EP2043779A1 - Procédé de production d'une amine - Google Patents
Procédé de production d'une amineInfo
- Publication number
- EP2043779A1 EP2043779A1 EP07787039A EP07787039A EP2043779A1 EP 2043779 A1 EP2043779 A1 EP 2043779A1 EP 07787039 A EP07787039 A EP 07787039A EP 07787039 A EP07787039 A EP 07787039A EP 2043779 A1 EP2043779 A1 EP 2043779A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygen
- calculated
- catalyst
- containing compounds
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/02—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/02—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
- C07D295/023—Preparation; Separation; Stabilisation; Use of additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
- B01J37/14—Oxidising with gases containing free oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
Definitions
- the present invention relates to zirconia and nickel containing catalysts and to a process for producing an amine by reacting a primary or secondary alcohol, aldehyde and / or ketone with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary and secondary amines in the presence of a zirconia and nickel-containing catalyst.
- the process products find inter alia. Use as intermediates in the preparation of fuel additives (US-A-3,275,554, DE-A-21 25 039 and DE-A-36 11 230), surfactants, drugs and crop protection agents, hardeners for epoxy resins, catalysts for polyurethanes, intermediates for the preparation quaternary ammonium compounds, plasticizers, corrosion inhibitors, synthetic resins, ion exchangers, textile auxiliaries, dyes, vulcanization accelerators and / or emulsifiers.
- fuel additives US-A-3,275,554, DE-A-21 25 039 and DE-A-36 11 230
- surfactants drugs and crop protection agents
- hardeners for epoxy resins catalysts for polyurethanes
- intermediates for the preparation quaternary ammonium compounds plasticizers
- corrosion inhibitors synthetic resins
- ion exchangers textile auxiliaries
- dyes dyes
- vulcanization accelerators and / or emulsifiers emuls
- No. 4,153,581 (Habermann) relates to the amination of alcohols, aldehydes or ketones by means of specific Co / Cu catalysts which contain Fe, Zn and / or Zr.
- US 4,152,353 (Dow) relates to the amination of alcohols, aldehydes or ketones by means of specific Ni / Cu catalysts containing Fe, Zn and / or Zr.
- EP-A1-382 049 discloses catalysts comprising oxygen-containing zirconium, copper, cobalt and nickel compounds and processes for the hydrogenating amination of alcohols.
- the preferred zirconium oxide content of these catalysts is from 70 to 80% by weight (loc.cit: page 2, last paragraph, page 3, 3rd paragraph, examples). Although these catalysts are characterized by a good activity and selectivity, but show improvement in service life.
- EP-A2-514 692 discloses copper, nickel and / or cobalt, zirconium and / or alumina-containing catalysts for the catalytic amination of alcohols in the gas phase with ammonia or primary amines and hydrogen.
- This patent application teaches that in these catalysts, the atomic ratio of nickel to copper must be 0.1 to 1, 0, preferably 0.2 to 0.5 (see loc. Cit .: Example 1), otherwise in the amination of Alcohols to an increased extent yield-reducing by-products occur (loc cit .: Examples 6 and 12).
- the carrier used is preferably alumina (loc.cit .: Examples 1 to 5 and 7 to 11).
- EP-A2-905 122 (BASF AG) describes a process for the preparation of amines from alcohols and nitrogen compounds using a catalyst whose catalytically active composition contains oxygen-containing compounds of zirconium, copper and nickel and no oxygen-containing compounds of cobalt or molybdenum.
- EP-A-1 035 106 (BASF AG) relates to the use of catalysts comprising oxygen-containing compounds of zirconium, copper and nickel for the preparation of amines by aminative hydrogenation of aldehydes or ketones.
- EP-A1-963 975 and EP-A2-1 106 600 (both BASF AG) describe processes for the preparation of amines from alcohols or aldehydes or ketones and nitrogen compounds using a catalyst whose catalytically active composition is 22-40% by weight. (or 22-45 wt .-%) oxygen-containing compounds of zirconium, 1-30 wt .-% oxygen-containing compounds of copper and each 15-50 wt .-% (or 5-50 wt .-%) of oxygen-containing compounds of the Contains nickel and cobalt.
- WO-A-03/076386 and EP-A1-1 431 271 teach catalysts of the above-mentioned. Type for aminations.
- WO-A1-03 / 051508 (Huntsman Petrochemical Corp.) relates to processes for the amination of alcohols using specific Cu / Ni / Zr / Sn-containing catalysts which in another embodiment contain Cr instead of Zr (see page 4, Lines 10-16).
- European Patent Application No. 06101339.7 of 06.02.06 (BASF AG) describes a process for the preparation of aminodiglycol (ADG) and morpholine by reaction of diethylene glycol (DEG) with ammonia in the presence of a transition metal heterogeneous catalyst, wherein the catalytically active material of the catalyst before the treatment with hydrogen containing oxygen-containing compounds of aluminum and / or zirconium, copper, nickel and cobalt and the shaped catalyst body has specific dimensions.
- DEG diethylene glycol
- the "decarbonylation” is considered in particular as the sum of undesired components (methanol, methoxyethanol, methoxyethylamine, N-methylmorpholine and methoxy-ethyl-morpholine), which according to the reaction network from DEG via methoxyethanol arise:
- the aldehyde formed or used can be prepared by reaction with ammonia or primary or secondary amine with elimination of water and subsequent hydrogenation. be aminated. This condensation of the aldehyde with the above-mentioned nitrogen compound is presumably catalyzed by acidic centers of the catalyst. In an undesired secondary reaction, however, the aldehyde can also be decarbonylated, ie the aldehyde function is split off as CO. Decarbonylation or methanation presumably occurs at a metallic center. The CO is hydrogenated to methane on the hydrogenation catalyst so that methane formation indicates the extent of decarbonylation. Decarbonylation results in the abovementioned undesired by-products, for example methoxyethanol and / or methoxyethylamine in the abovementioned case.
- the desired condensation of the aldehyde with ammonia or primary or secondary amine and the undesirable decarbonylation of the aldehyde are parallel reactions of which the desired condensation is believed to be acid-catalyzed, while the undesirable decarbonylation is catalyzed by metallic centers.
- RZA space-time yields
- the catalysts should have high activity and high chemical and mechanical stability under the reaction conditions.
