one leading edge portion and / or Endleistenabschnitt.

Derartige Ruder sind aus dem Stand der Technik bekannt und werden häufig auch als twistierte Ruder ("twisted rudder") bezeichnet. Im Allgemeinen ist bei derartigen Rudern das Ruderblatt in eine obere und eine untere Hälfte bzw. einen oberen und einen unteren Ruderblattabschnitt entlang einer Schnittebene, die bei einem eingebauten Ruder normalerweise im Wesentlichen horizontal ausgerichtet ist, geteilt. Bei einigen Ausführungsformen, beispielsweise bei twistierten Rudern mit Horn, kann die Trennlinie zwischen den beiden Ruderblattabschnitten in einer Profilansicht auch nicht-geradlinig, beispielsweise abgestuft ausgebildet sein. Die beiden Ruderabschnitte sind anliegend aneinander angeordnet und fest miteinander verbunden. Jeder Ruderblattabschnitt umfasst einen Nasenleistenabschnitt und einen Endleistenabschnitt. Die vorderen Nasenleistenbereiche bzw. (-abschnitte) der beiden Ruderabschnitte sind gegeneinander versetzt bzw. verdreht angeordnet, wohingegen die beiden Seitenwandflächen der jeweiligen Ruderblattabschnitte in eine einzige, durchgehende Endleiste zusammenlaufen. Der Versatz bzw. die Twistierung des Ruderblattes tritt daher bei diesen Ausführungsformen nur im vorderen Bereich, der dem Propeller zugewandt ist, auf. Darüber hinaus sind auch mehrfach twistierte Ruder bekannt, bei denen die vordere Nasenleiste in drei oder mehr Abschnitte unterteilt ist, wobei ein Abschnitt in Bezug auf seine benachbarten Abschnitte jeweils versetzt angeordnet ist. Ferner gibt es auch bekannte Ausführungsformen, bei denen die dem Propeller abgewandten Endleistenabschnitte der einzelnen Ruderblattabschnitte gegeneinander versetzt angeordnet sind. Die gegenüberliegenden, dem Propeller zugewandten Nasenleistenabschnitte laufen dahingegen bei dieser Ausführungsform in eine durchgehende, einzige Leiste zusammen. Weiterhin sind auch Ausführungen möglich, bei denen sowohl die Ruderblattabschnitte der Nasenleite als auch der Endleiste gegeneinander versetzt sind, wobei bei dieser Ausführungsform typischerweise die Nasen- und die Endleiste eines Ruderblattabschnittes zu verschiedenen Seiten, d. h. die eine Leiste nach steuerbord und die andere Leiste nach backbord, versetzt sind.Such rudders are known in the art and are often referred to as twisted rudders. In general, in such rudders, the rudder blade is divided into upper and lower halves, and upper and lower rudder blade sections along a cutting plane that is normally generally horizontally aligned with a built-in rudder. In some embodiments, such as twisted rudders with horn, the dividing line between the two rudder blade sections in a profile view can also be formed non-rectilinear, for example stepped. The two rudder sections are arranged adjacent to each other and firmly connected. Each rudder blade section includes a nose strip section and a tail strip section. The front nose strip areas or (sections) of the two rudder sections are against each other offset or arranged twisted, whereas the two side wall surfaces of the respective rudder blade sections converge into a single, continuous end bar. The offset or the twisting of the rudder blade therefore occurs in these embodiments only in the front region, which faces the propeller on. In addition, multi-twisted rudders are also known in which the front nose bar is divided into three or more sections, wherein a portion is arranged offset relative to its adjacent sections. Furthermore, there are also known embodiments in which the propeller facing away Endleistenabschnitte the individual rudder blade sections are offset from each other. In contrast, the opposite, facing the propeller nose strip sections run together in this embodiment in a continuous, single bar. Furthermore, embodiments are also possible in which both the rudder blade sections of the nose rail and the end bar are offset from each other, in this embodiment typically the nose and the end bar of a rudder blade section to different sides, ie one bar to starboard and the other bar to port , are offset.

Im in einem Schiff eingebauten Zustand ist das Ruderblatt einem auf einer antreibbaren Propellerachse angeordneten und mit dem Schiffskörper verbundenen Propeller zugeordnet, wobei das Ruderblatt in Fahrtrichtung des Schiffs hinter dem Propeller angeordnet ist und das Ruderblatt derart angeordnet ist, dass die (vordere) Nasenleiste dem Propeller zugewandt und die (hintere) Endleiste dem Propeller abgewandt ist. Ferner umfasst das Ruder normalerweise zusätzlich zum Ruderblatt ein Ruderkoker und einen Ruderschaft.When installed in a ship, the rudder blade is arranged on a driven propeller axis and associated with the hull propeller, the rudder blade is arranged in the direction of travel of the ship behind the propeller and the rudder blade is arranged such that the (front) leading edge of the propeller facing and the (rear) end bar facing away from the propeller. Further, the rudder usually includes in addition to the rudder blade a rudder and a rudder stock.

Die Angabe, dass die Ruderblattabschnitte übereinanderliegend angeordnet sind, bezieht sich auf den eingebauten Zustand des Ruderblattes, in dem üblicherweise ein Abschnitt über dem anderen angeordnet ist. Allgemein gesprochen sind die beiden Ruderblattabschnitte daher anliegend aneinander angeordnet. Durch die versetzte Anordnung der vorderen Nasenleisten zueinander, entsteht an jeder vorderen Nasenleiste in dem Bereich, in dem die beiden Nasenleisten aneinander anliegen, jeweils eine Versatzfläche, die, normalerweise seitlich, jeweils über die andere vordere Nasenleiste vor- bzw. hinwegsteht. Somit ergibt sich im Übergangsbereich zwischen den beiden vorderen Nasenleisten zu jeder Seite eine (90°-) Kante, die in eine der Versatzflächen mündet. Auf der Innenseite der Versatzflächen entsteht eine weitere (90°-)Kante.The statement that the rudder blade sections are arranged one above the other refers to the installed state of the rudder blade, in which usually one section is arranged above the other. Generally spoken the two rudder blade sections are therefore arranged adjacent to each other. Due to the staggered arrangement of the anterior lobes to each other, arises at each leading edge in the region in which the two lobes abut each other, each an offset surface, which, usually laterally, in each case over the other front lumbar or protrudes. Thus, in the transition region between the two leading edge ledges, there is one (90 °) edge on each side, which opens into one of the offset surfaces. On the inside of the offset surfaces, another (90 °) edge is created.

Die Fig. 7 und 8 zeigen Beispiele von aus dem Stand der Technik bekannten, twistierten Rudern mit zueinander versetzten Nasenleisten(-abschnitten). Das Ruderblatt 100 weist jeweils zwei übereinanderliegende Ruderblattabschnitte 10, 20 auf, wobei die vorderen Nasenleistenabschnitte 11, 21 derart versetzt sind, dass die eine Nasenleiste (bzw. Nasenleistenabschnitt) 11 nach Backbord BB und die andere Nasenleiste (bzw. Nasenleistenabschnitt) 21 nach Steuerbord SB versetzt sind. Die beiden Seitenwandflächen 100a, 100b des Ruderblattes 100 bzw. beider Ruderblattabschnitte 10, 20 laufen in eine einzige, durchgehende Endleiste 30 zusammen. Da die beiden vorderen Nasenleisten 11, 21 beim twistierten Ruder versetzt zueinander anzuordnen sind, muss immer jeweils eine Nasenleiste nach Steuerbord und die andere nach Backbord versetzt sein. Durch die versetzte Anordnung ergibt sich im Bereich des Überganges zwischen den Nasenleisten 11, 21 an jeder Ruderblattseite jeweils eine Versatzfläche 18. Die in Fig. 8 dargestellte Versatzfläche 18 wird von demjenigen Teil der Unterseite der oberen Nasenleiste 11 gebildet, der über die untere Nasenleiste 21 hinwegsteht. Die auf der gegenüberliegenden Seite vorhandene Versatzfläche (hier nicht dargestellt) wird entsprechend von demjenigen Teil der Oberseite der unteren Nasenleiste 21 gebildet, der über die obere Nasenleiste 11 hinwegsteht.The Fig. 7 and 8th show examples of known from the prior art, twisted oars with staggered nose strips (sections). The rudder blade 100 each has two superimposed rudder blade sections 10, 20, wherein the front nose strip sections 11, 21 are offset such that the one leading edge (or leading edge portion) 11 to port BB and the other leading edge (or leading edge portion) 21 to starboard SB are offset. The two side wall surfaces 100a, 100b of the rudder blade 100 or both rudder blade sections 10, 20 merge into a single, continuous end bar 30. Since the two front nose strips 11, 21 are to be arranged staggered in the twisted rudder, one leading edge must always be offset to starboard and the other to port side. The staggered arrangement results in the region of the transition between the nose strips 11, 21 at each rudder blade side in each case an offset surface 18th Die in Fig. 8 shown offset surface 18 is formed by that part of the underside of the upper nose strip 11, which passes over the lower nose strip 21. The existing on the opposite side offset surface (not shown here) is correspondingly formed by that part of the top of the lower edge 21, which extends beyond the upper edge 11.

Figur 9 zeigt ein weiteres Beispiel eines aus dem Stand der Technik bekannten, twistierten Ruders, bei dem die beiden Ruderblattabschnitte 10, 20 des Ruderblattes 100 im Bereich ihrer Endleistenabschnitte 30a, 30b zueinander versetzt sind. Die dem Propeller im eingebauten Zustand zugewandte vordere Nasenleiste 11 ist hingegen durchgehend ausgebildet. Durch die versetzte Anordnung ergibt sich auch bei dieser Ausführungsform auf jeder Ruderseite eine Versatzfläche 18, wobei die Versatzflächen 18 zwischen den Übergängen der Endleisten (-abschnitte) 30a, 30b ausgebildet sind. Die in Figur 9 dargestellte Versatzfläche 18 wird von demjenigen Teil der Oberseite der unteren Endleiste 30b gebildet, der über die obere Endleiste 30a seitlich hinwegsteht. FIG. 9 shows a further example of a known from the prior art, twisted rudder, in which the two rudder blade sections 10, 20 of the rudder blade 100 in the region of their Endleistenabschnitte 30a, 30b are offset from one another. The propeller in the installed state facing front nose strip 11, however, is formed continuously. Due to the staggered arrangement, an offset surface 18 also results in this embodiment on each rudder side, the offset surfaces 18 being formed between the transitions of the end strips 30a, 30b. In the FIG. 9 shown offset surface 18 is formed by that part of the upper side of the lower end bar 30b, which laterally beyond the upper end bar 30a.

Der Vorteil derartiger, twistierter Ruder mit zwei spiegelverkehrten Querschnittsprofilen besteht zum einen in der Verhinderung der Dampfblasenbildung und zum anderen in der Verhinderung von Erosionserscheinungen am Ruder, die durch Kavitationsbildung bei schnellen Schiffen mit hochbelasteten Propellern auftreten. Ferner trägt die spezielle Ausgestaltung des Ruderblattes zu einer Senkung des Treibstoffverbrauches bei. Neben einem erheblichen Kavitationsschutz ist somit auch eine Verbesserung des Wirkungsgrades gegeben. Ferner wird eine gravierende Gewichtseinsparung erreicht. Insbesondere können diese Verbesserungen dadurch erzeugt werden, dass durch die versetzte Anordnung der vorderen Nasenleisten der beiden Ruderblattabschnitte eine Anpassung an den Drall im Propellerstrahl erfolgt.The advantage of such twisted rudder with two mirror-inverted cross-sectional profiles is on the one hand in the prevention of vapor bubble formation and on the other in the prevention of erosion at the rudder, which occur by cavitation in fast ships with highly loaded propellers. Furthermore, the special design of the rudder blade contributes to a reduction in fuel consumption. In addition to a considerable cavitation protection, an improvement in the efficiency is thus also given. Furthermore, a serious weight saving is achieved. In particular, these improvements can be produced by the fact that the staggered arrangement of the front nose strips of the two rudder blade sections is adapted to the twist in the propeller jet.

Bei derartigen Rudern kann es aufgrund der versetzten Anordnung der vorderen Nasenleisten bzw. der hinteren Endleisten und der dadurch hervorgerufenen kantigen Übergänge zwischen den Leisten der einzelnen Ruderblattabschnitte zu einer Verwirbelung der Strömung kommen, wodurch u. a. die Kavitationsgefahr erhöht wird. Ferner kann es trotz der Ausrichtung der einzelnen vorderen Nasenleisten bzw. der hinteren Endleisten im Hinblick auf den Drall des Propellerstrahles, insbesondere im Übergangsbereich zwischen den Leisten, zu Strömungsablösungen kommen.In such rudders, it may come to a turbulence of the flow due to the staggered arrangement of the front lumbar strips and the rear end strips and thereby caused edgy transitions between the strips of the individual rudder blade sections, which, inter alia, the Kavitationsgefahr is increased. Furthermore, despite the orientation of the individual leading edge strips or the rear end strips, it is possible with regard to the twist of the propeller jet, in particular in the Transition area between the strips, come to flow separation.

