[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2043211A2 - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
EP2043211A2
EP2043211A2 EP08011020A EP08011020A EP2043211A2 EP 2043211 A2 EP2043211 A2 EP 2043211A2 EP 08011020 A EP08011020 A EP 08011020A EP 08011020 A EP08011020 A EP 08011020A EP 2043211 A2 EP2043211 A2 EP 2043211A2
Authority
EP
European Patent Office
Prior art keywords
laser device
array
output beam
output
merging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08011020A
Other languages
German (de)
French (fr)
Other versions
EP2043211B1 (en
EP2043211A3 (en
Inventor
Thomas Hafner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arctos Showlasertechnik GmbH
Original Assignee
Arctos Showlasertechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40239743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2043211(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arctos Showlasertechnik GmbH filed Critical Arctos Showlasertechnik GmbH
Publication of EP2043211A2 publication Critical patent/EP2043211A2/en
Publication of EP2043211A3 publication Critical patent/EP2043211A3/en
Application granted granted Critical
Publication of EP2043211B1 publication Critical patent/EP2043211B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/104Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • the invention relates to a laser device having a plurality of single-emitter laser diodes whose individual output beams are superimposed to form a total output beam, according to the preamble of claim 1.
  • Such a laser device is known from the DE 20 2005 009 294 U1 , for the use of such a laser device for show laser projection purposes, it is of central importance that the best possible bundled overall output beam is present with the highest possible average power.
  • Cut-off intensities according to claim 2 represent a good compromise between the smallest possible portion of the intensity to be cut off and the closest possible merging of adjacently adjacent single output beams. However, more than 20% of the total intensity of a single output beam should not be cut off.
  • a laser device ensures a total output beam, in which all individual output beams advantageously extend closely adjacent to one another.
  • An overall collimator according to claim 4 results in a further narrowing of the bundle diameter of the total output beam where the narrow bundle diameter is required in the projection.
  • a typical 1 / e bundle cross section is a 1 / e bundle cross section averaged over all cross sectional directions of the bundle.
  • An elliptical bundle propagating in the z direction which has a 1 / e bundle cross section of 3 mm in the x direction and a 1 / e bundle cross section of 7 mm in the y direction, has a typical 1 / e bundle cross section of approximately 5 mm up. 1 / e bundle cross sections according to claim 4 have been found to produce a good projection quality as preferred.
  • Adjusted according to claim 5 deflection mirror cause a further narrowing of the total output beam.
  • the structure of the total output beam is used from a plurality of single output beams, wherein the single output jets can be adjusted independently in their direction.
  • the energetic principal rays of the single output beams within the array beam array then collapse along the beam path of the array beam array as the spacing of adjacent energetic principal rays of the single output beams along the beam path decreases.
  • the development according to claim 6 makes use of the possibilities of independent adjustment of the single output jets in a particularly advantageous manner for generating a small cross section of the total output beam.
  • FIG. 1 To illustrate positional relationships is the Fig. 1 and further figures associated with the drawing a Cartesian xyz coordinate system.
  • the x-axis runs in the Fig. 1 up.
  • the y-axis is perpendicular to the plane of the Fig. 1 towards the viewer and the z-axis runs to the right.
  • a laser device 1 has a plurality of single-emitter laser diodes 2 whose individual output beams 3 are superimposed to form a total output beam 4. The generated total output beam 4 is then used with the Light coupled further laser, so that a white light beam is generated, which is then scanned for show laser purposes, for example via a projection surface 5. The laser device 1 generates the red light portion of the white light beam to be scanned.
  • laser diodes having an output wavelength of 660 nm and a mean output power of 130 mW in cw mode (continuous wave) are used as single-emitter laser diodes 2.
  • Fig. 6 6 shows a typical emission surface 6 of one of the single-emitter laser diodes 2.
  • the emission surface 6 is approximately elliptical and has an extension of typically 1.5 ⁇ m in the x-direction and an extension of typically 1.0 ⁇ m in the y-direction.
  • This expansion in the x- and y-direction in each case is associated with a typical beam divergence of the single output beam 3 of this single emitter laser diode 2.
  • Each of the single emitter laser diodes 2 has immediately after the emission surface 6 a first collimator 7, which reduces the divergence of the single output beam 3 in the x-direction to about 7 mrad and in the y-direction to about 16 mrad.
