[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2047558A1 - Antenne isotrope et capteur de mesure associe - Google Patents

Antenne isotrope et capteur de mesure associe

Info

Publication number
EP2047558A1
EP2047558A1 EP07787617A EP07787617A EP2047558A1 EP 2047558 A1 EP2047558 A1 EP 2047558A1 EP 07787617 A EP07787617 A EP 07787617A EP 07787617 A EP07787617 A EP 07787617A EP 2047558 A1 EP2047558 A1 EP 2047558A1
Authority
EP
European Patent Office
Prior art keywords
elementary
antenna
antennas
axis
ifa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07787617A
Other languages
German (de)
English (en)
Other versions
EP2047558B1 (fr
Inventor
Mathieu Huchard
Christophe Delaveaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2047558A1 publication Critical patent/EP2047558A1/fr
Application granted granted Critical
Publication of EP2047558B1 publication Critical patent/EP2047558B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the invention relates to an isotropic antenna capable of transmitting or receiving an electromagnetic field over a wide frequency spectrum.
  • the invention also relates to a physical magnitude measuring sensor which comprises an antenna according to the invention.
  • the invention applies to communicating objects whose size is small compared to the wavelengths used for communication.
  • the objects concerned by the invention are terminals having dimensions of the order of a few centimeters operating in the ISM (Industrial Scientific Medical), UHF (UHF for Ultra High Frequency), VHF ( VHF for "Very High Frequency”), SHF (SHF for "Super High Frequency”), EHF (EHF for "Extremly High Frequency”).
  • the antennas that equip such terminals have reduced dimensions compared to operating wavelengths ⁇ (typically less than 0.5 ⁇ ). This specificity of the antennas defines a category of antennas commonly called "miniature antennas".
  • the proposed antenna is an antenna that applies, among other things, to low-range, low-speed and low-power applications such as, for example: - wireless networks of scattered sensors: building monitoring, environmental monitoring, sensors used in industrial settings; - home automation: switches, remote controls, etc. ;
  • the applications mainly concerned by the invention are applications for which the orientation of one or more devices intended to communicate together is random and changing.
  • the quality of the radio link must however remain constant regardless of the orientation.
  • an antenna whose radiation characteristics are substantially isotropic is therefore ideally sought.
  • the purpose of the proposed invention is to answer this problem.
  • the antennas used to date in the applications mentioned above are omnidirectional type but it is noted, however, that they always have directions in which the radiation is zero. Transmission is impossible in these directions.
  • a second aspect affecting the quality of the transmission is the polarization mismatch of the waves transmitted or received by the antenna. When the polarization of the waves is linear, tilting the antennas relative to each other can lead to orthogonal polarization directions. In such a case, the transmitted power becomes zero.
  • FIG. 1 represents a first example of miniature antenna structure of the known art.
  • Two dipoles D1, D2 of half-wave length are arranged orthogonally.
  • the supply signals V1 and V2 respective dipoles D1 and D2 are applied at the intersection of the two dipoles.
  • the power supplies are in quadrature phase:
  • V2 Vl e D ⁇ / 2
  • the radiation of a dipole is generated by a current distribution which is established along the dipole, in a half-wave resonance mode.
  • the produced radiation is then maximum in the direction orthogonal to the dipole and it is zero in the direction of the dipole. Due to the cross arrangement of the two dipoles and their phase quadrature power supply, the direction of the maximum radiation of one corresponds to the zero radiation direction of the other.
  • the set of two dipoles radiates in all directions. The radiation is thus almost isotropic in power.
  • the characteristics of the emitted radiation are as follows: the difference between the minimum and the maximum power emitted is typically 4.7 dB (which is considered a "good" isotropy in power;
  • the polarization of the transmitted waves is circular in the direction perpendicular to the plane of the dipoles and rectilinear in the plane of the dipoles; the typical bandwidth of the transmitted waves is substantially equal to 10% of the central frequency.
  • FIGS. 2A and 2B show a second example of miniature antenna structure of the known art.
  • the antenna shown in FIGS. 2A and 2B is an inverted F antenna commonly called IFA antenna (IFA for "Inverted F - Antenna").
  • An IFA antenna consists of an electrically conductive plane 1 (ground plane), a wired or planar metal part 2, commonly called “roof" of the antenna, arranged most often parallel to the ground plane (but can also not being parallel to the ground plane), an electrically conductive connection 3 placed at a first end of the roof, in a first plane perpendicular to the ground plane and which bypasses the roof and the ground plane, and an excitation means 4, for example a wire probe, placed in a second plane perpendicular to the ground plane and which is connected to an RF radiofrequency source which creates a potential difference between the roof and the ground plane.
  • the second end of the roof 2 is in open circuit.
  • the ground plane 1 preferably has dimensions larger than the roof so that, from a geometric point of view, the projection of the roof on the ground plane lies entirely within the ground plane.
  • the roof 2, the short-circuit 3 and the excitation means 4 draw, seen in profile, an inverted F which is at the origin of the name of the antenna (see Figure 2A).
  • the length 12 of the roof 2 is substantially equal to ⁇ g / 4, where ⁇ g is the guided wavelength of the antenna.
  • the distance h separating the roof 2 from the ground plane 1 is on average equal to a small fraction of the wavelength ⁇ g, for example ⁇ g / 20, and the distance d which separates the plane in which the ground is placed.
  • circuit of the plane in which is placed the excitation means is chosen to match the impedance of the antenna to the RF source.
  • a quarter-wave resonance mode is established between the roof 2 and the ground plane. Such an antenna is not isotropic.
  • the difference between the minimum and the maximum power emitted by the antenna varies from 9.5 dB to 28 dB.
  • the value of 9.5 dB is obtained for a small mass plane
  • the polarization As far as the polarization is concerned, it is close to a linear state on the whole radiation pattern, except for two reduced aperture lobes for which the polarization is quasi-circular. The uniformity in circular polarization is therefore quite bad.
  • the bandwidth is typically equal to 1.25% of the center frequency.
  • Miniature antennas of the known art have many disadvantages.
  • the miniature antenna of the invention does not have these disadvantages.
  • the invention relates to an antenna which comprises four elementary IFA antennas, each elementary IFA antenna comprising a ground plane, a roof, a short circuit between the ground plane and the roof and a means of excitation, the four antennas IFA elementary elements being distributed around an axis in a first set of two IFA antennas having essentially equivalent far-field elementary radiations and a second set of two IFA antennas having substantially equivalent far-field elementary radiations, the two IFA antennas of the first set being aligned along a first alignment axis substantially perpendicular to the axis and the two IFA antennas of the second set being aligned along a second alignment axis substantially perpendicular to the axis, the first alignment axis and the second axis of alignment.
  • the excitation means of the four elementary IFA antennas being fed by radio frequency signals of the same amplitude, the phases of which follow a progressive law substantially in quadrature by rotation around the axis (0 °, 90 °, 180 °, 270 °).
  • the two elementary IFA antennas of the same set of two antennas are identical and symmetrical with respect to the axis.
  • the four elementary IFA antennas are all identical.
  • the roofs of the four elementary IFA antennas are distributed on a flat surface substantially perpendicular to the axis. According to yet another additional feature of the invention, the roofs of the four elementary IFA antennas are substantially inscribed in a circle. According to yet another additional characteristic of the invention, the roofs of the four elementary IFA antennas are substantially inscribed in an ellipse.
  • the roofs of the four elementary IFA antennas are distributed over a substantially conical closed surface.
  • the roofs of the four elementary IFA antennas are distributed on a cylindrical surface whose generator is parallel to the axis.
  • the cylindrical surface is a cylindrical surface whose directrix curve draws a circle, or a square, or a rectangle.
  • the roofs of the four elementary IFA antennas are formed by metallizations carried out on the same substrate.
  • the ground planes of the four elementary IFA antennas are formed by the same conductive layer.
  • the antenna comprises means for switching the progressive law in quadrature between a first direction of rotation about the axis and a second direction of rotation about the axis, opposite the first direction of rotation. meaning .
  • the invention also relates to a physical quantity measuring sensor comprising means for measuring the physical quantity and a transmitter equipped with an antenna able to transmit the measurement of the physical quantity in the form of a modulation of an electromagnetic wave. emitted by the transmitter, characterized in that the antenna is an antenna according to the invention.
  • An antenna according to the invention consists of a combination of four elementary IFA antennas.
  • an antenna according to the invention comprises a single ground plane, four electrically conductive patterns placed above the ground plane and each forming an IFA antenna roof, four short-circuit connections and four excitation means. .
