EP2058590B1 - Method for operating a burner - Google Patents
Method for operating a burner Download PDFInfo
- Publication number
- EP2058590B1 EP2058590B1 EP08168235.3A EP08168235A EP2058590B1 EP 2058590 B1 EP2058590 B1 EP 2058590B1 EP 08168235 A EP08168235 A EP 08168235A EP 2058590 B1 EP2058590 B1 EP 2058590B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- flow
- swirl
- burner
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
- F23D11/402—Mixing chambers downstream of the nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07002—Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00002—Gas turbine combustors adapted for fuels having low heating value [LHV]
Definitions
- the invention relates to a method according to the preamble of claim 1. It also relates to a burner for carrying out this method.
- a per se known and technically controllable way to reduce the CO 2 emissions in combustion power plants consists in the removal of carbon from the fuels reaching combustion, which are accomplished before they are introduced into the combustion chamber.
- Such pretreated fuels usually contain a large amount of H 2 and CO, and depending on the mixing ratios have calorific values, which are generally lower than those of natural gas.
- Mbtu or Lbtu gases which are not readily suitable for use in conventional, designed for the combustion of natural gases such as natural gas burner, such as the EP 0 321 809 B1 .
- WO 93/17279 as well as the EP 1 070 915 A1 are removable.
- burners are described of the type of fuel premix, in each of which a conically expanding in the flow direction swirl flow of combustion air and mixed fuel is generated, the downstream as possible after the exit from the burner Achieving a homogeneous air-fuel mixture is unstable by the increasing swirl and merges into an annular swirl flow with backflow in the core.
- liquid and / or gaseous fuel which forms in the interior of the premix burner, is introduced to form a homogeneous air-fuel mixture.
- gaseous fuels are to be used as alternatives to or in combination with the combustion of conventional types of fuel for purposes of reduced pollutant, in particular CO 2 emissions, special requirements are imposed on the design of conventional premix burner systems. For example, synthesis gases for feeding into burner systems require a multiple fuel volume flow compared to comparable burners operated with natural gas, so that significantly different flow pulse ratios result.
- WO 2006/058843 A1 are a method and a burner for the combustion of gaseous, liquid and hydrogen-containing or consisting of hydrogen fuel, synthesis gas, known.
- a premix burner which has become known as a double-cone burner, with switched-after mixing section according to the EP 0 780 629 A2 used in FIGS. 2a and b is shown schematically in longitudinal section.
- the premix burner arrangement provides a swirl generator 1, which widens conically in the longitudinal axis of the burner and is delimited by swirl shells 2. Axial and coaxial about the burner axis A of the swirl generator 1 means for supplying fuel are provided.
- liquid fuel B fl reaches the swirling space through an injection nozzle 3 positioned along the burner axis A at the location of the smallest inner diameter of the swirl generator 1.
- Longitudinal tangential air inlet slots 4 enters via the combustion air L with tangential flow direction in the swirl space, gaseous fuel B g , preferably natural gas, the combustion air L is added.
- injection devices 5 are provided (see Fig. 2b ), which serve the further feed of synthesis gas B H2 .
- the fuel-air mixture forming within the swirl generator 1 passes as swirling flow through a transition section 6, which provides the swirl flow stabilizing fluid 7, into a mixing tube 8, in which a completely homogeneous mixing of the forming fuel-air mixture before the ignitable fuel Air mixture is ignited within a downstream of the mixing tube 8 subsequent combustion chamber B. Due to an unsteady flow cross-sectional enlargement in the transition from the mixing tube 8 into the combustion chamber B, the swirling flow of the mixed fuel-air mixture bursts to form a remindströmzone in the form of a remindblasblase RB, in which adjusts a spatially stable flame front.
- the airfoil forming along the burner is in Fig. 2a represented, which is characterized by a significant maximum velocity along the burner axis A, the amount of which is usually three to four times higher than those flow rates, which are able to form near the burner wall.
- the synthesis gas B H2 according to the schematic longitudinal sectional view in Fig. 2b about 60 ° to the burner longitudinal axis A in the swirl chamber of the swirl generator 1.
- Hydrogen-rich fuels with hydrogen contents of> 50% in particular typically have very high flame speeds and moreover have a much smaller volume-specific heat calorific value (MJ / m 3 ), so that much larger quantities of hydrogen-containing fuel are required for the burner Achieve a desired performance-related combustion heat must be supplied.
- ignition phenomena already occur in the swirl chamber or along the mixing section of the burner, which are due to inadequate mixing of the hydrogenous fuel fed into the burner with a large volume flow.
- the object of the present invention is a method for operating a premix burner and also specify a premix burner itself, in which the above disadvantages should be avoided. Furthermore, when operating with a fuel containing hydrogen, a so-called synthesis gas, it is necessary to ensure improved mixing with the burner air swirl flow as well as more stable flow conditions within the burner.
- claim 7 The solution of the problem underlying the invention is specified in claim 1.
- the subject matter of claim 7 is a device designed in accordance with the invention.
- the concept of the invention advantageously further features are the subject of the dependent claims and the further description with reference to the exemplary embodiments. All claims are part of the further description.
- the low volume-specific istwert and thereby required larger volume flow and the low density of the synthesis gas containing hydrogen are advantageously used insofar as on the one hand the large synthesis gas volume flow for selectively raising the flow velocity in the burner wall near flow areas to reduce the Flammen Wegzündrisiko downstream of the transition section.
- the only low fuel density of the synthesis gas contributes to an improved mixing with the swirling flow of the combustion air, by centrifugal forces are used within the swirl flow to allow a radial mixing of the synthesis gas with the combustion air.
- Synthesis gas is fed into radially outward areas of the swirl flow, it is due to the heavier Air components, which are driven radially outward by the centrifugal forces acting within the swirl flow, a displacement of the lighter synthesis gas in the vicinity of the axis relative to the burner axis.
- the transition section between the region of the swirl generator and the downstream mixing tube serves primarily to transfer the swirl flow which widens conically within the swirl generator into the longitudinal axis of the burner into a cylindrical swirl flow which propagates along the mixing tube with a constant flow cross section.
- the transfer of the flow form into a cylindrical swirl flow takes place by means of flow guide plates or flow guidance contours provided along the transition section.
- the transition section contributes significantly to the fact that the flow velocity in the wall near areas along the mixing tube compared to the flow velocity in the field of burner or Mischrohrachse is much lower.
- synthesis gas due to its own high volume flow rate, is particularly suitable for accelerating wall-oriented flow areas in a targeted way in terms of flow behavior.
- the targeted feeding of the hydrogen-containing synthesis gas along the transition section is carried out in accordance with the solution such that the additional fuel feed in the direction of the transition section anyway passing swirling flow is admixed, ie the synthesis gas is fed with a suitable for forming inside the burner swirl flow tangentially selected as well as radial flow component relative to the burner longitudinal axis.
- the fuel injection is adjusted to local flow angles to avoid the flashback risk due to increased turbulence.
- the transition section is suitable for the injection of an additional synthesis gas stream, especially as the transition section is bounded by a transition piece formed with a sufficiently large wall thickness, through which a plurality of individual outlet openings for the synthesis gas supply can be provided.
- the formation of the outlet openings as well as the individual synthesis gas supply channels connected to the outlet openings can be made almost anywhere according to shape and location without any design restrictions, especially as the transition piece offers sufficient space for these measures.
- synthesis gas flows with a circular, elliptical, annular, almost rectangular or almost triangular flow cross-section, which exist for improved mixing with the inside of the burner Fuel-air swirl flow contributes.
- Such a burner designed in accordance with the invention has, along the transition section, means for feeding in the synthesis gas containing at least the hydrogen.