Ferner ist es aus dem Stand der Technik bekannt, Costa-Birnen an Rudern vorzusehen. Costa-Birnen sind relativ große birnen- bzw. zeppelinartige Körper, die an Ruderblättem vorgesehen werden. Costa-Birnen sind grundsätzlich bekannt und werden manchmal auch als Propulsionsbirne bezeichnet. Sie sind in Verlängerung der Propeller(wellen)achse im Bereich des Ruderblattes vorgesehen und stehen vom Ruderblatt in Richtung des Propellers deutlich vor und über das Ruderblatt hinweg. Ruder mit derartigen Costa-Birnen sind beispielsweise in der JP 09 011990 A oder der DE 11 40 484 B dargestellt.Furthermore, it is known from the prior art to provide Costa pears on oars. Costa pears are relatively large pear- or zeppelin-like bodies that are provided on rudder blades. Costa pears are generally known and sometimes referred to as propulsion pear. They are provided as an extension of the propeller (shaft) axis in the area of the rudder blade and project clearly from the rudder blade in the direction of the propeller and over the rudder blade. Oars with such Costa bulbs are for example in the JP 09 011990 A or the DE 11 40 484 B shown.

Insbesondere stehen Costa-Birnen so weit vom Ruderblatt vor, dass sie (annähernd) an der Propellernabe zur Anlage kommen. Der Abstand zwischen Costa-Birne und Propeller bzw. Propellernabe soll im Allgemeinen möglichst gering sein, so dass möglichst der gesamte vom Propeller erzeugte Wasserstrom außen an der Costa-Birne entlang und nicht zwischen Costa-Birne und Propellernabe strömt.In particular, Costa pears stand so far from the rudder blade that they come (almost) to the propeller hub to the plant. The distance between Costa bulb and propeller or propeller hub should generally be as low as possible, so that as far as possible the entire flow of water generated by the propeller flows along the outside of the Costa bulb and not between Costa bulb and propeller hub.

Durch diese Verlängerung des Gesamtprofils der Nabe wird erreicht, dass nur eine geringe Verwirbelung des abströmenden Wassers entsteht. Nachteilig hierbei ist jedoch, dass die Costa-Birne einen starken Einfluss auf das Propulsionsverhalten des Schiffes ausübt. Wird sie an einem bestehenden twistierten Ruder vorgesehen, beeinflusst sie das Propulsionsverhalten negativ und muss speziell auf das Propulsionssystem des Schiffes angepasst werden, was aufwendige und kostenspielige Tests und Versuche mit sich bringt. Findet eine solche Anpassung nicht statt, wird durch die Vorsehung der Costa-Birne der Treibstoffverbrauch des Schiffes drastisch erhöht.This extension of the overall profile of the hub ensures that only a slight turbulence of the outflowing water is created. The disadvantage here, however, is that the Costa bulb exerts a strong influence on the propulsion behavior of the ship. If it is provided on an existing twisted rudder, it adversely affects the propulsion behavior and must be specially adapted to the propulsion system of the ship, which entails complex and costly tests and experiments. If such an adjustment does not take place, will by the providence of the Costa pear the fuel consumption of the ship increases drastically.

Die JP 06 305487 A , die als nächstliegender Stand der Technik angesehen wird, zeigt ein Ruderblatt, dessen Nasenleiste lokal im Bereich des Schiffspropellers einen schrägen Verlauf annimmt, so dass im Bereich der Propellerachse ein Versatz der lokalen Nasenleistenbereiche besteht. Im Bereich der Nasenleiste auf der Propellerachse ist ferner eine Birne vorgesehen, die zwar nicht wie eine Costa-Birne direkt an die Propellernabe heranreicht, jedoch deutlich über die Nasenleiste in Richtung der Propellernabe hervorsteht. Die nicht im Bereich des Schiffspropellers liegenden Bereiche der Nasenleiste sind nicht versetzt bzw. twistiert ausgebildet.The JP 06 305487 A , which is considered to be the closest prior art, shows a rudder blade whose nose bar assumes an oblique course locally in the area of the ship's propeller, so that in the area of the propeller axis there is a displacement of the local nose strip areas. In the area of the leading edge on the propeller axis, a pear is also provided, which does not approach the propeller hub like a Costa pear, but protrudes clearly beyond the leading edge in the direction of the propeller hub. The areas of the leading edge not lying in the area of the ship's propeller are not offset or twisted.

Weiterhin zeigt die FR 1 251 898 A ein Ruder, das im Bereich der Propellerachse eine umlaufende, wulstige Ausbuchtung aufweist.Furthermore, the shows FR 1 251 898 A a rudder, which has a circumferential, bulged bulge in the region of the propeller axis.

Daher ist es Aufgabe der vorliegenden Erfindung ein Schiffsruder anzugeben, bei dem Erosionserscheinungen am Ruder durch Kavitationsbildung, insbesondere beim Einsatz schnellerer Schiffe mit hochbelasteten Propellern, weitestgehend vermieden werden und mit dem der Treibstoffverbrauch gesenkt bzw. niedrig gehalten wird.It is therefore an object of the present invention to provide a ship's rudder, in which erosion phenomena at the rudder by cavitation, especially when using faster ships with highly loaded Propellers are avoided as far as possible and with the fuel consumption is lowered or kept low.

Gelöst wird diese Aufgabe mit einem Ruder gemäß den Merkmalen des Anspruches 1.This object is achieved with a rudder according to the features of claim 1.

Hiernach ist bei einem eingangs bezeichneten Ruder im Bereich jeder Versatzfläche bzw. des Übergangsbereiches zwischen den beiden, vorderen Nasenleisten und/oder Endleisten ein Strömungskörper bzw. ein Formkörper vorgesehen. Ferner ist der Strömungs- oder auch Formkörper zum einen derart ausgebildet, dass er bezüglich seiner Ausmaße bzw. physikalischen Ausdehnung auf den Bereich der Versatzflächen bzw. des Übergangsbereiches zwischen den beiden Nasenleisten und/oder Endleisten beschränkt ist. Mit anderen Worten ist der Strömungskörper derart dimensioniert, dass er nur lokal im Bereich der Versatzflächen vorhanden ist und nicht bzw. nur in einem geringen Ausmaß in andere Bereiche des Ruders hineinragt oder über dieses vorsteht. So schließt der Strömungskörper im Wesentlich bündig mit wenigstens einer der vorderen Nasenleisten bzw. hinteren Endleisten ab. Hierdurch wird die geschlossene Ausbildung des Ruderprofils weiter verbessert und es wird sichergestellt, dass sich der Strömungskörper nicht negativ auf das Propulsionssystem bzw. - verhalten des Schiffes auswirkt. "Im Wesentlichen bündig" bedeutet in diesem Zusammenhang beispielsweise, dass der Strömungskörper die Nasenleiste bzw. Endleiste an ihrer dem Propeller zugewandten Seite zwar umgreift, dabei jedoch nur geringfügig oder gar nicht über die Leisten vorsteht. Somit ist der Strömungskörper bezüglich seiner Größe bzw. Form an die Versatzfläche bzw. den Übergangsbereich der beiden Nasenleisten und/oder Endleisten angepasst. Mit anderen Worten ist er passgenau ausgebildet. Insbesondere steht der Strömungskörper nicht, wie beispielsweise eine Costa-Birne, großflächig über das Ruderblatt vor. Somit wird das erfindungsgemäße Ruder unter Ausschluss einer Costa- bzw. Propulsionsbirne gebildet bzw. hergestellt. Es ist somit kein Propulsionsruder (Ruder mit Costa-Birne). Insbesondere muss daher der Strömungs- bzw. Formkörper nicht auf der Propellerwellenachse liegen, wie dies bei der Costa-Birne zwingend erforderlich ist. Der Strömungs- bzw. Formkörper kann im Gegenteil ohne Weiteres gegenüber der Propellerwellenachse, insbesondere nach oben oder unten (im eingebauten Zustand des Ruders), versetzt angeordnet sein.Thereafter, in the case of an oar designated at the outset, a flow body or a shaped body is provided in the region of each offset surface or transition region between the two front leading edge strips and / or end strips. Furthermore, the flow or also shaped body is designed on the one hand in such a way that it is limited with regard to its dimensions or physical extent to the region of the offset surfaces or the transition region between the two nose strips and / or end strips. In other words, the flow body is dimensioned such that it is present only locally in the region of the offset surfaces and does not protrude or protrude only to a small extent into other regions of the rudder or protrudes beyond this. Thus, the flow body substantially flush with at least one of the leading edge strips or rear end strips. As a result, the closed design of the rudder profile is further improved and it is ensured that the flow body does not adversely affect the Propulsionssystem or - behavior of the ship. "Substantially flush" in this context means, for example, that the flow body, while encompassing the nose strip or end bar on its side facing the propeller, while projecting only slightly or not at all over the bars. Thus, the flow body with respect to its size or shape is adapted to the offset surface or the transition region of the two nose strips and / or end strips. In other words, he is a perfect fit educated. In particular, the flow body is not, such as a Costa bulb, over a large area over the rudder blade before. Thus, the rudder according to the invention is formed or produced with the exclusion of a Costa- or Propulsionsbirne. It is therefore not a propulsion rudder (rudder with Costa pear). In particular, therefore, the flow or molding does not have to lie on the propeller shaft axis, as is absolutely necessary with the Costa bulb. On the contrary, the flow or shaped body can be arranged without offset relative to the propeller shaft axis, in particular upwards or downwards (in the installed state of the rudder).

Auch ist der Strömungskörper, im Gegensatz zur Costa-Birne, beabstandet zur Propellernabe angeordnet, da er nicht oder nicht wesentlich über die vordere Nasenleiste vorsteht.Also, the flow body, in contrast to the Costa bulb, spaced from the propeller hub, since it does not or not significantly protrudes beyond the front leading edge.

Ferner ist der Strömungskörper derart ausgebildet, dass er die Versatzflächen bzw. den Übergangsbereich zwischen den beiden, vorderen Nasenleisten und/oder Endleisten im Wesentlichen abdeckt. Der Strömungskörper liegt also im Bereich der Versatzflächen am Ruderblatt an und deckt diese ab, so dass das Wasser am Strömungskörper anstatt an den Versatzflächen entlangströmt. Dadurch wird die Gefahr einer Strömungsverwirbelung gesenkt. Der Strömungs- bzw. Formkörper bzw. die Wandungen des Formkörpers bilden somit eine seitliche Überbrückung bzw. Abdeckung des Übergangsbereiches zwischen dem oberen und dem unteren Ruderblattabschnitt. Der Begriff "Abdecken"ist vorliegend derart zu verstehen, dass der Strömungskörper die Versatzflächen zumindest weitestgehend abdeckt.Furthermore, the flow body is designed such that it substantially covers the offset surfaces or the transition region between the two front leading edge strips and / or end strips. The flow body thus rests against the offset surfaces on the rudder blade and covers them so that the water flows along the flow body instead of the offset surfaces. This reduces the risk of flow turbulence. The flow or molding or the walls of the molding thus form a lateral bridging or covering the transition region between the upper and the lower rudder blade section. The term "masking" is to be understood in the present case such that the flow body at least largely covers the offset surfaces.

Vorteilhaft bei einem solchen Ruder ist, dass durch einen nur lokal im Bereich der Versatzflächen ausgebildeten, die Versatzflächen abdeckenden Strömungskörper die Gefahr eines Abreißens der Strömung vermindert werden kann, wobei der Strömungskörper gleichzeitig durch seine relativ geringen Abmessungen keinen Einfluss auf das Propulsionsverhalten des Schiffes nimmt. Hierdurch stellt sich ein "propulsionsneutraler Effekt" ein. Ferner sind die Strömungskörper auch ohne Weiteres an bereits existierenden Rudern anbringbar, ohne dass aufwendige Tests durchgeführt werden müssen und dadurch hohe Kosten entstehen. Somit eignet sich die vorliegende Erfindung sowohl für Neubauten als auch für bestehende Ruder zum Nachrüsten. Ferner wird die Wahrscheinlichkeit eines Auftretens von Verwirbelungen bzw. Turbulenzen im Übergangsbereich verringert.An advantage of such a rudder is that the risk of tearing off of the flow can be reduced by a flow body formed only locally in the area of the offset surfaces and covering the offset surfaces, the flow body simultaneously having no influence on the propulsion behavior of the vessel due to its relatively small dimensions. This creates a "propulsion-neutral effect". Furthermore, the flow body can be easily attached to existing rudders without complex tests must be performed and thus high costs. Thus, the present invention is suitable both for new buildings as well as existing rudders for retrofitting. Furthermore, the probability of occurrence of turbulence or turbulence in the transition region is reduced.

Grundsätzlich kann der Strömungskörper aus jedem aus dem Stand der Technik bekannten und hierfür geeigneten Material hergestellt sein. Zweckmäßigerweise ist der Strömungskörper aus Schmiedeeisen hergestellt.In principle, the flow body can be made of any known from the prior art and suitable material for this purpose. Conveniently, the flow body is made of wrought iron.

