[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2058590B1 - Method for operating a burner - Google Patents

Method for operating a burner Download PDF

Info

Publication number
EP2058590B1
EP2058590B1 EP08168235.3A EP08168235A EP2058590B1 EP 2058590 B1 EP2058590 B1 EP 2058590B1 EP 08168235 A EP08168235 A EP 08168235A EP 2058590 B1 EP2058590 B1 EP 2058590B1
Authority
EP
European Patent Office
Prior art keywords
fuel
flow
swirl
burner
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08168235.3A
Other languages
German (de)
French (fr)
Other versions
EP2058590A1 (en
Inventor
Adnan Eroglu
Richard Carroni
Stefano Bernero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2058590A1 publication Critical patent/EP2058590A1/en
Application granted granted Critical
Publication of EP2058590B1 publication Critical patent/EP2058590B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the invention relates to a method according to the preamble of claim 1. It also relates to a burner for carrying out this method.
  • a per se known and technically controllable way to reduce the CO 2 emissions in combustion power plants consists in the removal of carbon from the fuels reaching combustion, which are accomplished before they are introduced into the combustion chamber.
  • Such pretreated fuels usually contain a large amount of H 2 and CO, and depending on the mixing ratios have calorific values, which are generally lower than those of natural gas.
  • Mbtu or Lbtu gases which are not readily suitable for use in conventional, designed for the combustion of natural gases such as natural gas burner, such as the EP 0 321 809 B1 .
  • WO 93/17279 as well as the EP 1 070 915 A1 are removable.
  • burners are described of the type of fuel premix, in each of which a conically expanding in the flow direction swirl flow of combustion air and mixed fuel is generated, the downstream as possible after the exit from the burner Achieving a homogeneous air-fuel mixture is unstable by the increasing swirl and merges into an annular swirl flow with backflow in the core.
  • liquid and / or gaseous fuel which forms in the interior of the premix burner, is introduced to form a homogeneous air-fuel mixture.
  • gaseous fuels are to be used as alternatives to or in combination with the combustion of conventional types of fuel for purposes of reduced pollutant, in particular CO 2 emissions, special requirements are imposed on the design of conventional premix burner systems. For example, synthesis gases for feeding into burner systems require a multiple fuel volume flow compared to comparable burners operated with natural gas, so that significantly different flow pulse ratios result.
  • WO 2006/058843 A1 are a method and a burner for the combustion of gaseous, liquid and hydrogen-containing or consisting of hydrogen fuel, synthesis gas, known.
  • a premix burner which has become known as a double-cone burner, with switched-after mixing section according to the EP 0 780 629 A2 used in FIGS. 2a and b is shown schematically in longitudinal section.
  • the premix burner arrangement provides a swirl generator 1, which widens conically in the longitudinal axis of the burner and is delimited by swirl shells 2. Axial and coaxial about the burner axis A of the swirl generator 1 means for supplying fuel are provided.
  • liquid fuel B fl reaches the swirling space through an injection nozzle 3 positioned along the burner axis A at the location of the smallest inner diameter of the swirl generator 1.
  • Longitudinal tangential air inlet slots 4 enters via the combustion air L with tangential flow direction in the swirl space, gaseous fuel B g , preferably natural gas, the combustion air L is added.
  • injection devices 5 are provided (see Fig. 2b ), which serve the further feed of synthesis gas B H2 .
  • the fuel-air mixture forming within the swirl generator 1 passes as swirling flow through a transition section 6, which provides the swirl flow stabilizing fluid 7, into a mixing tube 8, in which a completely homogeneous mixing of the forming fuel-air mixture before the ignitable fuel Air mixture is ignited within a downstream of the mixing tube 8 subsequent combustion chamber B. Due to an unsteady flow cross-sectional enlargement in the transition from the mixing tube 8 into the combustion chamber B, the swirling flow of the mixed fuel-air mixture bursts to form a remindströmzone in the form of a remindblasblase RB, in which adjusts a spatially stable flame front.
  • the airfoil forming along the burner is in Fig. 2a represented, which is characterized by a significant maximum velocity along the burner axis A, the amount of which is usually three to four times higher than those flow rates, which are able to form near the burner wall.
  • the synthesis gas B H2 according to the schematic longitudinal sectional view in Fig. 2b about 60 ° to the burner longitudinal axis A in the swirl chamber of the swirl generator 1.
  • Hydrogen-rich fuels with hydrogen contents of> 50% in particular typically have very high flame speeds and moreover have a much smaller volume-specific heat calorific value (MJ / m 3 ), so that much larger quantities of hydrogen-containing fuel are required for the burner Achieve a desired performance-related combustion heat must be supplied.
  • ignition phenomena already occur in the swirl chamber or along the mixing section of the burner, which are due to inadequate mixing of the hydrogenous fuel fed into the burner with a large volume flow.
  • the object of the present invention is a method for operating a premix burner and also specify a premix burner itself, in which the above disadvantages should be avoided. Furthermore, when operating with a fuel containing hydrogen, a so-called synthesis gas, it is necessary to ensure improved mixing with the burner air swirl flow as well as more stable flow conditions within the burner.
  • claim 7 The solution of the problem underlying the invention is specified in claim 1.
  • the subject matter of claim 7 is a device designed in accordance with the invention.
  • the concept of the invention advantageously further features are the subject of the dependent claims and the further description with reference to the exemplary embodiments. All claims are part of the further description.
  • the low volume-specific istwert and thereby required larger volume flow and the low density of the synthesis gas containing hydrogen are advantageously used insofar as on the one hand the large synthesis gas volume flow for selectively raising the flow velocity in the burner wall near flow areas to reduce the Flammen Wegzündrisiko downstream of the transition section.
  • the only low fuel density of the synthesis gas contributes to an improved mixing with the swirling flow of the combustion air, by centrifugal forces are used within the swirl flow to allow a radial mixing of the synthesis gas with the combustion air.
  • Synthesis gas is fed into radially outward areas of the swirl flow, it is due to the heavier Air components, which are driven radially outward by the centrifugal forces acting within the swirl flow, a displacement of the lighter synthesis gas in the vicinity of the axis relative to the burner axis.
  • the transition section between the region of the swirl generator and the downstream mixing tube serves primarily to transfer the swirl flow which widens conically within the swirl generator into the longitudinal axis of the burner into a cylindrical swirl flow which propagates along the mixing tube with a constant flow cross section.
  • the transfer of the flow form into a cylindrical swirl flow takes place by means of flow guide plates or flow guidance contours provided along the transition section.
  • the transition section contributes significantly to the fact that the flow velocity in the wall near areas along the mixing tube compared to the flow velocity in the field of burner or Mischrohrachse is much lower.
  • synthesis gas due to its own high volume flow rate, is particularly suitable for accelerating wall-oriented flow areas in a targeted way in terms of flow behavior.
  • the targeted feeding of the hydrogen-containing synthesis gas along the transition section is carried out in accordance with the solution such that the additional fuel feed in the direction of the transition section anyway passing swirling flow is admixed, ie the synthesis gas is fed with a suitable for forming inside the burner swirl flow tangentially selected as well as radial flow component relative to the burner longitudinal axis.
  • the fuel injection is adjusted to local flow angles to avoid the flashback risk due to increased turbulence.
  • the transition section is suitable for the injection of an additional synthesis gas stream, especially as the transition section is bounded by a transition piece formed with a sufficiently large wall thickness, through which a plurality of individual outlet openings for the synthesis gas supply can be provided.
  • the formation of the outlet openings as well as the individual synthesis gas supply channels connected to the outlet openings can be made almost anywhere according to shape and location without any design restrictions, especially as the transition piece offers sufficient space for these measures.
  • synthesis gas flows with a circular, elliptical, annular, almost rectangular or almost triangular flow cross-section, which exist for improved mixing with the inside of the burner Fuel-air swirl flow contributes.
  • Such a burner designed in accordance with the invention has, along the transition section, means for feeding in the synthesis gas containing at least the hydrogen.
  • Fig. 1 is a longitudinal sectional view of a solution according trained Vormischbrenners shown with a swirl generator 1, the swirl space is enclosed by two swirl shells in the form of Operakegelschalen 2, each mutually defining air inlet slots 4, is fed through the combustion air supply to form a swirl flow within the swirl space.
  • the swirl flow encloses a conically spreading liquid fuel column, which is discharged by remplissigbrennstoffaustrag through the centrally mounted fuel nozzle 3.
  • gaseous fuel preferably natural gas
  • the additional fuel feed in the region of the transition section 6 takes place either via circular uniformly distributed distributed individual outlet openings, all of which are supplied via a common supply line 10 with synthesis gas B H2 .
  • the fuel line 10 opens into a fuel reservoir 11 which surrounds the transition section 6 in a circular manner and from which the individual outlet openings 9 'of the fuel feed 9 are supplied with fuel.
  • the feeding of the synthesis gas B H2 takes place in such a way that the regions near the wall, in particular of the mixing tube 8 adjoining the transition section 6 downstream, are accelerated with regard to their flow behavior in order to reduce the risk of flashback. Equally, however, it is necessary to make the fuel feed with only slight adverse effects on the swirl flow forming within the swirl generator 1.
  • the longitudinal section shown is likewise the radial component, with which the fuel feed is introduced into the region of the transition section 6 as well as of the mixing tube 8 adjoining it downstream.
  • the slightly inclined towards the burner axis A direction of the fuel feed of the synthesis gas B H2 contributes to the improved mixing of the fuel with the air-fuel swirl flow, however, due to the centrifugal force caused by the rotational movement within the swirl flow, a radial exchange of the lighter, hydrogen-containing fuel , with the heavier air proportions of the Swirl flow is supported.
  • the longitudinal section in Fig. 1 It can be seen that immediately before entry into the combustion chamber B which adjoins the mixing tube 8 downstream, the hydrogen-containing fuel B H2 is mixed as homogeneously as possible over the entire flow cross-section.
  • the synthesis gas is additionally fed with a component which is tangential to the swirl flow, in order to minimize irritation to the swirl flow.
  • a component which is tangential to the swirl flow is on Fig. 3 referenced, which shows a cross-sectional view in the region of the transition section 6.
  • the inner contour of the transition section 6 is characterized by conically widening flow direction in the flow direction 7, which are optimized from a fluidic point of view and are able to convert conically expanding swirl flow in a propagating with constant flow cross-section swirl flow.
  • the reservoir 11 storing the synthesis gas is provided, which via the in FIG Fig. 1 shown supply line 10 is supplied with fuel.
  • supply line 10 is supplied with fuel.
  • a plurality of supply channels 12 are provided for feeding the fuel containing the hydrogen, via which the synthesis gas is fed into the interior of the transition section 6.
  • the spatial orientation of the individual fuel supply channels 12 is made such that the fuel discharge snuggles largely tangentially to the forming within the burner swirl flow D, without significantly affecting the swirl flow in their flow behavior.
  • FIG. 4 In a further longitudinal sectional view according to Fig. 4 are upstream of the outlet openings 9 'of the feed channels 12 Spülgaskanäle 13 provided by the additional air in a conventional manner along the wall of the downstream of the transition section 6 subsequent mixing tube 8 is discharged.
  • This in Fig. 4 illustrated embodiment provides that also 13 synthesis gas containing hydrogen is discharged through the purge gas channels, especially in cases where the burner is operated with natural gas and petroleum.
  • the additional use of already existing purge gas channels or film hole openings with hydrogen-containing fuel helps to control or influence the fuel concentration in the region of the burner wall, ie the wall along the mixing tube.
  • the solution according to the burner concept thus helps to reduce the risk of flashback significantly, on the one hand by a longitudinal wall of the mixing tube flow rate increase, on the other hand by an individual adjustment of the feed additional fuel, ie hydrogen-containing fuel with respect to the already forming within the swirl generator swirl flow, thus turbulent vortex formation can be largely avoided or reduced. Due to the much lower specific weight of the injected hydrogen-containing synthesis gas in comparison to the much larger proportion of air forming within the burner swirl flow causes the centrifugal force occurring due to the rotational movement, a radial mixing of the fed in the peripheral edge of the synthesis gas such that before the air Fuel swirl flow into the combustion chamber a complete mixing of the injected hydrogen is achieved.
  • the fuel supply lines and outlet openings can be designed and dimensioned as a function of the selected hydrogen-containing fuel.
  • Existing scavenging air supply openings for the formation of film layers close to the wall can likewise be used to feed hydrogen-containing synthesis gas. Due to the additional feed of synthesis gas only in the region of the transition section 6, the mean residence time of the hydrogen is much lower compared to a feed along the swirl generator, so that the burner operation can be carried out correspondingly safer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf ein Verfahren gemäss Oberbegriff des Anspruchs 1. Sie betrifft auch einen Brenner zur Durchführung dieses Verfahrens.The invention relates to a method according to the preamble of claim 1. It also relates to a burner for carrying out this method.