- Fig. 1 is a longitudinal sectional view of a solution according trained Vormischbrenners shown with a swirl generator 1, the swirl space is enclosed by two swirl shells in the form of Operakegelschalen 2, each mutually defining air inlet slots 4, is fed through the combustion air supply to form a swirl flow within the swirl space.
- the swirl flow encloses a conically spreading liquid fuel column, which is discharged by remplissigbrennstoffaustrag through the centrally mounted fuel nozzle 3.
- gaseous fuel preferably natural gas
- the additional fuel feed in the region of the transition section 6 takes place either via circular uniformly distributed distributed individual outlet openings, all of which are supplied via a common supply line 10 with synthesis gas B H2 .
- the fuel line 10 opens into a fuel reservoir 11 which surrounds the transition section 6 in a circular manner and from which the individual outlet openings 9 'of the fuel feed 9 are supplied with fuel.
- the feeding of the synthesis gas B H2 takes place in such a way that the regions near the wall, in particular of the mixing tube 8 adjoining the transition section 6 downstream, are accelerated with regard to their flow behavior in order to reduce the risk of flashback. Equally, however, it is necessary to make the fuel feed with only slight adverse effects on the swirl flow forming within the swirl generator 1.
- the longitudinal section shown is likewise the radial component, with which the fuel feed is introduced into the region of the transition section 6 as well as of the mixing tube 8 adjoining it downstream.
- the slightly inclined towards the burner axis A direction of the fuel feed of the synthesis gas B H2 contributes to the improved mixing of the fuel with the air-fuel swirl flow, however, due to the centrifugal force caused by the rotational movement within the swirl flow, a radial exchange of the lighter, hydrogen-containing fuel , with the heavier air proportions of the Swirl flow is supported.
- the longitudinal section in Fig. 1 It can be seen that immediately before entry into the combustion chamber B which adjoins the mixing tube 8 downstream, the hydrogen-containing fuel B H2 is mixed as homogeneously as possible over the entire flow cross-section.
- the synthesis gas is additionally fed with a component which is tangential to the swirl flow, in order to minimize irritation to the swirl flow.
- a component which is tangential to the swirl flow is on Fig. 3 referenced, which shows a cross-sectional view in the region of the transition section 6.
- the inner contour of the transition section 6 is characterized by conically widening flow direction in the flow direction 7, which are optimized from a fluidic point of view and are able to convert conically expanding swirl flow in a propagating with constant flow cross-section swirl flow.
- the reservoir 11 storing the synthesis gas is provided, which via the in FIG Fig. 1 shown supply line 10 is supplied with fuel.
- supply line 10 is supplied with fuel.
- a plurality of supply channels 12 are provided for feeding the fuel containing the hydrogen, via which the synthesis gas is fed into the interior of the transition section 6.
- the spatial orientation of the individual fuel supply channels 12 is made such that the fuel discharge snuggles largely tangentially to the forming within the burner swirl flow D, without significantly affecting the swirl flow in their flow behavior.
- FIG. 4 In a further longitudinal sectional view according to Fig. 4 are upstream of the outlet openings 9 'of the feed channels 12 Spülgaskanäle 13 provided by the additional air in a conventional manner along the wall of the downstream of the transition section 6 subsequent mixing tube 8 is discharged.
- This in Fig. 4 illustrated embodiment provides that also 13 synthesis gas containing hydrogen is discharged through the purge gas channels, especially in cases where the burner is operated with natural gas and petroleum.
- the additional use of already existing purge gas channels or film hole openings with hydrogen-containing fuel helps to control or influence the fuel concentration in the region of the burner wall, ie the wall along the mixing tube.
- the solution according to the burner concept thus helps to reduce the risk of flashback significantly, on the one hand by a longitudinal wall of the mixing tube flow rate increase, on the other hand by an individual adjustment of the feed additional fuel, ie hydrogen-containing fuel with respect to the already forming within the swirl generator swirl flow, thus turbulent vortex formation can be largely avoided or reduced. Due to the much lower specific weight of the injected hydrogen-containing synthesis gas in comparison to the much larger proportion of air forming within the burner swirl flow causes the centrifugal force occurring due to the rotational movement, a radial mixing of the fed in the peripheral edge of the synthesis gas such that before the air Fuel swirl flow into the combustion chamber a complete mixing of the injected hydrogen is achieved.
- the fuel supply lines and outlet openings can be designed and dimensioned as a function of the selected hydrogen-containing fuel.
- Existing scavenging air supply openings for the formation of film layers close to the wall can likewise be used to feed hydrogen-containing synthesis gas. Due to the additional feed of synthesis gas only in the region of the transition section 6, the mean residence time of the hydrogen is much lower compared to a feed along the swirl generator, so that the burner operation can be carried out correspondingly safer.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Gas Burners (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren gemäss Oberbegriff des Anspruchs 1. Sie betrifft auch einen Brenner zur Durchführung dieses Verfahrens.The invention relates to a method according to the preamble of
Motiviert durch das nahezu weltweite Bestreben hinsichtlich der Reduzierung des Ausstosses von Treibhausgasen in die Atmosphäre, nicht zuletzt festgelegt im so genannten Kioto-Protokoll, soll die im Jahre 2010 zu erwartende Emission von Treibhausgasen auf den gleichen Stand reduziert werden wie im Jahre 1990. Zur Umsetzung dieses Vorhabens bedarf es grosser Anstrengungen, insbesondere den Beitrag an anthropogen-bedingten CO2-Freisetzungen zu reduzieren. Etwa ein Drittel des durch den Menschen in die Atmosphäre freigesetzten CO2 ist auf die Energieerzeugung zurückzuführen, bei der die zumeist fossilen Brennstoffe in Kraftwerksanlagen zur Stromerzeugung verbrannt werden. Insbesondere durch den Einsatz moderner Technologien sowie durch zusätzliche politische Rahmenbedingungen kann auf dem Energie erzeugenden Sektor ein erhebliches Einsparungspotential zur Vermeidung eines weiter zunehmenden CO2-Ausstosses erzielt werden.Motivated by the almost global efforts to reduce the emission of greenhouse gases into the atmosphere, not least laid down in the so-called Kyoto Protocol, the emission of greenhouse gases to be expected in 2010 should be reduced to the same level as in 1990. For implementation This project requires great efforts, in particular to reduce the contribution to anthropogenic CO 2 releases. About one third of the CO 2 released by humans into the atmosphere is due to energy production, which burns mostly fossil fuels in power plants to produce electricity. In particular, through the use of modern technologies and additional political framework conditions, a significant savings potential can be achieved in the energy-producing sector to avoid a further increase in CO 2 emissions.