- a process for producing an amine by reacting a primary or secondary alcohol, aldehyde and / or ketone with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary and secondary amines in the presence of a zirconia and nickel containing catalyst has been found characterized in that the catalytically active material of the catalyst prior to its reduction with hydrogen contains oxygen-containing compounds of zirconium, copper, nickel and cobalt and in the range of 0.5 to 6 wt .-% oxygen-containing compounds of silver, calculated as AgO.
- catalysts have been found containing oxygen-containing compounds of zirconium, copper, nickel and cobalt and in the range of 0.5 to 6 wt.% Of oxygen-containing compounds of silver, calculated as AgO.
- catalysts whose catalytically active material before their reduction with hydrogen in the range of
- DEG diethylene glycol
- the process can be carried out continuously or discontinuously. Preferred is a continuous driving style.
- the starting materials are targeted, preferably in a circulating gas stream, vaporized and fed to the reactor in gaseous form.
- Suitable amines for a gas-phase synthesis are amines, which can be kept in the gas phase within the process parameters due to their boiling points and the boiling points of their educts.
- the recycle gas serves to evaporate the reactants and to react as reactants for the amination.
- the starting materials (alcohol, aldehyde and / or ketone, hydrogen and the nitrogen compound) are evaporated in a circulating gas stream and fed to the reactor in gaseous form.
- the educts (alcohol, aldehyde and / or ketone, the nitrogen compound) can also be evaporated as aqueous solutions and passed with the circulating gas stream on the catalyst bed.
- Preferred reactors are tubular reactors. Examples of suitable reactors with recycle gas stream can be found in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. B 4, pages 199-238, "Fixed-Bed Reactors".
- reaction is advantageously carried out in a tube bundle reactor or in a monostane system.
- the tubular reactor in which the reaction takes place can consist of a series connection of several (for example two or three) individual tubular reactors.
- an intermediate feed of feed containing the educt and / or ammonia and / or H2
- / or circulating gas and / or reactor discharge from a downstream reactor is advantageously possible here.
- the circulating gas quantity is preferably in the range from 40 to 1500 m 3 (at operating pressure) / [m 3 catalyst (bulk volume) • h], in particular in the range from 100 to 700 m 3 (at operating pressure) / [m 3 catalyst (bulk volume). H].
- the cycle gas preferably contains at least 10, especially 50 to 100, especially 80 to 100, vol.% H 2 .
- the catalysts are preferably used in the form of catalysts which consist only of catalytically active material and optionally a molding aid (such as graphite or stearic acid), if the catalyst is used as a shaped body, ie no further catalytically active impurities contain.
- a molding aid such as graphite or stearic acid
- the oxidic carrier material zirconium dioxide (ZrO 2 ) is considered as belonging to the catalytically active material.
- the catalysts are used in such a way that one introduces the catalytically active, ground to powder mass in the reaction vessel or, that the catalytically active material after grinding, mixing with molding aids, shaping and heat treatment as shaped catalyst body - for example as tablets, spheres, rings, extrudates (eg strands) - arranges in the reactor.
- the concentration data (in% by weight) of the components of the catalyst in each case relate to the catalytically active composition of the catalyst, unless stated otherwise finished catalyst after the last heat treatment and before its reduction with hydrogen.
- the catalytically active mass of the catalyst is the sum of the masses of the catalytically active constituents and the o.
- Catalyst support materials defined and contains essentially the following components:
- Zirconia ZrO 2
- oxygenated compounds of copper nickel and cobalt
- oxygenated compounds of silver silver
- Components of the catalytically active composition are usually from 70 to 100% by weight, preferably from 80 to 100% by weight, particularly preferably from 90 to 100% by weight, especially> 95% by weight, very particularly> 98% by weight , in particular> 99 wt .-%, for example particularly preferably 100% by weight.
- the catalytically active composition of the catalysts used according to the invention and used in the process according to the invention may further contain one or more elements (Oxidati- onstress 0) or their inorganic or organic compounds selected from the groups IA to VI A and IB to VII B and VIII of the Periodic Table ,
- Transition metals such as Re or rhenium oxides, Mn or MnÜ2, W or tungsten oxides, Ta or tantalum oxides, Nb or niobium oxides or niobium oxalate, V or vanadium oxides or vanadyl pyrophosphate; Lanthanides, such as Ce or CeO 2 or Pr or P ⁇ Ch; Alkali metal oxides, such as Na2Ü; Alkali metal carbonates such as Na 2 CO 3; Alkaline earth metal oxides, such as SrO; Alkaline earth metal carbonates such as MgC ⁇ 3, CaCO3 and BaCOa; Boron oxide (B2O3).
- the catalytically active composition of the catalysts according to the invention and used in the process according to the invention preferably contains no ruthenium, no iron and / or no zinc.
- the catalytically active composition of the catalyst before its reduction with hydrogen preferably in the range of 1, 0 to 4 wt .-%, especially in the range of 1, 3 to 3 wt .-%, more particularly in the range of 1, 5 to 2 , 5 wt .-%, oxygenated compounds of silver, calculated as AgO.
- the catalytically active composition of the catalyst before its reduction with hydrogen further preferably in the range of
- oxygen-containing compounds of zirconium calculated as Zr ⁇ 2, 1 to 30 wt .-%, especially 2 to 25 wt. %, more particularly 5 to 15% by weight, of oxygen-containing compounds of copper, calculated as CuO, from 10 to 50% by weight, especially from 13 to 40% by weight, more particularly from 16 to 35% by weight, oxygen-containing compounds of nickel, calculated as NiO, and
- the molar ratio of nickel to copper is preferably greater than 1, more preferably greater than 1.2, more preferably in the range of 1.8 to 8.5.
- they may be precipitated together by co-precipitation of the nickel, cobalt and copper and doping metal components from an aqueous salt solution containing these elements by means of bases in the presence of a slurry of a sparingly soluble, oxygen-containing zirconium compound followed by washing, drying and calcination of the resulting precipitate to be obtained.
- Zirconium dioxide, zirconium oxide hydrate, zirconium phosphates, borates and silicates can be used, for example, as sparingly soluble, oxygen-containing zirconium compounds.
- the slurries of the sparingly soluble zirconium compounds can be prepared by suspending fine-grained powders of these compounds in water with vigorous stirring.
- these slurries are obtained by precipitating the sparingly soluble zirconium compounds from aqueous zirconium salt solutions by means of bases.
- the catalysts according to the invention are preferably prepared by a co-precipitation (mixed precipitation) of all their components.