Auch kann die vorliegende Erfindung bei mehrfach twistierten Rudern zum Einsatz kommen, wobei dann in jedem Übergangsbereich zwischen den einzelnen Abschnitten der vorderen Nasenleiste und/oder der hinteren Endleiste jeweils mindestens ein Strömungskörper vorzusehen ist.Also, the present invention can be used in multi-twisted rowing, in each case at least one flow body is then provided in each transition region between the individual sections of the front leading edge and / or the rear end strip.

Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen gekennzeichnet.Preferred embodiments of the invention are characterized in the subclaims.

Bevorzugterweise wird die Form des Strömungskörpers derart gestaltet, dass der Strömungskörper das Ruderprofil im Bereich der Versatzflächen strömungstechnisch schließt. Mit anderen Worten bildet der Strömungskörper einen die Strömung leitenden Übergang von einer Nasenleiste bzw. Endleiste zur anderen. Somit bietet der Strömungskörper eine Strömungsleitfläche für ein abrissfreies Strömen der Strömung von einer Nasenleiste bzw. Endleiste zur anderen.Preferably, the shape of the flow body is designed such that the flow body fluidly closes the rudder profile in the region of the offset surfaces. In other words, the flow body forms a flow-conducting transition from one leading edge or end strip to the other. Thus, the flow body provides a flow guide for a tear-free flow of the flow from one leading edge or end bar to the other.

Der im Bereich der Versatzflächen auf das Ruder aufgesetzte Strömungskörper bildet einen Übergang für die Strömung zwischen den beiden, gegeneinander versetzten, vorderen Nasenleisten bzw. Endleisten. Insbesondere ist es bevorzugt, dass der Übergang im Wesentlichen kantenlos bzw. stufenlos ausgebildet ist. Unter dem Begriff "kantenlos" ist im vorliegenden Zusammenhang zu verstehen, dass der Übergang keine stark abgesetzten, vorstehenden Kanten aufweist, wie dies bei einem normalen twistierten Ruder ohne Strömungskörper im Bereich der Versatzflächen der Fall ist. Dort sind jeweils am Rande der Versatzflächen abgesetzte (90°-)Kanten vorhanden. Ein im wesentlicher kantenloser Übergang kann beispielsweise durch einen abgerundet ausgebildeten Strömungskörper bzw. einen abgerundeten Übergang zwischen den Ruderblattabschnitten erreicht werden. Auch könnte der Strömungskörper als im Wesentlichen schräge Leitfläche ausgebildet sein, die von der Außenkante einer Versatzfläche schräg zur anderen, vorderen Nasenleiste bzw. hinteren Endleiste verläuft, so dass die Kantenbereiche zwischen Ruderblatt und Strömungskörper weniger stark ausgeprägt sind. Hierdurch wird die Wahrscheinlichkeit des Auftretens von Verwirbelungen weiter reduziert.The flow body applied to the rudder in the area of the offset surfaces forms a transition for the flow between the two staggered leading edge strips or end strips. In particular, it is preferred that the transition is essentially edgeless or continuous. The term "edgeless" in the present context is to be understood that the transition has no strongly offset, projecting edges, as is the case with a normal twisted rudder without flow body in the region of the offset surfaces. There are each offset at the edge of the offset surfaces (90 ° -) edges. A substantially edgeless transition, for example, by a rounded flow body or a rounded transition between the rudder blade sections can be achieved. Also, the flow body could be formed as a substantially oblique guide surface, which extends from the outer edge of an offset surface obliquely to the other, leading edge bar or rear end bar, so that the edge regions between rudder blade and flow body are less pronounced. This further reduces the likelihood of turbulence occurring.

Auch ist es bevorzugt, dass der Strömungskörper maximal 10%, bevorzugt maximal 7%, besonders bevorzugt maximal 5% der mittleren Profillänge des Ruderblattes 100 über die Nasenleiste oder die Endleiste hinaus vorsteht. Hierdurch wird erreicht, dass der Strömungskörper nur einen geringfügigen Vorstand gegenüber dem Ruderblatt aufweist und somit das Propulsionsverhalten nicht, wie bei einer Costa-Birne, negativ beeinflusst wird. Costa-Birnen stehen sehr viel länger, im Allgemeinen mit einer Länge von 20% und mehr der mittleren Profillänge des Ruderblatts, über das Ruderblatt hervor.It is also preferable for the flow body to protrude beyond the nose strip or the end strip by a maximum of 10%, preferably a maximum of 7%, particularly preferably a maximum of 5% of the mean profile length of the rudder blade 100. This ensures that the flow body has only a slight board against the rudder blade and thus the propulsion behavior is not negatively affected, as in a Costa bulb. Costa pears stand out for much longer, generally with a length of 20% and more of the rudder length, over the rudder blade.

In ähnlicher Weise ist es ferner bevorzugt, dass die (maximale) Länge des Strömungskörpers im Wesentlichen der Länge der Versatzfläche und/oder die maximale Breite des Strömungskörpers der größten Profildicke des Ruders, insbesondere der größten Profildicke des Ruders im Übergangsbereich zwischen den beiden Ruderabschnitten, entspricht. Die Länge des Strömungskörpers ist somit in etwa gleich der Länge der Versatzfläche und die Breite des Strömungskörpers ist kleiner/gleich der größten Profildicke des Ruders. Hierdurch wird erreicht, dass der Strömungskörper nicht oder nur geringfügig über das eigentliche Ruderprofil hinaus vorsteht, so wie dies beispielsweise bei einer Costa-Birne der Fall ist und das Propulsionsverhalten negativ beeinflusst wird. Bevorzugt beträgt die Länge des Strömungskörpers 1/5 bis ½, besonders bevorzugt ¼ bis 1/3, der Länge des Ruderblattes. Ferner beträgt die Höhe eines Strömungskörpers bevorzugt 1/10 bis 1/4, besonders bevorzugt 1/8 bis 1/6 der Höhe des Ruderblattes.Similarly, it is further preferred that the (maximum) length of the flow body substantially the length of the offset surface and / or the maximum width of the flow body of the largest profile thickness of Rudder, in particular the largest profile thickness of the rudder in the transition region between the two rudder sections corresponds. The length of the flow body is thus approximately equal to the length of the offset surface and the width of the flow body is less than / equal to the largest profile thickness of the rudder. This ensures that the flow body does not project or only slightly beyond the actual rudder profile out, as is the case for example with a Costa bulb and the propulsion behavior is adversely affected. Preferably, the length of the flow body 1/5 to ½ by weight, particularly preferably ¼ to 1/3 of the length of the rudder blade. Further, the height of a flow body is preferably 1 / 10-1 / 4, particularly preferably 1 / 8-1 / 6th of the height of the rudder blade.

Zum Schaffen eines optimalen Strömungsüberganges zwischen den beiden versetzten Leisten ist es bevorzugt, die Strömungskörper abgerundet auszubilden. Hierfür kann der Strömungskörper beispielsweise eine kugel- bzw. halbkugelförmige Form oder auch nur eine leicht abgerundete Form aufweisen. Grundsätzlich kann nur ein einziger Strömungskörper vorgesehen sein, der für beide Versatzflächenbereiche eine Strömungsleitfläche bildet, bzw. beide Versatzflächenbereiche abdeckt. Somit ist bei dieser Ausführungsform der Strömungskörper derart ausgebildet, dass er in beiden Versatzflächenbereiche bzw. beiden Seitenbereichen des Übergangsbereiches zwischen den beiden Nasenleisten bzw. Endleisten angeordnet ist. Der Strömungskörper kann dabei sowohl einstückig als auch mehrstückig vorgesehen sein. Besonders bevorzugt ist es, wenn der Strömungskörper bei dieser Ausführungsform kugel-, tropfen-, linsen-, zylinder- und/oder torpedoförmig ausgebildet ist. Grundsätzlich ist auch eine Kombination verschiedener Grundformen, beispielsweise ein zylindrischer Grundkörper mit einem halbkugelförmigen Endbereich, möglich. Vorteilhafterweise wird ein Strömungskörper mit einer derartigen Form aus wenigstens zwei Einzelteilen bestehen, die jeweils auf einer Ruderblattseite im Bereich eines Versatzflächenbereiches angeordnet sind und zusammen einen geschlossenen Strömungskörper formen. Aus beiden Einzelteilen zusammen mit dem dazwischen liegenden Ruderblattbereich ergibt sich dann die Gesamtform des Körpers, beispielsweise zylindrisch, tropfenförmig, etc. Derartige Strömungsprofile sind strömungstechnisch besonders optimal.To create an optimal flow transition between the two staggered strips, it is preferred to form the flow body rounded. For this purpose, the flow body may for example have a spherical or hemispherical shape or even a slightly rounded shape. In principle, only a single flow body can be provided, which forms a flow guide surface for both offset surface regions, or covers both offset surface regions. Thus, in this embodiment, the flow body is designed such that it is arranged in both offset surface regions or both side regions of the transition region between the two nose strips or end strips. The flow body can be provided both in one piece and in several pieces. It is particularly preferred if the flow body is formed in this embodiment spherical, drop, lenticular, cylindrical and / or torpedo-shaped. In principle, a combination of different basic shapes, for example a cylindrical base body with a hemispherical end region, is also possible. Advantageously, a flow body having such a shape will consist of at least two individual parts which are each arranged on a rudder blade side in the region of an offset surface area and together form a closed flow body. From both items together with the rudder blade area located therebetween, the overall shape of the body, for example cylindrical, drop-shaped, etc., results. Such flow profiles are particularly optimal in terms of flow.

In einer anderen, alternativen Ausführungsform sind zwei Strömungskörper vorgesehen, wobei jeder in jeweils einem Versatzflächenbereich angeordnet ist. Besonders bevorzugt sind derartige Strömungskörper in der Art einer schiefen Ebene bzw. Fläche mit Bezug auf die Ruderblattseitenwand ausgebildet und verlaufen schräg von der Außenkante der Versatzfläche einer Nasenleiste bzw. Endleiste zur anderen vorderen Nasenleiste bzw. Endleiste. Gegebenenfalls kann der Strömungskörper in den Übergangsbereichen zum Ruderblatt abgerundet ausgebildet sein. Derartige Strömungs- bzw. Formkörper können insbesondere in der Art eines, ggf. abgerundet ausgebildeten, Seitenbleches ausgebildet sein.In another alternative embodiment, two flow bodies are provided, each arranged in a respective offset surface area. Such flow bodies are particularly preferably in the form of an inclined plane or surface with respect to the rudder blade side wall and extend obliquely from the outer edge of the offset surface of a leading edge or end bar to the other leading edge bar or end bar. Optionally, the flow body may be rounded in the transition regions to the rudder blade. Such flow or shaped bodies can be designed, in particular, in the manner of a side plate, which may have a rounded design.

Bei einer weiteren bevorzugten Ausführungsform der Erfindung nimmt die Größe der Querschnittsfläche des Ruderblattes vom oberen Bereich des Ruderblattes zum unteren Bereich des Ruderblattes ab.In a further preferred embodiment of the invention, the size of the cross-sectional area of the rudder blade decreases from the upper region of the rudder blade to the lower region of the rudder blade.

Ferner sieht eine vorteilhafte Ausgestaltung der Erfindung vor, dass der obere Ruderblattabschnitt des Ruderblattes ein Querschnittsprofil aufweist, das von einer sich von der vorderen Nasenleiste bis zur rückwärtigen Endleiste erstrecken und sich bis zu einer größten Profildicke konisch sich erweiternden vorderen Fläche sowie einer sich an die vordere Fläche anschließenden und sich zur rückwärtigen Endleiste konisch sich verjüngenden rückwärtigen Fläche gebildet wird, wobei die beiden von einer in Längsrichtung des Ruderblattes verlaufenden Mittellinie gebildeten vorderen Flächenabschnitte unterschiedliche Größen aufweisen, von denen der größere Flächenabschnitt backbordseitig liegend ist und der kleinere Flächenabschnitt steuerbordseitig liegend ist, wobei die beiden von der Mittellinie im rückwärtigen Bereich des Querschnittsprofils gebildeten Flächenabschnitte gleich ausgebildet sind, und dass der untere Ruderblattabschnitt des Ruderblattes ein Querschnittsprofil aufweist, das von einer sich von der vorderen Nasenleiste bis zur rückwärtigen Endleiste erstreckenden und sich zu einer größten Profildicke konisch sich erweiternden vorderen Fläche sowie einer sich an die vordere Fläche anschließenden und sich zur rückwärtigen Fläche gebildet wird, wobei die beiden von einer in Längsrichtung des Ruderblattes verlaufenden Mittellinie gebildeten vorderen Flächenabschnitte unterschiedliche Größen aufweisen, von denen der größere Flächenabschnitt steuerbordseitig liegend ist und der kleinere Flächenabschnitt backbordseitig liegend ist, wobei die beiden von der Mittellinie im rückwärtigen Bereich des Querschnittsprofils gebildeten Flächenabschnitte gleich ausgebildet sind, so dass die dem Propeller zugeordnete Nasenleiste des oberen Ruderblattabschnittes backbordseitig der Mittellinie und die Nasenleiste des unteren Ruderblattabschnittes steuerbordseitig der Mittellinie liegend ist.Furthermore, an advantageous embodiment of the invention, that the upper rudder blade portion of the rudder blade has a cross-sectional profile extending from a front of the leading edge bar to the rear end bar and up to a maximum profile thickness conically widening front surface and a to the front Surface subsequent to the rear end bar conically tapered rear surface is formed, wherein the two of a longitudinal axis of the rudder blade extending front surface portions have different sizes, of which the larger surface portion is lying on the port side and the smaller surface portion is starboard side, wherein the two surface sections formed by the center line in the rear region of the cross-sectional profile are formed the same, and that the lower rudder blade portion of the rudder blade has a cross-sectional profile extending from a front of the leading edge bar to the rear end bar extending and conically widening to a maximum profile thickness front surface and one adjoining the front surface and the the rear surface is formed, wherein the two of a longitudinal axis of the rudder blade extending front surface portions have different sizes, of which the larger surface portion is starboard side lying and the smaller surface portion lying on the port side, the two of the center line in the rear region of the cross-sectional profile formed surface portions are formed the same, so that the propeller associated with the nose of the upper rudder blade section port side of the center line and the nose strip of the lower rudder blade absch lying on the starboard side of the midline.