Eine an sich bekannte und technisch beherrschbare Möglichkeit die CO2-Emission in Verbrennungskraftwerken zu reduzieren, besteht im Entzug von Kohlenstoff aus den zur Verbrennung gelangenden Brennstoffen, die noch vor Einleiten derselben in die Brennkammer bewerkstelligt werden. Dies setzt entsprechende Brennstoffvorbehandlungen voraus, dass beispielsweise die teilweise Oxidation des Brennstoffes mit Sauerstoff und/oder eine Vorbehandlung des Brennstoffes mit Wasserdampf in Verbindung gebracht wird. Derartig vorbehandelte Brennstoffe weisen zumeist einen grossen Anteil von H2 und CO auf, und verfügen je nach Mischungsverhältnissen über Heizwerte, die in der Regel unter jenen von natürlichem Erdgas liegen. In Abhängigkeit ihres Heizwertes werden derartig synthetisch hergestellten Gase als Mbtu- oder Lbtu-Gase bezeichnet, die sich nicht ohne weiteres für den Einsatz in herkömmlichen, für die Verbrennung von Naturgasen wie Erdgas konzipierte Brenner eignen, wie sie beispielsweise der
Je nach Brennerkonzept sowie in Abhängigkeit der Brennerleistung wird der sich im Inneren des Vormischbrenners ausbildenden Drallströmung flüssiger und/oder gasförmiger Brennstoff zur Ausbildung eines möglichst homogenen Brennstoff-Luftgemisches eingegeben. Gilt es jedoch, wie vorstehend erwähnt, zu Zwecken einer reduzierten Schadstoff-, insbesondere CO2-Emission synthetisch aufbereitete, gasförmige Brennstoffe alternativ zu oder in Kombination mit der Verbrennung herkömmlicher Brennstoffarten einzusetzen, so ergeben sich besondere Anforderungen an die konstruktive Auslegung herkömmlicher Vormischbrennersysteme. So erfordern Synthesegase zur Einspeisung in Brennersysteme einen vielfachen Brennstoff-Volumenstrom gegenüber vergleichbaren mit Erdgas betriebenen Brennern, so dass sich deutlich unterschiedliche Strömungsimpulsverhältnisse ergeben. Aufgrund des hohen Anteils an Wasserstoff im Synthesegas und der damit verbundenen niedrigen Zündtemperatur und hohen Flammengeschwindigkeit des Wasserstoffes, besteht eine hohe Reaktionsneigung des Brennstoffes, die zu einer erhöhten Rückzündgefahr führt. Um dies zu vermeiden, gilt es die mittlere Verweilzeit von zündfähigem Brennstoff-Luftgemisch innerhalb des Brenners möglichst zu reduzieren.Depending on the burner concept as well as on the burner output, liquid and / or gaseous fuel, which forms in the interior of the premix burner, is introduced to form a homogeneous air-fuel mixture. However, as stated above, if gaseous fuels are to be used as alternatives to or in combination with the combustion of conventional types of fuel for purposes of reduced pollutant, in particular CO 2 emissions, special requirements are imposed on the design of conventional premix burner systems. For example, synthesis gases for feeding into burner systems require a multiple fuel volume flow compared to comparable burners operated with natural gas, so that significantly different flow pulse ratios result. Due to the high proportion of hydrogen in the synthesis gas and the associated low ignition temperature and high flame velocity of the hydrogen, there is a high tendency to react of the fuel, which leads to an increased risk of re-ignition. To avoid this, it is necessary to reduce the average residence time of flammable fuel-air mixture within the burner as possible.
In der
Das sich innerhalb des Drallerzeugers 1 ausbildende Brennstoff-Luftgemisch gelangt als Drallströmung durch einen Übergangsabschnitt 6, der die Drallströmung stabilisierende Strömungsmittel 7 vorsieht, in ein Mischrohr 8, in dem eine vollständig homogene Durchmischung des sich ausbildenden Brennstoff-Luftgemisches erfolgt, bevor das zündfähige Brennstoff-Luftgemisch innerhalb einer sich stromab an das Mischrohr 8 anschliessenden Brennkammer B gezündet wird. Aufgrund einer unsteten Strömungsquerschnittsvergrösserung beim Übergang vom Mischrohr 8 in die Brennkammer B platzt die Drallströmung des durchmischten Brennstoff-Luftgemisches unter Ausbildung einer Rückströmzone in Form einer Rückströmblase RB auf, in der sich eine räumlich stabile Flammenfront einstellt.The fuel-air mixture forming within the
Das sich längs des Brenners ausbildende Strömungsprofil ist in
Um zu vermeiden, dass das wasserstoffhaltige Synthesegas in Brennerwand nahe Bereiche gelangt, wird das Synthesegas BH2 gemäss der schematischen Längsschnittdarstellung in
Die Nachteile, die mit dem bisher bekannten Vormischbrennerkonzept verbunden sind, werden nachfolgend in nicht abschliessender Form stichpunktartig zusammengefasst:
- 1. Es bestehen unzureichende Vorkehrungen zur Vermeidung von Flammenrückzündereignissen, die u.a. auf eine unzureichende Strömungsabstimmung zwischen dem in den Brennerraum einzuspeisenden Wasserstoff enthaltenden Brennstoffstrom und der sich innerhalb des Drallerzeugers ausbildenden Brennstoff-Luft-Drallströmung zurückzuführen sind.
- 2. Überhöhte NOx-Emissionen, die sich als Folge einer zusätzlichen Brennstoffanreicherung von Synthesegas längs der Brennerachse und einer damit verbundenen Temperaturerhöhung einstellen.
- 3. Komplizierte Bauform der Brenneranordnung aufgrund einer Vielzahl in den Drallraum zugeführter Brennstoffleitungen, die jeweils über separate Brennstoffverteilerkreise gespeist werden, die allesamt mit ursächlich für eine unzureichende, vorstehend bezeichnete Strömungsabstimmung sind.
- 4. Die Leistungsvariation des Brenners durch Variation der Brennstoffzuführung ist sehr begrenzt, zumal sich Brennerinstabilitäten ausbilden, die sich u.a. durch das Auftreten von Brennkammerpulsationen auszeichnen.
- 1. There are insufficient provisions for avoiding flashback events which are due, inter alia, to insufficient flow tuning between the fuel flow containing hydrogen in the burner space and the fuel-air swirl flow forming within the swirl generator.
- 2. Excessive NO x emissions, which occur as a result of an additional fuel enrichment of synthesis gas along the burner axis and an associated increase in temperature.
- 3. Complicated design of the burner assembly due to a variety in the swirl space supplied fuel lines, which are each fed via separate fuel distributor circuits, all of which are responsible for an insufficient, above-mentioned flow tuning.
- 4. The power variation of the burner by varying the fuel supply is very limited, especially as burner instabilities form, which are characterized, inter alia, by the occurrence of combustion chamber pulsations.
Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren zum Betrieb eines Vormischbrenners sowie auch einen Vormischbrenner selbst anzugeben, bei dem die obigen Nachteile vermieden werden sollen. Ferner gilt es beim Betrieb mit einem Wasserstoff enthaltenden Brennstoff, einem so genannten Synthesegas, für eine verbesserte Durchmischung mit der Brennerluftdrallströmung sowie für stabilere Strömungsverhältnisse innerhalb des Brenners zu sorgen.Based on this prior art, the object of the present invention is a method for operating a premix burner and also specify a premix burner itself, in which the above disadvantages should be avoided. Furthermore, when operating with a fuel containing hydrogen, a so-called synthesis gas, it is necessary to ensure improved mixing with the burner air swirl flow as well as more stable flow conditions within the burner.
Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Gegenstand des Anspruches 7 ist eine lösungsgemäss ausgebildete Vorrichtung. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen. Sämtliche Ansprüche sind Bestandteil der weiteren Beschreibung.The solution of the problem underlying the invention is specified in
Die dem lösungsgemässen Verfahrensprinzip zum Betrieb eines Vormischbrenners zugrunde liegende Idee macht sich sowohl die Eigenschaften des den Wasserstoff enthaltenden Brennstoffes als auch die Charakteristika des vorstehend bezeichneten Vormischbrenners zur eigenen, um das erklärte Ziel zu realisieren, nämlich das Erreichen möglichst geringer Emissionswerte ohne das Auftreten von Flammenrückzündungsereignissen und dies bei nur geringen oder gegebenenfalls vernachlässigbaren Brennerinstabilitäten.The idea underlying the method according to the invention for operating a premix burner makes both the properties of the fuel containing hydrogen and the characteristics of the premix burner described above its own in order to achieve the stated goal of achieving the lowest possible emission values without the occurrence of flame re-ignition events and this with only minor or possibly negligible burner instabilities.