- aqueous salt solution containing the catalyst components while heating and while stirring with an aqueous base, for example sodium carbonate, sodium hydroxide, potassium carbonate or potassium hydroxide, until the precipitation is complete.
- alkali metal-free bases such as ammonia, ammonium carbonate, ammonium bicarbonate, ammonium carbamate, ammonium oxalate, ammonium malonate, urotropin, urea, etc.
- the nature of the salts used is generally not critical: since it depends primarily on the water solubility of the salts in this approach, one criterion is their good water solubility required for the preparation of these relatively highly concentrated salt solutions. It is taken for granted that when selecting the salts of the individual components, of course, only salts with such anions are chosen which do not lead to disturbances, either by causing undesired precipitation or by complicating or preventing precipitation by complex formation.
- the precipitates obtained in these precipitation reactions are generally chemically nonuniform and consist, inter alia, of mixtures of the oxides, oxide hydrates, hydroxides, carbonates and insoluble and basic salts of the metals used. It may prove beneficial for the filterability of the precipitates when they are aged, that is, when they leave themselves for some time after precipitation, optionally in heat or by passing air through it.
- the precipitates obtained by these precipitation processes are further processed to the inventive catalysts as usual.
- the precipitation is washed. Over the duration of the washing process and on the temperature and amount of wash water, the content of alkali metal, which was supplied by the (mineral) base possibly used as precipitant, can be influenced. In general, by extending the washing time or increasing the temperature of the washing water, the content of alkali metal will decrease.
- the material to be precipitated is generally dried at 80 to 200 ° C, preferably at 100 to 150 ° C, and then calcined. The calcination is carried out generally at temperatures between 300 and 800 ° C, preferably at 400 to 600 ° C, in particular at 450 to 550 ° C.
- the catalysts according to the invention can also be prepared by impregnation of zirconium dioxide (ZrO.sub.2) which is present, for example, in the form of powders or shaped articles, such as extrudates, tablets, spheres or rings.
- ZrO.sub.2 zirconium dioxide
- the zirconia is used, for example, in the monoclinic or tetragonal form, preferably in the monoclinic form.
- the impregnation is also carried out by the usual methods, such as. B. A. Stiles, Catalyst Manufacture Laboratory and Commercial Preparations, Marcel Dekker, New York (1983), by applying a respective metal salt solution in one or more impregnation stages, wherein as metal salts z. B. corresponding nitrates, acetates or chlorides can be used.
- the mass is dried after the impregnation and optionally calcined.
- the impregnation can be carried out according to the so-called "incipient wetness" method, in which the zirconium dioxide is moistened according to its water absorption capacity to a maximum of saturation with the impregnation solution.
- the impregnation can also be done in supernatant solution.
- it is expedient to dry between individual impregnation steps and optionally to calcine.
- the multi-stage impregnation is advantageous to apply especially when the zirconium dioxide is to be applied with a larger amount of metal.
- the impregnation can take place simultaneously with all metal salts or in any order of the individual metal salts in succession.
- the catalysts prepared by impregnation are dried and preferably also calcined, e.g. at the calcining temperature ranges already indicated above.
- the catalyst is suitably conditioned, whether it is adjusted by grinding to a certain particle size or that it is mixed after its grinding with molding aids such as graphite or stearic acid, by means of a press to formations, for.
- molding aids such as graphite or stearic acid
- the tempering temperatures preferably correspond to the temperatures during the calcination.
- the catalysts prepared in this way contain the catalytically active metals in the form of a mixture of their oxygen-containing compounds, i. especially as oxides and mixed oxides.
- Catalysts prepared as described above are stored as such and optionally traded. Before being used as catalysts, they are usually prereduced. However, they can also be used without prereduction, in which case they are reduced under the conditions of the hydrogenating amination by the hydrogen present in the reactor.
- the catalysts are first heated at preferably 150 to 200 ° C for a period of e.g. 12 to 20 hours exposed to a nitrogen-hydrogen atmosphere and then treated for up to about 24 hours at preferably 200 to 400 ° C in a hydrogen atmosphere.
- a portion of the oxygen-containing metal compounds present in the catalysts is reduced to the corresponding metals, so that they are present together with the various oxygen compounds in the active form of the catalyst.
- a further advantage of the catalysts according to the invention is their mechanical stability, ie their hardness.
- the mechanical stability can be determined by measuring the so-called lateral compressive strength.
- the force registered on breakage of the shaped catalyst body is the lateral compressive strength.
- the inventive method is preferably carried out continuously, wherein the catalyst is preferably arranged as a fixed bed in the reactor. Both an inflow of the fixed catalyst bed from above and from below is possible.
- the gas flow is adjusted by temperature, pressure and amount so that even higher-boiling (high-boiling) reaction products remain in the gas phase.
- the aminating agent can be used in stoichiometric, under- or stoichiometric amounts with regard to the alcoholic hydroxyl group or aldehyde group or keto group to be aminated.
- the amine is preferably used in an approximately stoichiometric amount or slightly more than stoichiometric amount per mole of alcoholic hydroxyl group, aldehyde group or keto group to be aminated.
- the amine component (nitrogen compound) is preferably in the 0.90 to 100-fold molar amount, in particular in the 1, 0 to 10-fold molar amount, in each case based on the / used alcohol, aldehyde and / or ketone used.
- ammonia is generally used with a 1.5 to 250-fold, preferably 2 to 100-fold, in particular 2 to 10-fold, molar excess per mole of alcoholic hydroxyl group, aldehyde group or keto group to be reacted. Higher excesses of both ammonia and primary or secondary amines are possible.
- an amount of exhaust gas from 5 to 800 standard cubic meters / h, in particular 20 to 300 standard cubic meters / h, driven.
- the amination of the primary or secondary alcohol groups, aldehyde groups or keto groups of the educt can be carried out in the liquid phase or in the gas phase.
- the fixed bed process is in the gas phase.
- the starting materials are passed simultaneously in the liquid phase at pressures of generally from 5 to 30 MPa (50 to 300 bar), preferably from 5 to 25 MPa, more preferably from 15 to 25 MPa, and temperatures of generally 80 to 350 ° C, especially 100 to 300 ° C, preferably 120 to 270 ° C, more preferably 130 to 250 ° C, in particular 170 to 230 ° C, including hydrogen over the catalyst, the usually in a preferred externally heated fixed bed reactor is located. It is both a trickle way and a sumping possible.