Ferner ist es bevorzugt, dass die beiden dem Propeller zugekehrten Querschnittsflächenabschnitte des Querschnittsprofils des oberen Ruderblattabschnittes Randbereiche mit einem flachen Bogenverlauf und mit einem stark gewölbten Bogenverlauf und die beiden dem Propeller abgekehrten Querschnittsflächenabschnitte des Querschnittsprofils des oberen Ruderblattabschnittes tangential verlaufende Randbereiche aufweisen, wobei der Querschnittsflächenabschnitt mit seinem Randbereich mit stark gewölbtem Bogenverlauf steuerbordseitig liegend ist, und die beiden propellerseitigen Querschnittsflächenabschnitte des Querschnittsprofils des unteren Ruderblattabschnittes Randbereiche mit einem flachen Bogenverlauf und mit einem stark gewölbten Bogenverlauf aufweisen, wobei die beiden dem Propeller abgekehrten Querschnittsflächenabschnitte des Querschnittsprofils des unteren Ruderblattabschnittes tangential verlaufende Randbereiche aufweisen, wobei der Querschnittsflächenabschnitt mit seinem Randbereich mit stark gewölbtem Bogenverlauf backbordseitig liegend ist, so dass backbordseitig und steuerbordseitig die beidseitigen Randbereiche des oberen Ruderblattabschnittes und des unteren Ruderblattabschnittes im Bereich der größten Profildicken einen nach außen gewölbten, konvexen Bogenverlauf mit unterschiedlichen Bogenradien aufweisen, so dass in Richtung der Nasenleisten verlaufende konisch sich verjüngende Randbereiche der Querschnittsprofile ausgebildet sind.Furthermore, it is preferred that the two propeller-facing cross-sectional surface sections of the cross-sectional profile of the upper rudder blade section have edge regions with a flat arc and a strongly arched arc and the two propeller-facing cross-sectional surface sections of the cross-sectional profile of the upper rudder blade section tangentially extending edge regions, wherein the cross-sectional surface portion with his The edge region with a strongly arched arc is located starboard side, and the two propeller-side cross-sectional surface portions of the cross-sectional profile of the lower rudder blade portion edge portions having a flat arc and having a highly curved arc, the two facing away from the propeller cross-sectional surface portions of the cross-sectional profile of the lower rudder blade portion tangentially extending edge regions the cross-sectional area section with its Ran dbereich with strongly arched bow course is lying on the port side, so that port side and starboard side, the two-sided Edge regions of the upper rudder blade portion and the lower rudder blade portion in the region of the largest profile thickness have a curved convex arc with different radii of curvature, so that in the direction of the nose strips extending conically tapered edge regions of the cross-sectional profiles are formed.

Ferner ist es zweckmäßig, dass die dem Propeller zugekehrten Nasenleisten ein abgerundetes Profil aufweisen. Passend hierzu ist es bevorzugt, dass der Strömungskörper mindestens im Bereich der vorderen, dem Propeller zugewandten Ruderseite ebenfalls abgerundet ausgebildet ist.Furthermore, it is expedient that the propeller facing nose strips have a rounded profile. Fittingly, it is preferred that the flow body is also rounded at least in the region of the front, the propeller-facing rudder.

Gemäß einer weiteren bevorzugten Ausführungsform ist das Ruder derart ausgebildet, dass ein Ruderkokerlager als Kragträger mit einer mittigen Innenlängsbohrung zur Aufnahme eines Ruderschaftes für das Ruderblatt vorgesehen ist und bis in das mit dem Ruderschaftende verbundene Ruderblatt hineinreichend ausgebildet ist, wobei zur Lagerung des Ruderschaftes ein Lager in der Innenlängsbohrung des Ruderkokerlagers angeordnet ist, das mit seinem freien Ende in eine Ausnehmung, Einziehung o. dgl. in dem Ruderblatt hineinreicht, wobei der Ruderschaft in seinem Endbereich mit einem Abschnitt aus dem Ruderkokerlager herausgeführt und mit dem Ende dieses Abschnittes mit dem Ruderblatt verbunden ist, wobei keine Lagerung zwischen dem Ruderblatt und dem Ruderkokerlager vorgesehen ist und wobei die Verbindung des Ruderschaftes mit dem Ruderblatt oberhalb der Propellerwellenmitte liegt, wobei das Innenlager für die Lagerung des Ruderschaftes in dem Ruderkokerlager im Endbereich des Ruderkokerlagers angeordnet ist.According to a further preferred embodiment, the rudder is designed such that a rudder trunk bearing is provided as a cantilever with a central inner longitudinal bore for receiving a rudder stock for the rudder blade and extending into the rudder end connected to the rudder blade, wherein for storage of the rudder stock a bearing in the inner longitudinal bore of the rudder rod bearing is arranged, which extends with its free end into a recess, confiscation o. The like. In the rudder blade, the rudder stock is led out in its end with a portion of the rudder trunk and connected to the end of this section with the rudder blade , wherein no bearing between the rudder blade and the rudder trunk bearing is provided and wherein the connection of the rudder stock with the rudder blade is above the propeller shaft center, wherein the bottom bracket for the storage of the rudder stock in the rudder trunk in the end of the rudder rlagers is arranged.

Der Vorteil, der sich bei einem derartig ausgebildetes Ruder ergibt, bei dem der Ruderschaft im Endbereich des Ruderkokerlagers mittels eines Lagers gelagert ist, wobei die Verbindung des Ruderschaftes mit dem Ruderblatt oberhalb der Propellerwellenmitte liegend ist, ohne dass es hierbei eines weiteren Lagers für das Ruderblatt an der Außenwandfläche des Ruderkokerlagers bedarf, besteht darin, dass für das Auswechseln der Propellerwelle der Ruderschaft nach der Abnahme des Ruderblattes aus dem Ruderkokerlager nicht mehr herausgezogen zu werden braucht, da die Verbindung des Ruderschaftes mit dem Ruderblatt oberhalb der Propellerwellenmitte liegt. Hinzukommt, dass das Ruderblatt des Ruders ein sehr schlankes Profil aufweisen kann.The advantage that results in such a trained rudder, in which the rudder stock is mounted in the end of the rudder trunk bearing by means of a bearing, wherein the connection of the rudder stock is located with the rudder blade above the propeller shaft center, without there being another bearing for the rudder blade on the outer wall surface of the Rowerkokerlagers required, is that for replacing the propeller shaft of the rudder post after removal of the rudder blade from the rudder rod camp no longer needs to be pulled out because the connection of the rudder stock with the rudder blade is above the propeller shaft center. In addition, the rudder blade of the rudder can have a very slim profile.

Ausführungsbeispiele der Erfindung werden nachstehend anhand der Zeichnungen näher erläutert. Es zeigen schematisch:

Fig. 1a bis 1d
verschiedene perspektivische Ansichten einer ersten Ausführungsform der Erfindung,
Fig. 2a bis 2d
verschiedene perspektivische Ansichten einer zweiten Ausführungsform der Erfindung,
Fig. 3
ein Ruderblatt gemäß einem der Fig. 1a bis 1d oder Fig. 2a bis 2d mit eingezeichneten Querschnittsformen im oberen und im unteren Ruderblattabschnitt,
Fig. 3a
eine Ansicht von oben auf das Querschnittsprofil des oberen Ruderblattabschnittes des Ruders aus Fig. 3,
Fig. 3b
eine Ansicht von oben auf das Querschnittsprofil des unteren Ruderblattabschnittes des Ruders aus Fig. 3,
Fig. 4
die Ruderanordnung mit in einem Ruderkokerlager gelagerten Ruderschaft und einem oberhalb der Pro- pellerwellemitte liegenden Befestigungspunkt des Ru- derschaftes mit dem Ruderblatt,
Fig. 5
einen senkrechten Schnitt durch die Lageranordnung aus Fig. 4,
Fig. 6
eine schematische Darstellung einer Lageranordnung zwischen Ruderschaft und Ruderkoker,
Fig. 7
eine perspektivische Ansicht eines twistierten Ruders aus dem Stand der Technik,
Fig. 8
eine perspektivische Ansicht eines weiteren aus dem Stand der Technik bekannten twistierten Ruders, und
Fig. 9
eine perspektivische Ansicht noch eines weiteren aus dem Stand der Technik bekannten twistierten Ruders.
Embodiments of the invention are explained below with reference to the drawings. They show schematically:
Fig. 1a to 1d
various perspective views of a first embodiment of the invention,
Fig. 2a to 2d
various perspective views of a second embodiment of the invention,
Fig. 3
a rudder blade according to one of Fig. 1a to 1d or Fig. 2a to 2d with drawn cross-sectional shapes in the upper and in the lower rudder blade section,
Fig. 3a
a view from above of the cross-sectional profile of the upper rudder blade portion of the rudder Fig. 3 .
Fig. 3b
a view from above of the cross-sectional profile of the lower rudder blade portion of the rudder Fig. 3 .
Fig. 4
the rudder arrangement with rudder stock mounted in a rudder rod bearing and an attachment point of the rudder shaft with the rudder blade, located above the propeller shaft center,
Fig. 5
a vertical section through the bearing assembly Fig. 4 .
Fig. 6
a schematic representation of a bearing arrangement between rudder stock and rudder box,
Fig. 7
a perspective view of a twisted rudder of the prior art,
Fig. 8
a perspective view of another known from the prior art twisted rudder, and
Fig. 9
a perspective view of yet another known from the prior art twisted rudder.

Bei den im Folgenden dargestellten verschiedenen Ausführungsformen der Erfindung sind gleiche Bestandteile mit gleichen Bezugszeichen versehen.In the various embodiments of the invention shown below, the same components are provided with the same reference numerals.

Die Fig. 1a bis 1d zeigen perspektivische Ansichten einer Ausführungsform des erfindungsgemäßen Ruders schräg von vorne, von vorne, von der Seite sowie von unten. Die Figuren zeigen jeweils ein Ruder 100, welches aus einem oberen und einem unteren Ruderblattabschnitt 10, 20 besteht. Der obere Ruderblattabschnitt 10 weist jeweils eine obere, vordere Nasenleiste 11 und der untere Ruderblattabschnitt eine untere, vordere Nasenleiste 21 auf, wobei die Nasenleisten 11, 21 gegeneinander versetzt bzw. verdreht sind. Insbesondere ist dies in Fig. 1b zu erkennen. Die obere Nasenleiste 11 ist dabei nach Backbord und die untere Nasenleiste 21 nach Steuerbord versetzt. Im Übergangsbereich 40 zwischen der oberen Nasenleiste 11 und der unteren Nasenleiste 21 ist ein Strömungskörper 41 vorgesehen. Der Strömungskörper 41 besteht aus Schmiedeeisen und ist im Wesentlichen tropfenförmig ausgebildet, wobei er im Wesentlichen bündig mit der oberen Nasenleiste 11 in Bezug auf die dem Propeller zugewandte Seite des Ruders 100 abschließt. Auf die durch den Versatz der beiden Nasenleisten 11, 21 entstehenden Versatzflächen ist der diese abdeckende, tropfenförmige Strömungskörper 41 aufgesetzt. Somit entsteht im Übergangsbereich 40 ein abgerundeter Übergang zwischen den beiden Nasenleisten 11, 21 und das Ruderprofil ist strömungstechnisch geschlossen. Der abgestufte, kantige Übergang zwischen den beiden Profilen 11, 21 im Bereich der Versatzflächen ist durch den Strömungskörper 11 abgedeckt, so dass die Versatzflächen in den Fig. 1a bis 1d nicht erkennbar sind. In Fig. 1b ist ferner erkennbar, dass die Breite des Strömungskörpers 41 etwas geringer ist als die maximale Breite des Ruderblattes 100.The Fig. 1a to 1d show perspective views of an embodiment of the rudder according to the invention obliquely from the front, from the front, from the side and from below. The figures each show a rudder 100, which consists of an upper and a lower rudder blade section 10, 20. The upper rudder blade section 10 each has an upper, front nose strip 11 and the lower rudder blade section has a lower, front nose strip 21, wherein the nose strips 11, 21 are offset or rotated relative to one another. In particular, this is in Fig. 1b to recognize. The upper nose strip 11 is offset to port and the lower leading edge 21 to starboard. In the transition region 40 between the upper nose strip 11 and the lower nose strip 21, a flow body 41 is provided. The flow body 41 is made of wrought iron and is substantially teardrop-shaped, wherein it is substantially flush with the upper nose strip 11 with respect to the propeller side facing the rudder 100. On the resulting by the offset of the two nose strips 11, 21 offset surfaces of these covering, drop-shaped flow body 41 is placed. Thus, in the transition region 40, a rounded transition between the two nose strips 11, 21 and the rudder profile is fluidically closed. The stepped, edged transition between the two profiles 11, 21 in the region of the offset surfaces is covered by the flow body 11, so that the offset surfaces in the Fig. 1a to 1d not visible are. In Fig. 1b It can also be seen that the width of the flow body 41 is slightly less than the maximum width of the rudder blade 100.