So werden der geringe volumenspezifischen Wärmeheizwert und der dadurch erforderliche größere Volumenstrom sowie die geringe Dichte des Wasserstoff enthaltenden Synthesegases vorteilhaft insofern genutzt, indem einerseits der grosse Synthesegas-Volumenstrom zur gezielten Anhebung der Strömungsgeschwindigkeit im brennerwandnahen Strömungsbereiche, um das Flammenrückzündrisiko stromab des Übergangsabschnittes zu reduzieren. Zum anderen trägt die nur geringe Brennstoffdichte des Synthesegases zu einer verbesserten Durchmischung mit der der Drallströmung der Verbrennungsluft bei, indem Zentrifugalkräfte innerhalb der Drallströmung genutzt werden, um eine radiale Durchmischung des Synthesegases mit der Verbrennungsluft zu ermöglichen. Wird Synthesegas in radial aussen liegende Bereichen der Drallströmung zugeführt, so erfolgt aufgrund der schwereren Luftanteile, die durch die innerhalb der Drallströmung wirkenden Zentrifugalkräfte radial nach aussen getrieben werden, eine Verdrängung des leichteren Synthesegases in achsnahe Bereiche relativ zur Brennerachse.Thus, the low volume-specific Wärmeheizwert and thereby required larger volume flow and the low density of the synthesis gas containing hydrogen are advantageously used insofar as on the one hand the large synthesis gas volume flow for selectively raising the flow velocity in the burner wall near flow areas to reduce the Flammenrückzündrisiko downstream of the transition section. On the other hand, the only low fuel density of the synthesis gas contributes to an improved mixing with the swirling flow of the combustion air, by centrifugal forces are used within the swirl flow to allow a radial mixing of the synthesis gas with the combustion air. Synthesis gas is fed into radially outward areas of the swirl flow, it is due to the heavier Air components, which are driven radially outward by the centrifugal forces acting within the swirl flow, a displacement of the lighter synthesis gas in the vicinity of the axis relative to the burner axis.
Auf Basis der vorstehenden Überlegungen zeichnet sich ein lösungsgemässes Verfahren zur Verbrennung von Wasserstoff enthaltenden oder aus Wasserstoff bestehenden gasförmigen Brennstoff, kurz Synthesegas, mit einem Brenner gemäss dem Oberbegriff des Anspruches 1 dadurch aus, dass das Synthesegas innerhalb des Bereiches des Übergangsabschnittes in die Brennstoff-Luft-Drallströmung eingespeist wird.On the basis of the above considerations, a solution according to the method for combustion of hydrogen-containing or hydrogen-based gaseous fuel, short synthesis gas, with a burner according to the preamble of
Der Übergangsabschnitt zwischen dem Bereich des Drallerzeugers und dem sich stromab anschliessenden Mischrohrs dient in erster Linie einer weitgehend verlustfreien Überführung der sich innerhalb des Drallerzeugers in Brennerlängsachse konisch aufweitenden Drallströmung in eine längs des Mischrohrs mit gleich bleibendem Strömungsquerschnitt ausbreitenden, zylinderförmigen Drallströmung. Die Überführung der Strömungsform in eine zylinderförmige Drallströmung erfolgt mittels längs des Übergangsabschnittes vorgesehenen Strömungsleitblechen bzw. Strömungsleitkonturen. Trotz aller Massnahmen für eine möglichst verlustfreie Strömungsüberführung, trägt insbesondere der Übergangsabschnitt massgeblich dazu bei, dass die Strömungsgeschwindigkeit in Wand nahen Bereichen längs des Mischrohrs verglichen zur Strömungsgeschwindigkeit im Bereich der Brenner- bzw. Mischrohrachse viel geringer ist. Lösungsgemäss wird daher vorgeschlagen, am Ort, der ursächlich für eine Strömungsgeschwindigkeitsreduzierung längs der Brenner- bzw. Mischrohrwand ist, Massnahmen zu treffen, um die Strömungsgeschwindigkeit in diesem Bereich zu erhöhen. Wie vorstehend ausgeführt, eignet sich Synthesegas aufgrund seiner ihm zu eigenen hohen Volumenflussrate besonders gut, wandnahe Strömungsbereiche gezielt im Strömungsverhalten zu beschleunigen. Die gezielte Einspeisung des Wasserstoff enthaltenden Synthesegases längs des Übergangsabschnittes erfolgt lösungsgemäss derart, dass die zusätzliche Brennstoffeinspeisung in Richtung der ohnehin den Übergangsabschnitt passierenden Drallströmung beigemischt wird, d.h. das Synthesegas wird mit einer zur im Inneren des Brenners sich ausbildenden Drallströmung passend gewählten tangentialen sowie auch radialen Strömungskomponente relativ zur Brennerlängsachse eingespeist. Hierbei gilt es, die Brennstoffeinspeisung derart vorzunehmen, dass eine Strömungsirritation der sich bereits innerhalb des Brenners ausgebildeten Brennstoff-Luft-Drallströmung minimal ist. So wird die Brennstoffeindüsung auf lokale Strömungswinkel angepasst, um das Flammenrückschlagrisiko aufgrund erhöhter Turbulenz zu vermeiden. Zu Zwecken einer verbesserten Durchmischung ist es zudem vorteilhaft, die Synthesegaseinspeisung längs des Übergangsabschnittes mit einer RadialKomponente vorzunehmen, d.h. mit einer Winkelkomponente quer zur anliegenden Strömungsrichtung der Drallströmung, so dass das eingespeiste Synthesegas möglichst effektiv mit der Brennstoff-Luft-Drallströmung durchmischt wird. Jedoch würde andererseits eine zu stark ausgeprägte Radialkomponente, d.h. ein zu groß gewählter Winkel zwischen Brennerachse und Synthesegaseinspeiserichtung, das strömungsdynamische Ausbreitungsverhalten der Drallströmung zu stark beeinträchtigen, wodurch sich lokale, bevorzugt wandnahe Strömungswirbel ausbilden und das Flammenrückschlagrisiko erhöht wird. Es zeigt sich, dass die Synthesegaseinspeisung mit einem Kompromiss zwischen einer effektiven Beschleunigung wandnaher Strömungsbereiche zum Zwecke der Reduzierung des Flammenrückschlagrisikos und einer möglichst guten Durchmischung mit der Drallströmung vorgenommen werden muss.The transition section between the region of the swirl generator and the downstream mixing tube serves primarily to transfer the swirl flow which widens conically within the swirl generator into the longitudinal axis of the burner into a cylindrical swirl flow which propagates along the mixing tube with a constant flow cross section. The transfer of the flow form into a cylindrical swirl flow takes place by means of flow guide plates or flow guidance contours provided along the transition section. Despite all measures for lossless as possible flow transfer, especially the transition section contributes significantly to the fact that the flow velocity in the wall near areas along the mixing tube compared to the flow velocity in the field of burner or Mischrohrachse is much lower. According to the solution, it is therefore proposed to take measures at the location which is the cause of a flow velocity reduction along the burner or mixing tube wall in order to increase the flow velocity in this area. As stated above, synthesis gas, due to its own high volume flow rate, is particularly suitable for accelerating wall-oriented flow areas in a targeted way in terms of flow behavior. The targeted feeding of the hydrogen-containing synthesis gas along the transition section is carried out in accordance with the solution such that the additional fuel feed in the direction of the transition section anyway passing swirling flow is admixed, ie the synthesis gas is fed with a suitable for forming inside the burner swirl flow tangentially selected as well as radial flow component relative to the burner longitudinal axis. In this case, it is necessary to carry out the fuel feed in such a way that a flow irritation of the fuel-air swirl flow already formed within the burner is minimal. Thus, the fuel injection is adjusted to local flow angles to avoid the flashback risk due to increased turbulence. For purposes of improved mixing, it is also advantageous to carry out the synthesis gas feed along the transition section with a radial component, ie with an angular component transverse to the adjacent flow direction of the swirl flow, so that the injected synthesis gas is mixed as effectively as possible with the fuel-air swirl flow. However, on the other hand, an excessively pronounced radial component, ie, an excessively large angle between burner axis and synthesis gas feed direction, would affect the flow dynamic propagation behavior of the swirl flow too much, forming local, preferably wall-near flow vortices and increasing the risk of flashback. It turns out that the synthesis gas feed must be made with a compromise between an effective acceleration near-wall flow areas for the purpose of reducing the Flammenrückschlagrisikos and the best possible mixing with the swirl flow.