Stand der TechnikState of the art

Motiviert durch das nahezu weltweite Bestreben hinsichtlich der Reduzierung des Ausstosses von Treibhausgasen in die Atmosphäre, nicht zuletzt festgelegt im so genannten Kioto-Protokoll, soll die im Jahre 2010 zu erwartende Emission von Treibhausgasen auf den gleichen Stand reduziert werden wie im Jahre 1990. Zur Umsetzung dieses Vorhabens bedarf es grosser Anstrengungen, insbesondere den Beitrag an anthropogen-bedingten CO2-Freisetzungen zu reduzieren. Etwa ein Drittel des durch den Menschen in die Atmosphäre freigesetzten CO2 ist auf die Energieerzeugung zurückzuführen, bei der die zumeist fossilen Brennstoffe in Kraftwerksanlagen zur Stromerzeugung verbrannt werden. Insbesondere durch den Einsatz moderner Technologien sowie durch zusätzliche politische Rahmenbedingungen kann auf dem Energie erzeugenden Sektor ein erhebliches Einsparungspotential zur Vermeidung eines weiter zunehmenden CO2-Ausstosses erzielt werden.Motivated by the almost global efforts to reduce the emission of greenhouse gases into the atmosphere, not least laid down in the so-called Kyoto Protocol, the emission of greenhouse gases to be expected in 2010 should be reduced to the same level as in 1990. For implementation This project requires great efforts, in particular to reduce the contribution to anthropogenic CO 2 releases. About one third of the CO 2 released by humans into the atmosphere is due to energy production, which burns mostly fossil fuels in power plants to produce electricity. In particular, through the use of modern technologies and additional political framework conditions, a significant savings potential can be achieved in the energy-producing sector to avoid a further increase in CO 2 emissions.

Eine an sich bekannte und technisch beherrschbare Möglichkeit die CO2-Emission in Verbrennungskraftwerken zu reduzieren, besteht im Entzug von Kohlenstoff aus den zur Verbrennung gelangenden Brennstoffen, die noch vor Einleiten derselben in die Brennkammer bewerkstelligt werden. Dies setzt entsprechende Brennstoffvorbehandlungen voraus, dass beispielsweise die teilweise Oxidation des Brennstoffes mit Sauerstoff und/oder eine Vorbehandlung des Brennstoffes mit Wasserdampf in Verbindung gebracht wird. Derartig vorbehandelte Brennstoffe weisen zumeist einen grossen Anteil von H2 und CO auf, und verfügen je nach Mischungsverhältnissen über Heizwerte, die in der Regel unter jenen von natürlichem Erdgas liegen. In Abhängigkeit ihres Heizwertes werden derartig synthetisch hergestellten Gase als Mbtu- oder Lbtu-Gase bezeichnet, die sich nicht ohne weiteres für den Einsatz in herkömmlichen, für die Verbrennung von Naturgasen wie Erdgas konzipierte Brenner eignen, wie sie beispielsweise der EP 0 321 809 B1 , EP 0 780 629 A2 , WO 93/17279 sowie der EP 1 070 915 A1 entnehmbar sind. In allen vorstehenden Druckschriften, welche einen integrierenden Bestandteil der vorliegenden Beschreibungen sind, sind Brenner vom Typ der Brennstoffvormischung beschrieben, bei denen jeweils eine sich in Strömungsrichtung konisch erweiternde Drallströmung aus Verbrennungsluft und beigemischtem Brennstoff erzeugt wird, die in Strömungsrichtung nach Austritt aus dem Brenner möglichst nach Erreichen eines homogenen Luft-Brennstoff-Gemisches durch den zunehmenden Drall instabil wird und in eine ringförmige Drallströmung mit Rückströmung im Kern übergeht.A per se known and technically controllable way to reduce the CO 2 emissions in combustion power plants, consists in the removal of carbon from the fuels reaching combustion, which are accomplished before they are introduced into the combustion chamber. This requires appropriate fuel pretreatments that, for example, the partial oxidation of the Fuel with oxygen and / or a pretreatment of the fuel is associated with water vapor. Such pretreated fuels usually contain a large amount of H 2 and CO, and depending on the mixing ratios have calorific values, which are generally lower than those of natural gas. Depending on their calorific value of such synthetically produced gases are referred to as Mbtu or Lbtu gases, which are not readily suitable for use in conventional, designed for the combustion of natural gases such as natural gas burner, such as the EP 0 321 809 B1 . EP 0 780 629 A2 . WO 93/17279 as well as the EP 1 070 915 A1 are removable. In all the above references, which are an integral part of the present descriptions, burners are described of the type of fuel premix, in each of which a conically expanding in the flow direction swirl flow of combustion air and mixed fuel is generated, the downstream as possible after the exit from the burner Achieving a homogeneous air-fuel mixture is unstable by the increasing swirl and merges into an annular swirl flow with backflow in the core.

Je nach Brennerkonzept sowie in Abhängigkeit der Brennerleistung wird der sich im Inneren des Vormischbrenners ausbildenden Drallströmung flüssiger und/oder gasförmiger Brennstoff zur Ausbildung eines möglichst homogenen Brennstoff-Luftgemisches eingegeben. Gilt es jedoch, wie vorstehend erwähnt, zu Zwecken einer reduzierten Schadstoff-, insbesondere CO2-Emission synthetisch aufbereitete, gasförmige Brennstoffe alternativ zu oder in Kombination mit der Verbrennung herkömmlicher Brennstoffarten einzusetzen, so ergeben sich besondere Anforderungen an die konstruktive Auslegung herkömmlicher Vormischbrennersysteme. So erfordern Synthesegase zur Einspeisung in Brennersysteme einen vielfachen Brennstoff-Volumenstrom gegenüber vergleichbaren mit Erdgas betriebenen Brennern, so dass sich deutlich unterschiedliche Strömungsimpulsverhältnisse ergeben. Aufgrund des hohen Anteils an Wasserstoff im Synthesegas und der damit verbundenen niedrigen Zündtemperatur und hohen Flammengeschwindigkeit des Wasserstoffes, besteht eine hohe Reaktionsneigung des Brennstoffes, die zu einer erhöhten Rückzündgefahr führt. Um dies zu vermeiden, gilt es die mittlere Verweilzeit von zündfähigem Brennstoff-Luftgemisch innerhalb des Brenners möglichst zu reduzieren.Depending on the burner concept as well as on the burner output, liquid and / or gaseous fuel, which forms in the interior of the premix burner, is introduced to form a homogeneous air-fuel mixture. However, as stated above, if gaseous fuels are to be used as alternatives to or in combination with the combustion of conventional types of fuel for purposes of reduced pollutant, in particular CO 2 emissions, special requirements are imposed on the design of conventional premix burner systems. For example, synthesis gases for feeding into burner systems require a multiple fuel volume flow compared to comparable burners operated with natural gas, so that significantly different flow pulse ratios result. Due to the high proportion of hydrogen in the synthesis gas and the associated low ignition temperature and high flame velocity of the hydrogen, there is a high tendency to react of the fuel, which leads to an increased risk of re-ignition. To avoid this, it is necessary to reduce the average residence time of flammable fuel-air mixture within the burner as possible.