Die Strömung kann an dem abgerundeten Übergang, bzw. an der durch den Strömungskörper 41 zur Verfügung gestellten Strömungsleitfläche entlang strömen, ohne dass es zu Verwirbelungen, einem Strömungsabriss o. dgl. kommt. Der tropfenförmige Strömungskörper 41 weist einen vorderen, halbkugelförmigen Bereich auf, der beide Nasenleisten 11, 21 an ihrem dem Propeller zugewandten Bereich umfasst bzw. umgreift. Dabei steht er nicht oder nur unwesentlich über die Nasenleisten 11, 21 vor. Der hintere Teil des Strömungskörpers 41 läuft kegelstumpfartig zusammen.The flow may flow along the rounded transition, or flow guide surface provided by the flow body 41, without causing turbulence, stall or the like. The drop-shaped flow body 41 has a front, hemispherical region which encompasses and / or embraces both nose strips 11, 21 at their region facing the propeller. He is not or only slightly above the nose strips 11, 21 before. The rear part of the flow body 41 converges like a truncated cone.

Die Fig. 2a bis 2d zeigen ähnliche Darstellungen einer weiteren Ausführungsform der Erfindung. Im Gegensatz zur Ausführungsform in den Fig. 1a bis 1d sind im Übergangsbereich 40 zwei Strömungskörper 41a, 41 b angeordnet, wobei jeder Strömungskörper jeweils einer Versatzfläche einer Nasenleiste 11, 21 zugeordnet ist. Die Strömungskörper 41a, 41b bilden Leitflächen, die schräg, im Bezug auf eine Vertikalachse, von der Außenkante einer vorderen Nasenleiste zur anderen vorderen Nasenleiste verlaufen. Im vorderen, dem Propeller zugewandten Bereich sind sie abgerundet ausgebildet. Die Strömungskörper 41a, 41b können beispielsweise aus mehreren Lagen Schmiedeeisen bestehen, die im Übergangsbereich 40 auf das Ruderblatt 100 aufgesetzt sind. Durch die Strömungskörper 41a, 41 b wird das Profil des Ruderblattes 100 strömungstechnisch geschlossen.The Fig. 2a to 2d show similar representations of another embodiment of the invention. In contrast to the embodiment in the Fig. 1a to 1d two flow body 41a, 41b are arranged in the transition region 40, wherein each flow body is assigned in each case to an offset surface of a nose strip 11, 21. The flow bodies 41a, 41b form guide surfaces which run obliquely, with respect to a vertical axis, from the outer edge of a leading edge of the nose to the other leading edge of the nose. In the front, the propeller facing area they are rounded. The flow bodies 41a, 41b may, for example, consist of several layers of wrought iron, which are placed on the rudder blade 100 in the transition region 40. By the flow body 41 a, 41 b, the profile of the rudder blade 100 is closed fluidically.

Fig. 3 zeigt eine weitere Seitenansicht eines erfindungsgemäßen Ruders, wobei dort eine obere, eine untere sowie eine mittlere Querschnittsfläche, die sich im Übergangsbereich zwischen den beiden Ruderblattabschnitten 20, 21 befindet, eingezeichnet sind. Die Strömungskörper 41, die im Übergangsbereich zwischen den Nasenleisten 11, 21 angeordnet sind, sind der Übersicht halber bei den Fig. 3, 3a und 3b weggelassen. Die obere Nasenleiste 11 ist nach Backbord und die andere, untere Nasenleiste 21 nach Steuerbord versetzt. Die beiden Seitenwandflächen 100a, 100b des Ruderblattes 100 laufen in einer dem Propeller abgewandten Endleiste 30 zusammen. Der obere und der untere Ruderblattabschnitt 10, 20 des Ruderblattes 100 sind dabei wie folgt ausgebildet: Fig. 3 shows a further side view of a rudder according to the invention, wherein there are an upper, a lower and an average cross-sectional area, which is located in the transition region between the two rudder blade sections 20, 21, are located. The flow body 41, which are arranged in the transition region between the nose strips 11, 21, are for the sake of clarity at the Fig. 3, 3a and 3b omitted. The upper leading edge 11 is offset to port and the other, lower leading edge 21 to starboard. The two side wall surfaces 100a, 100b of the rudder blade 100 run together in an end bar 30 facing away from the propeller. The upper and lower rudder blade sections 10, 20 of the rudder blade 100 are formed as follows:

Der obere Ruderblattabschnitt 10 weist gemäß Fig. 3a ein Querschnittsprofil 12 auf, das von einer sich von der vorderen Nasenleiste 11 bis zu einer größten Profildicke 13 konisch sich erweiternden vorderen Fläche 14 gebildet wird. An diese vordere Fläche 14 schließt sich eine zur Endleiste 30 erstreckende rückwärtige Fläche 15 an, die sich bis zur Endleiste 30 verjüngt. Die vordere Fläche 14 wird von einer in Längsrichtung des Ruderblattes 100 verlaufende Mittellinie M1 in zwei Flächenabschnitte 14a, 14b unterteilt, die unterschiedliche Größen aufweisen.The upper rudder blade section 10 has according to Fig. 3a a cross-sectional profile 12, which is formed by a front surface 14 conically widening from the front nose strip 11 to a largest profile thickness 13. At this front surface 14, a rear end face 15 extending to the end bar 30 connects, which tapers to the end bar 30. The front surface 14 is subdivided by a center line M1 extending in the longitudinal direction of the rudder blade 100 into two surface sections 14a, 14b which have different sizes.

Der größere Flächenabschnitt 14a liegt dabei backbordseitig und der kleinere Flächenabschnitt 14b ist der Steuerbordseite zugekehrt. Die rückwärtige Fläche 15 wird ebenfalls von der Mittellinie M1 in zwei Flächenabschnitte 15a, 15b unterteilt. Hier sind die beiden Flächenabschnitte 15a, 15b gleich groß und weisen gleiche Formen auf.The larger surface portion 14a is located on the port side and the smaller surface portion 14b facing the starboard side. The rear surface 15 is also divided from the center line M1 into two surface portions 15a, 15b. Here, the two surface portions 15a, 15b are the same size and have the same shapes.

Die beiden propellerseitigen Flächenabschnitte 14a, 14b des Querschnittsprofils 12 des oberen Ruderblattabschnittes 10 weisen Randbereiche 16, 16a mit einem flachen Bogenverlauf 16'a auf, wobei die beiden dem Propeller 220 abgekehrten Flächen 15a, 15b des Querschnittsprofils 12 des oberen Ruderblattabschnittes 10 tangential verlaufende Randbereiche 17, 17a aufweisen.The two propeller-side surface sections 14a, 14b of the cross-sectional profile 12 of the upper rudder blade section 10 have edge regions 16, 16a with a flat curved path 16'a, the two propeller 220 facing away from the surfaces 15a, 15b of the cross-sectional profile 12 of the upper rudder blade section 10 tangentially extending edge regions 17th 17a.

Der Flächenabschnitt 14b mit dem Randbereich 16a mit stark gewölbtem Bogenverlauf 16'a ist steuerbordseitig liegend.The surface portion 14b with the edge region 16a with a strongly arched curve 16'a is located on the starboard side.

Der untere Ruderblattabschnitt 20 weist gemäß Fig. 3b ein spiegelverkehrtes Querschnittsprofil 22 auf. Dieses Querschnittsprofil 20 erstreckt sich von einer sich von der vorderen Nasenleiste 21 bis zur Endleiste 30 und zwar bis zu einer größten Profildicke 23 konisch sich erweiternden Fläche. An diese vordere Fläche 24 schließt sich eine zur Endleiste 30 erstreckende Fläche 25 an, die sich zu der Endleiste 30 verjüngt. Die vordere Fläche 24 wird von einer in Längsrichtung des Ruderblattes 100 verlaufende Mittellinie M2 in zwei Flächenabschnitte 24a, 24b unterteilt, die unterschiedliche Größen aufweisen. Der größere Flächenabschnitt 24b liegt dabei steuerbordseitig und der kleiner Flächenabschnitt 24a ist der Backbordseite zugekehrt. Die rückwärtige Fläche 25 wird ebenfalls von der Mittellinie M2 in zwei Flächenabschnitte 25a, 25b aufgeteilt. Hier sind die beiden Flächenabschnitte 25a, 25b gleich groß und weisen gleiche Formen auf.The lower rudder blade section 20 has according to Fig. 3b a mirrored cross-sectional profile 22. This cross-sectional profile 20 extends from a conically widening from the leading edge 21 to the end bar 30 and to a maximum profile thickness 23 surface. At this front surface 24 is followed by an end strip 30 extending to surface 25, which tapers to the end bar 30. The front surface 24 is subdivided by a center line M2 running in the longitudinal direction of the rudder blade 100 into two surface sections 24a, 24b which have different sizes. The larger surface portion 24b is located starboard side and the small surface portion 24a is facing the port side. The rear surface 25 is also divided from the center line M2 into two surface portions 25a, 25b. Here, the two surface portions 25a, 25b are the same size and have the same shape.

Die beiden propellerseitigen Flächenabschnitte 24a, 24b des Querschnittsprofils 22 des oberen Ruderblattabschnittes 20 weisen Randbereiche 26, 26a mit einem flachen Bogenverlauf 26' und einem gewölbten Bogenverlauf 26'a auf, wobei die beiden dem Propeller 220 abgekehrten Flächen 25a, 25b des Querschnittsprofils 22 des unteren Ruderblattabschnittes 20 tangential verlaufende Randbereiche 27, 27a aufweisen.The two propeller-side surface portions 24a, 24b of the cross-sectional profile 22 of the upper rudder blade section 20 have edge regions 26, 26a with a flat arc 26 'and a curved arc 26'a, the two facing away from the propeller 220 surfaces 25a, 25b of the cross-sectional profile 22 of the lower Ruderblattabschnittes 20 tangentially extending edge regions 27, 27a have.

Der Flächenabschnitt 24b mit dem Randbereich 26'a mit stark gewölbtem Bogenverlauf 26'a ist backbordseitig liegend.The surface portion 24b with the edge region 26'a with a strongly arched curve 26'a is located on the port side.

Die Ausgestaltung und Anordnung der beiden Ruderblattabschnitte 10, 20 erbringt, dass die dem Propeller 220 zugeordnete Nasenleiste 11 des oberen Ruderblattabschnittes 10 backbordseitig zur Mittellinie M1 und die Nasenleiste 21 des unteren Ruderblattabschnittes 20 steuerbordseitig zur Mittellinie M2 liegend sind, wobei die beiden Ruderblattabschnitte 10, 20 im rückwärtigen Bereich des Ruderblattes 100 in einer Endleiste 30 zusammengeführt sind.The design and arrangement of the two rudder blade sections 10, 20 provides that the propeller 220 associated nose strip 11 of the upper rudder blade section 10 port side to the center line M1 and the nose strip 21 of the lower rudder blade section 20 starboard side lying to the center line M2, the two rudder blade sections 10, 20th in the rear region of the rudder blade 100 are brought together in an end strip 30.

Nach den Fig. 3, 3a, 3b sind die beiden Ruderblattabschnitte 10, 20 des Ruderblattes 100 mit ihren Querschnittsprofilen 12, 22 derart zueinander angeordnet, dass die Seitenwandabschnitte des Ruderblattes, die im Bereich der stark gekrümmten Bogenverläufe 16'a und 26'a der Flächenabschnitte 14b und 24b steuerbordseitig und backbordseitig liegen, dann dem Flächenabschnitt 14b des Querschnittsprofils 12 der Steuerbordseite und der Flächenabschnitt 24b des Querschnittsprofils 22 der Backbordseite zugekehrt sind, so dass die Nasenleisten 11, 21 der beiden Ruderblattabschnitte 10, 20 backbordseitig und steuerbordseitig liegen.After the Fig. 3, 3a, 3b are the two rudder blade sections 10, 20 of the rudder blade 100 with their cross-sectional profiles 12, 22 arranged to each other such that the side wall portions of the rudder blade, which are in the region of the highly curved curved curves 16'a and 26'a of the surface portions 14b and 24b starboard side and port side, then the surface portion 14b of the cross-sectional profile 12 of the starboard side and the surface portion 24b of the cross-sectional profile 22 of the port side are facing, so that the nose strips 11, 21 of the two rudder blade sections 10, 20 are port side and starboard side.