  • the four elementary IFA antennas are grouped according to two sets of two antennas, the two IFA antennas of the same set being designed so that their elementary radiations in far field are equivalent.
  • Two IFA antennas have equivalent far-field elemental radiations when, being placed independently in the same frame with the same orientation, they radiate in the band of useful frequencies, a wave of the same amplitude and of the same phase in each direction of space.
  • a simple way to obtain two IFA antennas with equivalent elementary radiations consists in producing identical antennas, that is to say having the same geometry (same shape and same dimensions). It is this embodiment that will be mainly described in the following patent application, as a preferred embodiment of the invention. It is possible, however, to make two IFA antennas having different shapes or dimensions and still having equivalent elemental radiations. Examples of such antennas will be described later with reference to FIGS. 10A and 10B.
  • the ground plane of an antenna of the invention consists of a conductive element whose surface may admit, if necessary, metallization spares and electronic components.
  • the surface of the ground plane may be a circular, elliptical, square, rectangular planar surface, a conical surface, a cylindrical, cubic, or parallelepipedic, cylindrical surface, and so on.
  • the surface that defines the ground plane has a symmetry with respect to an axis.
  • the surface of the ground plane is of dimension greater than or equal to the surface in which the electrically conductive patterns forming roofs are integrated so that, from a geometrical point of view, the projection, on the ground plane, of the surface in which the motifs are integrated electrically conductive roofs lies entirely within the ground plane.
  • the radiation of the antenna is all the more isotropic in power that the ground plane is small. This is why the ground plane will preferably be chosen of dimensions equal to the dimensions of the surface in which the electrically conductive patterns forming roofs are integrated. The ground plane will most often be larger when it has, for integration reasons, a circuit support function such as, for example, the RF circuit that supplies the elementary IFA antennas.
  • the RF circuit that supplies the four power supply connections can indeed be made on the upper or lower side of the ground plane.
  • the influence of its presence on the radiation of the antenna is negligible when properly designed.
  • Different possibilities of realization of the supply circuit are possible in the form of a parallel network or series of microstrip line including or not localized elements (couplers, phase shifters, etc.).
  • the patterns forming roofs may be son or flat elements whose contours can have very varied shapes: rectangular, trapezoidal, elliptical, arched or not, rounded at the ends or not, the general shape of a pattern and its dimensions strongly determining the radiation characteristics of the antenna, in particular its operating frequency.
  • the patterns are arranged either parallel to the ground plane, or inclined at an angle to it (the angle of inclination of the patterns can be equal, for example, to 30 ° and can reach 45 ° or more).
  • the patterns may be made on substrate by printed circuit techniques or by machining conductive parts, for example metal.
  • the patterns are grouped into a first pair of identical patterns and a second pair of identical patterns.
  • the patterns of a pair of identical patterns are aligned along an alignment axis perpendicular to the Oz axis of the antenna, the two alignment axes of the two pairs of patterns intersecting at right angles to the axis of the antenna. 'antenna.
  • the two conductive connections forming a short circuit between the ground plane and the ends of the conductive patterns of a pair of conductive patterns are arranged symmetrically with respect to the axis Oz. It is the same of the two excitation means associated with the two conductive patterns of the same pair of conductive patterns.
  • the four excitation means supply the four IFA antennas with signals of substantially equal amplitude, phase-shifted according to a progressive phase-quadrature law, so that, for antennas al-a4 which follow one another about the axis Oz (in clockwise or anti-clockwise), it comes:
  • Two IFA antennas aligned along an axis perpendicular to the axis of the antenna are strongly coupled (typically -3 to -4 dB). Their power supplies are in phase opposition (180 °) but, because of their opposite orientations, their resonances are in phase.
  • the coupling phenomenon is beneficial here because it advantageously allows a reduction in the length L of the roofs of the two IFA antennas which are facing each other compared to the case of a single isolated IFA having the same operating frequency.
  • the dimension L can thus be less than ⁇ / 4.
  • the set is smaller than the simple combination of dipoles cross, which is an advantage of the invention.
  • the coupling between two elementary IFA antennas of the invention whose roofs are perpendicular to each other is important. (-2 to -3dB).
  • the concentrated electric field between the ground plane and the roof of the antenna is oriented in the normal direction to the ground plane.
  • two IFA antennas are arranged on the same ground plane, their field lines are oriented in the same direction perpendicular to the ground plane. There is then a strong coupling between them.
  • This coupling is a function of the distance between the antennas and depends little on their orientations. For this reason, it is impossible to have two IFA antennas crosswise according to the principle of operation of the dipoles in cross. The strong coupling would not allow to feed the IFA antennas independently in quadrature phase.
  • an isotropic antenna according to the invention advantageously has the following characteristics:
  • Circular polarization in the normal direction to the plane of the antenna
  • the bandwidth relative to -1OdB is between 1 and 20% depending, in particular, on the RF circuit used power supply and the characteristics of elementary IFA antennas.
  • FIG. 1 already described represents a first example of a miniature antenna structure of the known art
  • FIGS. 2A and 2B already described represent a second example of a miniature antenna structure of the known art
  • FIG. 3 represents a view from above of a first antenna example according to the preferred embodiment of the invention.
  • FIG. 4 represents a view of a second antenna example according to the preferred embodiment of the invention
  • FIG. 5 represents a perspective view of a third antenna example according to the preferred embodiment of the invention
  • FIG. 6 represents a perspective view of a fourth antenna example according to the preferred embodiment of the invention.
  • FIG. 7 represents a perspective view of a fifth antenna example according to the preferred embodiment of the invention
  • FIGS. 8A and 8B show, respectively, a perspective view and a top view of a sixth antenna example according to the preferred embodiment of the invention
  • - Figures 9A and 9B show, respectively, a perspective view and a top view of a seventh antenna example according to the preferred embodiment of the invention
  • FIGS. 10A and 10B respectively show a perspective view and a top view of examples of miniature antennas according to a different embodiment of the preferred embodiment of the invention.
  • Figures HA and HB show comparative curves antenna covers of the prior art and an antenna according to the invention
  • FIG. 12 represents a comparative histogram of the coverage gain at 90% in rectilinear polarization of antennas of the prior art and of an antenna of the invention
  • FIG. 13 shows a side view of an embodiment of the sensor according to the invention.
  • FIG. 14 represents an application of the sensor of the invention to motion capture.
  • FIGS 3-9B illustrate different examples of antennas according to the preferred embodiment of the invention.
  • the roof patterns of the IFA antennas are identical in pairs, two identical patterns being aligned along an alignment axis perpendicular to the axis of the antenna.
  • FIG. 3 represents a first example of an antenna according to the preferred embodiment of the invention.
  • the four conductive patterns 2 forming roofs IFA antennas are all identical (for example, in the form of rectangle) and inscribed in a circle C.
  • the conductive connections that connect the conductive patterns forming roofs to the ground plane are placed at the outer ends of the grounds (ie substantially on the periphery of the circle C), in planes perpendicular to the plane of the figure.
  • the roof patterns may be discrete metallic elements or conductive elements made on the same substrate.
  • FIG. 4 represents a view from above of a second antenna example according to the preferred embodiment of the invention.
  • the four rectangular-shaped conductor patterns 2 are distributed over an ellipse E.
  • the conductive patterns 2 may be discrete elements or elements made on the same substrate.
  • FIG. 5 represents a perspective view of a third antenna example according to the preferred embodiment of the invention.
  • the conductive patterns forming roofs 2 are in the form of parallelepipeds. Patterns 2 are here formed on a same substrate S. They could also be discrete elements.
  • FIG. 6 represents a perspective view of a fourth antenna example according to the preferred embodiment of the invention.
  • the ground plane 1 has a conical surface and the conductive patterns 2 are arranged on a substrate which also has a conical shape.
  • the axis of symmetry Oz is here the axis of the cones.
  • FIG. 7 represents a perspective view of a fifth antenna example according to the preferred embodiment of the invention.
  • the roof patterns of IFA antennas are distributed on a cylindrical surface whose generator is parallel to the axis of symmetry of the antenna and whose directing curve draws a square.
  • FIGS. 8A and 8B show two views of a sixth antenna example according to the preferred embodiment of the invention.
  • the roof patterns of the IFA antennas are located in the same plane perpendicular to the axis of the antenna and are bent to be inscribed in a square surface.