Auch aus einem weiteren Grund eignet sich der Übergangsabschnitt für die Eindüsung eines zusätzlichen Synthesegasstromes, zumal der Übergangsabschnitt von einem mit einer ausreichend grossen Wanddicke ausgebildeten Übergangsstück begrenzt ist, durch das eine Vielzahl einzelner Austrittsöffnungen für die Synthesegaszuführung vorgesehen werden kann. Die Ausbildung der Austrittsöffnungen sowie die einzelnen mit den Austrittsöffnungen verbundenen Synthesegaszuführungskanäle kann nach Form und Lage ohne jegliche konstruktive Einschränkungen nahezu beliebig vorgenommen werden, zumal das Übergangsstück ausreichend Platz für diese Massnahmen bietet.Also, for a further reason, the transition section is suitable for the injection of an additional synthesis gas stream, especially as the transition section is bounded by a transition piece formed with a sufficiently large wall thickness, through which a plurality of individual outlet openings for the synthesis gas supply can be provided. The formation of the outlet openings as well as the individual synthesis gas supply channels connected to the outlet openings can be made almost anywhere according to shape and location without any design restrictions, especially as the transition piece offers sufficient space for these measures.
Auch ist es möglich, durch bereits längs des Übergangsabschnittes verteilt angeordnete, so genannte Filmlöcher, durch die üblicherweise Luft eingespeist wird, die sich als Luftfilm längs der Brenner- bzw. Mischrohrwand anschmiegt, zur Einspeisung von Synthesegas zu verwenden. Auf diese Weise ist es möglich, eine andauernde Spüllufteinspeisung auch im Betrieb des Brenners mit Erdgas oder Erdöl zu vermeiden.It is also possible, by means of so-called film holes already distributed along the transition section, through which air is usually fed, which conforms as an air film along the burner or mixing tube wall, to be used for feeding synthesis gas. In this way it is possible to avoid a continuous scavenging air feed even during operation of the burner with natural gas or oil.
Je nach konstruktiver Auslegung der innerhalb des Übergangsabschnittes vorhandenen Austrittsöffnungen, durch die Synthesegas ausgetragen wird, ist es zudem möglich, Synthesegasströmungen mit einem kreisrunden, elliptischen, ringförmigen, nahezu rechteckigen oder nahezu dreieckigen Strömungsquerschnitt auszubilden, der für eine verbesserte Durchmischung mit der innerhalb des Brenners vorhandenen Brennstoff-Luft-Drallströmung beiträgt.Depending on the structural design of the existing within the transition section outlet openings is discharged through the synthesis gas, it is also possible to form synthesis gas flows with a circular, elliptical, annular, almost rectangular or almost triangular flow cross-section, which exist for improved mixing with the inside of the burner Fuel-air swirl flow contributes.
Bezüglich der lösungsgemäss ausgebildeten Vorrichtung zur Verbrennung von Wasserstoff enthaltenden oder aus Wasserstoff bestehenden gasförmigen Brennstoff mit einem Brenner, gemäss dem Oberbegriff des Anspruches 9, wird insbesondere auf die nachstehenden Ausführungen zur Erläuterung der Ausführungsbeispiele verwiesen. Ein derartig lösungsgemäss ausgebildeter Brenner weist längs des Übergangsabschnittes Mittel zur Einspeisung des zumindest den Wasserstoff enthaltenden Synthesegases auf.With regard to the apparatus according to the invention for the combustion of hydrogen-containing or hydrogen-containing gaseous fuel with a burner, according to the preamble of
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:
- Fig. 1
- Längsschnittdarstellung durch einen lösungsgemäss ausgebildeten Vormischbrenner,
- Fig. 2a, b
- Längsschnittdarstellungen durch einen Vormischbrenner nach Stand der Technik,
- Fig. 3
- Querschnittsdarstellung durch den Übergangsabschnitt eines lösungsgemäss ausgebildeten Brenners, und
- Fig. 4
- Längsschnitt eines weiteren Ausführungsbeispiels durch einen lösungsgemäss ausgebildeten Brenner.
- Fig. 1
- Longitudinal view through a solution according trained premix burner,
- Fig. 2a, b
- Longitudinal views through a Vormischbrenner according to the prior art,
- Fig. 3
- Cross-sectional view through the transition section of a solution according trained burner, and
- Fig. 4
- Longitudinal section of a further embodiment by a burner according to the invention.
In
Die zusätzliche Brennstoffeinspeisung im Bereich des Übergangsabschnittes 6 erfolgt entweder über zirkular gleichmässig verteilt angeordnete einzelne Austrittsöffnungen, die allesamt über eine gemeinsame Versorgungsleitung 10 mit Synthesegas BH2 versorgt werden. Die Brennstoffleitung 10 mündet in ein den Übergangsabschnitt 6 zirkular umgebendes Brennstoffreservoir 11, von dem aus die einzelnen Austrittsöffnungen 9' des Brennstoffeinspeisungsmittels 9 mit Brennstoff versorgt werden.The additional fuel feed in the region of the
Die Einspeisung des Synthesegases BH2 erfolgt dabei derart, dass die wandnahen Bereiche, insbesondere des sich stromab des Übergangsabschnittes 6 anschliessenden Mischrohrs 8 hinsichtlich ihres Strömungsverhalten beschleunigt werden, um das Flammenrückschlagrisiko zu reduzieren. Gleichsam gilt es jedoch, die Brennstoffeinspeisung mit nur geringer Beeinträchtigungen der sich innerhalb des Drallerzeugers 1 ausbildenden Drallströmung vorzunehmen.The feeding of the synthesis gas B H2 takes place in such a way that the regions near the wall, in particular of the mixing
Aus der in
Neben der mit einer Radialkomponente vorgenommenen Synthesegaseinspeisung, wie vorstehend beschrieben wird, das Synthesegas zusätzlich auch mit einer zur Drallströmung tangentialen Komponente eingespeist, um die Drallströmung möglichst wenig zu irritieren. Zur bessren Verdeutlichung der tangentialen Einspeisung des den Wasserstoff enthaltenden Synthesegases in peripherer Umfangsrichtung der sich innerhalb des Brenners ausbildenden Brennstoff-Luft-Drallströmung sei auf
In einer weiteren Längsschnittdarstellung gemäss
Das lösungsgemässe Brennerkonzept hilft somit die Flammenrückschlaggefahr erheblich zu reduzieren, dies zum einen durch eine längs des Mischrohrs wandnahe Strömungsgeschwindigkeitserhöhung, zum anderen durch eine individuelle Anpassung der Einspeisung zusätzlichen Brennstoffes, d.h. Wasserstoff enthaltenden Brennstoffes in Bezug auf die bereits innerhalb des Drallerzeugers sich ausbildenden Drallströmung, wodurch turbulente Wirbelbildungen weitgehend vermieden bzw. reduziert werden können. Aufgrund des weitaus geringeren spezifischen Gewichtes des eingespeisten Wasserstoff enthaltenden Synthesegases im Vergleich zum weitaus größeren Luftanteil der sich innerhalb des Brenners ausbildenden Drallströmung bewirkt die, durch die Rotationsbewegung auftretende Zentrifugalkraft, eine radiale Durchmischung des im peripheren Randbereich eingespeisten Synthesegases derart, dass vor Eintritt der Luft-Brennstoff-Drallströmung in die Brennkammer eine vollständige Durchmischung des eingespeisten Wasserstoffs erreicht wird. Aufgrund des innerhalb des Übergangsabschnittes vorhandenen Platzes ist es überdies möglich, die Massnahme zur Brennstoffeinspeisung in robuster Bauform und hoher Integrität vorzunehmen. So können die Brennstoffzuführleitungen sowie Austrittsöffnungen in