In der WO 2006/058843 A1 sind ein Verfahren sowie ein Brenner zur Verbrennung von gasförmigen, flüssigen sowie von Wasserstoff enthaltenden oder aus Wasserstoff bestehenden Brennstoff, kurz Synthesegas, bekannt geworden. In diesem Fall wird ein Vormischbrenner, der auch als Doppelkegelbrenner bekannt geworden ist, mit nach geschalteter Mischstrecke gemäss der EP 0 780 629 A2 eingesetzt, der in Figur 2a und b in Längsschnittdarstellung schematisiert dargestellt ist. Die Vormischbrenneranordnung sieht einen sich in Brennerlängsachse konisch erweiternden Drallerzeuger 1 vor, der von Drallschalen 2 begrenzt ist. Axial sowie koaxial um die Brennerachse A des Drallerzeugers 1 sind Mittel zur Einspeisung von Brennstoff vorgesehen. So gelangt Flüssigbrennstoff Bfl durch eine längs der Brennerachse A am Ort des kleinsten Innendurchmessers des Drallerzeugers 1 positionierte Einspritzdüse 3 in den Drallraum. Längs tangentialer Lufteintrittsschlitze 4, über die Verbrennungsluft L mit tangentialer Strömungsrichtung in den Drallraum eintritt, wird gasförmiger Brennstoff Bg, vorzugsweise Erdgas, der Verbrennungsluft L beigemischt. Zusätzlich sind Eindüsungsvorrichtungen 5 vorgesehen (siehe Fig. 2b), die der weiteren Einspeisung von Synthesegas BH2 dienen.In the WO 2006/058843 A1 are a method and a burner for the combustion of gaseous, liquid and hydrogen-containing or consisting of hydrogen fuel, synthesis gas, known. In this case, a premix burner, which has become known as a double-cone burner, with switched-after mixing section according to the EP 0 780 629 A2 used in FIGS. 2a and b is shown schematically in longitudinal section. The premix burner arrangement provides a swirl generator 1, which widens conically in the longitudinal axis of the burner and is delimited by swirl shells 2. Axial and coaxial about the burner axis A of the swirl generator 1 means for supplying fuel are provided. Thus, liquid fuel B fl reaches the swirling space through an injection nozzle 3 positioned along the burner axis A at the location of the smallest inner diameter of the swirl generator 1. Longitudinal tangential air inlet slots 4, enters via the combustion air L with tangential flow direction in the swirl space, gaseous fuel B g , preferably natural gas, the combustion air L is added. In addition, injection devices 5 are provided (see Fig. 2b ), which serve the further feed of synthesis gas B H2 .

Das sich innerhalb des Drallerzeugers 1 ausbildende Brennstoff-Luftgemisch gelangt als Drallströmung durch einen Übergangsabschnitt 6, der die Drallströmung stabilisierende Strömungsmittel 7 vorsieht, in ein Mischrohr 8, in dem eine vollständig homogene Durchmischung des sich ausbildenden Brennstoff-Luftgemisches erfolgt, bevor das zündfähige Brennstoff-Luftgemisch innerhalb einer sich stromab an das Mischrohr 8 anschliessenden Brennkammer B gezündet wird. Aufgrund einer unsteten Strömungsquerschnittsvergrösserung beim Übergang vom Mischrohr 8 in die Brennkammer B platzt die Drallströmung des durchmischten Brennstoff-Luftgemisches unter Ausbildung einer Rückströmzone in Form einer Rückströmblase RB auf, in der sich eine räumlich stabile Flammenfront einstellt.The fuel-air mixture forming within the swirl generator 1 passes as swirling flow through a transition section 6, which provides the swirl flow stabilizing fluid 7, into a mixing tube 8, in which a completely homogeneous mixing of the forming fuel-air mixture before the ignitable fuel Air mixture is ignited within a downstream of the mixing tube 8 subsequent combustion chamber B. Due to an unsteady flow cross-sectional enlargement in the transition from the mixing tube 8 into the combustion chamber B, the swirling flow of the mixed fuel-air mixture bursts to form a Rückströmzone in the form of a Rückblasblase RB, in which adjusts a spatially stable flame front.

Das sich längs des Brenners ausbildende Strömungsprofil ist in Fig. 2a dargestellt, das sich durch ein deutliches Geschwindigkeitsmaximum längs zur Brennerachse A auszeichnet, dessen Betrag zumeist drei bis vier mal über jenen Strömungsgeschwindigkeiten liegt, die sich nahe der Brennerwand auszubilden vermögen. Aufgrund dieses drastischen Geschwindigkeitsunterschiedes zwischen Brennerachse und Brennerwand stellen sich nahe der Brennerwand lokale Strömungswirbel ein, die zu lokalen Brennstoffkonzentrationen führen und insbesondere im Fall einer zusätzlichen Einspeisung von Synthesegas aufgrund des durch den Wasserstoffanteil bedingten hohen Zündpotentials zu einer erhöhten Flammenrückzündgefahr beitragen, die es zu vermeiden gilt. Um die Gefahr der Flammenrückzündung zu verringern, sind daher an sich bekannte Filmlochöffnungen längs des Mischrohrs vorgesehen, über die Zuluft längs der Innenwand des Mischrohrs zur Ausbildung eines wandnahen Luftfilmes eingespeist wird.The airfoil forming along the burner is in Fig. 2a represented, which is characterized by a significant maximum velocity along the burner axis A, the amount of which is usually three to four times higher than those flow rates, which are able to form near the burner wall. Due to this drastic speed difference between the burner axis and the burner wall, local flow vortices occur near the burner wall, which lead to local fuel concentrations and, in particular in the case of an additional feed of synthesis gas, due to the high ignition potential caused by the hydrogen content, contribute to an increased risk of re-ignition which must be avoided , In order to reduce the risk of flame re-ignition, therefore known film hole openings are provided along the mixing tube, is fed via the supply air along the inner wall of the mixing tube to form a near-wall air film.

Um zu vermeiden, dass das wasserstoffhaltige Synthesegas in Brennerwand nahe Bereiche gelangt, wird das Synthesegas BH2 gemäss der schematischen Längsschnittdarstellung in Fig. 2b etwa unter 60° zur Brennerlängsachse A in den Drallraum des Drallerzeugers 1 ausgebracht. Insbesondere wasserstoffreiche Brennstoffe mit Wasserstoffanteilen von > 50% weisen typischerweise sehr hohe Flammengeschwindigkeiten auf und verfügen darüber hinaus über einen sehr viel geringeren volumenspezifischen Wärmeheizwert (MJ/m3), so dass es sehr viel grössere Mengen an Wasserstoff enthaltenden Brennstoff bedarf, die dem Brenner zum Erreichen einer gewünschten leistungsbezogenen Verbrennungswärme zugeführt werden müssen. So zeigt sich insbesondere bei so genannten Hochdruckversuchen, dass bereits im Drallraum bzw. längs der Mischstrecke des Brenners Zünderscheinungen auftreten, die auf eine unzureichende Durchmischung des mit grossem Volumenstrom in den Brenner eingespeisten wasserstoffhaltigen Brennstoffes zurückzuführen sind. Selbst in Fällen, in denen keine Rückzünderscheinungen auftreten, sorgt eine unzureichende Vermischung des den Wasserstoff enthaltenden Synthesegases und der Verbrennungsluft für eine diffusionsähnliche Verbrennung, die letztlich zu erhöhten Stickoxydemissionen führt. Es besteht daher der Wunsch den Anforderungen zur Vermeidung von Rückzünderscheinungen sowie den im Lichte immer strenger werdenden Umweltanforderungen geforderten NOx-Emissionsgrenzen zu entsprechen.In order to avoid that the hydrogen-containing synthesis gas in burners wall reaches near areas, the synthesis gas B H2 according to the schematic longitudinal sectional view in Fig. 2b about 60 ° to the burner longitudinal axis A in the swirl chamber of the swirl generator 1. Hydrogen-rich fuels with hydrogen contents of> 50% in particular typically have very high flame speeds and moreover have a much smaller volume-specific heat calorific value (MJ / m 3 ), so that much larger quantities of hydrogen-containing fuel are required for the burner Achieve a desired performance-related combustion heat must be supplied. Thus, in particular in so-called high-pressure tests, ignition phenomena already occur in the swirl chamber or along the mixing section of the burner, which are due to inadequate mixing of the hydrogenous fuel fed into the burner with a large volume flow. Even in cases where no reignition phenomena occur, insufficient mixing of the synthesis gas containing the hydrogen and the combustion air provides for diffusion-like combustion, ultimately leading to increased nitrogen oxide emissions. There is therefore a desire to meet the requirements for avoiding reignition phenomena and the required in the light of ever stricter environmental requirements NO x emission limits.