  • a first collimator 7 which reduces the divergence of the single output beam 3 in the x-direction to about 7 mrad and in the y-direction to about 16 mrad.
  • the laser device 1 is due to these very small divergences in the x and y directions virtually no widening of the single output jets 3 available.
  • the long main axis of the emission surface 6, ie the x-axis, is no longer than 1.7 ⁇ m in the single-emitter laser diodes 2 used.
  • the aspect ratio of the divergences in the x and y directions is 1: 1.3 to 1: 2.5 for the single emitter laser diodes 2 used.
  • This divergence ratio x / y is preferably 1: 1.5.
  • single emitter laser diodes may also be used, for example a single emitter laser diode with an output wavelength of 642 nm and a cw output power of 90 mW, a divergence in the x direction of 10 mrad and in the y direction of 21 mrad.
  • Typical emission areas of the single emitter laser diodes used have extents of 1 ⁇ m in the y-direction and 1.5 to 5 ⁇ m in the x-direction. Shown in the Fig. 1 a total of twelve of the single-emitter laser diodes 2, which are each arranged in three groups 8 to four of the single-emitter laser diodes 2.
  • the four laser diodes 2 of a group 8 are each arranged on a common support and heat sink 9 in parallel and equidistant from each other, wherein they radiate in the positive z-direction.
  • the laser diodes 2 in the Fig. 1 Group 8 shown on the left are labeled from bottom to top with 2a, 2b, 2c and 2d.
  • Each of the laser diodes 2a to 2d is associated with a 90 ° deflecting mirror 10a to 10d. Selected these deflecting mirrors 10 serve to bring together the individual output beams 3 to the total output beam 4 and are therefore also referred to below as merging deflecting mirror.
  • the merge serve the deflection mirror 10b to 10d.
  • the deflecting mirrors 10 are arranged not only offset relative to one another in the x-direction in accordance with the x-positions of the laser diodes 2 a to 2 d, but also offset relative to one another in the z-direction. This ensures that at each of the merging deflecting mirrors 10b to 10d, a first single output beam 3 not reflected by the merging deflecting mirror 10b to 10d has at least one second, from the merging deflecting mirror 10b to 10d reflected single output beam 3 is merged.
  • This situation is exemplified by the merging deflecting mirror 10b in FIG Fig. 3 shown enlarged.
  • the non-reflected by Caribbean constitutional-deflecting mirror 10b single output beam 3 is in the Fig. 3 with 3a and by the merging deflection mirror 10b by 90 ° reflected single output beam 3 is in Fig. 3 designated 3b.
  • the merging deflection mirror 10b is arranged such that neither the entire bundle cross section of the guided, non-reflected single output beam 3a nor the entire beam cross section of the reflected single output beam 3b is used contributing to a merged intermediate output beam 11. Rather, at the converging deflection mirror 10, a part of the non-reflected single output beam 3a and also a part of the reflected single output beam 3b are cut off, so that the cut-off cross-sectional parts do not contribute to the intermediate output beam 11. A boundary line between the used and the cut, each incident single output beam 3a, 3b and the cut portion of these individual output beams 3a, 3b is in the Fig. 3 shown at 12.
  • the intensity ratios between the used and the cut portions of the single output jets 3a, 3b illustrate Fig. 5 ,
  • the intensity profile of the single output beams 3 is approximately Gaussian in the single-emitter laser diodes 2. Beyond the boundary line 12, a maximum of 10% of the total bundle intensity is cut off. This means that 90% of the intensities of the individual output jets 3a and 3b are used in the intermediate output beam 11 after the merging deflection mirror 10b.
  • the individual output beams 3a, 3b can thus be very narrow, with virtually no gap, with only slight losses, be led side by side.
  • This quadruple output beam is then deflected by another 90 ° deflecting mirror 13, so that it subsequently propagates in the positive z-direction.
  • this fourfold intermediate output beam 11 is guided past a further merging deflecting mirror 14.
  • This passage is in a schematic overview in the Fig. 2 and enlarged in the Fig. 4 shown.
  • the merging deflection mirror 14 again about 10% of the intensity of the passing fourfold intermediate output beam 11 is cut off.
  • the corresponding boundary line 12 is in the Fig. 4 located.