- the catalyst loading is generally in the range of 0.05 to 5, preferably 0.1 to 2, more preferably 0.2 to 0.6, kg of alcohol, aldehyde or ketone per liter of catalyst (bulk volume) and hour.
- a suitable solvent such as tetrahydrofuran, dioxane, N-methylpyrrolidone or ethylene glycol dimethyl ether. It is expedient to heat the reactants before they are introduced into the reaction vessel, preferably to the reaction temperature.
- the gaseous educts (alcohol, aldehyde or ketone plus ammonia or amine) in a gas stream chosen for evaporation sufficiently large, preferably hydrogen, at pressures of generally 0.1 to 40 MPa (1 to 400 bar), preferably 0.1 to 10 MPa, more preferably 0.1 to 5 MPa, in the presence of hydrogen passed over the catalyst.
- the temperatures for the amination of alcohols are generally 80 to 350 ° C, especially 100 to 300 ° C, preferably 120 to 270 ° C, particularly preferably 160 to 250 ° C.
- the reaction temperatures in the hydrogenating amination of aldehydes and ketones are generally 80 to 350 ° C, especially 90 to 300 ° C, preferably 100 to 250 ° C. It is both an influx of the fixed catalyst bed from above and from below possible.
- the required gas stream is preferably obtained by a cycle gas method.
- the catalyst loading is generally in the range of 0.01 to 2, preferably 0.05 to 0.5, kg of alcohol, aldehyde or ketone per liter of catalyst (bulk volume) and hour.
- the hydrogen is generally fed to the reaction in an amount of from 5 to 400 l, preferably in an amount of from 50 to 200 l per mole of alcohol, aldehyde or ketone component, the liter data in each case being converted to standard conditions (ST .).
- the amination of aldehydes or ketones differs in the implementation of the amination of alcohols in that in the amination of aldehydes and ketones at least stoichiometric amounts of hydrogen must be present.
- the pressure in the reaction vessel which results from the sum of the partial pressures of the aminating agent, of the alcohol, aldehyde or ketone and the reaction products formed and optionally of the solvent used at the indicated temperatures, is expediently increased by pressurizing hydrogen to the desired reaction pressure. Both in liquid phase continuous operation and in gas phase continuous operation, the excess aminating agent can be recycled along with the hydrogen.
- the catalyst is arranged as a fixed bed, it may be advantageous for the selectivity of the reaction to mix the catalyst form body in the reactor with inert fillers, so to speak to "dilute" them.
- the proportion of fillers in such catalyst preparations may be 20 to 80, especially 30 to 60 and especially 40 to 50 parts by volume.
- reaction water formed in the course of the reaction in each case one mole per mole of reacted alcohol group, aldehyde group or keto group
- the reaction water formed in the course of the reaction generally does not interfere with the degree of conversion, the reaction rate, the selectivity and the catalyst life and is therefore expediently only in the workup of the reaction product removed from this, z. B. distillative.
- the excess hydrogen and the excess amination agent optionally present are removed and the reaction crude product obtained is purified, e.g. by a fractional rectification. Suitable work-up procedures are e.g. in EP-A-1 312 600 and EP-A-1 312 599 (both BASF AG).
- the excess aminating agent and the hydrogen are advantageously returned to the reaction zone. The same applies to the possibly not completely reacted alcohol, aldehyde or ketone component.
- Unreacted starting materials and any appropriate by-products can be recycled back into the synthesis. Unreacted starting materials can be re-flowed over the catalyst bed in discontinuous or continuous operation after condensation of the products in the separator in the circulating gas stream.
- Amination agents in the process according to the invention are, in addition to ammonia, primary and secondary amines.
- R 1, R 2 is hydrogen (H), alkyl, such as Ci -2 o alkyl, cycloalkyl, such as C 3-12 cycloalkyl, alkoxyalkyl, such as C2-3o alkoxyalkyl, dialkyl laminoalkyl as C3-3o-dialkylaminoalkyl, aryl, aralkyl, such as C7-2o aralkyl, and alkylaryl, such as C7-2o-alkylaryl, or together are - (CH2) Jx (CH 2) k,
- R 3 is hydrogen (H), alkyl, such as C 2 o-alkyl, cycloalkyl such as C 3 -
- hydroxyalkyl such as Ci-20 hydroxyalkyl
- aminoalkyl such as Ci-20 aminoalkyl
- hydroxyalkylaminoalkyl such as C 2-2 O-
- alkoxyalkyl such as C 2 - 30 - alkoxyalkyl
- dialkylaminoalkyl such as C3- 3o-dialkylaminoalkyl
- alkylaminoalkyl such as C 2 -3o-alkylaminoalkyl
- OCR 6 R 7 CR 8 RV OCR 6 R 7
- R 5 is hydrogen (H), alkyl, such as Ci -4 alkyl, alkylphenyl, such as C 7 - 4o-alkylphenyl,
- R 6 , R 7 , R 8 , R 9 is hydrogen (H), methyl or ethyl
- X is CH 2 , CHR 5 , oxygen (O), sulfur (S) or NR 5 ,
- n is an integer from 1 to 30 and
- j, k, I, m, q is an integer from 1 to 4,
- the process according to the invention is therefore preferably used for the preparation of an amine I application by reacting a primary or secondary alcohol of the formula II
- the starting alcohol may also be an aminoalcohol, e.g. an aminoalcohol according to the formula II.
- the reaction can also be carried out intramolecularly in a corresponding amino alcohol, aminoketone or amino aldehyde.