Das Ruder kann auch derart ausgestaltet sein, dass die beiden Ruderblattabschnitte 10, 20 des Ruderblattes 100 mit ihren Querschnittsprofilen 12, 22 derart zueinander angeordnet sind, dass die Seitenwandabschnitte des Ruderblattes, die im Bereich der stark gekrümmten Bogenverläufe 16'a und 26'a der Flächenabschnitte 14b und 24b backbordseitig und steuerbordseitig liegen, wobei dann der Flächenabschnitt 14b des Querschnittsprofils 12 der Backbordseite und der Flächenabschnitt 24b des Querschnittsprofils 22 der Steuerbordseite zugekehrt sind, so dass die Nasenleisten 11, 21 der beiden Ruderblattabschnitte 10, 20 steuerbordseitig und backbordseitig liegen.The rudder can also be designed such that the two rudder blade sections 10, 20 of the rudder blade 100 are arranged with their cross-sectional profiles 12, 22 to each other such that the side wall portions of the rudder blade, in the region of the highly curved curved curves 16'a and 26'a of Surface portions 14b and 24b are port side and starboard side, in which case the surface portion 14b of the port side cross-sectional profile 12 and the surface portion 24b of the starboard side cross-sectional profile 22 are facing, so that the nose strips 11, 21 of the two rudder blade sections 10, 20 are starboard and port side.

Bei der in Fig. 4 dargestellten Ruderausgestaltung ist mit 110 ein Schiffskörper, mit 120 ein Ruderkokerlager, mit 100 ein Ruderblatt und mit 140 ein Ruderschaft bezeichnet. Dem Ruderblatt 100 ist ein Propeller 220 zugeordnet. Das in Fig. 4 dargestellte Ruderblatt ist ebenfalls twistiert, was in der Seitendarstellung nicht erkennbar ist. Ferner ist der Strömungskörper zwischen den versetzten vorderen Nasenleisten der Übersicht halber bei der Darstellung in Fig. 4 weggelassen.At the in Fig. 4 110 is a hull, with 120 a rudder trunk bearing, with 100 a rudder blade and 140 a rudder shaft. The rudder blade 100 is associated with a propeller 220. This in Fig. 4 shown rudder blade is also twisted, which is not recognizable in the page presentation. Furthermore, the flow body between the offset front nose strips for clarity in the representation in Fig. 4 omitted.

Die Fig. 5 zeigt einen Schnitt durch die Lageranordnung des Ruderlagers aus Fig. 4 und Fig. 6 zeigt eine schematische Darstellung einer Lageranordnung zwischen dem Ruderschaft und dem Ruderkoker. Das Ruderkokerlager 120 ist als Kragträger mit einer mittigen Innenlängsbohrung 125 zur Aufnahme des Ruderschaftes 140 für das Ruderblatt 100 versehen. Außerdem ist das Ruderkokerlager 120 bis an das mit dem Ruderschaftende verbundene Ruderblatt 100 hinreichend ausgebildet. In seiner Innenbohrung 125 weist das Ruderkokerlager 120 ein Lager 150 zur Lagerung des Ruderschaftes 140 auf, wobei vorzugsweise dieses Lager 150 im unteren Endbereich 120b des Ruderkokerlagers 120 angeordnet ist. Der Ruderschaft 140 ist mit seinem Ende 140b mit seinem freien Abschnitt 145 aus dem Ruderkokerlager 120 herausgeführt. Das freie untere Ende dieses verlängerten Abschnittes 145 des Ruderschaftes 140 ist mit dem Ruderblatt 100 bei 170 fest verbunden, wobei jedoch auch hier eine Verbindung vorgesehen ist, deren Lösen des Ruderblattes 100 von dem Ruderschaft 140 ermöglicht, wenn die Propellerwelle ausgetauscht werden soll. Die Verbindung des Ruderschaftes 140 im Bereich 170 mit dem Ruderblatt 100 liegt dabei oberhalb der Propellerwellenmitte 225, so dass für den Ausbau der Propellerwelle lediglich das Ruderblatt 100 von dem Ruderschaft 140 abgenommen werden muss, während dagegen ein Herausnehmen des Ruderschaftes 140 aus dem Ruderkokerlager 120 nicht erforderlich ist, da sowohl das freie untere Ende 120b des Ruderkokerlagers 120 als auch das freie untere Ende des Ruderschaftes 140 oberhalb der Propellerwellenmitte liegen. Bei den in den Fig. 4 bis 6 gezeigten Ausführungsformen ist nur ein einziges Innenlager 150 für die Lagerung des Ruderschaftes 140 und dem Ruderkokerlager 120 vorgesehen; ein weiteres Lager für das Ruderblatt 100 an der Außenwand des Ruderkokerlagers 120 entfällt. Zur Aufnahme des freien unteren Endes 120b des Ruderkokerlagers 120 ist das Ruderblatt 100 mit einer bei 160 angedeuteten Einziehung bzw. Ausnehmung versehen.The Fig. 5 shows a section through the bearing assembly of the rudder bearing Fig. 4 and Fig. 6 shows a schematic representation of a bearing assembly between the rudder shaft and the rudder trunk. The rudder trunk bearing 120 is provided as a cantilever with a central inner longitudinal bore 125 for receiving the rudder stock 140 for the rudder blade 100. In addition, the rudder trunk bearing 120 is sufficiently formed to the rudder blade 100 connected to the rudder end. In its inner bore 125, the rudder trunk bearing 120 has a bearing 150 for supporting the rudder stock 140, wherein preferably this bearing 150 is arranged in the lower end region 120b of the rudder trunk bearing 120. The rudder stock 140 is led out with its end 140 b with its free portion 145 from the rudder trunk bearing 120. The free lower end of this extended portion 145 of the rudder stock 140 is fixedly connected to the rudder blade 100 at 170, but also here a connection is provided, the release of the rudder blade 100 of the rudder stock 140 allows when the propeller shaft is to be replaced. The connection of the rudder stock 140 in the area 170 with the rudder blade 100 is above the propeller shaft center 225, so that only the rudder blade 100 must be removed from the rudder stock 140 for the expansion of the propeller shaft, while not taking out the rudder stock 140 from the rudder trunk bearing 120 is necessary, since both the free lower end 120b of the rudder trunk bearing 120 and the free lower end of the rudder stock 140 are above the propeller shaft center. In the in the 4 to 6 shown embodiments, only a single inner bearing 150 is provided for the storage of the rudder stock 140 and the rudder trunk bearing 120; a further bearing for the rudder blade 100 on the outer wall of the rudder trunk bearing 120 is omitted. For receiving the free lower end 120b of the rudder trunk bearing 120, the rudder blade 100 is provided with a recess or recess indicated at 160.

Bei dem Ruder ist das Ruderkokerlager 120 als Kragträger mit einer mittigen Innenlängsbohrung 125 zur Aufnahme des Ruderschaftes 140 für das Ruderblatt 100 versehen. Des Weiteren ist das Ruderkokerlager 120 bis in das in dem Ruderschaftende verbundene Ruderblatt 100 hineinreichend ausgebildet und weist in seiner Innenbohrung 125 ein Lager 150 zur Lagerung des Ruderschaftes 140 in dem Ruderkokerlager 120 auf. Mit seinem freien Ende 120b ist das Ruderkokerlager 120 in einer Ausnehmung oder Einziehung 160 in dem Ruderblatt 100 hineinreichend, wobei der Ruderschaft 140 in seinem Endbereich 140b mit einem Abschnitt 145 aus dem Ruderkokerlager 120 herausgeführt ist. Mit dem freien Ende dieses verlängerten Abschnittes 145 ist der Ruderschaft 140 mit dem Ruderblatt 100 verbunden, wobei die Verbindung des Ruderschaftes 140 mit dem Ruderblatt 100 oberhalb der Propellerwellenmitte 225 liegend ist. Im Endbereich 120b des Ruderkokerlagers 120 ist vorzugsweise das Innenlager 150 vorgesehen.In the rudder the rudder trunk bearing 120 is provided as a cantilever with a central inner longitudinal bore 125 for receiving the rudder stock 140 for the rudder blade 100. Furthermore, the rudder trunk bearing 120 is up in formed in the rudder end connected rudder blade 100 reaching in and has in its inner bore 125 a bearing 150 for supporting the rudder stock 140 in the rudder trunk bearing 120. With its free end 120 b, the rudder trunk bearing 120 extends into a recess 160 in the rudder blade 100, the rudder stock 140 being led out of the rudder trunk bearing 120 in its end region 140 b with a section 145. With the free end of this extended portion 145 of the rudder stock 140 is connected to the rudder blade 100, wherein the connection of the rudder stock 140 with the rudder blade 100 above the propeller shaft center 225 is lying. In the end region 120b of the rudder trunk bearing 120, the inner bearing 150 is preferably provided.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
Ruderblattrudder blade
100a, 100b100a, 100b
SeitenwandflächeSidewall surface
1010
oberer Ruderblattabschnittupper rudder blade section
1111
obere, vordere Nasenleiste/Nasenleistenabschnittupper, anterior leading edge / leading edge section
1212
QuerschnittsprofilCross-sectional profile
1313
größte Profildickelargest profile thickness
1414
vordere Flächefront surface
1515
rückwärtige Flächerear surface
14a, 14b14a, 14b
Flächenabschnittesurface sections
15a, 15b15a, 15b
Flächenabschnittesurface sections
16, 16a16, 16a
Randbereichborder area
17, 17a17, 17a
Randbereichborder area
1818
Versatzflächeoffset surface
2020
unterer Ruderblattabschnittlower rudder blade section
2121
untere, vordere Nasenleiste/Nasenleistenabschnittlower, anterior leading edge / leading edge section
2222
QuerschnittsprofilCross-sectional profile
2323
größte Profildickelargest profile thickness
2424
vordere Flächefront surface
24a, 24b24a, 24b
Flächenabschnittesurface sections
2525
rückwärtige Flächerear surface
25a, 25b25a, 25b
Flächenabschnittesurface sections
26, 26a26, 26a
Randbereichborder area
27, 27a27, 27a
Randbereichborder area
3030
Endleisteend strip
30a, 30b30a, 30b
Endleistenabschnitttrailing edge section
4040
ÜbergangsbereichTransition area
4141
Strömungskörperflow body
110110
Schiffskörperhull
120120
Ruderkokerlagerrudder trunk
120b120b
freies Endefree end
125125
InnenlängsbohrungInternal longitudinal bore
135135
Flossefin
140140
Ruderschaftrudder
140b140b
Ende RuderschaftEnd of the rudder
145145
Abschnitt RuderschaftSection rudder stock
150150
Lagercamp
155155
Einziehungcollection
220220
Propellerpropeller
225225
PropellerwellenmittePropeller shaft center
BBBB
Backbordport
SBSB
Steuerbordstarboard
M1, M2M1, M2
Mittelliniecenter line

Claims (17)