Die Nachteile, die mit dem bisher bekannten Vormischbrennerkonzept verbunden sind, werden nachfolgend in nicht abschliessender Form stichpunktartig zusammengefasst:

  1. 1. Es bestehen unzureichende Vorkehrungen zur Vermeidung von Flammenrückzündereignissen, die u.a. auf eine unzureichende Strömungsabstimmung zwischen dem in den Brennerraum einzuspeisenden Wasserstoff enthaltenden Brennstoffstrom und der sich innerhalb des Drallerzeugers ausbildenden Brennstoff-Luft-Drallströmung zurückzuführen sind.
  2. 2. Überhöhte NOx-Emissionen, die sich als Folge einer zusätzlichen Brennstoffanreicherung von Synthesegas längs der Brennerachse und einer damit verbundenen Temperaturerhöhung einstellen.
  3. 3. Komplizierte Bauform der Brenneranordnung aufgrund einer Vielzahl in den Drallraum zugeführter Brennstoffleitungen, die jeweils über separate Brennstoffverteilerkreise gespeist werden, die allesamt mit ursächlich für eine unzureichende, vorstehend bezeichnete Strömungsabstimmung sind.
  4. 4. Die Leistungsvariation des Brenners durch Variation der Brennstoffzuführung ist sehr begrenzt, zumal sich Brennerinstabilitäten ausbilden, die sich u.a. durch das Auftreten von Brennkammerpulsationen auszeichnen.
The disadvantages associated with the previously known premix burner concept are summarized below in a non-exhaustive form:
  1. 1. There are insufficient provisions for avoiding flashback events which are due, inter alia, to insufficient flow tuning between the fuel flow containing hydrogen in the burner space and the fuel-air swirl flow forming within the swirl generator.
  2. 2. Excessive NO x emissions, which occur as a result of an additional fuel enrichment of synthesis gas along the burner axis and an associated increase in temperature.
  3. 3. Complicated design of the burner assembly due to a variety in the swirl space supplied fuel lines, which are each fed via separate fuel distributor circuits, all of which are responsible for an insufficient, above-mentioned flow tuning.
  4. 4. The power variation of the burner by varying the fuel supply is very limited, especially as burner instabilities form, which are characterized, inter alia, by the occurrence of combustion chamber pulsations.

Darstellung der ErfindungPresentation of the invention

Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren zum Betrieb eines Vormischbrenners sowie auch einen Vormischbrenner selbst anzugeben, bei dem die obigen Nachteile vermieden werden sollen. Ferner gilt es beim Betrieb mit einem Wasserstoff enthaltenden Brennstoff, einem so genannten Synthesegas, für eine verbesserte Durchmischung mit der Brennerluftdrallströmung sowie für stabilere Strömungsverhältnisse innerhalb des Brenners zu sorgen.Based on this prior art, the object of the present invention is a method for operating a premix burner and also specify a premix burner itself, in which the above disadvantages should be avoided. Furthermore, when operating with a fuel containing hydrogen, a so-called synthesis gas, it is necessary to ensure improved mixing with the burner air swirl flow as well as more stable flow conditions within the burner.

Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Gegenstand des Anspruches 7 ist eine lösungsgemäss ausgebildete Vorrichtung. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen. Sämtliche Ansprüche sind Bestandteil der weiteren Beschreibung.The solution of the problem underlying the invention is specified in claim 1. The subject matter of claim 7 is a device designed in accordance with the invention. The concept of the invention advantageously further features are the subject of the dependent claims and the further description with reference to the exemplary embodiments. All claims are part of the further description.

Die dem lösungsgemässen Verfahrensprinzip zum Betrieb eines Vormischbrenners zugrunde liegende Idee macht sich sowohl die Eigenschaften des den Wasserstoff enthaltenden Brennstoffes als auch die Charakteristika des vorstehend bezeichneten Vormischbrenners zur eigenen, um das erklärte Ziel zu realisieren, nämlich das Erreichen möglichst geringer Emissionswerte ohne das Auftreten von Flammenrückzündungsereignissen und dies bei nur geringen oder gegebenenfalls vernachlässigbaren Brennerinstabilitäten.The idea underlying the method according to the invention for operating a premix burner makes both the properties of the fuel containing hydrogen and the characteristics of the premix burner described above its own in order to achieve the stated goal of achieving the lowest possible emission values without the occurrence of flame re-ignition events and this with only minor or possibly negligible burner instabilities.

So werden der geringe volumenspezifischen Wärmeheizwert und der dadurch erforderliche größere Volumenstrom sowie die geringe Dichte des Wasserstoff enthaltenden Synthesegases vorteilhaft insofern genutzt, indem einerseits der grosse Synthesegas-Volumenstrom zur gezielten Anhebung der Strömungsgeschwindigkeit im brennerwandnahen Strömungsbereiche, um das Flammenrückzündrisiko stromab des Übergangsabschnittes zu reduzieren. Zum anderen trägt die nur geringe Brennstoffdichte des Synthesegases zu einer verbesserten Durchmischung mit der der Drallströmung der Verbrennungsluft bei, indem Zentrifugalkräfte innerhalb der Drallströmung genutzt werden, um eine radiale Durchmischung des Synthesegases mit der Verbrennungsluft zu ermöglichen. Wird Synthesegas in radial aussen liegende Bereichen der Drallströmung zugeführt, so erfolgt aufgrund der schwereren Luftanteile, die durch die innerhalb der Drallströmung wirkenden Zentrifugalkräfte radial nach aussen getrieben werden, eine Verdrängung des leichteren Synthesegases in achsnahe Bereiche relativ zur Brennerachse.Thus, the low volume-specific Wärmeheizwert and thereby required larger volume flow and the low density of the synthesis gas containing hydrogen are advantageously used insofar as on the one hand the large synthesis gas volume flow for selectively raising the flow velocity in the burner wall near flow areas to reduce the Flammenrückzündrisiko downstream of the transition section. On the other hand, the only low fuel density of the synthesis gas contributes to an improved mixing with the swirling flow of the combustion air, by centrifugal forces are used within the swirl flow to allow a radial mixing of the synthesis gas with the combustion air. Synthesis gas is fed into radially outward areas of the swirl flow, it is due to the heavier Air components, which are driven radially outward by the centrifugal forces acting within the swirl flow, a displacement of the lighter synthesis gas in the vicinity of the axis relative to the burner axis.

Auf Basis der vorstehenden Überlegungen zeichnet sich ein lösungsgemässes Verfahren zur Verbrennung von Wasserstoff enthaltenden oder aus Wasserstoff bestehenden gasförmigen Brennstoff, kurz Synthesegas, mit einem Brenner gemäss dem Oberbegriff des Anspruches 1 dadurch aus, dass das Synthesegas innerhalb des Bereiches des Übergangsabschnittes in die Brennstoff-Luft-Drallströmung eingespeist wird.On the basis of the above considerations, a solution according to the method for combustion of hydrogen-containing or hydrogen-based gaseous fuel, short synthesis gas, with a burner according to the preamble of claim 1 characterized in that the synthesis gas within the range of the transition section in the fuel air -Drallströmung is fed.

Der Übergangsabschnitt zwischen dem Bereich des Drallerzeugers und dem sich stromab anschliessenden Mischrohrs dient in erster Linie einer weitgehend verlustfreien Überführung der sich innerhalb des Drallerzeugers in Brennerlängsachse konisch aufweitenden Drallströmung in eine längs des Mischrohrs mit gleich bleibendem Strömungsquerschnitt ausbreitenden, zylinderförmigen Drallströmung. Die Überführung der Strömungsform in eine zylinderförmige Drallströmung erfolgt mittels längs des Übergangsabschnittes vorgesehenen Strömungsleitblechen bzw. Strömungsleitkonturen. Trotz aller Massnahmen für eine möglichst verlustfreie Strömungsüberführung, trägt insbesondere der Übergangsabschnitt massgeblich dazu bei, dass die Strömungsgeschwindigkeit in Wand nahen Bereichen längs des Mischrohrs verglichen zur Strömungsgeschwindigkeit im Bereich der Brenner- bzw. Mischrohrachse viel geringer ist. Lösungsgemäss wird daher vorgeschlagen, am Ort, der ursächlich für eine Strömungsgeschwindigkeitsreduzierung längs der Brenner- bzw. Mischrohrwand ist, Massnahmen zu treffen, um die Strömungsgeschwindigkeit in diesem Bereich zu erhöhen. Wie vorstehend ausgeführt, eignet sich Synthesegas aufgrund seiner ihm zu eigenen hohen Volumenflussrate besonders gut, wandnahe Strömungsbereiche gezielt im Strömungsverhalten zu beschleunigen. Die gezielte Einspeisung des Wasserstoff enthaltenden Synthesegases längs des Übergangsabschnittes erfolgt lösungsgemäss derart, dass die zusätzliche Brennstoffeinspeisung in Richtung der ohnehin den Übergangsabschnitt passierenden Drallströmung beigemischt wird, d.h. das Synthesegas wird mit einer zur im Inneren des Brenners sich ausbildenden Drallströmung passend gewählten tangentialen sowie auch radialen Strömungskomponente relativ zur Brennerlängsachse eingespeist. Hierbei gilt es, die Brennstoffeinspeisung derart vorzunehmen, dass eine Strömungsirritation der sich bereits innerhalb des Brenners ausgebildeten Brennstoff-Luft-Drallströmung minimal ist. So wird die Brennstoffeindüsung auf lokale Strömungswinkel angepasst, um das Flammenrückschlagrisiko aufgrund erhöhter Turbulenz zu vermeiden. Zu Zwecken einer verbesserten Durchmischung ist es zudem vorteilhaft, die Synthesegaseinspeisung längs des Übergangsabschnittes mit einer RadialKomponente vorzunehmen, d.h. mit einer Winkelkomponente quer zur anliegenden Strömungsrichtung der Drallströmung, so dass das eingespeiste Synthesegas möglichst effektiv mit der Brennstoff-Luft-Drallströmung durchmischt wird. Jedoch würde andererseits eine zu stark ausgeprägte Radialkomponente, d.h. ein zu groß gewählter Winkel zwischen Brennerachse und Synthesegaseinspeiserichtung, das strömungsdynamische Ausbreitungsverhalten der Drallströmung zu stark beeinträchtigen, wodurch sich lokale, bevorzugt wandnahe Strömungswirbel ausbilden und das Flammenrückschlagrisiko erhöht wird. Es zeigt sich, dass die Synthesegaseinspeisung mit einem Kompromiss zwischen einer effektiven Beschleunigung wandnaher Strömungsbereiche zum Zwecke der Reduzierung des Flammenrückschlagrisikos und einer möglichst guten Durchmischung mit der Drallströmung vorgenommen werden muss.The transition section between the region of the swirl generator and the downstream mixing tube serves primarily to transfer the swirl flow which widens conically within the swirl generator into the longitudinal axis of the burner into a cylindrical swirl flow which propagates along the mixing tube with a constant flow cross section. The transfer of the flow form into a cylindrical swirl flow takes place by means of flow guide plates or flow guidance contours provided along the transition section. Despite all measures for lossless as possible flow transfer, especially the transition section contributes significantly to the fact that the flow velocity in the wall near areas along the mixing tube compared to the flow velocity in the field of burner or Mischrohrachse is much lower. According to the solution, it is therefore proposed to take measures at the location which is the cause of a flow velocity reduction along the burner or mixing tube wall in order to increase the flow velocity in this area. As stated above, synthesis gas, due to its own high volume flow rate, is particularly suitable for accelerating wall-oriented flow areas in a targeted way in terms of flow behavior. The targeted feeding of the hydrogen-containing synthesis gas along the transition section is carried out in accordance with the solution such that the additional fuel feed in the direction of the transition section anyway passing swirling flow is admixed, ie the synthesis gas is fed with a suitable for forming inside the burner swirl flow tangentially selected as well as radial flow component relative to the burner longitudinal axis. In this case, it is necessary to carry out the fuel feed in such a way that a flow irritation of the fuel-air swirl flow already formed within the burner is minimal. Thus, the fuel injection is adjusted to local flow angles to avoid the flashback risk due to increased turbulence. For purposes of improved mixing, it is also advantageous to carry out the synthesis gas feed along the transition section with a radial component, ie with an angular component transverse to the adjacent flow direction of the swirl flow, so that the injected synthesis gas is mixed as effectively as possible with the fuel-air swirl flow. However, on the other hand, an excessively pronounced radial component, ie, an excessively large angle between burner axis and synthesis gas feed direction, would affect the flow dynamic propagation behavior of the swirl flow too much, forming local, preferably wall-near flow vortices and increasing the risk of flashback. It turns out that the synthesis gas feed must be made with a compromise between an effective acceleration near-wall flow areas for the purpose of reducing the Flammenrückschlagrisikos and the best possible mixing with the swirl flow.