  • FIGS. 9A and 9B show two views of a seventh antenna example according to the preferred embodiment of the invention.
  • the roof patterns of the IFA antennas are located in the same plane perpendicular to the axis of the antenna and are folded to be inscribed in a circular surface.
  • the patterns 2 are folded, for example, in the form of spirals.
  • the patterns 2 are distributed on a substrate Circular S placed next to a circular mass plane.
  • the circles defined by the ground plane and the substrate S are parallel and their centers are aligned along the axis Oz.
  • FIGS. 10A and 10B represent, respectively, a perspective view and a top view of examples of miniature antennas according to a different embodiment of the preferred embodiment of the invention.
  • the two IFA antennas of a set of two aligned antennas have substantially equivalent far-field radiations but their geometries are not identical.
  • FIG. 10A represents an example where two aligned elementary IFA antennas have roofs of different lengths Ia, Ib and different heights h, hb with respect to the ground plane.
  • FIG. 10B shows another example where each pair of two aligned elementary IFA antennas comprises an antenna whose roof is of rectangular shape (2a, 2c) and another antenna whose roof is of elliptical shape (2b, 2d).
  • the roof patterns are made by photolithography.
  • the ground connections 3 are located at the outer ends of the patterns 2.
  • the connections 3 are copper wires 0.6 mm in diameter, one end of which is welded to the pattern 2 and the other end to the ground plane.
  • the supply wires 4 are also 0.6mm diameter copper wires. The ends of the ground wires 3 and the supply wires 4 which are located on the side of the substrate S are distributed on a circle X.
  • the distance which separates, on the same pattern 2, the end of the ground wire 3 of the end of the feed wire 4 is substantially equal to 3.6mm.
  • the distance separating the ground plane 1 from the substrate S is substantially equal to 4 mm.
  • the diameter of the substrate S is substantially equal to 25 mm and the diameter of the ground plane is greater than the diameter of the substrate S, for example equal to 30 mm.
  • other values of the diameter of the ground plane can be envisaged if the condition is respected by a diameter greater than or equal to the diameter of the substrate S.
  • the antenna described above has an operating frequency substantially equal to 2.5GHz.
  • the bandwidth and the exact frequency of impedance matching also depend on the power supply network used.
  • the difference between the minimum and the maximum of the power emitted by the antenna is typically 5.6 dB, which corresponds to a good isotropy in power.
  • the polarization of transmitted waves is circular along the axis Oz and rectilinear in the plane of the patterns 2.
  • the average axial ratio diagram is substantially 49%.
  • the table below shows the typical performances of the difference between maximum and minimum of the directivity and mean diagram on the axial ratio diagram for the antenna of the invention and two antennas of the prior art. That is, the combination of cross dipoles and the IFA antenna alone.
  • the difference between the maximum and the minimum of the directivity diagram makes it possible to quantify the isotropy in power.
  • the average of the axial ratio diagram makes it possible to quantify the uniformity of the polarization with respect to the circular state. An average of 100% means that the antenna radiates with a perfectly circular polarization in all directions.
  • This criterion makes it possible to compare antennas with each other. This criterion is the coverage of antennas.
  • the coverage of an antenna is the proportion of orientation / inclination covered by the antenna as a function of the minimum power it receives when it is illuminated by an incident plane wave of unit power density.
  • FIG. 12 represents a comparative histogram of the 90% coverage gain, in rectilinear polarization, for the three antennas considered: the gain G 1 corresponds to the half-wave dipoles, the gain G 2 corresponds to a single IFA antenna and the gain G3 corresponds to an antenna according to the invention.
  • Curves C1, C2, C3 of Figures HA and HB are the typical typical coverage curves of an antenna according to the invention (typical size ⁇ / 5), an IFA antenna alone and a combination of cross dipoles. (typical size ⁇ / 2).
  • FIG. 13 represents a profile view of an embodiment of a sensor provided with an antenna according to the invention.
  • the antenna is, for example, an antenna as described in FIGS. 9A-9B.
  • the sensor comprises a multilayer printed circuit board CI consisting of an insulating layer 5 on which are deposited, on one side, a conductive layer 6 which constitutes the ground plane and, on the other side, a substrate 7 on which are integrated different circuits xl, x2, x3 such as integrated circuits, battery, sensor, RF power supply network, etc.
  • the dimensions of the sensor are small, so that the antenna is the largest component.
  • the diameter D of the sensor is thus typically equal to ⁇ / 5 or ⁇ / 4. This dimension is to be compared to the diameter ⁇ / 2 half-wave dipoles cross.
  • the realization of the sensor in printed circuit technology advantageously allows mass production at low costs.
  • the combination of electronic circuits and the antenna advantageously allows the realization of an autonomous sensor. Components and devices placed under the ground plane disturb the radiation very little.
  • An example of use of the isotropic antenna of the invention will now be described, in the context of a TDMA network (TDMA for Time Division Multiple Access), with reference in Figure 14.
  • the TDMA network is a star network for motion capture that includes a master node NM and a set of slave nodes N1-N14 that are moving relative to the master node. Each slave node of the network is placed a sensor which comprises an antenna according to the invention.
  • the slave nodes are distributed as follows:
  • the node N1 is a point of a tennis racket
  • the node N2 is a point of a tennis ball
  • N3-N14 nodes are points of the body of a tennis player.
  • This star network orchestrated by the master node, makes it possible to recover, at determined time intervals, the data delivered by the various sensors whose positions vary over time.
  • Each sensor located at a slave node is optimized in terms of size, integration and power consumption. It consists of a physical measurement sensor and its conditioning, a processing unit and a radio transmitter / receiver connected to an isotropic antenna according to the invention. Autonomous, it has an on-board power source.
  • the sensor located at the master node is less subject to constraints of size and consumption but also has a radio transmitter / receiver and a processing unit.
  • the antenna that equips the sensor located at the master node may be an isotropic antenna according to the invention or a dipole antenna. All the advantage of the antenna according to the invention in this context lies in its radiation pattern which covers the entire space, in its circular polarization state which optimizes the radio transmission whatever the inclination of the sensors and in its low volume requirement.
  • the antenna according to the invention which equips each sensor located at a slave node has an isotropic radiation power in all directions and an optimized circular polarization so that there is no direction for which the transmission between a slave node and the master node would be interrupted.
  • the antenna according to the invention equipping the slave nodes is circularly polarized, and the antenna equipping the master node is polarized rectilinearly. Thus, the transmission can not be interrupted due to polarization mismatch.
  • the antenna according to the invention increases very little the overall dimensions of the sensors because its planar form factor with a ground plane on one of these faces allows easy integration on the sensor.
  • the antenna can be made with the same printed technology as the rest of the sensor circuit.
  • the functions of the sensor and the battery integrate multilayer under the ground plane of the antenna as previously mentioned.
  • the master node transmits a time synchronization word and information addressed to the slave nodes, as well as a cyclic redundancy code also known as CRC code (CRC for "Cyclic Redundancy Code”). ").
  • CRC code Cyclic Redundancy Code
  • the sensors of the invention advantageously make it possible to ensure a robust radio frequency communication link to the variations of positions. Fewer errors are detected and the use of the information retrieval procedure is much less necessary, helping to optimize real-time throughput and limit sensor consumption.
  • Different variants of antennas can be made in the context of the invention, namely, for example, reconfigurable antennas, diversity antennas or antennas with limited coverage at half-spaces.
  • Reconfigurable antennas include means for switching phase states. A first phase state can then correspond to a 0 ° -> 90 ° -> 180 ° -> 270 ° phase progression between the different elementary antennas, whereas a second phase state corresponds to a 0 ° phase progression.
  • the diversity antennas are made, when the coupling level between elementary IFA antennas allows it, by feeding them by two channels or by four independent channels.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne une antenne qui comprend quatre antennes IFA élémentaires, chaque antenne IFA élémentaire comprenant un plan de masse (1), un toit (2), un court-circuit (3) entre le plan de masse et le toit et un moyen d'excitation (4), les quatre antennes IFA élémentaires étant réparties autour d'un axe (Oz) en un premier ensemble de deux antennes IFA ayant des rayonnements élémentaires sensiblement équivalents et un deuxième ensemble de deux antennes IFA ayant des rayonnements élémentaires équivalents, les moyens d'excitation (4) des quatre antennes IFA élémentaires étant alimentés par des signaux radiofréquences de même amplitude dont les phases suivent une loi sensiblement progressive en quadrature par rotation autour de l'axe. Applications aux capteurs de mouvement.