- the process according to the invention is also preferably used in the preparation of a cyclic amine of the formula IV
- R 11 and R 12 is hydrogen (H), alkyl, such as C 2 to C o alkyl, cycloalkyl such as C 3 - to C 2 - cycloalkyl, aryl, heteroaryl, aralkyl such as Cz to C2o aralkyl, and Alkyla - Ryl, such as C7 to C20 alkylaryl,
- Z is CH 2 , CHR 5 , oxygen (O), NR 5 or NCH 2 CH 2 OH and
- R 1 , R 6 , R 7 have the meanings given above,
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 hydrogen (H),
- Alkyl such as Ci-20-alkyl, preferably Ci-14-alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl iso-pentyl, sec-pentyl, neo-pentyl, 1, 2-dimethylpropyl, n-hexyl, iso-hexyl, sec-hexyl, cyclopentylmethyl, n-heptyl, iso-heptyl, cyclohexylmethyl, n-octyl, iso Octyl, 2-ethylhexyl, n-decyl, 2-n-propyl-n-heptyl, n-tridecyl, 2-n-butyl-n-nonyl and 3-n-
- Hydroxyalkyl such as Ci-20-hydroxyalkyl, preferably Ci-8-hydroxyalkyl, particularly preferably Ci-4-hydroxyalkyl, such as hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxy-n-propyl, 2-hydroxy-n-propyl , 3-hydroxy-n-propyl and 1- (hydroxymethyl) ethyl,
- Aminoalkyl such as C 1-20 -aminoalkyl, preferably C 1-8 -aliminoalkyl, such as aminomethyl, 2-aminoethyl, 2-amino-1, 1-dimethylethyl, 2-amino-n-propyl, 3-amino-n-propyl, 4 Amino-n-butyl, 5-amino-n-pentyl, N- (2-aminoethyl) -2-aminoethyl and N- (2-aminoethyl) aminomethyl,
- Hydroxyalkylaminoalkyl such as C2-2o-hydroxyalkylaminoalkyl, preferably C3-8-hydroxyalkylaminoalkyl, such as (2-hydroxyethylamino) methyl, 2- (2-hydroxyethylamino) ethyl and 3- (2-hydroxyethylamino) propyl,
- Heteroarylalkyl such as C4-2o-heteroarylalkyl, such as pyrid-2-ylmethyl, furan-2-ylmethyl, pyrrol-3-ylmethyl and imidazol-2-ylmethyl,
- Alkyl heteroaryl such as C 4-2o-alkyl heteroaryl, such as 2-methyl-3-pyridinyl, 4,5-dimethylimidazol-2-yl, 3-methyl-2-furanyl and 5-methyl-2-pyrazinyl,
- Heteroaryl such as 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, pyrazinyl, pyrrol-3-yl, imidazol-2-yl, 2-furanyl and 3-furanyl,
- Cycloalkyl such as C 3-12 -cycloalkyl, preferably C 3-8 -cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, particularly preferably cyclopentyl and cyclohexyl,
- Alkoxyalkyl such as C 2-3 -alkoxyalkyl, preferably C 2-30 -alkoxyalkyl, particularly preferably C 2-8 -alkoxyalkyl, such as methoxymethyl, ethoxymethyl, n-propoxymethyl, isopropoxymethyl, n-butoxymethyl, isobutoxymethyl, sec-butoxymethyl, tert-butoxymethyl, 1-methoxyethyl and 2-methoxyethyl, particularly preferably C 2-4
- Dialkylaminoalkyl such as C3-3o-dialkylaminoalkyl, preferably C3-2o-dialkylaminoalkyl, more preferably C3-io-dialkylaminoalkyl, such as N, N-dimethylaminomethyl, (N, N-dibutylamino) methyl, 2- (N, N-dimethylamino) ethyl , 2- (N, N-Diethylamino) ethyl, 2- (N, N-dibutylamino) ethyl, 2- (N, N-di-n-propylamino) ethyl and 2- (N, N-diiso -propylamino) ethyl, 3- (N, N-dimethylamino) propyl, (R 5 ) 2 N- (CH 2 ) q ,
- Aryl such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl and 9-anthryl, preferably phenyl, 1-naphthyl and 2-naphthyl, more preferably phenyl,
- Alkylaryl such as C7-2o-alkylaryl, preferably C7-12-alkylphenyl, such as 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4 Dimethylphenyl, 3,5-dimethylphenyl, 2,3,4-trimethylphenyl, 2,3,5-trimethylphenyl, 2,3,6-trimethylphenyl, 2,4,6-trimethylphenyl,
- Aralkyl such as C7-2o-aralkyl, preferably C7-12-phenylalkyl, such as benzyl, p-methoxybenzyl, 3,4-dimethoxybenzyl, 1-phenethyl, 2-phenethyl, 1-phenyl-propyl, 2-phenylpropyl, 3 -Phenyl-propyl, 1-phenyl-butyl, 2-phenyl-butyl, 3-phenyl-butyl and 4-phenyl-butyl, more preferably benzyl, 1-phenethyl and 2-phenethyl,
- R 3 and R 4 or R 2 and R 4 together form a - (CH 2 ) 1 -X- (CH 2 ) m group, such as - (CH 2 J 3 -, - (CH 2 J 4 -, - (CH 2 ) S-, - (CH 2 J 6 -, - (CH 2 J 7 -, - (CH 2 JO- (CH 2 J 2 -, - (CH 2 J-NR 5 - (CH 2 J 2 -, - ( CH 2 J-CHR S - (CH 2 J 2 -, - (CH 2 J 2 -O- (CH 2 J 2 -, - (CH 2 ) 2 -NR 5 - (CH 2 ) 2 -, - (CH 2 J 2 - CHRs- (CH 2 J 2 -, -CH 2 -O- (CH 2 J 3 -, -CH 2 -NR 5 - (CH 2 ) 3 -, -CH 2 -CHR 5 - (CH
- Alkyl such as Ci -2 o alkyl, preferably Ci- ⁇ -alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n- Pentyl, isopentyl, sec-pentyl, neo-pentyl, 1,2-dimethylpropyl, n-hexyl, iso-hexyl, sec-hexyl, n-heptyl, iso-heptyl, n-octyl, iso-octyl, 2-ethylhexyl, more preferably Ci-4-alkyl, or
- R 1 and R 2 together form a - (CH 2 Jj-X- (CH 2 Jk- group such as - (CH 2 J 3 -, - (CH 2 J 4 -, - (CH 2 J 5 -, - (CH 2 J 6 -, - (CH 2 J 7 -, - (CH 2 JO- (CH 2 J 2 -, - (CH 2 ) -NR 5 - (CH 2 ) 2 -, - (CH 2 J-CHR 5 - (CH 2 J 2 -, - (CH 2 J 2 -O- (CH 2 J 2 -, - (CH 2 J 2 -NR S - (CH 2 J 2 -, - (CH 2 ) 2 -CHR 5 - (CH 2 ) 2 -, -CH 2 -O-
- Alkyl preferably Ci -4 -alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso- butyl, sec-butyl and tert-butyl, preferably methyl and ethyl, particularly preferably methyl,
- Alkylphenyl preferably C 7-4 o-alkylphenyl, such as 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3, 5-dimethylphenyl, 2-, 3-, 4-nonylphenyl, 2-, 3-, 4-decylphenyl,
- R 6 , R 7 , R 8 , R 9 methyl or ethyl, preferably methyl
- Alkyl such as d- to C2o-alkyl, cycloalkyl such as C 3 - to Ci 2 cycloalkyl, aryl, heteroaromatics ryl, aralkyl, such as C 7 - to C 2 o-aralkyl, and alkylaryl, such as C 7 - to C 2 O-AI ky I aryl, each as defined above, X:
- N (R 10 ) 2 preferably NH 2 and N (CH 3 ) 2 ,
- C 2-2 O-AI kylaminoa I kyl preferably C 2- i6-alkylaminoalkyl, such as methylaminomethyl, 2- methylaminoethyl, ethylaminomethyl, 2-ethylaminoethyl and 2- (iso-
- C3- 2 o-dialkylaminoalkyl preferably C3-16 dialkylaminoalkyl such as dimethylamino methyl, 2-dimethylaminoethyl, 2-diethylaminoethyl, 2- (di-n-propylamino) ethyl and 2- (di-iso-propylamino) ethyl,
- j, I an integer from 1 to 4 (1, 2, 3 or 4), preferably 2 and 3, particularly preferably 2,
- k, m, q an integer from 1 to 4 (1, 2, 3 or 4), preferably 2, 3 and 4, more preferably 2 and 3,
- n an integer from 1 to 30, preferably an integer from 1 to 8 (1, 2, 3, 4, 5, 6, 7 or 8), more preferably an integer from 1 to 6.