Auch aus einem weiteren Grund eignet sich der Übergangsabschnitt für die Eindüsung eines zusätzlichen Synthesegasstromes, zumal der Übergangsabschnitt von einem mit einer ausreichend grossen Wanddicke ausgebildeten Übergangsstück begrenzt ist, durch das eine Vielzahl einzelner Austrittsöffnungen für die Synthesegaszuführung vorgesehen werden kann. Die Ausbildung der Austrittsöffnungen sowie die einzelnen mit den Austrittsöffnungen verbundenen Synthesegaszuführungskanäle kann nach Form und Lage ohne jegliche konstruktive Einschränkungen nahezu beliebig vorgenommen werden, zumal das Übergangsstück ausreichend Platz für diese Massnahmen bietet.Also, for a further reason, the transition section is suitable for the injection of an additional synthesis gas stream, especially as the transition section is bounded by a transition piece formed with a sufficiently large wall thickness, through which a plurality of individual outlet openings for the synthesis gas supply can be provided. The formation of the outlet openings as well as the individual synthesis gas supply channels connected to the outlet openings can be made almost anywhere according to shape and location without any design restrictions, especially as the transition piece offers sufficient space for these measures.

Auch ist es möglich, durch bereits längs des Übergangsabschnittes verteilt angeordnete, so genannte Filmlöcher, durch die üblicherweise Luft eingespeist wird, die sich als Luftfilm längs der Brenner- bzw. Mischrohrwand anschmiegt, zur Einspeisung von Synthesegas zu verwenden. Auf diese Weise ist es möglich, eine andauernde Spüllufteinspeisung auch im Betrieb des Brenners mit Erdgas oder Erdöl zu vermeiden.It is also possible, by means of so-called film holes already distributed along the transition section, through which air is usually fed, which conforms as an air film along the burner or mixing tube wall, to be used for feeding synthesis gas. In this way it is possible to avoid a continuous scavenging air feed even during operation of the burner with natural gas or oil.

Je nach konstruktiver Auslegung der innerhalb des Übergangsabschnittes vorhandenen Austrittsöffnungen, durch die Synthesegas ausgetragen wird, ist es zudem möglich, Synthesegasströmungen mit einem kreisrunden, elliptischen, ringförmigen, nahezu rechteckigen oder nahezu dreieckigen Strömungsquerschnitt auszubilden, der für eine verbesserte Durchmischung mit der innerhalb des Brenners vorhandenen Brennstoff-Luft-Drallströmung beiträgt.Depending on the structural design of the existing within the transition section outlet openings is discharged through the synthesis gas, it is also possible to form synthesis gas flows with a circular, elliptical, annular, almost rectangular or almost triangular flow cross-section, which exist for improved mixing with the inside of the burner Fuel-air swirl flow contributes.

Bezüglich der lösungsgemäss ausgebildeten Vorrichtung zur Verbrennung von Wasserstoff enthaltenden oder aus Wasserstoff bestehenden gasförmigen Brennstoff mit einem Brenner, gemäss dem Oberbegriff des Anspruches 9, wird insbesondere auf die nachstehenden Ausführungen zur Erläuterung der Ausführungsbeispiele verwiesen. Ein derartig lösungsgemäss ausgebildeter Brenner weist längs des Übergangsabschnittes Mittel zur Einspeisung des zumindest den Wasserstoff enthaltenden Synthesegases auf.With regard to the apparatus according to the invention for the combustion of hydrogen-containing or hydrogen-containing gaseous fuel with a burner, according to the preamble of claim 9, reference is made in particular to the following explanations for explaining the embodiments. Such a burner designed in accordance with the invention has, along the transition section, means for feeding in the synthesis gas containing at least the hydrogen.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

Fig. 1
Längsschnittdarstellung durch einen lösungsgemäss ausgebildeten Vormischbrenner,
Fig. 2a, b
Längsschnittdarstellungen durch einen Vormischbrenner nach Stand der Technik,
Fig. 3
Querschnittsdarstellung durch den Übergangsabschnitt eines lösungsgemäss ausgebildeten Brenners, und
Fig. 4
Längsschnitt eines weiteren Ausführungsbeispiels durch einen lösungsgemäss ausgebildeten Brenner.
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings. Show it:
Fig. 1
Longitudinal view through a solution according trained premix burner,
Fig. 2a, b
Longitudinal views through a Vormischbrenner according to the prior art,
Fig. 3
Cross-sectional view through the transition section of a solution according trained burner, and
Fig. 4
Longitudinal section of a further embodiment by a burner according to the invention.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability

In Fig. 1 ist eine Längsschnittdarstellung eines lösungsgemäss ausgebildeten Vormischbrenners gezeigt, mit einem Drallerzeuger 1, dessen Drallraum von zwei Drallschalen in Form von Teilkegelschalen 2 umschlossen ist, die jeweils gegenseitig Lufteintrittsschlitze 4 begrenzen, durch die Verbrennungszuluft unter Ausbildung einer Drallströmung innerhalb des Drallraumes eingespeist wird. Die Drallströmung umschliesst eine sich konisch ausbreitende Flüssigbrennstoffsäule, die durch Flüssigbrennstoffaustrag durch die mittig angebrachte Brennstoffdüse 3 ausgetragen wird. Zusätzlich sind nicht weiter zeichnerisch dargestellt längs der Lufteintrittsschlitze 4 weitere Mittel zur Einspeisung von gasförmigem Brennstoff, vorzugsweise Erdgas, vorgesehen, der der Luft beigemischt wird. Die sich somit innerhalb des Drallerzeugers 1 ausbildende Luft-Brennstoff-Drallströmung erfährt stromab des Drallerzeugers 1 durch den Übergangsabschnitt 6 eine Überführung der sich ursprünglich konisch ausbreitenden Drallströmung in eine zylinderförmig, d.h. mit konstantem Strömungsquerschnitt längs zur Brennerachse A ausbreitende Drallströmung. Das lösungsgemässe Brennerkonzept sieht vor, dass längs des Übergangsabschnittes zusätzlich Wasserstoff enthaltender Brennstoff, d.h. Synthesegas durch ein weiteres Brennstoffeinspeisungsmittel 9 vorgenommen wird.In Fig. 1 is a longitudinal sectional view of a solution according trained Vormischbrenners shown with a swirl generator 1, the swirl space is enclosed by two swirl shells in the form of Teilkegelschalen 2, each mutually defining air inlet slots 4, is fed through the combustion air supply to form a swirl flow within the swirl space. The swirl flow encloses a conically spreading liquid fuel column, which is discharged by Flüssigbrennstoffaustrag through the centrally mounted fuel nozzle 3. In addition, not further illustrated graphically along the air inlet slots 4 further means for feeding gaseous fuel, preferably natural gas, is provided, which is admixed with the air. The thus Within the swirl generator 1 forming air-fuel swirl flow experiences downstream of the swirl generator 1 through the transition section 6, a transfer of the originally conically propagating swirl flow in a cylindrical, ie with a constant flow cross-section along the burner axis A propagating swirl flow. The solution according to the burner concept provides that along the transition section additionally hydrogen-containing fuel, ie synthesis gas is made by a further fuel feed 9.

Die zusätzliche Brennstoffeinspeisung im Bereich des Übergangsabschnittes 6 erfolgt entweder über zirkular gleichmässig verteilt angeordnete einzelne Austrittsöffnungen, die allesamt über eine gemeinsame Versorgungsleitung 10 mit Synthesegas BH2 versorgt werden. Die Brennstoffleitung 10 mündet in ein den Übergangsabschnitt 6 zirkular umgebendes Brennstoffreservoir 11, von dem aus die einzelnen Austrittsöffnungen 9' des Brennstoffeinspeisungsmittels 9 mit Brennstoff versorgt werden.The additional fuel feed in the region of the transition section 6 takes place either via circular uniformly distributed distributed individual outlet openings, all of which are supplied via a common supply line 10 with synthesis gas B H2 . The fuel line 10 opens into a fuel reservoir 11 which surrounds the transition section 6 in a circular manner and from which the individual outlet openings 9 'of the fuel feed 9 are supplied with fuel.