Description

ANTENNE ISOTROPE ET CAPTEUR DE MESURE ASSOCIE
Domaine technique et art antérieur
L' invention concerne une antenne isotrope apte à émettre ou recevoir un champ électromagnétique sur un large spectre de fréquences. L'invention concerne également un capteur de mesure de grandeur physique qui comprend une antenne selon l'invention.
L'invention s'applique à des objets communicants dont la taille est petite comparée aux longueurs d'onde utilisée pour la communication. Typiquement, les objets concernés par l'invention sont des terminaux ayant des dimensions de l'ordre de quelques centimètres fonctionnant dans les bandes ISM (ISM pour « Industrial Scientific Médical ») , UHF (UHF pour « Ultra High Frequency ») , VHF (VHF pour « Very High Frequency ») , SHF (SHF pour « Super High Frequency ») , EHF (EHF pour « Extremly High Frequency ») .
Les antennes qui équipent de tels terminaux ont des dimensions réduites par rapport aux longueurs d'onde λ de fonctionnement (dimensions typiquement inférieures à 0.5 λ) . Cette spécificité des antennes définit une catégorie d' antennes communément appelée «antennes miniatures».
L'antenne proposée est une antenne qui s'applique, entre autres, à des applications de faible portée, bas débit et basse consommation telles que, par exemple : - les réseaux sans fil de capteurs disséminés : surveillance de bâtiments, surveillance de l'environnement, capteurs utilisés en milieu industriel ; - la domotique : interrupteurs, télécommandes, etc. ;
- les accessoires pour réseaux personnels tels que kits mains libres, souris d'ordinateur, stylos intelligents, etc. ; - les capteurs de capture de mouvements (objets, êtres vivants) ;
- les sondes de mesures de champ électromagnétique.
Les applications principalement concernées par l'invention sont des applications pour lesquelles l'orientation d'un ou de plusieurs appareils destinés à communiquer ensemble est aléatoire et changeante. La qualité de la liaison radio doit cependant rester constante quelle que soit l'orientation. On cherche donc idéalement une antenne dont les caractéristiques de rayonnement soient sensiblement isotropes. L' invention proposée a pour but de répondre à ce problème .
Classiquement, les antennes utilisées jusqu'à ce jour dans les applications mentionnées ci-dessus sont de type omnidirectionnel mais on relève, cependant, qu'elles présentent toujours des directions dans lesquelles le rayonnement est nul. Une transmission est alors impossible dans ces directions. Un second aspect nuisant à la qualité de la transmission est la désadaptation de polarisation des ondes émises ou reçues par l'antenne. Lorsque la polarisation des ondes est linéaire, une inclinaison des antennes l'une par rapport à l'autre peut conduire à des directions de polarisation orthogonales. Dans un tel cas, la puissance transmise devient nulle.
La recherche de structures d' antennes présentant des rayonnements isotropes a commencé dans les années 1960-1970 pour des applications spatiales. Elle s'est prolongée jusque dans les années 1990. Le problème qui se posait alors était le suivant : comment garder un lien radio constant avec un satellite ou une sonde spatiale dont l'orientation peut varier de façon quelconque pendant une transmission ? Toutes les solutions proposées ont été des antennes de grandes dimensions, c'est-à-dire dont les dimensions sont égales à plusieurs fois la longueur d'onde de fonctionnement. Leur principe de fonctionnement ne permet pas de miniaturiser de telles antennes. Pour cette raison et du fait de leur facteur de forme inadapté, elles ne sont pas transposables dans les champs d'application des objets communicants de 1' invention . En ce qui concerne les antennes miniatures, deux exemples de structure d'antenne de l'art connu et leur principe de fonctionnement sont présentés ci-dessous.
La figure 1 représente un premier exemple de structure d'antenne miniature de l'art connu. Deux dipôles Dl, D2 de longueur demi-onde sont disposés orthogonalement . Les signaux d'alimentation Vl et V2 des dipôles respectifs Dl et D2 sont appliqués au croisement des deux dipôles. Les alimentations sont en quadrature de phase :
V2 = Vl eDπ/2 Le rayonnement d'un dipôle est engendré par une distribution de courant qui s'établit, le long du dipôle, selon un mode de résonance demi-onde. Le rayonnement produit est alors maximum dans la direction orthogonale au dipôle et il est nul dans la direction du dipôle. Du fait de la disposition en croix des deux dipôles et de leur alimentation en quadrature de phase, la direction du rayonnement maximal de l'un correspond à la direction de rayonnement nul de l'autre. L'ensemble des deux dipôles rayonne donc dans toutes les directions. Le rayonnement est ainsi quasi isotrope en puissance. De fait, les caractéristiques du rayonnement émis sont les suivantes : l'écart entre le minimum et le maximum de puissance émise est typiquement de 4.7dB (ce qui est considéré comme une « bonne » isotropie en puissance ;
- la polarisation des ondes émises est circulaire dans la direction perpendiculaire au plan des dipôles et rectiligne dans le plan des dipôles ; - la bande passante typique des ondes émises est sensiblement égale à 10% de la fréquence centrale.
Les figures 2A et 2B représentent un deuxième exemple de structure d'antenne miniature de l'art connu. L'antenne représentée aux figures 2A et 2B est une antenne en F inversé communément appelée antenne IFA (IFA pour « Inverted F - Antenna ») .
Une antenne IFA est constituée d'un plan électriquement conducteur 1 (plan de masse), d'une pièce métallique filaire ou planaire 2, communément appelée « toit » de l'antenne, disposée le plus souvent parallèlement au plan de masse (mais pouvant également ne pas être parallèle au plan de masse), d'une connexion électriquement conductrice 3 placée à une première extrémité du toit, dans un premier plan perpendiculaire au plan de masse et qui court-circuite le toit et le plan de masse, et d'un moyen d'excitation 4, par exemple une sonde filaire, placé dans un deuxième plan perpendiculaire au plan de masse et qui est relié à une source radiofréquence RF qui crée une différence de potentiel entre le toit et le plan de masse. La deuxième extrémité du toit 2 est en circuit ouvert. Le plan de masse 1 a, de préférence, des dimensions plus grandes que le toit de sorte que, d'un point de vue géométrique, la projection du toit sur le plan de masse se situe entièrement à l'intérieur du plan de masse.
Le toit 2, le court-circuit 3 et le moyen d'excitation 4 dessinent, vus de profil, un F inversé qui est à l'origine du nom de l'antenne (cf. figure 2A) . La longueur 12 du toit 2 est sensiblement égale à λg/4, où λg est la longueur d'onde guidée de l'antenne. La distance h qui sépare le toit 2 du plan de masse 1 est en moyenne égale à une petite fraction de la longueur d'onde λg, par exemple λg/20, et la distance d qui sépare le plan dans lequel est placé le court- circuit du plan dans lequel est placé le moyen d'excitation est choisie pour adapter l'impédance de l'antenne à la source RF. Un mode de résonance quart d'onde s'établit entre le toit 2 et le plan de masse. Une telle antenne n'est pas isotrope. Elle possède une direction qui présente une forte atténuation et cette atténuation est d' autant plus importante que le plan de masse est grand. L'écart entre le minimum et le maximum de puissance émise par l'antenne varie de 9,5 dB à 28 dB . La valeur de 9,5 dB est obtenue pour un plan de masse de petites dimensions
(i.e. 11=0, 22λg) et la valeur de 28 dB pour un plan de masse de grandes dimensions (i.e. 11=0,4 λg) .
En ce qui concerne la polarisation, celle-ci est proche d'un état linéaire sur l'ensemble du diagramme de rayonnement, mis à part pour deux lobes d'ouverture réduits pour lesquels la polarisation est quasi circulaire. L'uniformité en polarisation circulaire est donc assez mauvaise. La bande passante est typiquement égale à 1,25 % de la fréquence centrale.
Les antennes miniatures de l'art connu présentent de nombreux inconvénients. L'antenne miniature de l'invention ne présente pas ces inconvénients . Exposé de l'invention
En effet l'invention concerne une antenne qui comprend quatre antennes IFA élémentaires, chaque antenne IFA élémentaire comprenant un plan de masse, un toit, un court-circuit entre le plan de masse et le toit et un moyen d'excitation, les quatre antennes IFA élémentaires étant réparties autour d'un axe en un premier ensemble de deux antennes IFA ayant des rayonnements élémentaires en champ lointain sensiblement équivalents et un deuxième ensemble de deux antennes IFA ayant des rayonnements élémentaires en champ lointain sensiblement équivalents, les deux antennes IFA du premier ensemble étant alignées selon un premier axe d'alignement sensiblement perpendiculaire à l'axe et les deux antennes IFA du deuxième ensemble étant alignées selon un deuxième axe d'alignement sensiblement perpendiculaire à l'axe, le premier axe d'alignement et le deuxième axe d'alignement se coupant à angle droit en un point de l'axe, les moyens d'excitation des quatre antennes IFA élémentaires étant alimentés par des signaux radiofréquences de même amplitude dont les phases suivent une loi progressive sensiblement en quadrature par rotation autour de l'axe (0°, 90°, 180°, 270°).