Abhängigkeit des gewählten Wasserstoff-aufweisenden Brennstoffes, individuell gestaltet und dimensioniert werden. Bereits vorhandene Spülluft-Zuführöffnungen zur Ausbildung wandnaher Filmschichten können gleichfalls zur Einspeisung von Wasserstoff enthaltenden Synthesegas genutzt werden. Durch die zusätzliche Einspeisung von Synthesegas erst im Bereich des Übergangsabschnittes 6 ist die mittlere Verweilzeit des Wasserstoffs im Vergleich zu einer Einspeisung längs des Drallerzeugers weitaus geringer, so dass der Brennerbetrieb entsprechend sicherer durchgeführt werden kann.The solution according to the burner concept thus helps to reduce the risk of flashback significantly, on the one hand by a longitudinal wall of the mixing tube flow rate increase, on the other hand by an individual adjustment of the feed additional fuel, ie hydrogen-containing fuel with respect to the already forming within the swirl generator swirl flow, thus turbulent vortex formation can be largely avoided or reduced. Due to the much lower specific weight of the injected hydrogen-containing synthesis gas in comparison to the much larger proportion of air forming within the burner swirl flow causes the centrifugal force occurring due to the rotational movement, a radial mixing of the fed in the peripheral edge of the synthesis gas such that before the air Fuel swirl flow into the combustion chamber a complete mixing of the injected hydrogen is achieved. Due to the existing space within the transition section, it is also possible to carry out the measure for fuel supply in a robust design and high integrity. So The fuel supply lines and outlet openings can be designed and dimensioned as a function of the selected hydrogen-containing fuel. Existing scavenging air supply openings for the formation of film layers close to the wall can likewise be used to feed hydrogen-containing synthesis gas. Due to the additional feed of synthesis gas only in the region of the
- 11
- Drallerzeugerswirl generator
- 22
- Drallschalen, TeilkegelschalenSwirl shells, partial cone shells
- 33
- Brennstoffdüsefuel nozzle
- 44
- LufteintrittsschlitzeAir inlet slots
- 55
- Mittel zur Einspeisung von SynthesegasMeans for feeding synthesis gas
- 66
- ÜbergangsabschnittTransition section
- 77
- Strömungsleitmittelflow guide
- 88th
- Mischrohrmixing tube
- 99
- Mittel zur Einspeisung eines Wasserstoff enthaltenden BrennstoffesMeans for feeding a fuel containing hydrogen
- 9'9 '
- Austrittsöffnungoutlet opening
- 1010
- Versorgungsleitungsupply line
- 1111
- Brennstoffreservoirfuel reservoir
- 1212
- Zuführleitungensupply lines
- 1313
- Leitungen für Reinigungsluft bzw. SpülgasPipes for cleaning air or purge gas
- AA
- BrennerachseBrenner
- BB
- Brennkammercombustion chamber
- DD
- Drallströmungswirl flow
- RBRB
- Rückströmblase, RückströmzoneBackflow bubble, backflow zone
- BH2BH2
- Synthesegassynthesis gas
- BflBfl
- Flüssigbrennstoffliquid fuel
- Bgbg
- Gasförmiger BrennstoffGaseous fuel
- LL
- Verbrennungsluftcombustion air
Claims (10)
- Method for operating a burner, which burner consists essentially of a swirl generator (1) which forms a swirl flow of the combustion air stream, this swirl generator (1) being followed downstream by a mixing zone in which, within a first transitional portion (6), flow guide means (7) act which run in the flow direction and which take over the transfer of the swirl flow formed in the swirl generator (1) into the mixing pipe (8) acting downstream of the flow guide means (7), means for injecting a liquid and/or gaseous fuel into the combustion air stream being present in the swirl generator (1), and the fuel/air mixture thus obtained being ignited and burnt in a combustion chamber following the mixing zone downstream, at the same time forming a backflow zone (RB), wherein a fuel (BH2) containing hydrogen or consisting of hydrogen is introduced within the flow guide means (7) and/or downstream of these flow guide means (7) into the upstream flow of the fuel/air mixture, characterized in that the infeed of the gaseous fuel containing hydrogen or consisting of hydrogen is carried out in such a way that a flow disturbance of the fuel/air swirl flow (D) is minimized, wherein the infeed of the fuel takes place with a tangential component oriented in the swirl direction of the fuel/air swirl flow (D) and with a radial component oriented longitudinally with respect to a burner axis (A).
- Method according to Claim 1, characterized in that the fuel containing hydrogen or consisting of hydrogen is fed in in the form of a multiplicity of individual fuel flows in a circular distribution around the rotating fuel/air swirl flow (D).
- Method according to Claim 2, characterized in that, directly upstream of the infeed of the fuel containing hydrogen or consisting of hydrogen, cleaning air is discharged at least intermittently via the outlet orifices (9') for the fuel.
- Method according to one of Claims 1 to 3, characterized in that the fuel flow has a circular, elliptic, annular, virtually rectangular or virtually triangular flow cross section.
- Method according to one of Claims 1 to 4, characterized in that the fuel containing hydrogen or consisting of hydrogen is fed into the region of the transitional portion (6) with a flow pulse which largely is adapted to or corresponds to the flow pulse of the rotating fuel/air swirl flow (D) propagating along the transitional portion (6).
- Method according to one of Claims 1 to 5, characterized in that the fuel containing hydrogen or consisting of hydrogen is partially oxidized catalytically before entering into the swirl generator (1).
- Burner for carrying out a method which is based on a premixing of a liquid and/or gaseous fuel and in which at least one additional fuel is admixed at a suitable point, the burner consisting essentially of a swirl generator (1) for forming a combustion air stream, there being arranged downstream of this swirl generator (1) a mixing zone in which, within a first transitional portion (6), flow guide means (7) are present which run in the flow direction and which serve for transferring the swirl flow formed in the swirl generator (1) into the mixing pipe (8) acting downstream of the flow guide means (7), means for injecting a liquid and/or gaseous fuel into the combustion air stream being provided in the swirl generator (1), and the fuel/air mixture thus obtained being ignited and burnt in a combustion chamber (B) following the mixing zone downstream, at the same time forming a backflow zone (RB), and wherein a third means (9) for the infeed of a fuel containing hydrogen or consisting of hydrogen is provided within the flow guide means (7) and/or downstream of these flow guide means (7), and the fuel can be supplied in radially outer regions of the swirl flow, characterized in that the third means (9) provides a multiplicity of individual outlet orifices (9') which are circularly formed, equally distributed, in the transitional portion (6) and out of which the fuel containing hydrogen or consisting of hydrogen can be discharged and the outlet orifices (9') are designed and arranged along the transitional portion (6) in such a way that the fuel can be discharged with a tangential and a radial component in relation to the burner axis (A).