  1. A rudder for ships, comprising a rudder blade (100), which comprises a leading edge (11, 21) and a trailing edge, wherein the rudder blade (100) consists of two rudder blade sections (10, 20) located one above the other, the entire leading edge sections (11, 21) and/or trailing edge sections (30a, 30b) of which are offset with respect to one another in such a manner that the one leading edge section (11) and/or trailing edge section (30a) is offset to port or starboard and the other leading edge section (21) and/or trailing edge section (30b) is offset to starboard or port and that the one leading edge section (11) and/or the one trailing edge section (30a) has a port-side offset surface (18) which juts out beyond the other leading edge section (21) and/or the other trailing edge section (30b) and the other leading edge section (21) and/or the other trailing edge section (30b) has a starboard-side offset surface (18) which juts out beyond the one leading edge section (11) and/or the one trailing edge section (30a),
    wherein in the region of each offset surface (18) there is provided a flow body (41) which is adapted in regard to its dimensions to the dimensions of the offset surfaces (18) and which covers the offset surfaces (18),
    wherein the flow body (41) ends substantially flush with at least one of the leading edge sections (11, 21) and/or trailing edge sections (30a, 30b),
    wherein the flow body (41) is disposed at a distance from the propeller hub of a ship's propeller, and
    wherein the rudder does not comprise a Costa bulb.
  2. The rudder according to claim 1, characterised in that the flow body (41) is configured in such a manner that it forms a flow guiding surface for the flow.
  3. The rudder according to claim 1, characterised in that the flow body (41) is configured in such a manner that it forms a substantially edgeless transition between the two leading edge sections (11, 21) and/or trailing edge sections in the area of the offset surfaces (18).
  4. The rudder according to any one of the preceding claims, characterised in that the maximum projection of the flow body (41) beyond the leading edge (11, 21) and/or trailing edge (30) is 10%, preferably 7%, particularly preferably 5% of the average profile length of the rudder blade (100).
  5. The rudder according to any one of the preceding claims, characterised in that the length of the flow body (41) substantially corresponds to the length of the offset surfaces (18).
  6. The rudder according to any one of the preceding claims, characterised in that the maximum width of the flow body (41) corresponds to the largest profile thickness of the rudder, in particular the largest profile thickness (13) of the rudder in the transition zone (40) between the two rudder sections (10, 20).
  7. The rudder according to any one of the preceding claims, characterised in that the flow body (41) is configured to be rounded.
  8. The rudder according to any one of the preceding claims, characterised in that a single flow body (41) is provided which forms a flow guiding surface for both offset surface regions.
  9. The rudder according to any one of the preceding claims, characterised in that the flow body (41) is configured to be spherical, drop-shaped and/or torpedo-shaped.
  10. The rudder according to any one of claims 1 to 7, characterised in that respectively one flow body (41) is disposed in the area of each offset surface (18).
  11. The rudder according to claim 10, characterised in that the flow body (41) is configured in the manner of a skew plane and runs obliquely from the outer edge of the offset surface (18) of a front leading edge (11, 21) and/or trailing edge (30a, 30b) towards the other front leading edge (11, 21) and/or trailing edge (30a, 30b).
  12. The rudder according to any one of the preceding claims, characterised in that the size of the cross-sectional area diminishes from the upper region of the rudder blade (100) towards the lower region of the rudder blade.
  13. The rudder according to any one of the preceding claims, characterised in that the upper rudder blade section (10) has a cross-sectional profile (12) that is formed by
    a.) a cross-sectional area (14) facing the propeller (220) which expands conically from the leading edge (11) facing the propeller (220) in the direction of the trailing edge (30) as far as a greatest profile thickness (13) as well as
    a.1) a cross-sectional area (15) which adjoins the cross-sectional area (14) and tapers conically towards the trailing edge (30), wherein
    a.2) the two cross-sectional area sections (14a; 14b) facing the propeller (220) formed by a central line (M1) running in the longitudinal direction of the rudder blade (100) have different sizes,
    a.3) of which the larger cross-sectional area section (14a) is located on the port side,
    a.4) and the smaller cross-sectional area section (14b) is located on the starboard side, wherein
    a.5) the two cross-sectional area sections (15a, 15b) formed by the central line (M1) in the region of the cross-sectional profile (12) facing away from the propeller (220) are configured to be the same,
    and that the lower rudder blade section (20) has a cross-sectional profile that is formed by
    b.) a cross-sectional area (24) facing the propeller (220) which expands conically from the leading edge (21) facing the propeller (220) in the direction of the trailing edge (30) as far as a greatest profile thickness (23) as well as
    b.1) a cross-sectional area (25) which adjoins the cross-sectional area (24) and tapers conically towards the trailing edge (30), wherein
    b.2) the two anterior cross-sectional area sections (24a; 24b) formed by a central line (M2) running in the longitudinal direction of the rudder blade (100) have different sizes,
    b.3) of which the larger cross-sectional area section (24b) is located on the starboard side,
    b.4) and the smaller cross-sectional area section (24a) is located on the port side, wherein
    b.5) the two cross-sectional area sections (25a, 25b) formed by the central line (M2) in the region of the cross-sectional profile (22) facing away from the propeller (220) are configured to be the same, wherein the cross-sectional area (14a, 14b, 15a, 15b) of the upper rudder blade section (10) is larger than the cross-sectional area (24a, 24b, 25a, 25b) of the lower rudder blade section (20).
  14. The rudder according to claim 13, characterised in that the two cross-sectional area sections (14a, 14b) of the cross-sectional profile (12) of the upper rudder blade section (10) facing the propeller (220) have edge zones (16, 16a) having a flat arcuate profile (16') and having a highly curved arcuate profile (16'a) and the two cross-sectional area sections (15a, 15b) of the cross-sectional profile (12) of the upper rudder blade section (10) facing away from the propeller (220) have tangentially running edge zones (17, 17a), wherein the cross-sectional area section (14b) having its edge zone (16a) having a highly curved arcuate profile (16'a) is located on the starboard side and the two propeller-side cross-sectional area sections (24a, 24b) of the cross-sectional profile (22) of the lower rudder blade section (20) have edge zones (26, 26a) having a flat arcuate profile (26') and having a highly curved arcuate profile (26'a) wherein the two cross-sectional area sections (25a, 25b) of the cross-sectional profile (22) of the lower rudder blade section (20) facing away from the propeller (220) have tangentially running edge zones (27, 27a), wherein the cross-sectional area section (24b) having its edge zone (26a) having a highly curved arcuate profile (26'a) is located on the starboard side so that on the port and starboard side the two-sided edge zones (16', 17, 16'a, 17a; 26a, 27a, 26', 27) of the upper rudder blade section (10) and the lower rudder blade section (20) in the area of the greatest profile thicknesses (13; 23) have an outwardly curved convex arcuate profile having different arc radii so that conically tapering edge zones (16, 17; 16a, 17a and 26, 27; 26a, 27a) of the cross-sectional profile running in the direction of the leading edges (11; 21; 30) are formed.
  15. The rudder according to any one of the preceding claims, characterised in that the leading edge sections (11; 21) facing the propeller (220) have a rounded profile.
  16. The rudder according to any one of the preceding claims, characterised in that a rudder trunk bearing (120) is provided as a cantilever having a central inner longitudinal hole (125) for receiving a rudder trunk (140) for the rudder blade (100) and is configured to extend into the rudder blade (100) connected to the rudder shaft end, wherein a bearing (150) is disposed in the inner longitudinal hole (125) of the rudder trunk bearing (120) for mounting the rudder trunk (140), which bearing extends with its free end (120b) into a recess, neck or the like (160) in the rudder blade (100), wherein the rudder trunk (140) in its end region (140b) is drawn out from the rudder trunk bearing (120) with a section (145) and is connected to the rudder blade (100) with the end of this section (145), wherein no mounting is provided between the rudder blade (100) and the rudder trunk bearing (120), and wherein the connection of the rudder trunk (140) to the rudder blade (100) lies above the centre of the propeller shaft (200), wherein the inner bearing (150) for the mounting of the rudder trunk (140) in the rudder trunk bearing (120) is disposed in the end region of the rudder trunk bearing (120).
  17. A ship, characterised in that it comprises a rudder according to any one of the preceding claims.
EP07024061.9A 2007-11-13 2007-12-12 Rudder for ships Active EP2060484B2 (en)

Priority Applications (34)

Application Number Priority Date Filing Date Title
PL07024061T PL2060484T5 (en) 2007-11-13 2007-12-12 Rudder for ships
TW097105007A TWI352677B (en) 2007-11-13 2008-02-13 Rudder for ships
SG200801245-2A SG152963A1 (en) 2007-11-13 2008-02-14 Rudder for ships
US12/070,346 US7802531B2 (en) 2007-11-13 2008-02-14 Rudder for ships
JP2008056222A JP4841578B2 (en) 2007-11-13 2008-03-06 Ship rudder
KR1020080030871A KR101281977B1 (en) 2007-11-13 2008-04-02 Rudder for ships
CN2008100930289A CN101434294B (en) 2007-11-13 2008-04-15 Rudder for ships
DE202008014375U DE202008014375U1 (en) 2007-11-13 2008-10-29 Rudder for ships at higher speeds with a cavitation-reducing, twisted, in particular Vollschweberuder
EP08018925A EP2060486B1 (en) 2007-11-13 2008-10-30 Rudder for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
PT08018925T PT2060486E (en) 2007-11-13 2008-10-30 Rudder for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
PT08018924T PT2060485E (en) 2007-11-13 2008-10-30 Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
AT08018925T ATE457925T1 (en) 2007-11-13 2008-10-30 RUDDER FOR HIGHER SPEED VESSELS WITH A CAVITATION-REDUCING, TWISTED, ESPECIALLY FULL HOVER RUDDER
DE502008000377T DE502008000377D1 (en) 2007-11-13 2008-10-30 Rudder for ships at higher speeds with a cavitation-reducing, twisted, in particular Vollschweberuder
EP08018924A EP2060485B1 (en) 2007-11-13 2008-10-30 Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
ES08018924T ES2341393T3 (en) 2007-11-13 2008-10-30 TIMON DEVICE FOR HIGH SPEED BOATS, IN SPECIAL TIMON COMPLETELY SUSPENDED CAVITATION REDUCER, WRAPPED.
AT08018924T ATE458670T1 (en) 2007-11-13 2008-10-30 RUDDER ARRANGEMENT FOR HIGHER SPEED VESSELS WITH A CAVITATION-REDUCING, TWISTED, ESPECIALLY FULL HOVER RUDDER
DE502008000400T DE502008000400D1 (en) 2007-11-13 2008-10-30 Rudder arrangement for ships at higher speeds with a cavitation-reducing, twisted, in particular Vollschweberuder
ES08018925T ES2340741T3 (en) 2007-11-13 2008-10-30 TIMON FOR HIGH SPEED BOATS, IN SPECIAL TIMON COMPLETELY SUSPENDED CAVITATION REDUCER, ALABEADO.
TW097143317A TWI370084B (en) 2007-11-13 2008-11-10 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder
TW097143320A TWI363728B (en) 2007-11-13 2008-11-10 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
KR1020080111796A KR101466991B1 (en) 2007-11-13 2008-11-11 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder
KR1020080112137A KR20090049551A (en) 2007-11-13 2008-11-12 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
CN2008101895507A CN101531248B (en) 2007-11-13 2008-11-12 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a balancing rudder
CN2008101895511A CN101531249B (en) 2007-11-13 2008-11-12 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder
JP2008289824A JP5175690B2 (en) 2007-11-13 2008-11-12 Rudder for high speed vessels consisting of cavitation reduced twist, especially balancing rudder
JP2008289823A JP4901843B2 (en) 2007-11-13 2008-11-12 Rudder arrangement for ships with high speed due to cavitation-reducing torsion rudder, especially all-balanced rudder
HK09107784.6A HK1129639A1 (en) 2007-11-13 2009-08-25 Rudder for ships
HK09110623.5A HK1132719A1 (en) 2007-11-13 2009-11-13 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
HK09110620.8A HK1132718A1 (en) 2007-11-13 2009-11-13 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder
HR20100156T HRP20100156T1 (en) 2007-11-13 2010-03-18 Rudder for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
HR20100291T HRP20100291T1 (en) 2007-11-13 2010-05-24 Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
HRP20110353TT HRP20110353T4 (en) 2007-11-13 2011-05-12 Rudder for ships
KR1020120119775A KR101433465B1 (en) 2007-11-13 2012-10-26 Rudder for ships
KR1020130034026A KR101421375B1 (en) 2007-11-13 2013-03-29 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202007015941U DE202007015941U1 (en) 2007-11-13 2007-11-13 Oars for ships

Publications (3)

Publication Number Publication Date
EP2060484A1 EP2060484A1 (en) 2009-05-20
EP2060484B1 true EP2060484B1 (en) 2011-02-16
EP2060484B2 EP2060484B2 (en) 2019-08-21

Family

ID=38955296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07024061.9A Active EP2060484B2 (en) 2007-11-13 2007-12-12 Rudder for ships

Country Status (14)