Selon une caractéristique supplémentaire de l'invention, les deux antennes IFA élémentaires d'un même ensemble de deux antennes sont identiques et symétriques par rapport à l'axe.
Selon une autre caractéristique supplémentaire de l'invention, les quatre antennes IFA élémentaires sont toutes identiques.
Selon encore une autre caractéristique supplémentaire de l'invention, les toits des quatre antennes IFA élémentaires sont répartis sur une surface plane sensiblement perpendiculaire à l'axe. Selon encore une autre caractéristique supplémentaire de l'invention, les toits des quatre antennes IFA élémentaires sont sensiblement inscrits dans un cercle. Selon encore une autre caractéristique supplémentaire de l'invention, les toits des quatre antennes IFA élémentaires sont sensiblement inscrits dans une ellipse.
Selon encore une autre caractéristique supplémentaire de l'invention, les toits des quatre antennes IFA élémentaires sont répartis sur une surface fermée sensiblement conique.
Selon encore une autre caractéristique supplémentaire de l'invention, les toits des quatre antennes IFA élémentaires sont répartis sur une surface cylindrique dont la génératrice est parallèle à l'axe.
Selon encore une autre caractéristique supplémentaire de l'invention, la surface cylindrique est une surface cylindrique dont la courbe directrice dessine un cercle, ou un carré, ou un rectangle.
Selon encore une autre caractéristique supplémentaire de l'invention, les toits des quatre antennes IFA élémentaires sont formés par des métallisations réalisées sur un même substrat. Selon encore une autre caractéristique supplémentaire de l'invention, les plans de masse des quatre antennes IFA élémentaires sont formés par une même couche conductrice. Selon encore une autre caractéristique supplémentaire de l'invention, l'antenne comprend des moyens pour commuter la loi progressive en quadrature entre un premier sens de rotation autour de l'axe et un deuxième sens de rotation autour de l'axe, opposé au premier sens .
L' invention concerne également un capteur de mesure de grandeur physique comprenant des moyens de mesure de la grandeur physique et un émetteur muni d'une antenne apte à émettre la mesure de la grandeur physique sous la forme d'une modulation d'une onde électromagnétique émise par l'émetteur, caractérisée en ce que l'antenne est une antenne selon l'invention.
Une antenne selon l'invention est constituée d'une association de quatre antennes IFA élémentaires.
Préférentiellement, une antenne selon l'invention comprend un seul plan de masse, quatre motifs électriquement conducteurs placés au dessus du plan de masse et formant, chacun, un toit d'antenne IFA, quatre connexions de court-circuit et quatre moyens d' excitation .
Les quatre antennes IFA élémentaires sont regroupées selon deux ensembles de deux antennes, les deux antennes IFA d'un même ensemble étant conçues de façon que leurs rayonnements élémentaires en champ lointain soient équivalents.
Deux antennes IFA ont des rayonnements élémentaires en champ lointain équivalents lorsque, étant placées indépendamment dans le même repère avec la même orientation, elles rayonnent, dans la bande de fréquences utiles, une onde de même amplitude et de même phase dans chaque direction de l'espace.
Un moyen simple pour obtenir deux antennes IFA à rayonnements élémentaires équivalents consiste à réaliser des antennes identiques, c'est-à-dire ayant la même géométrie (même forme et mêmes dimensions). C'est ce mode de réalisation qui sera principalement décrit dans la suite de la demande de brevet, à titre de mode de réalisation préférentiel de l'invention. II est cependant possible de réaliser deux antennes IFA ayant des formes ou des dimensions différentes et présentant malgré tout des rayonnements élémentaires équivalents. Des exemples de telles antennes seront décrits ultérieurement, en référence aux figures 1OA et 1OB.
Le plan de masse d'une antenne de l'invention est constitué d'un élément conducteur dont la surface peut admettre, si cela s'avère nécessaire, des épargnes de métallisation et des composants électroniques. La surface du plan de masse peut être une surface plane de forme circulaire, elliptique, carrée, rectangulaire, une surface conique, une surface qui se referme sur elle-même de type cylindrique, cubique ou parallélépipédique, etc. De façon générale, la surface qui définit le plan de masse présente une symétrie par rapport à un axe. La surface du plan de masse est de dimension supérieure ou égale à la surface dans laquelle s'intègrent les motifs électriquement conducteurs formant toits de sorte que, d'un point de vue géométrique, la projection, sur le plan de masse, de la surface dans laquelle s'intègrent les motifs électriquement conducteurs formant toits se situe entièrement à l'intérieur du plan de masse. Le rayonnement de l'antenne est d'autant plus isotrope en puissance que le plan de masse est petit. C'est pourquoi le plan de masse sera choisi préférentiellement de dimensions égales aux dimensions de la surface dans laquelle s'intègrent les motifs électriquement conducteurs formant toits. Le plan de masse sera le plus souvent de dimensions plus grandes lorsqu'il aura, pour des raisons d'intégration, une fonction de support de circuits comme, par exemple, le circuit RF qui alimente les antennes IFA élémentaires.
Le circuit RF qui alimente les quatre connexions d'alimentation peut en effet être réalisé sur la face supérieure ou inférieure du plan de masse. L'influence de sa présence sur le rayonnement de l'antenne est négligeable lorsqu'il est correctement conçu. Différentes possibilités de réalisation du circuit d'alimentation sont possibles sous la forme d'un réseau parallèle ou série de ligne microrubans incluant ou non des éléments localisés (coupleurs, déphaseurs, etc.).
Les motifs formant toits peuvent être des fils ou des éléments plats dont les contours peuvent avoir des formes très variées : rectangulaire, trapézoïdale, elliptique, repliée en arc ou non, arrondie aux extrémités ou non, la forme générale d'un motif et ses dimensions déterminant fortement les caractéristiques de rayonnement de l'antenne, en particulier sa fréquence de fonctionnement. Les motifs sont disposés soit parallèlement au plan de masse, soit inclinés d'un angle par rapport à celui-ci (l'angle d'inclinaison des motifs peut être égal, par exemple, à 30° et peut atteindre 45°, voire plus). Les motifs peuvent être réalisés sur substrat par des techniques de circuits imprimés ou par usinage de pièces conductrices, par exemple métalliques.
Selon le mode de réalisation préférentiel de l'invention, les motifs sont regroupés en une première paire de motifs identiques et une deuxième paire de motifs identiques. Les motifs d'une paire de motifs identiques sont alignés selon un axe d'alignement perpendiculaire à l'axe Oz de l'antenne, les deux axes d'alignement des deux paires de motifs se coupant à angle droit sur l'axe de l'antenne. Egalement, les deux connexions conductrices formant court-circuit entre le plan de masse et les extrémités des motifs conducteurs d'une paire de motifs conducteurs sont disposées symétriquement par rapport à l'axe Oz. Il en est de même des deux moyens d'excitation associés aux deux motifs conducteurs d'une même paire de motifs conducteurs.
Les quatre moyens d'excitation alimentent les quatre antennes IFA avec des signaux d'amplitudes sensiblement égales, déphasés selon une loi progressive en quadrature de phase de sorte que, pour des antennes al-a4 qui se succèdent autour de l'axe Oz (dans le sens des aiguilles d'une montre ou dans le sens inverse au sens des aiguilles d'une montre), il vient :
Deux antennes IFA alignées selon un axe perpendiculaire à l'axe de l'antenne sont fortement couplées (typiquement -3 à -4 dB) . Leurs alimentations sont en opposition de phase (180°) mais, en raison de leurs orientations opposées, leurs résonances sont en phase. Le phénomène de couplage est ici bénéfique car il permet avantageusement une réduction de la longueur L des toits des deux antennes IFA qui sont en regard l'une de l'autre comparativement au cas d'une seule IFA isolée présentant la même fréquence de fonctionnement. La dimension L peut être ainsi inférieure à λ/4. L'ensemble est donc plus petit que la simple combinaison de dipôles en croix, ce qui est un avantage lié à l'invention. De même, contrairement à la combinaison de dipôles en croix pour lesquels le couplage entre dipôles est faible (<-40dB) , le couplage entre deux antennes IFA élémentaires de l'invention dont les toits sont perpendiculaires l'un à l'autre est important (-2 à -3dB) . Le champ électrique concentré entre le plan de masse et le toit de l'antenne est orienté dans la direction normale au plan de masse. Lorsque deux antennes IFA sont disposées sur le même plan de masse, leurs lignes de champs sont orientées dans la même direction perpendiculaire au plan de masse. Il se produit alors un couplage fort entre elles. Ce couplage est fonction de la distance entre les antennes et dépend peu de leurs orientations. Pour cette raison, il est impossible de disposer deux antennes IFA en croix selon le principe de fonctionnement des dipôles en croix. Le fort couplage ne permettrait pas d'alimenter les antennes IFA indépendamment en quadrature de phase.