- Burner according to Claim 7, characterized in that the swirl generator (1) consists of at least two hollow part conical shells nested one in the other in the flow direction and completing one another to form a body, in that the cross section of the inner space formed by the hollow part conical shells increases in the flow direction, and in that the respective longitudinal axes of symmetry of these part conical shells run, offset to one another, in such a way that the adjacent walls of the part conical shells form in their longitudinal extent tangential slots or ducts for the flow of a combustion air into the inner space formed by the part conical shells.
- Burner according to Claim 7, characterized in that the swirl generator consists of at least two hollow part shells nested one in the other in the flow direction and completing one another to form a body, in that the cross section of the inner space formed by the hollow part shells runs cylindrically or quasi-cylindrically in the flow direction, in that the respective longitudinal axes of symmetry of these part shells run, offset to one another, in such a way that the adjacent walls of the part shells form in their longitudinal extent tangential slots or ducts for the flow of a combustion air into the inner space formed by the part shells, and in that the inner space has an inner body, the cross section of which decreases in the flow direction.
- Burner according to Claim 9, characterized in that the inner body runs conically or quasi-conically in the flow direction.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH17382007 | 2007-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2058590A1 EP2058590A1 (en) | 2009-05-13 |
EP2058590B1 true EP2058590B1 (en) | 2016-03-23 |
Family
ID=39327088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08168235.3A Not-in-force EP2058590B1 (en) | 2007-11-09 | 2008-11-04 | Method for operating a burner |
Country Status (3)
Country | Link |
---|---|
US (1) | US9103547B2 (en) |
EP (1) | EP2058590B1 (en) |
JP (1) | JP5594951B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2220433B1 (en) * | 2007-11-27 | 2013-09-04 | Alstom Technology Ltd | Method and device for burning hydrogen in a premix burner |
JP5473934B2 (en) * | 2007-11-27 | 2014-04-16 | アルストム テクノロジー リミテッド | Apparatus and method for operating gas turbine equipment using second hydrogen-rich fuel |
CN101959833B (en) * | 2008-03-05 | 2013-08-21 | 巴斯夫欧洲公司 | Method and device for thermal partial oxidation of hydrocarbons |
JP2010230257A (en) * | 2009-03-27 | 2010-10-14 | Dainichi Co Ltd | Combustion apparatus |
CH701905A1 (en) | 2009-09-17 | 2011-03-31 | Alstom Technology Ltd | Method of burning hydrogen-rich, gaseous fuels in a burner and burner for carrying out the method. |
EP2299178B1 (en) * | 2009-09-17 | 2015-11-04 | Alstom Technology Ltd | A method and gas turbine combustion system for safely mixing H2-rich fuels with air |
CN104302976B (en) * | 2013-05-09 | 2017-05-17 | 施政 | System And Method For Small-Scale Combustion Of Pulverized Solid Fuels |
JP6395363B2 (en) * | 2013-10-11 | 2018-09-26 | 川崎重工業株式会社 | Gas turbine fuel injection device |
US9052109B1 (en) * | 2014-12-12 | 2015-06-09 | Infinitus Renewable Energy, LLC | Pyrolytic gas processor and tire conversion system therefrom |
US11020758B2 (en) * | 2016-07-21 | 2021-06-01 | University Of Louisiana At Lafayette | Device and method for fuel injection using swirl burst injector |
EP3290804A1 (en) * | 2016-08-31 | 2018-03-07 | Siemens Aktiengesellschaft | A burner with fuel and air supply incorporated in a wall of the burner |
JP6934359B2 (en) * | 2017-08-21 | 2021-09-15 | 三菱パワー株式会社 | Combustor and gas turbine with the combustor |
US11555612B2 (en) * | 2017-11-29 | 2023-01-17 | Babcock Power Services, Inc. | Dual fuel direct ignition burners |
US10907832B2 (en) | 2018-06-08 | 2021-02-02 | General Electric Company | Pilot nozzle tips for extended lance of combustor burner |
GB2585025A (en) * | 2019-06-25 | 2020-12-30 | Siemens Ag | Combustor for a gas turbine |
CN114074020B (en) * | 2020-08-21 | 2024-02-02 | 北京国电智深控制技术有限公司 | Control method, device and system for coal mill in thermal power generation system |
DE102021210662A1 (en) * | 2021-09-24 | 2023-03-30 | Benninghoven Zweigniederlassung Der Wirtgen Mineral Technologies Gmbh | Device and method for drying material and asphalt mixing plant with such a device |
US11815269B2 (en) | 2021-12-29 | 2023-11-14 | General Electric Company | Fuel-air mixing assembly in a turbine engine |
US11747018B2 (en) | 2022-01-05 | 2023-09-05 | General Electric Company | Combustor with dilution openings |
CN114110582B (en) * | 2022-01-25 | 2022-04-19 | 烟台市大昌燃气器具有限责任公司 | Combustion-supporting combustor |
KR102607177B1 (en) * | 2022-01-28 | 2023-11-29 | 두산에너빌리티 주식회사 | Nozzle for combustor, combustor, and gas turbine including the same |
US12018839B2 (en) | 2022-10-20 | 2024-06-25 | General Electric Company | Gas turbine engine combustor with dilution passages |
KR102599129B1 (en) | 2022-11-25 | 2023-11-07 | 순천대학교 산학협력단 | Hydrogen Boiler for Flashback Prevention using Partial Premixed Flow Line |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US738537A (en) * | 1903-03-11 | 1903-09-08 | Emmer F Gwynn | Fuel-burner. |
US1801431A (en) * | 1927-01-21 | 1931-04-21 | Foster Wheeler Corp | Method and apparatus for burning fuel |
US1910735A (en) * | 1927-02-14 | 1933-05-23 | Buttnerwerke A G | Burner for coal dust firing |
US2647568A (en) * | 1951-03-30 | 1953-08-04 | Peabody Engineering Corp | Burner throat |
US3973395A (en) * | 1974-12-18 | 1976-08-10 | United Technologies Corporation | Low emission combustion chamber |
US4175920A (en) * | 1975-07-31 | 1979-11-27 | Exxon Research & Engineering Co. | Multiple fuel supply system for staged air burners |
US4095929A (en) * | 1977-03-14 | 1978-06-20 | Combustion Engineering, Inc. | Low BTU gas horizontal burner |
US4561841A (en) * | 1980-11-21 | 1985-12-31 | Donald Korenyi | Combustion apparatus |
SE442242B (en) * | 1983-03-02 | 1985-12-09 | Stal Laval Turbin Ab | PROCEDURAL KIT FOR CLEANING HALF OPENINGS AND / OR NOISTS IN HOT WATER OR STEAM BOILS WITH TWO OR MORE FLUIDIZED BEDS |
US4859173A (en) * | 1987-09-28 | 1989-08-22 | Exxon Research And Engineering Company | Low BTU gas staged air burner for forced-draft service |
CH674561A5 (en) | 1987-12-21 | 1990-06-15 | Bbc Brown Boveri & Cie | |
US5307634A (en) * | 1992-02-26 | 1994-05-03 | United Technologies Corporation | Premix gas nozzle |
EP0592717B1 (en) * | 1992-10-16 | 1998-02-25 | Asea Brown Boveri Ag | Gas-operated premix burner |
DE4304213A1 (en) * | 1993-02-12 | 1994-08-18 | Abb Research Ltd | Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system |
DE4316474A1 (en) * | 1993-05-17 | 1994-11-24 | Abb Management Ag | Premix burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system |
DE4409918A1 (en) * | 1994-03-23 | 1995-09-28 | Abb Management Ag | Low calorific value fuel burner for combustion chamber |
DE4416650A1 (en) * | 1994-05-11 | 1995-11-16 | Abb Management Ag | Combustion process for atmospheric combustion plants |
AU681271B2 (en) * | 1994-06-07 | 1997-08-21 | Westinghouse Electric Corporation | Method and apparatus for sequentially staged combustion using a catalyst |