  • another fourfold intermediate output beam 15 is deflected by 90 ° in the xz plane by the merging deflection mirror 14, so that it then likewise propagates in the positive z direction.
  • FIG Fig. 4 A truncated portion of the quadruple intermediate output beam 15, which is not reflected, is in FIG Fig. 4 shown in phantom at 16.
  • the merging deflecting mirror 14 also ensures that in the beam path this merging deflecting mirror 14, the intermediate output beams 11, 15 closely adjacent to each other virtually without any gap, without losing more than 10% of the incident beam intensity. In each case, 10% of the incident intensity is also cut off from the intermediate output beams 11 and 15, so that with regard to the intensity used and the cut-off intensity, the conditions which have been mentioned above in connection with FIG Fig. 5 were explained.
  • this passes through a further merging deflection mirror 18, the function of which corresponds to the merging deflection mirror 14.
  • a further fourfold intermediate output beam 19 is coupled to the eightfold intermediate output beam 17 by 90 ° deflection, again 10% of the intensities of the reflected single output beams 3 and 10% of the intensities of the four directly on the convergence deflection mirror 8 passing single output jets 3 of the eight times intermediate output beam 17 are cut off.
  • intermediate output beam 20 which is constructed of twelve individual output jets 3 running side by side with virtually no gap, with four individual output jets 3 next to one another in the x direction and three single output jets 3 in y Direction are arranged one above the other.
  • This Twelve times the intermediate output beam 20, also referred to as a group beam array, is then narrowed by a group collimator to reduce the beam cross-section to a subsequent 1 / e beam cross-section, which is 4 to 5 mm in the illustrated embodiment. Since twelve times, ie 4x3, intermediate output beam 20 has an approximately square bundle cross section overall, the 1 / e bundle cross section indication represents the 1 / e diameter along the x or along the y direction.
  • the group collimator 21 is designed in the manner of a Galilean telescope with a plano-convex lens 21a and a plano-concave lens 21b.
  • the narrowed group beam array 20 is then combined via a coupling-polarizer 22 with another narrowed group beam array 23, which was also formed in a corresponding manner from the outputs of twelve single-emitter laser diodes 2.
  • the only difference between the group beam arrays 20 and 23 is that the group beam array 20 is linearly polarized in the x direction and the group beam array 23 is linearly polarized in the y direction.
  • the red total output beam 4 is present.
  • this is combined via a dichroic coupling-in mirror 24 with an overlay beam 25 comprising a green overall output beam 26 and a blue overall output beam 27.
  • the dichroic Einkoppelapt 24 is maximum permeable to red light and maximum reflective of green and blue light.
  • the overlay beam 25 is generated by superposing the green total output beam 26 and the blue overall output beam 27 on another dichroic launch mirror 28.
  • the dichroic Einkoppelspiegel 28 is maximum permeable to green light and blue Light maximum reflective.
  • the green total output beam 26 is generated, for example, by frequency doubling of a neodymium solid-state laser.
  • the blue overall output beam 27 can also be generated by a neodymium solid-state laser, which is frequency-doubled in the resonator.
  • the wavelength of the green total output beam is 532 nm.
  • the wavelength of the blue total output beam is 473 nm.
  • a white total output beam 29 After the dichroic coupling-in mirror 24, there is a white total output beam 29 which passes through a scanner 30.
  • This scanner 30 deflects the total output beam 29 in a synchronized manner, so that a desired light pattern is produced on the projection surface 5, which is spaced apart from the scanner 30 by about 10 to 20 m.
  • the operation of the scanner 30 is preferably synchronized with unillustrated intensity modulators located in the beam paths of the total output beams 4, 26 and 27 and independently modulating the three primary colors red, green and blue for imaging.
  • the cross section of the total output beam 4 after the scanner 30 looks approximately as in FIG Fig. 7 shown. Due to the somewhat higher divergence in the y-direction, the single output jets 3 are widened somewhat more strongly in the y-direction than in the x-direction, so that the beam diameters ⁇ y of the single output jets 3 are larger than the beam diameters ⁇ x in x perpendicular thereto -Direction. This effect is compensated by the fact that in the y direction in the total output beam 4 there are three adjacent single output jets 3, while in the x direction four adjacent single output jets 3 are present be present, so that the total output beam 4 after the scanner 30 has an approximately square envelope.