- Alcohols are under the above conditions virtually all primary and secondary alcohols with aliphatic OH function.
- the alcohols can be straight-chain, branched or cyclic. Secondary alcohols are aminated as well as primary alcohols.
- the alcohols may also bear substituents or contain functional groups which are inert under the conditions of the hydrogenating amination, for example alkoxy, alkenyloxy, alkylamino or dialkylamino groups, or else optionally hydrogenated under the conditions of the hydrogenating amination, for example CC double - or triple bonds.
- polyhydric alcohols are to be aminated, it is possible to obtain control of the reaction conditions in hand, preferably amino alcohols, cyclic amines or multiply aminated products.
- the amination of 1, 4-diols leads, depending on the choice of reaction conditions, to 1-amino-4-hydroxy, 1, 4-diamino compounds or to five-membered rings with one nitrogen atom (pyrrolidines).
- 1, 6-diols leads depending on the choice of reaction conditions to 1-amino-6-hydroxy, 1, 6-diamino compounds or seven-membered rings with a nitrogen atom (hexamethyleneimines).
- ADG H 2 N-CH 2 CH 2 -O- CH 2 CH 2 -OH
- diaminodiglycol H 2 N-CH 2 CH 2 -O-CH 2 CH 2 -NH 2
- diethanolamine piperazine is correspondingly obtained with particular preference.
- triethanolamine N- (2-hydroxyethyl) piperazine can be obtained.
- alcohols are preferably aminated:
- polyalkylene glycol ethers are converted in the reaction according to the invention by conversion of their free hydroxyl groups to the corresponding amines.
- Particularly preferred alcohols are methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 2-ethylhexanol, cyclohexanol, fatty alcohols , Ethylene glycol, diethylene glycol (DEG), triethylene glycol (TEG), 2- (2-dimethylaminoethoxy) ethanol, N-methyldiethanolamine and 2- (2-dimethylaminoethoxy) ethanol.
- Suitable ketones which can be used in the process according to the invention are suitable among the above-mentioned. Prerequisites practically all aliphatic and aromatic ketones.
- the aliphatic ketones may be straight-chain, branched or cyclic, the ketones may contain heteroatoms.
- the ketones may also bear substituents or contain functional groups which are inert under the conditions of the hydrogenating amination, for example alkoxy, alkenyloxy, alkylamino or dialkylamino groups, or else optionally hydrogenated under the conditions of the hydrogenating amination be CC double or triple bonds. If polyvalent ketones are to be aminated, it is possible to obtain control of the reaction conditions by hand, aminoketones, amino alcohols, cyclic amines or multiply aminated products.
- ketones are preferably hydrogenated aminatively:
- Suitable aldehydes for use in the process according to the invention are suitable among the above-mentioned. Prerequisites virtually all aliphatic and aromatic aldehydes.
- the aliphatic aldehydes may be straight-chain, branched or cyclic, the aldehydes may contain heteroatoms.
- the aldehydes may also bear substituents or contain functional groups which are inert under the conditions of the hydrogenating amination, for example alkoxy, alkenyloxy, alkylamino or dialkylamino groups, or else optionally hydrogenated under the conditions of the hydrogenating amination, for example CC -Double or triple bonds. If multivalent aldehydes or keto aldehydes are to be aminated, then it is possible to obtain control of the reaction conditions in hand, amino alcohols, cyclic amines or multiply aminated products.
- aldehydes are preferably hydrogenated aminatively: Formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, pivalin-aldehyde, n-pentanal, n-hexanal, 2-ethylhexanal, 2-methylpentanal, 3-methylpentanal, 4-methylpentanal, glyoxal, benzaldehyde, p-methoxybenzaldehyde, p- Methylbenzaldehyde, phenylacetaldehyde, (p-methoxyphenyl) acetaldehyde, (3,4-dimethoxyphenyl) acetaldehyde, 4-formyltetrahydropyran, 3-formyltetrahydrofuran, 5-formylvaleronitrile, citronellal, lysmeral
- aminating agents in the hydrogenating amination of alcohols, aldehydes or ketones in the presence of hydrogen both ammonia and primary or secondary, aliphatic or cycloaliphatic or aromatic amines can be used.
- the alcoholic hydroxyl group or the aldehyde group or the keto group is first converted into the primary amino groups (-NH 2).
- the primary amine formed in this way can react with further alcohol or aldehyde or ketone to form the corresponding secondary amine, which in turn reacts with further alcohol or aldehyde or ketone to form the corresponding, preferably symmetrical, tertiary amine.
- Catalyst loading can be in this way, as desired, preferably primary, secondary or tertiary amines.
- cyclic amines such as e.g. Pyrrolidines, piperidines, hexamethylenimines, piperazines and morpholines.
- primary or secondary amines can be used as aminating agents.