Dans le cadre de l'invention, le couplage entre les paires d'antennes IFA orthogonales est diminué du fait de l'espacement central laissé entre celles-ci. Le couplage est ainsi typiquement ramené entre -7dB et - 1OdB, ce qui permet une alimentation avec un déphasage de 90° entre antennes IFA adjacentes. L'espacement des antennes IFA entre elles tend à accroître la dimension totale de l'ensemble des antennes et constitue donc une limite à la miniaturisation de l'antenne. Cependant ceci est partiellement compensé par le phénomène de couplage évoqué précédemment, permettant ainsi de diminuer la longueur de chaque antenne IFA élémentaire. Du point de vue des performances électromagnétiques, une antenne isotrope selon l'invention présente avantageusement les caractéristiques suivantes :
- Typiquement 3 à 6 dB d' écart entre le maximum et le minimum de puissance rayonnée sur l'ensemble du diagramme de rayonnement ;
- Polarisation circulaire dans la direction normale au plan de l'antenne ;
- Polarisation rectiligne dans le plan de l'antenne ;
- Les coordonnées polaires Ee et Eφ du champ électrique émis ont des amplitudes égales ;
- La bande passante relative à -1OdB est comprise entre 1 et 20% en fonction, notamment, du circuit RF d'alimentation utilisé et des caractéristiques des antennes IFA élémentaires.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel fait en référence aux figures jointes, parmi lesquelles :
- La figure 1 déjà décrite représente un premier exemple de structure d'antenne miniature de l'art connu ;
- Les figures 2A et 2B déjà décrites représentent un deuxième exemple de structure d' antenne miniature de l'art connu ;
- La figure 3 représente une vue de dessus d'un premier exemple d'antenne selon le mode de réalisation préférentiel de l'invention ;
La figure 4 représente une vue d'un deuxième exemple d'antenne selon le mode de réalisation préférentiel de de l'invention ; - La figure 5 représente une vue en perspective d'un troisième exemple d'antenne selon le mode de réalisation préférentiel de l'invention ;
La figure 6 représente une vue en perspective d'un quatrième exemple d' antenne selon le mode de réalisation préférentiel de l'invention ;
La figure 7 représente une vue en perspective d'un cinquième exemple d' antenne selon le mode de réalisation préférentiel de l'invention ; - Les figure 8A et 8B représentent, respectivement, une vue en perspective et une vue de dessus d'un sixième exemple d'antenne selon le mode de réalisation préférentiel de l'invention ; - Les figures 9A et 9B représentent, respectivement, une vue en perspective et une vue de dessus d'un septième exemple d' antenne selon le mode de réalisation préférentiel de l'invention ;
- Les figures 1OA et 1OB représentent, respectivement, une vue en perspective et une vue de dessus d'exemples d'antennes miniatures selon une mode de réalisation différent du mode de réalisation préférentiel de l'invention ;
Les figures HA et HB représentent des courbes comparatives de couvertures d'antennes de l'art antérieur et d'une antenne selon l'invention ;
La figure 12 représente un histogramme comparatif du gain de couverture à 90% en polarisation rectiligne d'antennes de l'art antérieur et d'une antenne de l'invention ;
- La figure 13 représente une vue de profil d'un exemple de réalisation de capteur selon l' invention ;
- La figure 14 représente une application du capteur de l'invention à la capture de mouvement.
Description détaillée de modes de réalisation préférentiels de l'invention.
Les figures 3-9B illustrent différents exemples d'antennes selon le mode de réalisation préférentiel de l'invention. Selon le mode de réalisation préférentiel de l'invention, les motifs formant toit des antennes IFA sont identiques deux à deux, deux motifs identiques étant alignés selon un axe d'alignement perpendiculaire à l'axe de l'antenne.
La figure 3 représente un premier exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Les quatre motifs conducteurs 2 formant toits des antennes IFA sont tous identiques (par exemple, en forme de rectangle) et inscrits dans un cercle C. Les connexions conductrices qui relient les motifs conducteurs formant toits au plan de masse sont placées aux extrémités extérieures des motifs (i.e. sensiblement sur la périphérie du cercle C) , dans des plans perpendiculaires au plan de la figure. Les motifs formant toits peuvent être des éléments métalliques discrets ou des éléments conducteurs réalisés sur un même substrat.
La figure 4 représente une vue de dessus d'un deuxième exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Les quatre motifs conducteurs 2 en forme de rectangles sont distribués sur une ellipse E. Les motifs conducteurs 2 peuvent être des éléments discrets ou des éléments réalisés sur un même substrat.
La figure 5 représente une vue en perspective d'un troisième exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Les motifs conducteurs formant toits 2 sont en forme de parallélépipèdes. Les motifs 2 sont ici formés sur un même substrat S. Ils pourraient également être des éléments discrets.
La figure 6 représente une vue en perspective d'un quatrième exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Le plan de masse 1 présente une surface conique et les motifs conducteurs 2 sont disposés sur un substrat qui présente également une forme conique. L'axe de symétrie Oz est ici l'axe des cônes. La figure 7 représente une vue en perspective d'un cinquième exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Les motifs formant toits des antennes IFA sont répartis sur une surface cylindrique dont la génératrice est parallèle à l'axe de symétrie de l'antenne et dont la courbe directrice dessine un carré.
Les figures 8A et 8B représentent deux vues d'un sixième exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Les motifs formant toits des antennes IFA sont situés dans un même plan perpendiculaire à l'axe de l'antenne et sont coudés afin d'être inscrits dans une surface carrée.
Les figures 9A et 9B représentent deux vues d'un septième exemple d'antenne selon le mode de réalisation préférentiel de l'invention. Les motifs formant toits des antennes IFA sont situés dans un même plan perpendiculaire à l'axe de l'antenne et sont repliés afin d'être inscrits dans une surface circulaire. Les motifs 2 sont repliés, par exemple, en forme de spirales. Les motifs 2 sont répartis sur un substrat circulaire S placé en regard d'un plan de masse également circulaire. Les cercles que définissent le plan de masse et le substrat S sont parallèles et leurs centres sont alignés selon l'axe Oz. Les figures 1OA et 1OB représentent, respectivement, une vue en perspective et une vue de dessus d'exemples d'antennes miniatures selon un mode de réalisation différent du mode de réalisation préférentiel de l'invention. Les deux antennes IFA d'un ensemble de deux antennes alignées ont des rayonnements en champ lointain sensiblement équivalents mais leurs géométries ne sont pas identiques.
La figure 1OA représente un exemple où deux antennes IFA élémentaires alignées ont des toits de longueurs différentes la, Ib et des hauteurs différentes ha, hb par rapport au plan de masse. La figure 1OB représente un autre exemple où chaque couple de deux antennes IFA élémentaires alignées comprend une antenne dont le toit est de forme rectangulaire (2a, 2c) et une autre antenne dont le toit est de forme elliptique (2b, 2d) .
A titre d'exemple non limitatif, une description détaillée d'une antenne correspondant au septième exemple du mode de réalisation préférentiel de l'invention est faite ci-dessous.
Les motifs formant toits des antennes IFA sont réalisés sur un substrat en verre époxy (εr=4,4 ; tgδ=0,018= tangente de perte) de 0,38mm d'épaisseur recouvert d'une métallisation de cuivre de 17μm d'épaisseur. Les motifs formant toits sont réalisés par photolithogravure . Les connexions de masse 3 sont situées aux extrémités extérieures des motifs 2. Les connexions 3 sont des fils de cuivre de 0,6mm de diamètre dont une première extrémité est soudée au motif 2 et l'autre extrémité au plan de masse. Les fils d'alimentation 4 sont également des fils de cuivre de 0,6mm de diamètre. Les extrémités des fils de masse 3 et des fils d'alimentation 4 qui sont situées du côté du substrat S sont distribuées sur un cercle X. La distance qui sépare, sur un même motif 2, l'extrémité du fil de masse 3 de l'extrémité du fil d'alimentation 4 est sensiblement égale à 3,6mm. La distance qui sépare le plan de masse 1 du substrat S est sensiblement égale à 4mm. Le diamètre du substrat S est sensiblement égal à 25 mm et le diamètre du plan de masse est supérieur au diamètre du substrat S, par exemple égal à 30mm. Comme cela a déjà été mentionné ci-dessus, d'autres valeurs du diamètre du plan de masse sont envisageables dès lors que la condition est respectée d'un diamètre supérieur ou égal au diamètre du substrat S.