Die Einspeisung des Synthesegases BH2 erfolgt dabei derart, dass die wandnahen Bereiche, insbesondere des sich stromab des Übergangsabschnittes 6 anschliessenden Mischrohrs 8 hinsichtlich ihres Strömungsverhalten beschleunigt werden, um das Flammenrückschlagrisiko zu reduzieren. Gleichsam gilt es jedoch, die Brennstoffeinspeisung mit nur geringer Beeinträchtigungen der sich innerhalb des Drallerzeugers 1 ausbildenden Drallströmung vorzunehmen.The feeding of the synthesis gas B H2 takes place in such a way that the regions near the wall, in particular of the mixing tube 8 adjoining the transition section 6 downstream, are accelerated with regard to their flow behavior in order to reduce the risk of flashback. Equally, however, it is necessary to make the fuel feed with only slight adverse effects on the swirl flow forming within the swirl generator 1.

Aus der in Fig. 1 dargestellten Längsschnittdarstellung ist gleichfalls die RadialKomponente, mit der die Brennstoffeinspeisung in den Bereich des Übergangsabschnittes 6 sowie des sich stromab daran anschliessenden Mischrohrs 8 eingebracht wird, zu ersehen. Die gegenüber der Brennerachse A leicht geneigte Richtung der Brennstoffeinspeisung des Synthesegases BH2 trägt zur verbesserten Durchmischung des Brennstoffes mit der Brennstoff-Luft-Drallströmung bei, gleichwohl sich aufgrund der durch die Rotationsbewegung innerhalb der Drallströmung bewirkte Zentrifugalkraft ein radialer Austausch des leichteren, Wasserstoff enthaltenden Brennstoffes, mit den schwereren Luftanteilen der Drallströmung unterstützt wird. Anhand der Längsschnittdarstellung in Fig. 1 kann ersehen werden, dass unmittelbar vor Eintritt in die stromab an das Mischrohr 8 angrenzende Brennkammer B der Wasserstoff enthaltende Brennstoff BH2 über den gesamten Strömungsquerschnitt möglichst homogen verteilt durchmischt ist.From the in Fig. 1 The longitudinal section shown is likewise the radial component, with which the fuel feed is introduced into the region of the transition section 6 as well as of the mixing tube 8 adjoining it downstream. The slightly inclined towards the burner axis A direction of the fuel feed of the synthesis gas B H2 contributes to the improved mixing of the fuel with the air-fuel swirl flow, however, due to the centrifugal force caused by the rotational movement within the swirl flow, a radial exchange of the lighter, hydrogen-containing fuel , with the heavier air proportions of the Swirl flow is supported. On the basis of the longitudinal section in Fig. 1 It can be seen that immediately before entry into the combustion chamber B which adjoins the mixing tube 8 downstream, the hydrogen-containing fuel B H2 is mixed as homogeneously as possible over the entire flow cross-section.

Neben der mit einer Radialkomponente vorgenommenen Synthesegaseinspeisung, wie vorstehend beschrieben wird, das Synthesegas zusätzlich auch mit einer zur Drallströmung tangentialen Komponente eingespeist, um die Drallströmung möglichst wenig zu irritieren. Zur bessren Verdeutlichung der tangentialen Einspeisung des den Wasserstoff enthaltenden Synthesegases in peripherer Umfangsrichtung der sich innerhalb des Brenners ausbildenden Brennstoff-Luft-Drallströmung sei auf Fig. 3 verwiesen, die eine Querschnittsdarstellung im Bereich des Übergangsabschnitts 6 zeigt. Die innere Kontur des Übergangsabschnittes 6 ist geprägt durch sich in Durchflussrichtung konisch erweiternde Strömungsleitmittel 7, die unter strömungstechnischen Gesichtspunkten optimiert sind und die sich konisch erweiternde Drallströmung in eine sich mit konstantem Strömungsquerschnitt ausbreitende Drallströmung überzuführen vermögen. Radial die Strömungsleitmittel 7 umschliessend ist das das Synthesegas bevorratende Reservoir 11 vorgesehen, das über die in Fig. 1 dargestellte Versorgungsleitung 10 mit Brennstoff versorgt wird. Innerhalb des Übergangsabschnittes 6 sind zur Einspeisung des den Wasserstoff enthaltenden Brennstoffs mehrere Zuführungskanäle 12 vorgesehen, über die das Synthesegas in den Innenraum des Übergangsabschnittes 6 eingespeist wird. Die räumliche Ausrichtung der einzelnen Brennstoffzuführungskanäle 12 ist derart vorgenommen, dass der Brennstoffaustrag weitgehend tangential an die sich innerhalb des Brenners ausbildende Drallströmung D anschmiegt, ohne dabei die Drallströmung in ihrem Strömungsverhalten wesentlich zu beeinträchtigen. Nochmals sei an dieser Stelle betont, dass eine Brennstoffeinspeisung mit zunehmend radialer Komponente zwar für eine verbesserte Durchmischung mit der sich innerhalb des Brenners ausbildenden Drallströmung sorgt, diese jedoch auch in ihrem Strömungsverhalten zunehmend irritiert, wodurch die unerwünschten turbulenten Wirbelbildungen entstehen, die wiederum die Flammenrückschlaggefahr erhöhen. Insofern ist die Anordnung und Ausbildung der Strömungskanäle, durch die das Synthesegas in das Innere des Brenners eingespeist wird, unter einem Kompromiss vorzunehmen, hinsichtlich einer optimierten Mischungsqualität sowie reduzierter Flammenrückschlaggefahr.In addition to the synthesis gas feed with a radial component, as described above, the synthesis gas is additionally fed with a component which is tangential to the swirl flow, in order to minimize irritation to the swirl flow. To better clarification of the tangential feed of the synthesis gas containing hydrogen in the peripheral peripheral direction of the forming inside the burner fuel-air swirl flow is on Fig. 3 referenced, which shows a cross-sectional view in the region of the transition section 6. The inner contour of the transition section 6 is characterized by conically widening flow direction in the flow direction 7, which are optimized from a fluidic point of view and are able to convert conically expanding swirl flow in a propagating with constant flow cross-section swirl flow. Radially enclosing the flow-guiding means 7, the reservoir 11 storing the synthesis gas is provided, which via the in FIG Fig. 1 shown supply line 10 is supplied with fuel. Within the transition section 6 a plurality of supply channels 12 are provided for feeding the fuel containing the hydrogen, via which the synthesis gas is fed into the interior of the transition section 6. The spatial orientation of the individual fuel supply channels 12 is made such that the fuel discharge snuggles largely tangentially to the forming within the burner swirl flow D, without significantly affecting the swirl flow in their flow behavior. Again, it should be emphasized at this point that although fuel injection with increasingly radial component provides for improved mixing with the swirling flow forming within the burner, it also becomes increasingly irritating in its flow behavior, creating the undesirable turbulent vortex formations, which in turn increase the risk of flashback , In this respect, the arrangement and Forming the flow channels through which the synthesis gas is fed into the interior of the burner to make a compromise, in terms of optimized mixing quality and reduced risk of flashback.

In einer weiteren Längsschnittdarstellung gemäss Fig. 4 sind stromauf zu den Austrittsöffnungen 9' der Zuführkanäle 12 Spülgaskanäle 13 vorgesehen, durch die in an sich bekannter Weise zusätzliche Luft längs der Wand des sich stromab zum Übergangsabschnitt 6 anschliessenden Mischrohrs 8 ausgetragen wird. Das in Fig. 4 dargestellte Ausführungsbeispiel sieht vor, dass auch durch die Spülgaskanäle 13 Wasserstoff enthaltendes Synthesegas ausgetragen wird, insbesondere in Fällen, in denen der Brenner mit Erdgas und Erdöl betrieben wird. Die zusätzliche Nutzung bereits vorhandener Spülgaskanäle bzw. Filmlochöffnungen mit Wasserstoff enthaltendem Brennstoff trägt dazu bei, die Brennstoffkonzentration im Bereich der Brennerwand, d.h. der Wand längs des Mischrohres, zu kontrollieren bzw. zu beeinflussen.In a further longitudinal sectional view according to Fig. 4 are upstream of the outlet openings 9 'of the feed channels 12 Spülgaskanäle 13 provided by the additional air in a conventional manner along the wall of the downstream of the transition section 6 subsequent mixing tube 8 is discharged. This in Fig. 4 illustrated embodiment provides that also 13 synthesis gas containing hydrogen is discharged through the purge gas channels, especially in cases where the burner is operated with natural gas and petroleum. The additional use of already existing purge gas channels or film hole openings with hydrogen-containing fuel helps to control or influence the fuel concentration in the region of the burner wall, ie the wall along the mixing tube.