- aminating agents are preferably used for the preparation of unsymmetrically substituted di- or trialkylamines, such as ethyldiisopropylamine and ethyldicyclohexylamine.
- mono- and dialkylamines are used as aminating agents: monomethylamine, dimethylamine, monoethylamine, diethylamine, n-propylamine, di-n-propylamine, isopropylamine, diisopropylamine, isopropylethylamine, n-butylamine, Di-n-butylamine, s-butylamine, di-s-butylamine, iso-butylamine, n-pentylamine, s-pentylamine, iso-pentylamine, n-hexylamine, s-hexylamine, iso-hexylamine, cyclohexylamine, aniline, toluidine, pipe
- Amines particularly preferably prepared by the process according to the invention are, for example, morpholine (from monoaminodiglycol), monoaminodiglycol, morpholine and / or 2, 2'-dimorpholinodiethyl ether (DMDEE) (from DEG and ammonia), 6-dimethylaminohexanol-1 (from hexanediol and dimethylamine ( DMA)), triethylamine (from ethanol and diethylamine (DEA)), dimethylethylamine (from ethanol and DMA), N- (C 1-4 -alkyl) morpholine (from DEG and mono (C 1-4 -alkyl) amine), N- (Ci-4-alkyl) piperidine (from 1, 5-pentanediol and mono (Ci-4-alkyl) amine), piperazine and / or diethylenetriamine (DETA) (from N- (2-aminoethyl) ethanolamine (A
- the polyether alcohols are, for example, polyethylene glycols or polypropylene glycols having a molecular weight in the range from 200 to 5000 g / mol, the corresponding polyetheramines being obtainable, for example, under the trade name PEA D230, D400, D2000, T403 or T5000 from BASF. Examples
- the thus obtained hydroxide-carbonate mixture was then tempered at a temperature of 450 to 500 ° C over a period of 4 hours.
- the catalyst thus prepared had the composition: 28% by weight of NiO, 28% by weight of CoO, 11% by weight of CuO, and 33% by weight of ZrO 2 .
- the catalyst was mixed with 3% by weight of graphite and formed into tablets.
- the oxidic tablets were reduced.
- the reduction was carried out at 280 ° C, the heating rate being 3 ° C / minute. First, it was reduced for 50 minutes with 10% H 2 in N 2 , then 20 minutes with 25% H 2 in N 2 , then 10 minutes with 50% H 2 in N 2 , then 10 minutes with 75% H 2 in N 2 and finally 3 hours with 100% H 2 .
- the percentages are% by volume.
- the passivation of the reduced catalyst was carried out at room temperature in dilute air (air in N 2 with an O 2 content of not more than 5% by volume).
- the catalyst was prepared analogously to catalyst 1. However, silver nitrate was added to the nitrate solution shortly before precipitation.
- the catalyst 2 thus obtained had the composition as shown in Table I.
- samples were withdrawn from the reaction mixture and analyzed by GC chromatography.
- a 30 m long GC column "RTX-5 Amines” was used, with a temperature program: 80 ° C / 15 minutes, heating to 290 ° C in 30 minutes, at 290 ° C / 15 minutes.
- the respective pure products can be obtained from the hydrous raw materials by rectification under vacuum, atmospheric pressure or elevated pressure according to the known methods.
- the pure products fall either directly in pure form or as an azeotrope with water.
- Water-containing azeotropes can be dehydrated by means of a liquid-liquid extraction with concentrated sodium hydroxide solution before or after the purifying distillation. Distillative dewatering in the presence of an entraining agent according to known methods is also possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07787039A EP2043779A1 (fr) | 2006-07-14 | 2007-07-04 | Procédé de production d'une amine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06117251 | 2006-07-14 | ||
EP07787039A EP2043779A1 (fr) | 2006-07-14 | 2007-07-04 | Procédé de production d'une amine |
PCT/EP2007/056723 WO2008006748A1 (fr) | 2006-07-14 | 2007-07-04 | Procédé de production d'une amine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2043779A1 true EP2043779A1 (fr) | 2009-04-08 |
Family
ID=38515876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07787039A Withdrawn EP2043779A1 (fr) | 2006-07-14 | 2007-07-04 | Procédé de production d'une amine |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090264652A1 (fr) |
EP (1) | EP2043779A1 (fr) |
JP (1) | JP2009543830A (fr) |
CN (1) | CN101489673A (fr) |
RU (1) | RU2009104982A (fr) |
WO (1) | WO2008006748A1 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101489979B (zh) | 2006-07-14 | 2015-04-08 | 巴斯夫欧洲公司 | 生产胺的方法 |
CN101489980A (zh) | 2006-07-14 | 2009-07-22 | 巴斯夫欧洲公司 | 生产胺的方法 |
US7750189B2 (en) | 2006-07-14 | 2010-07-06 | Basf Se | Method for producing an amine |
RU2009104985A (ru) | 2006-07-14 | 2010-08-27 | Басф Се (De) | Способ получения амина |
US8182736B2 (en) * | 2006-07-20 | 2012-05-22 | Sca Hygiene Products Ab | Apparatus and method for forming air-laid absorbent cores |
EP2225030B1 (fr) * | 2007-12-21 | 2012-04-18 | Basf Se | Procédé de préparation d'une amine |
CN101903096B (zh) | 2007-12-21 | 2013-04-03 | 巴斯夫欧洲公司 | 生产胺的方法 |
CN101903092B (zh) | 2007-12-21 | 2013-03-20 | 巴斯夫欧洲公司 | 生产胺的方法 |
EP2225029B1 (fr) | 2007-12-21 | 2016-08-03 | Basf Se | Procédé de préparation d'une amine et catalyseur |
CN102666472B (zh) | 2009-12-17 | 2015-01-28 | 巴斯夫欧洲公司 | 乙醇醛与胺化剂的反应 |
JP4938125B2 (ja) * | 2009-12-22 | 2012-05-23 | 花王株式会社 | 3級アミンの製造方法 |
KR101686949B1 (ko) * | 2010-10-19 | 2016-12-16 | 삼성전자 주식회사 | 금속 산화물 살균 촉매 및 이를 이용한 살균처리 장치 |