Country Link
US (1) US7802531B2 (en)
EP (1) EP2060484B2 (en)
JP (1) JP4841578B2 (en)
KR (2) KR101281977B1 (en)
CN (3) CN101434294B (en)
AT (1) ATE498547T1 (en)
DE (3) DE202007015941U1 (en)
DK (1) DK2060484T4 (en)
ES (1) ES2361440T5 (en)
HK (1) HK1129639A1 (en)
HR (1) HRP20110353T4 (en)
PL (1) PL2060484T5 (en)
SG (1) SG152963A1 (en)
TW (1) TWI352677B (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120079975A1 (en) * 2006-11-13 2012-04-05 Becker Marine Systems Gmbh & Co.Kg Rudder for ships
DE202007015941U1 (en) * 2007-11-13 2008-01-17 Becker Marine Systems Gmbh & Co. Kg Oars for ships
NL2001693C2 (en) * 2008-06-17 2009-12-18 Marifin Beheer B V Assembly from a rudder and a screw.
PL2154064T3 (en) * 2008-08-13 2012-09-28 Becker Marine Sys Gmbh & Co Kg Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
EP2163471B1 (en) * 2008-09-12 2011-09-07 Wärtsilä Netherlands B.V. Propulsion and steering arrangement
KR101110392B1 (en) * 2008-12-09 2012-02-24 현대중공업 주식회사 Asymmetrical ship rudder form and section
KR101010998B1 (en) 2009-01-22 2011-01-26 부산대학교 산학협력단 Twisted type rudder for ships
KR200453139Y1 (en) 2009-04-09 2011-04-08 대우조선해양 주식회사 rudder of ship
DE202009007036U1 (en) 2009-04-09 2009-07-23 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Oars for ships
KR200457878Y1 (en) * 2009-04-09 2012-01-06 대우조선해양 주식회사 rudder of ship
DE202009007037U1 (en) 2009-04-09 2009-07-23 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Oars for ships
KR200453140Y1 (en) 2009-05-01 2011-04-08 대우조선해양 주식회사 rudder of ship
EP2263936B1 (en) 2009-06-17 2012-05-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd Rudder for ship
KR200447816Y1 (en) 2009-07-10 2010-02-23 대우조선해양 주식회사 Rudder of ship
DE202009013211U1 (en) 2009-09-02 2011-01-13 Becker Marine Systems Gmbh & Co. Kg Upper Rudertraglager
KR101106708B1 (en) 2010-03-31 2012-01-18 한국해양연구원 Ship rudder operating its upper and lower parts separately and having rudder bulb
KR101106709B1 (en) 2010-03-31 2012-01-18 한국해양연구원 Ship rudder using its upper or lower part alone and having rudder bulb
KR101159205B1 (en) * 2010-06-07 2012-06-25 삼성중공업 주식회사 Rudder for ship and ship including the same
JP5689328B2 (en) * 2011-02-03 2015-03-25 住友重機械マリンエンジニアリング株式会社 Rudder with rudder valve, ship, rudder valve, and method of manufacturing rudder with rudder valve
KR101402485B1 (en) * 2012-07-27 2014-06-11 현대중공업 주식회사 A rudder for ship
KR101402529B1 (en) * 2012-07-27 2014-06-19 현대중공업 주식회사 A rudder for ship
KR101402376B1 (en) * 2012-07-27 2014-06-11 현대중공업 주식회사 A rudder for ship
KR102129140B1 (en) * 2014-01-02 2020-07-01 한국조선해양 주식회사 Rudder for ship
KR101580403B1 (en) 2014-08-04 2015-12-24 현대중공업 주식회사 A rudder for ship and ship thereof
KR101580404B1 (en) 2014-08-04 2015-12-24 현대중공업 주식회사 A rudder for ship and ship thereof
KR101580402B1 (en) 2014-08-04 2015-12-24 현대중공업 주식회사 A rudder for ship and ship thereof
KR102026500B1 (en) * 2015-06-05 2019-09-27 한국조선해양 주식회사 Rudder for ship
KR102211146B1 (en) 2015-06-30 2021-02-01 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102170038B1 (en) 2015-06-30 2020-10-26 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102170042B1 (en) 2015-06-30 2020-10-26 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102170037B1 (en) 2015-06-30 2020-10-26 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102170041B1 (en) 2015-06-30 2020-10-26 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102170033B1 (en) 2015-06-30 2020-10-26 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102211151B1 (en) 2015-06-30 2021-02-01 한국조선해양 주식회사 A rudder and a ship having the rudder
KR102168941B1 (en) * 2015-06-30 2020-10-22 한국조선해양 주식회사 A ship
KR102232569B1 (en) 2015-10-28 2021-03-25 한국조선해양 주식회사 A rudder and a ship having the rudder
CN105416554B (en) * 2015-12-24 2017-09-29 九成投资集团有限公司 With rudder blade from song to guide margin
CN105416553A (en) * 2015-12-24 2016-03-23 九成投资集团有限公司 Streamline rudder sleeve
KR102209084B1 (en) * 2016-01-05 2021-01-28 한국조선해양 주식회사 A rudder for ship
JP6582296B2 (en) * 2016-03-31 2019-10-02 三井E&S造船株式会社 Ship rudder and ship
CN105966591A (en) * 2016-06-23 2016-09-28 湖州双林金辉船舶制造有限公司 Large container ship rudder assembling structure
CN107867385B (en) * 2016-09-28 2020-07-21 日本日联海洋株式会社 Reaction rudder
KR102209079B1 (en) * 2017-06-01 2021-01-27 한국조선해양 주식회사 A rudder for ship and ship having the same
CN107391865B (en) * 2017-07-31 2021-08-06 中国人民解放军海军工程大学 Air guide sleeve for inhibiting fluid separation and cavitation at end part of rudder blade and design method thereof
CN108482625A (en) * 2018-05-30 2018-09-04 上海交通大学 A kind of ship combination propulsion device and installation method
CN110053752A (en) * 2019-05-13 2019-07-26 哈尔滨工程大学 A kind of rudder face cavitation effect inhibition device
KR102288939B1 (en) * 2019-08-29 2021-08-11 (주)디에이취엠씨 Rudder for ship having rudder bulb
KR102305888B1 (en) * 2020-01-30 2021-09-27 현대중공업 주식회사 Steering apparatus and ship having the same
KR102451635B1 (en) * 2021-02-02 2022-10-06 재단법인한국조선해양기자재연구원 Rudder with angle of attack by twisting the upper and lower parts in different directions
CN113371171B (en) * 2021-06-18 2022-11-15 武汉理工大学 Deformable rudder blade capable of adaptively deflecting front edge and deflection method
KR20230013651A (en) 2021-07-15 2023-01-27 (주)디에이취엠씨 Full spade rudder of vessle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE583091C (en) 1933-08-28 Rudolf Wagner Dr Guide surface rudder for watercraft and aircraft
DE516085C (en) * 1931-01-17 Max Oertz Dr Ing Streamlined rudder behind the ship's drive
US1844303A (en) 1928-01-27 1932-02-09 Wagner Rudolf Rudder
GB332082A (en) * 1929-08-07 1930-07-17 Amos Lowrey Ayre Improvements in ships' rudders
DE1140484B (en) 1958-04-30 1962-11-29 Maierform Holding Sa Ship rudder with staggered upper and lower rudder halves
FR1251898A (en) 1960-03-24 1961-01-20 Eta Corp Advanced rudder
JPS57191193A (en) * 1981-05-18 1982-11-24 Yamaha Motor Co Ltd Method of manufacturing rudder plate for small ship
JPS5830896A (en) 1981-08-18 1983-02-23 Ishikawajima Harima Heavy Ind Co Ltd Reaction rudder without discontinuous part
JPH0539090A (en) 1991-08-08 1993-02-19 Hitachi Zosen Corp Rudder
JPH06305487A (en) 1993-04-21 1994-11-01 Hitachi Zosen Corp Rudder
US5415122A (en) 1993-10-13 1995-05-16 The United States Of America As Represented By The Secretary Of The Navy Twisted rudder for a vessel
JPH07237594A (en) * 1994-02-28 1995-09-12 Hitachi Zosen Corp Rudder in ship
DE4426953B4 (en) * 1994-07-29 2005-09-22 Tbi Technologie-Beratungs-Institut Gmbh Rudder or rudder nozzle with hinged fin for watercraft
US5752865A (en) * 1995-04-11 1998-05-19 Mitsui Engineering & Shipbuilding Co., Ltd. Ship
JPH0911990A (en) 1995-06-30 1997-01-14 Hitachi Zosen Corp Rudder
KR100346512B1 (en) 1999-07-07 2002-08-01 삼성중공업 주식회사 A rudder of ship
NL1015629C2 (en) * 2000-07-06 2002-01-11 A Van Der Velden B V Ship's rudder has horizontal top and bottom plates and sinusoidal shaped variation between upper and lower plates
DE202004006453U1 (en) * 2004-04-23 2004-11-11 Becker Marine Systems Gmbh & Co. Kg Oars for ships
KR200395385Y1 (en) * 2005-06-30 2005-09-08 삼성중공업 주식회사 Rudder for Ship
DE202007015941U1 (en) * 2007-11-13 2008-01-17 Becker Marine Systems Gmbh & Co. Kg Oars for ships
PL2154064T3 (en) * 2008-08-13 2012-09-28 Becker Marine Sys Gmbh & Co Kg Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder

Also Published As

Publication number Publication date
DE502007006513D1 (en) 2011-03-31
CN101531248B (en) 2011-11-30
CN101531248A (en) 2009-09-16
HRP20110353T1 (en) 2011-06-30
HRP20110353T4 (en) 2020-01-10
CN101434294B (en) 2012-10-10
EP2060484A1 (en) 2009-05-20
CN101531249B (en) 2011-11-30
TW200920656A (en) 2009-05-16
KR20090049514A (en) 2009-05-18
CN101531249A (en) 2009-09-16
PL2060484T3 (en) 2011-08-31
JP4841578B2 (en) 2011-12-21
ES2361440T3 (en) 2011-06-17
TWI352677B (en) 2011-11-21
ES2361440T5 (en) 2020-04-13
DE202007015941U1 (en) 2008-01-17
KR20120125446A (en) 2012-11-15
PL2060484T5 (en) 2021-08-02
EP2060484B2 (en) 2019-08-21
SG152963A1 (en) 2009-06-29
KR101433465B1 (en) 2014-08-22
US20090126613A1 (en) 2009-05-21
HK1129639A1 (en) 2009-12-04
DK2060484T4 (en) 2019-11-18
DK2060484T3 (en) 2011-06-06
CN101434294A (en) 2009-05-20
JP2009120170A (en) 2009-06-04
DE202007017448U1 (en) 2008-02-28
KR101281977B1 (en) 2013-11-27
US7802531B2 (en) 2010-09-28
ATE498547T1 (en) 2011-03-15

Similar Documents

Publication Publication Date Title
EP2060484B1 (en) Rudder for ships
EP1857358B1 (en) Rudder for ships
EP1921005B1 (en) Rudder for ships
EP2060485B1 (en) Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
EP2154064B1 (en) Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
EP2060483A1 (en) High-performance rudder for ships
EP2277772B1 (en) Ducted propeller for ships
DE202013101943U1 (en) Device for reducing the power requirement of a watercraft
WO2003070567A1 (en) Line design and propulsion system for a directionally stable, seagoing boat with rudder propeller drive system
EP0131115A2 (en) Arrangement for influencing the current falling onto a propeller
DE69104931T2 (en) Oars.
DE102017101680A1 (en) Hydrofoil for a watercraft
EP3296192B1 (en) Impact-reducing flow deflector for the surface of flow bodies impacted by the flow
DE69305167T2 (en) Displacement ship with stabilized ramming motion
EP0042584A1 (en) Boat hull, especially for sailing-ships and yachts
DE651579C (en) Watercraft
EP1787904B1 (en) High-load suspended rudder
DE3302180A1 (en) Braking and auxiliary control device for ships
EP3464045B1 (en) Water vehicle, in particular tugboat
DE10240534B4 (en) ship
DE3402033C2 (en) Free fall lifeboat
DE2253571C3 (en) Stern rudder, especially for inland waterways
DE202009019046U1 (en) Ship with a diesel-electric drive device
DD209781A1 (en) REAR SHIP FOR SCREWS
DE202011005332U1 (en) Ship and oars for such a ship

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20091118

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: HR

Payment date: 20091119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006513

Country of ref document: DE

Date of ref document: 20110331

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006513

Country of ref document: DE

Effective date: 20110331

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20110353

Country of ref document: HR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110400726

Country of ref document: GR

Effective date: 20110412

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2361440

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110617

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20110353

Country of ref document: HR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110516

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: VAN DER VELDEN BARKEMEYER GMBH

Effective date: 20111116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007006513

Country of ref document: DE

Effective date: 20111116

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

BERE Be: lapsed

Owner name: BECKER MARINE SYSTEMS G.M.B.H. & CO. KG

Effective date: 20111231

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 498547

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121212

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BECKER MARINE SYSTEMS GMBH & CO. KG

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VAN DER VELDEN BARKEMEYER GMBH

Effective date: 20111116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BECKER MARINE SYSTEMS GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007006513

Country of ref document: DE

Representative=s name: RGTH RICHTER GERBAULET THIELEMANN HOFMANN PATE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007006513

Country of ref document: DE

Owner name: BECKER MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: BECKER MARINE SYSTEMS GMBH & CO. KG, 21079 HAMBURG, DE

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110353

Country of ref document: HR

Payment date: 20181231

Year of fee payment: 12

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20190821

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007006513

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20191114

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110353

Country of ref document: HR

Payment date: 20191209

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: T4IZ

Ref document number: P20110353

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2361440

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20200413

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20190403559

Country of ref document: GR

Effective date: 20200318

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110353

Country of ref document: HR

Payment date: 20201207

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110353

Country of ref document: HR

Payment date: 20211202

Year of fee payment: 15

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110353

Country of ref document: HR

Payment date: 20221130

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110353

Country of ref document: HR

Payment date: 20231204

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231214

Year of fee payment: 17

Ref country code: GB

Payment date: 20231220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231204

Year of fee payment: 17

Ref country code: SE

Payment date: 20231219

Year of fee payment: 17

Ref country code: RO

Payment date: 20231206

Year of fee payment: 17

Ref country code: NL

Payment date: 20231219

Year of fee payment: 17

Ref country code: FR

Payment date: 20231219

Year of fee payment: 17

Ref country code: FI

Payment date: 20231218

Year of fee payment: 17

Ref country code: DK

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231228

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231207

Year of fee payment: 17

Ref country code: IT

Payment date: 20231229

Year of fee payment: 17