DE4426351B4 (en) * | 1994-07-25 | 2006-04-06 | Alstom | Combustion chamber for a gas turbine |
DE4435266A1 (en) * | 1994-10-01 | 1996-04-04 | Abb Management Ag | burner |
DE4441235A1 (en) * | 1994-11-19 | 1996-05-23 | Abb Management Ag | Combustion chamber with multi-stage combustion |
DE4446842B4 (en) * | 1994-12-27 | 2006-08-10 | Alstom | Method and device for feeding a gaseous fuel into a premix burner |
DE19545309A1 (en) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Premix burner |
DE19547913A1 (en) * | 1995-12-21 | 1997-06-26 | Abb Research Ltd | Burners for a heat generator |
DE19608349A1 (en) * | 1996-03-05 | 1997-09-11 | Abb Research Ltd | Pressure atomizer nozzle |
DE19640198A1 (en) * | 1996-09-30 | 1998-04-02 | Abb Research Ltd | Premix burner |
DE19654022A1 (en) * | 1996-12-21 | 1998-06-25 | Abb Research Ltd | Process for operating a gas turbine group |
DE19757189B4 (en) * | 1997-12-22 | 2008-05-08 | Alstom | Method for operating a burner of a heat generator |
DE19839085C2 (en) | 1998-08-27 | 2000-06-08 | Siemens Ag | Burner arrangement with primary and secondary pilot burner |
DE59810284D1 (en) * | 1998-10-14 | 2004-01-08 | Alstom Switzerland Ltd | Burner for operating a heat generator |
DE19855034A1 (en) * | 1998-11-28 | 2000-05-31 | Abb Patent Gmbh | Method for charging burner for gas turbines with pilot gas involves supplying pilot gas at end of burner cone in two different flow directions through pilot gas pipes set outside of burner wall |
DE59909531D1 (en) | 1999-07-22 | 2004-06-24 | Alstom Technology Ltd Baden | premix |
DE59907942D1 (en) * | 1999-07-22 | 2004-01-15 | Alstom Switzerland Ltd | premix |
DE10026122A1 (en) * | 2000-05-26 | 2001-11-29 | Abb Alstom Power Nv | Burner for heat generator has shaping element with inner surface curving away from or towards burner axis; flow from mixing tube contacts inner surface and its spin rate increases |
DE10056124A1 (en) * | 2000-11-13 | 2002-05-23 | Alstom Switzerland Ltd | Burner system with staged fuel injection and method of operation |
DE10061526A1 (en) * | 2000-12-11 | 2002-06-20 | Alstom Switzerland Ltd | Premix burner arrangement for operating a combustion chamber |
DE10104151A1 (en) * | 2001-01-30 | 2002-09-05 | Alstom Switzerland Ltd | Process for manufacturing a burner system |
DE10104695B4 (en) * | 2001-02-02 | 2014-11-20 | Alstom Technology Ltd. | Premix burner for a gas turbine |
JP2005528571A (en) * | 2001-10-19 | 2005-09-22 | アルストム テクノロジー リミテッド | Burner for synthesis gas |
DE10164099A1 (en) * | 2001-12-24 | 2003-07-03 | Alstom Switzerland Ltd | Burner with staged fuel injection |
EP1389713A1 (en) * | 2002-08-12 | 2004-02-18 | ALSTOM (Switzerland) Ltd | Premixed exit ring pilot burner |
DE102004011150A1 (en) * | 2003-03-07 | 2004-09-16 | Alstom Technology Ltd | Burn control for gas turbine engine has a double walled porous element with a sonic impedance to reduce sonic resonance |
EP1510755B1 (en) * | 2003-09-01 | 2016-09-28 | General Electric Technology GmbH | Burner with lance and staged fuel supply. |
WO2005121648A1 (en) * | 2004-06-08 | 2005-12-22 | Alstom Technology Ltd | Premix burner comprising a stepped liquid fuel supply system, and method for operating a premix burner |
WO2006058843A1 (en) | 2004-11-30 | 2006-06-08 | Alstom Technology Ltd | Method and device for burning hydrogen in a premix burner |
WO2006069861A1 (en) | 2004-12-23 | 2006-07-06 | Alstom Technology Ltd | Premix burner comprising a mixing section |
EP2225488B1 (en) * | 2007-11-27 | 2013-07-17 | Alstom Technology Ltd | Premix burner for a gas turbine |
-
2008
- 2008-11-04 EP EP08168235.3A patent/EP2058590B1/en not_active Not-in-force
- 2008-11-06 US US12/266,407 patent/US9103547B2/en not_active Expired - Fee Related
- 2008-11-07 JP JP2008286623A patent/JP5594951B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP5594951B2 (en) | 2014-09-24 |
US9103547B2 (en) | 2015-08-11 |
JP2009121806A (en) | 2009-06-04 |
EP2058590A1 (en) | 2009-05-13 |
US20090123882A1 (en) | 2009-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2058590B1 (en) | Method for operating a burner | |
EP1817526B1 (en) | Method and device for burning hydrogen in a premix burner | |
EP2116766B1 (en) | Burner with fuel lance | |
EP2220433B1 (en) | Method and device for burning hydrogen in a premix burner | |
EP0580683B1 (en) | Burner arrangement, especially for gas turbines, for the low-pollutant combustion of coal gas and other fuels | |
EP0675322B1 (en) | Premix burner | |
EP0710797B1 (en) | Method and device for operating a premix burner | |
DE60007946T2 (en) | A combustion chamber | |
EP1802915B1 (en) | Gas turbine burner | |
EP1828684A1 (en) | Premix burner comprising a mixing section | |
EP1504222B1 (en) | Premix burner | |
DE112004002704B4 (en) | incinerator | |
EP0592717A1 (en) | Gas-operated premix burner | |
EP0902233A1 (en) | Combined pressurised atomising nozzle | |
DE4446945A1 (en) | Gas powered premix burner | |
DE602004005572T2 (en) | MIXER | |
EP1356236A1 (en) | Premix burner and method for operating such a premix burner | |
EP1754003B1 (en) | Premix burner with a staged liquid fuel supply system | |
CH679692A5 (en) | ||
EP0908671A1 (en) | Combustion process for gaseous, liquid fuels and fuels having medium or low calorific value in a burner | |
EP0276397A1 (en) | Gas turbine combustor | |
EP0911582B1 (en) | Method for operating a premix burner and premix burner | |
DE4445279A1 (en) | Injector | |
EP1754937A2 (en) | Burner head and method of combusting fuel | |
EP0730121A2 (en) | Premix burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20091110 |
|
17Q | First examination report despatched |
Effective date: 20091203 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 783530 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008013966 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160624 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160623 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160725 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008013966 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160623 |
|
26N | No opposition filed |
Effective date: 20170102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502008013966 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 502008013966 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R082 Ref document number: 502008013966 Country of ref document: DE Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008013966 Country of ref document: DE Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008013966 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20171102 AND 20171108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161104 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 783530 Country of ref document: AT Kind code of ref document: T Effective date: 20161104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171121 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171123 Year of fee payment: 10 Ref country code: IT Payment date: 20171124 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008013966 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181104 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181104 |