CN102091641B (zh) * | 2010-12-03 | 2012-12-19 | 烟台万华聚氨酯股份有限公司 | 一种负载型银钴或银镍还原氨化催化剂及其制备方法和用途 |
AU2012243157A1 (en) | 2011-04-13 | 2013-10-24 | Rennovia, Inc. | Production of caprolactam from carbohydrate-containing materials |
CN102408559A (zh) * | 2011-07-07 | 2012-04-11 | 中国石油化工集团公司 | 端氨基聚醚制备工艺 |
CN102336903A (zh) * | 2011-07-07 | 2012-02-01 | 中国石油化工集团公司 | 脂肪族聚醚胺生产工艺 |
JP2015525214A (ja) * | 2012-06-06 | 2015-09-03 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | ピペラジンの製造法 |
CN107683275A (zh) * | 2016-01-12 | 2018-02-09 | 亨斯迈石油化学有限责任公司 | 聚醚胺和亚烷基胺的联合制备 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL296139A (fr) * | 1963-08-02 | |||
NL169595C (nl) * | 1970-05-21 | 1982-08-02 | Shell Int Research | Werkwijze voor de bereiding van aminen en van smeerolien en vloeibare motorbrandstoffen die deze bevatten. |
US4153581A (en) * | 1977-09-01 | 1979-05-08 | The Dow Chemical Company | Method of producing amines from alcohols, aldehydes, ketones and mixtures thereof |
US4152353A (en) * | 1977-08-29 | 1979-05-01 | The Dow Chemical Company | Method of producing amines from alcohols, aldehydes, ketones and mixtures thereof |
US4625030A (en) * | 1984-05-23 | 1986-11-25 | Union Carbide Corporation | Potentiated nickel catalysts for amination |
DE3611230A1 (de) * | 1986-04-04 | 1987-10-08 | Basf Ag | Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen |
DE3903367A1 (de) * | 1989-02-04 | 1990-08-16 | Basf Ag | Katalysator und verfahren zur hydrierenden aminierung von alkoholen |
DE4428004A1 (de) * | 1994-08-08 | 1996-02-15 | Basf Ag | Verfahren zur Herstellung von Aminen |
DE4429547A1 (de) * | 1994-08-19 | 1996-02-22 | Basf Ag | Verfahren zur Herstellung von Aminen |
DE19742911A1 (de) * | 1997-09-29 | 1999-04-01 | Basf Ag | Verfahren zur Herstellung von Aminen |
DE19826396A1 (de) * | 1998-06-12 | 1999-12-16 | Basf Ag | Verfahren zur Herstellung von Aminen |
DE19910960A1 (de) * | 1999-03-12 | 2000-09-14 | Basf Ag | Verfahren zur Herstellung von Aminen |
DE50007278D1 (de) * | 1999-12-06 | 2004-09-09 | Basf Ag | Verfahren zur Herstellung von Aminen |
DE10153411A1 (de) * | 2001-10-30 | 2003-05-15 | Basf Ag | Verfahren zur Auftrennung von wasserhaltigen Rohamingemischen aus der Aminsynthese |
DE10153410A1 (de) * | 2001-10-30 | 2003-05-15 | Basf Ag | Verfahren zur Auftrennung von wasserhaltigen Rohamingemischen aus der Aminsynthese |
DE10211101A1 (de) * | 2002-03-14 | 2003-09-25 | Basf Ag | Katalysatoren und Verfahren zur Herstellung von Aminen |
DE10261193A1 (de) * | 2002-12-20 | 2004-07-01 | Basf Ag | Verfahren zur Herstellung eines Armins |
DE102004062253A1 (de) * | 2004-12-23 | 2006-07-06 | Basf Ag | Direktaminierung von Kohlenwasserstoffen |
DE102005047458A1 (de) * | 2005-09-30 | 2007-04-12 | Basf Ag | Verfahren zur Herstellung von Aminodiglykol (ADG) und Morpholin |
US7750189B2 (en) * | 2006-07-14 | 2010-07-06 | Basf Se | Method for producing an amine |
CN101489979B (zh) * | 2006-07-14 | 2015-04-08 | 巴斯夫欧洲公司 | 生产胺的方法 |
RU2009104985A (ru) * | 2006-07-14 | 2010-08-27 | Басф Се (De) | Способ получения амина |
-
2007
- 2007-07-04 WO PCT/EP2007/056723 patent/WO2008006748A1/fr active Application Filing
- 2007-07-04 US US12/373,783 patent/US20090264652A1/en not_active Abandoned
- 2007-07-04 CN CNA2007800266925A patent/CN101489673A/zh active Pending
- 2007-07-04 JP JP2009519903A patent/JP2009543830A/ja not_active Withdrawn
- 2007-07-04 RU RU2009104982/04A patent/RU2009104982A/ru not_active Application Discontinuation
- 2007-07-04 EP EP07787039A patent/EP2043779A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2008006748A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008006748A1 (fr) | 2008-01-17 |
JP2009543830A (ja) | 2009-12-10 |
CN101489673A (zh) | 2009-07-22 |
RU2009104982A (ru) | 2010-08-27 |
US20090264652A1 (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2043996B1 (fr) | Procédé de production d'une amine | |
EP2043997B1 (fr) | Procédé de production d'une amine | |
EP2225029B1 (fr) | Procédé de préparation d'une amine et catalyseur | |
EP2225027B1 (fr) | Procédé de préparation d'une amine | |
EP2225030B1 (fr) | Procédé de préparation d'une amine | |
EP2061747B1 (fr) | Procédé de production d'une amine | |
EP2506966B1 (fr) | Catalyseur et procédé de production d'une amine | |
EP2506965B1 (fr) | Catalyseur et procédé de production d'une amine | |
EP1487573B1 (fr) | Catalyseurs et procede pour produire des amines | |
EP2346602B1 (fr) | Procédé de préparation en continu d'une amine au moyen d'un catalyseur à base d'aluminium et de cuivre | |
US7750189B2 (en) | Method for producing an amine | |
WO2008006748A1 (fr) | Procédé de production d'une amine | |
EP2234717A1 (fr) | Procédé de fabrication d'une amine | |
EP2225031A1 (fr) | Procédé de fabrication d'une amine | |
WO2005110969A1 (fr) | Procede de production en continu d'une amine | |
EP2225028A1 (fr) | Procédé de préparation d'une amine | |
WO2009080515A1 (fr) | Procédé de fabrication d'une amine | |
WO2006136571A1 (fr) | Procede de production en continu d'une amine | |
WO2008138833A1 (fr) | Procédé pour la préparation d'amines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20090805 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD AND CATALYST FOR PRODUCING AN AMINE |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110503 |