L'antenne décrite ci-dessus a une fréquence de fonctionnement sensiblement égale à 2,5GHz. De façon connue en soi, la bande passante et la fréquence exacte d'adaptation d'impédance dépendent également du réseau d'alimentation utilisé.
L'écart entre le minimum et le maximum de la puissance émise par l'antenne est typiquement de 5, 6dB, ce qui correspond à une bonne isotropie en puissance. La polarisation de ondes émises est circulaire selon l'axe Oz et rectiligne dans le plan des motifs 2. La moyenne du diagramme de rapport axial est sensiblement de 49%.
A titre de comparaison, le tableau ci-dessous présente les performances typiques d'écart entre maximum et minimum du diagramme de directivité et de moyenne sur le diagramme de rapport axial pour l'antenne de l'invention et deux antennes de l'art antérieur, à savoir la combinaison de dipôles en croix et l'antenne IFA seule.
L'écart entre le maximum et le minimum du diagramme de directivité permet de quantifier l'isotropie en puissance. Plus celui-ci est faible, idéalement nul, meilleure est l'isotropie en puissance. La moyenne du diagramme de rapport axial permet de quantifier l'uniformité de la polarisation par rapport à l'état circulaire. Une moyenne de 100% signifie que l'antenne rayonne avec une polarisation parfaitement circulaire dans toutes les directions.
Un autre critère significatif permet de comparer des antennes entre elles. Ce critère est la couverture des antennes. La couverture d'une antenne est la proportion d'orientation/inclinaison couverte par l'antenne en fonction de la puissance minimum qu'elle reçoit lorsqu'elle est illuminée par une onde plane incidente de densité de puissance unitaire. Les courbes de couverture des trois antennes mentionnées ci-dessus
(combinaison de dipôles en croix, antenne IFA seule et antenne selon l'invention) sont représentées aux figures HA et HB. Les ordonnées des courbes HA et HB sont exprimées en pourcentages et les abscisses en décibels. La figure HB est une vue de détail de la figure HA dans la zone correspondant aux couvertures supérieures à 60%. Par ailleurs, la figure 12 représente un histogramme comparatif du gain de couverture à 90%, en polarisation rectiligne, pour les trois antennes considérées : le gain Gl correspond aux dipôles demi-onde, le gain G2 correspond à une antenne IFA unique et le gain G3 correspond à une antenne selon 1' invention .
Les courbes Cl, C2, C3 des figures HA et HB sont les courbes de couverture typiques respectives d'une antenne selon l'invention (taille typique λ/5) , d'une antenne IFA seule et d'une combinaison de dipôles en croix (taille typique λ/2) .
Il ressort de ces figures que l'antenne selon l'invention permet de retrouver tous les avantages de la combinaison de dipôles en croix dans le domaine des couvertures larges malgré sa taille réduite. La figure 13 représente une vue de profil d'un exemple de réalisation de capteur muni d'une antenne selon l'invention. L'antenne est, par exemple, une antenne telle que décrite aux figures 9A-9B. Le capteur comprend un circuit imprimé multicouches CI constitué d'une couche isolante 5 sur laquelle sont déposées, d'un côté, une couche conductrice 6 qui constitue le plan de masse et, de l'autre côté, un substrat 7 sur lequel sont intégrés différents circuits xl, x2, x3 tels que circuits intégrés, batterie, capteur, réseau d'alimentation RF, etc. Les dimensions du capteur sont petites, de telle sorte que l'antenne en est le composant le plus volumineux. Le diamètre D du capteur est ainsi typiquement égal à λ/5 ou λ/4. Cette dimension est à rapprocher du diamètre λ/2 des dipôles demi-onde en croix. La réalisation du capteur en technologie de circuit imprimé en permet avantageusement une production de masse à bas coûts. L'association des circuits électroniques et de l'antenne permet avantageusement la réalisation d'un capteur autonome. Les composants et dispositifs placés sous le plan de masse perturbent très peu le rayonnement . Un exemple d'utilisation de l'antenne isotrope de l'invention va maintenant être décrit, dans le cadre d'un réseau à accès multiple par répartition dans le temps ou réseau TDMA (TDMA pour « Time Division Multiple Access ») , en référence à la figure 14. Le réseau TDMA est un réseau en étoile pour la capture de mouvement qui comprend un nœud maître NM et un ensemble de nœuds esclaves N1-N14 qui sont en mouvement par rapport au nœud maître. A chaque nœud esclave du réseau est placé un capteur qui comprend une antenne selon l'invention. Les nœuds esclaves sont distribués comme suit :
- le nœud Nl est un point d'une raquette de tennis ;
- le nœud N2 est un point d'une balle de tennis ; - les nœuds N3-N14 sont des points du corps d'un joueur de tennis.
Ce réseau en étoile, orchestré par le noeud maître, permet de récupérer, à des intervalles de temps déterminés, les données délivrées par les différents capteurs dont les positions varient au cours du temps.
Chaque capteur situé au niveau d'un noeud esclave est optimisé en termes de taille, d'intégration et de consommation électrique. Il est constitué d'un capteur de mesure physique et de son conditionnement, d'une unité de traitement et d'un émetteur/récepteur radio relié à une antenne isotrope selon l'invention. Autonome, il dispose d'une source d'énergie embarquée.
Le capteur situé au niveau du noeud maître est moins soumis aux contraintes de taille et de consommation mais dispose également d'un émetteur/récepteur radio et d'une unité de traitement. L'antenne qui équipe le capteur situé au niveau du noeud maître peut être une antenne isotrope selon l'invention ou une antenne dipolaire. Tout l'intérêt de l'antenne selon l'invention dans ce contexte réside dans son diagramme de rayonnement qui couvre tout l'espace, dans son état de polarisation circulaire qui optimise la transmission radio quelle que soit l'inclinaison des capteurs et dans son faible encombrement volumique.
L'antenne selon l'invention qui équipe chaque capteur situé au niveau d'un nœud esclave présente un rayonnement isotrope en puissance dans toutes les directions et une polarisation circulaire optimisée de sorte qu'il n'existe pas de direction pour laquelle la transmission entre un noeud esclave et le noeud maître serait interrompue. L'antenne selon l'invention équipant les noeuds esclaves est polarisée circulairement, et l'antenne équipant le noeud maître est polarisé rectilignement . Ainsi, la transmission ne peut-elle pas être interrompue pour cause de désadaptation de polarisation.
L'antenne selon l'invention augmente très peu les dimensions globales des capteurs car son facteur de forme planaire doté d'un plan de masse sur l'une de ces faces permet une intégration aisée sur le capteur.
L'antenne peut être réalisée avec la même technologie imprimée que le reste du circuit du capteur. Les fonctions du capteur et la batterie s'intègrent en multicouche sous le plan de masse de l'antenne comme cela a été mentionné précédemment.
Une description du fonctionnement du protocole TDMA reliant le noeud maître aux noeuds esclaves va maintenant être donnée. Durant un cycle nominal du réseau TDMA, le noeud maître émet un mot de synchronisation temporelle et d'informations adressés aux noeuds esclaves, ainsi qu'un code cyclique de redondance également connu sous l'appellation de code CRC (CRC pour « Cyclic Redundancy Code ») . Après quoi les noeuds esclaves transmettent, l'un après l'autre, leurs données au noeud maître ainsi qu'un code CRC pour détecter des erreurs de communication. Quand tous les noeuds esclaves ont transmis leurs données, ils peuvent entrer en léthargie jusqu'au prochain cycle afin d'augmenter leur autonomie. Durant cette période de temps, la gestion du réseau peut alors être assurée: détection de nouveau noeud esclave, gestion des canaux de communication, paramétrage des noeuds esclaves.
Du fait de l'isotropie de l'antenne qui les équipe, les capteurs de l'invention permettent avantageusement d'assurer un lien de communication radio fréquence robuste aux variations de positions. Moins d'erreurs sont détectées et l'utilisation de la procédure de reémission des informations s'avère beaucoup moins nécessaire, ce qui contribue à optimiser le débit en temps réel et à limiter la consommation des capteurs . Différentes variantes d'antennes peuvent être réalisées dans le cadre de l'invention, à savoir, par exemple, des antennes reconfigurables, des antennes à diversité ou encore des antennes à limitation de couverture à des demi-espaces. Les antennes reconfigurables comprennent des moyens qui permettent de commuter les états de phase. Un premier état de phase peut alors correspondre à une progression de phase 0° -> 90° -> 180° -> 270° entre les différentes antennes élémentaires, alors qu'un deuxième état de phase correspond à une progression de phase 0° -> -90° -> -180° -> -270° entre ces mêmes antennes élémentaires. La commutation de phase permet avantageusement de passer d'ondes en polarisation circulaire droite à des ondes en polarisation circulaire gauche et réciproquement. Dans le cadre de l'invention, les antennes à diversité sont réalisées, lorsque le niveau de couplage entre antennes IFA élémentaires le permet, en alimentant celles-ci par deux voies ou par quatre voies indépendantes .