Das lösungsgemässe Brennerkonzept hilft somit die Flammenrückschlaggefahr erheblich zu reduzieren, dies zum einen durch eine längs des Mischrohrs wandnahe Strömungsgeschwindigkeitserhöhung, zum anderen durch eine individuelle Anpassung der Einspeisung zusätzlichen Brennstoffes, d.h. Wasserstoff enthaltenden Brennstoffes in Bezug auf die bereits innerhalb des Drallerzeugers sich ausbildenden Drallströmung, wodurch turbulente Wirbelbildungen weitgehend vermieden bzw. reduziert werden können. Aufgrund des weitaus geringeren spezifischen Gewichtes des eingespeisten Wasserstoff enthaltenden Synthesegases im Vergleich zum weitaus größeren Luftanteil der sich innerhalb des Brenners ausbildenden Drallströmung bewirkt die, durch die Rotationsbewegung auftretende Zentrifugalkraft, eine radiale Durchmischung des im peripheren Randbereich eingespeisten Synthesegases derart, dass vor Eintritt der Luft-Brennstoff-Drallströmung in die Brennkammer eine vollständige Durchmischung des eingespeisten Wasserstoffs erreicht wird. Aufgrund des innerhalb des Übergangsabschnittes vorhandenen Platzes ist es überdies möglich, die Massnahme zur Brennstoffeinspeisung in robuster Bauform und hoher Integrität vorzunehmen. So können die Brennstoffzuführleitungen sowie Austrittsöffnungen in Abhängigkeit des gewählten Wasserstoff-aufweisenden Brennstoffes, individuell gestaltet und dimensioniert werden. Bereits vorhandene Spülluft-Zuführöffnungen zur Ausbildung wandnaher Filmschichten können gleichfalls zur Einspeisung von Wasserstoff enthaltenden Synthesegas genutzt werden. Durch die zusätzliche Einspeisung von Synthesegas erst im Bereich des Übergangsabschnittes 6 ist die mittlere Verweilzeit des Wasserstoffs im Vergleich zu einer Einspeisung längs des Drallerzeugers weitaus geringer, so dass der Brennerbetrieb entsprechend sicherer durchgeführt werden kann.The solution according to the burner concept thus helps to reduce the risk of flashback significantly, on the one hand by a longitudinal wall of the mixing tube flow rate increase, on the other hand by an individual adjustment of the feed additional fuel, ie hydrogen-containing fuel with respect to the already forming within the swirl generator swirl flow, thus turbulent vortex formation can be largely avoided or reduced. Due to the much lower specific weight of the injected hydrogen-containing synthesis gas in comparison to the much larger proportion of air forming within the burner swirl flow causes the centrifugal force occurring due to the rotational movement, a radial mixing of the fed in the peripheral edge of the synthesis gas such that before the air Fuel swirl flow into the combustion chamber a complete mixing of the injected hydrogen is achieved. Due to the existing space within the transition section, it is also possible to carry out the measure for fuel supply in a robust design and high integrity. So The fuel supply lines and outlet openings can be designed and dimensioned as a function of the selected hydrogen-containing fuel. Existing scavenging air supply openings for the formation of film layers close to the wall can likewise be used to feed hydrogen-containing synthesis gas. Due to the additional feed of synthesis gas only in the region of the transition section 6, the mean residence time of the hydrogen is much lower compared to a feed along the swirl generator, so that the burner operation can be carried out correspondingly safer.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Drallerzeugerswirl generator
22
Drallschalen, TeilkegelschalenSwirl shells, partial cone shells
33
Brennstoffdüsefuel nozzle
44
LufteintrittsschlitzeAir inlet slots
55
Mittel zur Einspeisung von SynthesegasMeans for feeding synthesis gas
66
ÜbergangsabschnittTransition section
77
Strömungsleitmittelflow guide
88th
Mischrohrmixing tube
99
Mittel zur Einspeisung eines Wasserstoff enthaltenden BrennstoffesMeans for feeding a fuel containing hydrogen
9'9 '
Austrittsöffnungoutlet opening
1010
Versorgungsleitungsupply line
1111
Brennstoffreservoirfuel reservoir
1212
Zuführleitungensupply lines
1313
Leitungen für Reinigungsluft bzw. SpülgasPipes for cleaning air or purge gas
AA
BrennerachseBrenner
BB
Brennkammercombustion chamber
DD
Drallströmungswirl flow
RBRB
Rückströmblase, RückströmzoneBackflow bubble, backflow zone
BH2BH2
Synthesegassynthesis gas
BflBfl
Flüssigbrennstoffliquid fuel
Bgbg
Gasförmiger BrennstoffGaseous fuel
LL
Verbrennungsluftcombustion air

Claims (10)

  1. Method for operating a burner, which burner consists essentially of a swirl generator (1) which forms a swirl flow of the combustion air stream, this swirl generator (1) being followed downstream by a mixing zone in which, within a first transitional portion (6), flow guide means (7) act which run in the flow direction and which take over the transfer of the swirl flow formed in the swirl generator (1) into the mixing pipe (8) acting downstream of the flow guide means (7), means for injecting a liquid and/or gaseous fuel into the combustion air stream being present in the swirl generator (1), and the fuel/air mixture thus obtained being ignited and burnt in a combustion chamber following the mixing zone downstream, at the same time forming a backflow zone (RB), wherein a fuel (BH2) containing hydrogen or consisting of hydrogen is introduced within the flow guide means (7) and/or downstream of these flow guide means (7) into the upstream flow of the fuel/air mixture, characterized in that the infeed of the gaseous fuel containing hydrogen or consisting of hydrogen is carried out in such a way that a flow disturbance of the fuel/air swirl flow (D) is minimized, wherein the infeed of the fuel takes place with a tangential component oriented in the swirl direction of the fuel/air swirl flow (D) and with a radial component oriented longitudinally with respect to a burner axis (A).
  2. Method according to Claim 1, characterized in that the fuel containing hydrogen or consisting of hydrogen is fed in in the form of a multiplicity of individual fuel flows in a circular distribution around the rotating fuel/air swirl flow (D).
  3. Method according to Claim 2, characterized in that, directly upstream of the infeed of the fuel containing hydrogen or consisting of hydrogen, cleaning air is discharged at least intermittently via the outlet orifices (9') for the fuel.
  4. Method according to one of Claims 1 to 3, characterized in that the fuel flow has a circular, elliptic, annular, virtually rectangular or virtually triangular flow cross section.
  5. Method according to one of Claims 1 to 4, characterized in that the fuel containing hydrogen or consisting of hydrogen is fed into the region of the transitional portion (6) with a flow pulse which largely is adapted to or corresponds to the flow pulse of the rotating fuel/air swirl flow (D) propagating along the transitional portion (6).
  6. Method according to one of Claims 1 to 5, characterized in that the fuel containing hydrogen or consisting of hydrogen is partially oxidized catalytically before entering into the swirl generator (1).
  7. Burner for carrying out a method which is based on a premixing of a liquid and/or gaseous fuel and in which at least one additional fuel is admixed at a suitable point, the burner consisting essentially of a swirl generator (1) for forming a combustion air stream, there being arranged downstream of this swirl generator (1) a mixing zone in which, within a first transitional portion (6), flow guide means (7) are present which run in the flow direction and which serve for transferring the swirl flow formed in the swirl generator (1) into the mixing pipe (8) acting downstream of the flow guide means (7), means for injecting a liquid and/or gaseous fuel into the combustion air stream being provided in the swirl generator (1), and the fuel/air mixture thus obtained being ignited and burnt in a combustion chamber (B) following the mixing zone downstream, at the same time forming a backflow zone (RB), and wherein a third means (9) for the infeed of a fuel containing hydrogen or consisting of hydrogen is provided within the flow guide means (7) and/or downstream of these flow guide means (7), and the fuel can be supplied in radially outer regions of the swirl flow, characterized in that the third means (9) provides a multiplicity of individual outlet orifices (9') which are circularly formed, equally distributed, in the transitional portion (6) and out of which the fuel containing hydrogen or consisting of hydrogen can be discharged and the outlet orifices (9') are designed and arranged along the transitional portion (6) in such a way that the fuel can be discharged with a tangential and a radial component in relation to the burner axis (A).
  8. Burner according to Claim 7, characterized in that the swirl generator (1) consists of at least two hollow part conical shells nested one in the other in the flow direction and completing one another to form a body, in that the cross section of the inner space formed by the hollow part conical shells increases in the flow direction, and in that the respective longitudinal axes of symmetry of these part conical shells run, offset to one another, in such a way that the adjacent walls of the part conical shells form in their longitudinal extent tangential slots or ducts for the flow of a combustion air into the inner space formed by the part conical shells.
  9. Burner according to Claim 7, characterized in that the swirl generator consists of at least two hollow part shells nested one in the other in the flow direction and completing one another to form a body, in that the cross section of the inner space formed by the hollow part shells runs cylindrically or quasi-cylindrically in the flow direction, in that the respective longitudinal axes of symmetry of these part shells run, offset to one another, in such a way that the adjacent walls of the part shells form in their longitudinal extent tangential slots or ducts for the flow of a combustion air into the inner space formed by the part shells, and in that the inner space has an inner body, the cross section of which decreases in the flow direction.
  10. Burner according to Claim 9, characterized in that the inner body runs conically or quasi-conically in the flow direction.
EP08168235.3A 2007-11-09 2008-11-04 Method for operating a burner Not-in-force EP2058590B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH17382007 2007-11-09

Publications (2)

Publication Number Publication Date
EP2058590A1 EP2058590A1 (en) 2009-05-13
EP2058590B1 true EP2058590B1 (en) 2016-03-23

Family

ID=39327088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08168235.3A Not-in-force EP2058590B1 (en) 2007-11-09 2008-11-04 Method for operating a burner

Country Status (3)