Claims

REVENDICATIONS
1. Antenne caractérisée en ce qu'elle comprend quatre antennes IFA élémentaires, chaque antenne IFA élémentaire comprenant un plan de masse (1), un toit
(2), un court-circuit (3) entre le plan de masse et le toit et un moyen d'excitation (4), les quatre antennes
IFA élémentaires étant réparties autour d'un axe en un premier ensemble de deux antennes IFA ayant des rayonnements élémentaires en champ lointain sensiblement équivalents et un deuxième ensemble de deux antennes IFA ayant des rayonnements élémentaires en champ lointain sensiblement équivalents, les deux antennes IFA du premier ensemble étant alignées selon un premier axe d'alignement sensiblement perpendiculaire à l'axe et les deux antennes IFA du deuxième ensemble étant alignées selon un deuxième axe d'alignement sensiblement perpendiculaire à l'axe, le premier axe d'alignement et le deuxième axe d'alignement se coupant à angle droit en un point de l'axe, les moyens d'excitation (4) des quatre antennes IFA élémentaires étant alimentés par des signaux radiofréquences de même amplitude dont les phases suivent une loi progressive sensiblement en quadrature par rotation autour de l'axe (0°, 90°, 180°, 270°).
2. Antenne selon la revendication 1, dans laquelle les deux antennes IFA élémentaires d'un même ensemble de deux antennes sont identiques et symétriques par rapport à l'axe.
3. Antenne selon la revendication 2, dans laquelle les quatre antennes IFA élémentaires sont toutes identiques.
4. Antenne selon l'une des revendications précédentes, dans laquelle les toits des quatre antennes IFA élémentaires sont répartis sur une surface plane sensiblement perpendiculaire à l'axe.
5. Antenne selon la revendication 4, dans laquelle les toits des quatre antennes IFA élémentaires sont sensiblement inscrits dans un cercle.
6. Antenne selon la revendication 4, dans laquelle les toits des quatre antennes IFA élémentaires sont sensiblement inscrits dans une ellipse.
7. Antenne selon l'une des revendications 1 à 3, dans laquelle les toits des quatre antennes IFA élémentaires sont répartis sur une surface fermée sensiblement conique.
8. Antenne selon l'une des revendications 1 à 3, dans laquelle les toits des quatre antennes IFA élémentaires sont répartis sur une surface cylindrique dont la génératrice est parallèle à l'axe (Oz) .
9. Antenne selon la revendication 8, dans laquelle la surface cylindrique est une surface cylindrique dont la courbe directrice dessine un cercle, ou un carré, ou un rectangle.
10. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les toits des quatre antennes IFA élémentaires sont formés par des métallisations réalisées sur un même substrat (S) .
11. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les plans de masse des quatre antennes IFA élémentaires sont formés par une même couche conductrice.
12. Antenne selon l'une quelconque des revendications précédentes qui comprend des moyens pour commuter la loi progressive en quadrature entre un premier sens de rotation autour de l'axe et un deuxième sens de rotation autour de l'axe, opposé au premier sens.
13. Capteur de mesure de grandeur physique comprenant des moyens de mesure de la grandeur physique et un émetteur muni d'une antenne apte à émettre la mesure de la grandeur physique sous la forme d'une modulation d'une onde électromagnétique émise par l'émetteur, caractérisée en ce que l'antenne est une antenne selon l'une quelconque des revendications 1 à 12.
EP07787617.5A 2006-07-21 2007-07-17 Antenne isotrope et capteur de mesure associe Active EP2047558B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653071A FR2904148B1 (fr) 2006-07-21 2006-07-21 Antenne isotrope et capteur de mesure associe
PCT/EP2007/057351 WO2008009667A1 (fr) 2006-07-21 2007-07-17 Antenne isotrope et capteur de mesure associe

Publications (2)

Publication Number Publication Date
EP2047558A1 true EP2047558A1 (fr) 2009-04-15
EP2047558B1 EP2047558B1 (fr) 2018-08-15

Family

ID=37837040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787617.5A Active EP2047558B1 (fr) 2006-07-21 2007-07-17 Antenne isotrope et capteur de mesure associe

Country Status (4)

Country Link
US (1) US8044864B2 (fr)
EP (1) EP2047558B1 (fr)
FR (1) FR2904148B1 (fr)
WO (1) WO2008009667A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904148B1 (fr) 2006-07-21 2008-10-24 Commissariat Energie Atomique Antenne isotrope et capteur de mesure associe
TWI352454B (en) 2009-08-14 2011-11-11 Htc Corp Planar antenna with isotropic radiation pattern
US8374601B2 (en) * 2010-01-29 2013-02-12 Simmonds Precision Products, Inc. Circularly polarized antennas for a wireless sensor system
US8994606B2 (en) * 2010-02-26 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Antenna and radio communication device
KR101128872B1 (ko) * 2010-11-29 2012-03-26 고형석 원편파 안테나
JP5636930B2 (ja) * 2010-12-10 2014-12-10 富士通株式会社 アンテナ装置
US9270026B2 (en) * 2011-11-04 2016-02-23 Broadcom Corporation Reconfigurable polarization antenna
US20140354480A1 (en) * 2011-11-04 2014-12-04 Nokia Corporation Apparatus for wireless communication
CN102570025B (zh) * 2012-03-12 2016-12-28 群淂数码科技(上海)有限公司 全向射频识别标签天线及射频识别标签
JP6083142B2 (ja) * 2012-07-25 2017-02-22 株式会社デンソーウェーブ アンテナ装置
JP6083141B2 (ja) * 2012-07-25 2017-02-22 株式会社デンソーウェーブ アンテナ装置
JP2014027417A (ja) * 2012-07-25 2014-02-06 Denso Wave Inc アンテナ
US9379453B2 (en) * 2012-12-20 2016-06-28 Deere & Company Antenna for a satellite navigation receiver
JP6167745B2 (ja) * 2013-08-13 2017-07-26 富士通株式会社 アンテナ装置
GB2517770A (en) * 2013-09-02 2015-03-04 Nokia Technologies Oy Apparatus and methods for wireless communication
CN103606756A (zh) * 2013-10-25 2014-02-26 深圳市摩天射频技术有限公司 一种小型圆极化天线
CN103606743A (zh) * 2013-10-25 2014-02-26 深圳市摩天射频技术有限公司 一种圆极化宽带天线
EP2950385B1 (fr) * 2014-05-28 2016-08-24 Alcatel Lucent Antenne multibande
US9831559B2 (en) * 2015-08-04 2017-11-28 Rockwell Collins, Inc. Low-profile blanket antenna
CN108258414B (zh) * 2017-12-21 2021-06-15 惠州Tcl移动通信有限公司 一种印制电路板及终端
CN109462023A (zh) * 2018-10-26 2019-03-12 哈尔滨电工仪表研究所有限公司 一种超高频rfid手持终端天线
JP7118556B2 (ja) * 2018-12-27 2022-08-16 アルパイン株式会社 アンテナ装置
US11437716B1 (en) * 2019-03-27 2022-09-06 FIRST RF Corp. Antenna element
CN110289490A (zh) * 2019-06-17 2019-09-27 天津大学 一种应用于5g毫米波的圆级化三维偶极子天线阵元

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751471B1 (fr) * 1990-12-14 1999-02-12 Dassault Electronique Dispositif rayonnant a large bande susceptible de plusieurs polarisations
US6618016B1 (en) * 2001-02-21 2003-09-09 Bae Systems Aerospace Inc. Eight-element anti-jam aircraft GPS antennas
US6856287B2 (en) * 2003-04-17 2005-02-15 The Mitre Corporation Triple band GPS trap-loaded inverted L antenna array
US7427955B2 (en) * 2004-12-08 2008-09-23 Electronics And Telecommunications Research Institute Dual polarization antenna and RFID reader employing the same
FR2904148B1 (fr) 2006-07-21 2008-10-24 Commissariat Energie Atomique Antenne isotrope et capteur de mesure associe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008009667A1 *

Also Published As

Publication number Publication date
WO2008009667A1 (fr) 2008-01-24
FR2904148B1 (fr) 2008-10-24
US20090322631A1 (en) 2009-12-31
US8044864B2 (en) 2011-10-25
EP2047558B1 (fr) 2018-08-15
FR2904148A1 (fr) 2008-01-25

Similar Documents

Publication Publication Date Title
EP2047558B1 (fr) Antenne isotrope et capteur de mesure associe
EP1073143B1 (fr) Antenne imprimée bi-polarisation et réseau d&#39;antennes correspondant
EP3669422A1 (fr) Antenne plaquée présentant deux modes de rayonnement différents à deux fréquences de travail distinctes, dispositif utilisant une telle antenne
FR2825206A1 (fr) Dispositif pour la reception et/ou l&#39;emission d&#39;ondes electromagnetiques a rayonnement omnidirectionnel
CA2148796C (fr) Antenne fil-plaque monopolaire
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
CA2267536A1 (fr) Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
EP2622685A1 (fr) Reflecteur d&#39;antenne large bande pour une antenne filaire plane a polarisation circulaire et procede de realisation du reflecteur d&#39;antenne
FR2843832A1 (fr) Antenne large bande a resonateur dielectrique
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
FR2709833A1 (fr) Instrument d&#39;écoute large bande et bande basse pour applications spatiales.
EP2643886B1 (fr) Antenne planaire a bande passante elargie
EP1516392A1 (fr) Antenne a brins a polarisation circulaire
EP3671955B1 (fr) Antenne fil-plaque monopolaire pour connexion differentielle
EP3175509B1 (fr) Antenne log-periodique a large bande de frequences
EP1872436B1 (fr) Antenne large bande de type dipole
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d&#39;une pluralite de telles antennes
EP3942649B1 (fr) Antenne directive compacte, dispositif comportant une telle antenne
FR2980647A1 (fr) Antenne ultra-large bande
EP3815183B1 (fr) Circuit imprimé pour la communication de données
FR3131106A1 (fr) Antenne radiofréquence planaire à polarisation circulaire
FR2721757A1 (fr) Antenne omnidirectionnelle en azimut et directive en site et répondeur maritime ainsi équipé.
WO2007051931A2 (fr) Antenne miniaturisee pour utilisation grand public
FR2756976A1 (fr) Antenne a fentes a double polarisation et a tres large bande passante et procede pour sa realisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007055763

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1030833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007055763

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070717

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210720

Year of fee payment: 15

Ref country code: DE

Payment date: 20210712

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007055763

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220717

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240723

Year of fee payment: 18