Country Link
US (1) US9103547B2 (en)
EP (1) EP2058590B1 (en)
JP (1) JP5594951B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2220433B1 (en) * 2007-11-27 2013-09-04 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
JP5473934B2 (en) * 2007-11-27 2014-04-16 アルストム テクノロジー リミテッド Apparatus and method for operating gas turbine equipment using second hydrogen-rich fuel
CN101959833B (en) * 2008-03-05 2013-08-21 巴斯夫欧洲公司 Method and device for thermal partial oxidation of hydrocarbons
JP2010230257A (en) * 2009-03-27 2010-10-14 Dainichi Co Ltd Combustion apparatus
CH701905A1 (en) 2009-09-17 2011-03-31 Alstom Technology Ltd Method of burning hydrogen-rich, gaseous fuels in a burner and burner for carrying out the method.
EP2299178B1 (en) * 2009-09-17 2015-11-04 Alstom Technology Ltd A method and gas turbine combustion system for safely mixing H2-rich fuels with air
CN104302976B (en) * 2013-05-09 2017-05-17 施政 System And Method For Small-Scale Combustion Of Pulverized Solid Fuels
JP6395363B2 (en) * 2013-10-11 2018-09-26 川崎重工業株式会社 Gas turbine fuel injection device
US9052109B1 (en) * 2014-12-12 2015-06-09 Infinitus Renewable Energy, LLC Pyrolytic gas processor and tire conversion system therefrom
US11020758B2 (en) * 2016-07-21 2021-06-01 University Of Louisiana At Lafayette Device and method for fuel injection using swirl burst injector
EP3290804A1 (en) * 2016-08-31 2018-03-07 Siemens Aktiengesellschaft A burner with fuel and air supply incorporated in a wall of the burner
JP6934359B2 (en) * 2017-08-21 2021-09-15 三菱パワー株式会社 Combustor and gas turbine with the combustor
US11555612B2 (en) * 2017-11-29 2023-01-17 Babcock Power Services, Inc. Dual fuel direct ignition burners
US10907832B2 (en) 2018-06-08 2021-02-02 General Electric Company Pilot nozzle tips for extended lance of combustor burner
GB2585025A (en) * 2019-06-25 2020-12-30 Siemens Ag Combustor for a gas turbine
CN114074020B (en) * 2020-08-21 2024-02-02 北京国电智深控制技术有限公司 Control method, device and system for coal mill in thermal power generation system
DE102021210662A1 (en) * 2021-09-24 2023-03-30 Benninghoven Zweigniederlassung Der Wirtgen Mineral Technologies Gmbh Device and method for drying material and asphalt mixing plant with such a device
US11815269B2 (en) 2021-12-29 2023-11-14 General Electric Company Fuel-air mixing assembly in a turbine engine
US11747018B2 (en) 2022-01-05 2023-09-05 General Electric Company Combustor with dilution openings
CN114110582B (en) * 2022-01-25 2022-04-19 烟台市大昌燃气器具有限责任公司 Combustion-supporting combustor
KR102607177B1 (en) * 2022-01-28 2023-11-29 두산에너빌리티 주식회사 Nozzle for combustor, combustor, and gas turbine including the same
US12018839B2 (en) 2022-10-20 2024-06-25 General Electric Company Gas turbine engine combustor with dilution passages
KR102599129B1 (en) 2022-11-25 2023-11-07 순천대학교 산학협력단 Hydrogen Boiler for Flashback Prevention using Partial Premixed Flow Line

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US738537A (en) * 1903-03-11 1903-09-08 Emmer F Gwynn Fuel-burner.
US1801431A (en) * 1927-01-21 1931-04-21 Foster Wheeler Corp Method and apparatus for burning fuel
US1910735A (en) * 1927-02-14 1933-05-23 Buttnerwerke A G Burner for coal dust firing
US2647568A (en) * 1951-03-30 1953-08-04 Peabody Engineering Corp Burner throat
US3973395A (en) * 1974-12-18 1976-08-10 United Technologies Corporation Low emission combustion chamber
US4175920A (en) * 1975-07-31 1979-11-27 Exxon Research & Engineering Co. Multiple fuel supply system for staged air burners
US4095929A (en) * 1977-03-14 1978-06-20 Combustion Engineering, Inc. Low BTU gas horizontal burner
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
SE442242B (en) * 1983-03-02 1985-12-09 Stal Laval Turbin Ab PROCEDURAL KIT FOR CLEANING HALF OPENINGS AND / OR NOISTS IN HOT WATER OR STEAM BOILS WITH TWO OR MORE FLUIDIZED BEDS
US4859173A (en) * 1987-09-28 1989-08-22 Exxon Research And Engineering Company Low BTU gas staged air burner for forced-draft service
CH674561A5 (en) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
EP0592717B1 (en) * 1992-10-16 1998-02-25 Asea Brown Boveri Ag Gas-operated premix burner
DE4304213A1 (en) * 1993-02-12 1994-08-18 Abb Research Ltd Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
DE4316474A1 (en) * 1993-05-17 1994-11-24 Abb Management Ag Premix burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
DE4409918A1 (en) * 1994-03-23 1995-09-28 Abb Management Ag Low calorific value fuel burner for combustion chamber
DE4416650A1 (en) * 1994-05-11 1995-11-16 Abb Management Ag Combustion process for atmospheric combustion plants
AU681271B2 (en) * 1994-06-07 1997-08-21 Westinghouse Electric Corporation Method and apparatus for sequentially staged combustion using a catalyst
DE4426351B4 (en) * 1994-07-25 2006-04-06 Alstom Combustion chamber for a gas turbine
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner
DE4441235A1 (en) * 1994-11-19 1996-05-23 Abb Management Ag Combustion chamber with multi-stage combustion
DE4446842B4 (en) * 1994-12-27 2006-08-10 Alstom Method and device for feeding a gaseous fuel into a premix burner
DE19545309A1 (en) * 1995-12-05 1997-06-12 Asea Brown Boveri Premix burner
DE19547913A1 (en) * 1995-12-21 1997-06-26 Abb Research Ltd Burners for a heat generator
DE19608349A1 (en) * 1996-03-05 1997-09-11 Abb Research Ltd Pressure atomizer nozzle
DE19640198A1 (en) * 1996-09-30 1998-04-02 Abb Research Ltd Premix burner
DE19654022A1 (en) * 1996-12-21 1998-06-25 Abb Research Ltd Process for operating a gas turbine group
DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
DE19839085C2 (en) 1998-08-27 2000-06-08 Siemens Ag Burner arrangement with primary and secondary pilot burner
DE59810284D1 (en) * 1998-10-14 2004-01-08 Alstom Switzerland Ltd Burner for operating a heat generator
DE19855034A1 (en) * 1998-11-28 2000-05-31 Abb Patent Gmbh Method for charging burner for gas turbines with pilot gas involves supplying pilot gas at end of burner cone in two different flow directions through pilot gas pipes set outside of burner wall
DE59909531D1 (en) 1999-07-22 2004-06-24 Alstom Technology Ltd Baden premix
DE59907942D1 (en) * 1999-07-22 2004-01-15 Alstom Switzerland Ltd premix
DE10026122A1 (en) * 2000-05-26 2001-11-29 Abb Alstom Power Nv Burner for heat generator has shaping element with inner surface curving away from or towards burner axis; flow from mixing tube contacts inner surface and its spin rate increases
DE10056124A1 (en) * 2000-11-13 2002-05-23 Alstom Switzerland Ltd Burner system with staged fuel injection and method of operation
DE10061526A1 (en) * 2000-12-11 2002-06-20 Alstom Switzerland Ltd Premix burner arrangement for operating a combustion chamber
DE10104151A1 (en) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Process for manufacturing a burner system
DE10104695B4 (en) * 2001-02-02 2014-11-20 Alstom Technology Ltd. Premix burner for a gas turbine
JP2005528571A (en) * 2001-10-19 2005-09-22 アルストム テクノロジー リミテッド Burner for synthesis gas
DE10164099A1 (en) * 2001-12-24 2003-07-03 Alstom Switzerland Ltd Burner with staged fuel injection
EP1389713A1 (en) * 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Premixed exit ring pilot burner
DE102004011150A1 (en) * 2003-03-07 2004-09-16 Alstom Technology Ltd Burn control for gas turbine engine has a double walled porous element with a sonic impedance to reduce sonic resonance
EP1510755B1 (en) * 2003-09-01 2016-09-28 General Electric Technology GmbH Burner with lance and staged fuel supply.
WO2005121648A1 (en) * 2004-06-08 2005-12-22 Alstom Technology Ltd Premix burner comprising a stepped liquid fuel supply system, and method for operating a premix burner
WO2006058843A1 (en) 2004-11-30 2006-06-08 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
WO2006069861A1 (en) 2004-12-23 2006-07-06 Alstom Technology Ltd Premix burner comprising a mixing section
EP2225488B1 (en) * 2007-11-27 2013-07-17 Alstom Technology Ltd Premix burner for a gas turbine

Also Published As

Publication number Publication date
JP5594951B2 (en) 2014-09-24
US9103547B2 (en) 2015-08-11
JP2009121806A (en) 2009-06-04
EP2058590A1 (en) 2009-05-13
US20090123882A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
EP2058590B1 (en) Method for operating a burner
EP1817526B1 (en) Method and device for burning hydrogen in a premix burner
EP2116766B1 (en) Burner with fuel lance
EP2220433B1 (en) Method and device for burning hydrogen in a premix burner
EP0580683B1 (en) Burner arrangement, especially for gas turbines, for the low-pollutant combustion of coal gas and other fuels
EP0675322B1 (en) Premix burner
EP0710797B1 (en) Method and device for operating a premix burner
DE60007946T2 (en) A combustion chamber
EP1802915B1 (en) Gas turbine burner
EP1828684A1 (en) Premix burner comprising a mixing section
EP1504222B1 (en) Premix burner
DE112004002704B4 (en) incinerator
EP0592717A1 (en) Gas-operated premix burner
EP0902233A1 (en) Combined pressurised atomising nozzle
DE4446945A1 (en) Gas powered premix burner
DE602004005572T2 (en) MIXER
EP1356236A1 (en) Premix burner and method for operating such a premix burner
EP1754003B1 (en) Premix burner with a staged liquid fuel supply system
CH679692A5 (en)
EP0908671A1 (en) Combustion process for gaseous, liquid fuels and fuels having medium or low calorific value in a burner
EP0276397A1 (en) Gas turbine combustor
EP0911582B1 (en) Method for operating a premix burner and premix burner
DE4445279A1 (en) Injector
EP1754937A2 (en) Burner head and method of combusting fuel
EP0730121A2 (en) Premix burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091110

17Q First examination report despatched

Effective date: 20091203

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783530

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013966

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013966

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013966

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013966

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008013966

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008013966

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008013966

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20171102 AND 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 783530

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171121

Year of fee payment: 10

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171123

Year of fee payment: 10

Ref country code: IT

Payment date: 20171124

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008013966

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181104

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181104