  • Fig. 8 shows the total output beam 4 after further propagation by about 10 to 20 m shortly before hitting the projection surface 5.
  • the representation after Fig. 8 is not to scale for illustration Fig. 7 , Due to the divergence, the individual output jets 3 are now widened more strongly, whereby adjacent single output jets 3 now penetrate.
  • Fig. 9 shows a situation in which the total output beam 4 was further merged by adjusting the single output beams 3 just before the projection surface 5.
  • the deflecting mirrors 10 and in particular 14 and 18 were adjusted so that the single output jets 3 in the y-direction are all approximately at a height. From the three superimposed rows of fourfold intermediate output jets, a fourfold series of single output jets 3 has become, which strongly penetrate due to the long propagation path. Energetic main beams 31 of the individual output beams 3 are combined within the overall output beam 4, that is to say in particular within the group beam arrays 20, 23, along the beam path of these group beam arrays 20, 23 by this adjustment.
  • the deflection mirror 10 it is possible for the fourfold intermediate output beam after Fig. 9 to summarize even further in the x-direction.
  • the bundle diameter of the total output beam is reduced in this way again, which improves the quality of the projection produced on the projection surface 5, in particular its contrast.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Surgery Devices (AREA)
  • Glass Compositions (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The device (1) has a collimator (7) for grouping input-output radiations (3) attached to each of single emitter laser diodes (2). The radiations of a single emitter laser diodes group (8) are combined together to radiation-array-groups (20, 23) by combined-tilted mirrors (10b-10d, 14, 18). Non-reflected input-output radiations are combined together with reflected input-output radiations from the mirrors. A part of the non-reflected input-output radiations and a part of the reflected input-output radiations are truncated at the mirrors, and do not contributed to the radiation-array-groups.

Description

Die Erfindung betrifft eine Laservorrichtung mit einer Mehrzahl von Singleemitter-Laserdioden, deren Einzel-Ausgabestrahlen zu einem Gesamt-Ausgabestrahl überlagert werden, nach dem Oberbegriff des Anspruchs 1.The invention relates to a laser device having a plurality of single-emitter laser diodes whose individual output beams are superimposed to form a total output beam, according to the preamble of claim 1.

Eine derartige Laservorrichtung ist bekannt aus der DE 20 2005 009 294 U1 . Zum Einsatz einer derartigen Laservorrichtung für Showlaser-Projektionszwecke ist es von zentraler Bedeutung, dass ein möglichst gut gebündelter Gesamt-Ausgabestrahl mit möglichst hoher mittlerer Leistung vorliegt.Such a laser device is known from the DE 20 2005 009 294 U1 , For the use of such a laser device for show laser projection purposes, it is of central importance that the best possible bundled overall output beam is present with the highest possible average power.

Es ist daher eine Aufgabe der vorliegenden Erfindung, eine Laservorrichtung der eingangs genannten Art derart weiterzubilden, dass bei gegebener mittlerer Leistung im Gesamt-Ausgabelaserstrahl eine verbesserte Bündelung dieses Ausgabestrahls erreicht werden kann.It is therefore an object of the present invention, a laser device of the type mentioned in such a way that at a given average power in the total output laser beam improved bundling of this output beam can be achieved.

Diese Aufgabe ist erfindungsgemäß gelöst durch eine Laservorrichtung mit den im Kennzeichnungsteil des Anspruchs 1 angegebenen Merkmalen.This object is achieved by a laser device with the features specified in the characterizing part of claim 1.

Erfindungsgemäß wurde erkannt, dass es überraschenderweise durchaus möglich ist, einen Teil der verwendeten Einzel-Ausgabestrahlen an Zusammenführ-Umlenkelementen abzuschneiden, so dass der abgeschnittene Teil nicht als Nutzlicht zur Verfügung steht. Der scheinbare Nachteil, den dieses Abschneiden aufgrund einer Verringerung der nutzbaren Gesamtintensität zur Folge hat, wird durch den Vorteil der Möglichkeit einer engeren Zusammenführung der nebeneinander verlaufenden Einzel-Ausgabestrahlen mehr als aufgewogen. Insgesamt resultiert ein gut gebündelter Gesamt-Ausgabestrahl, der sich gut zu Projektionszwecken einsetzen lässt.According to the invention it was recognized that it is surprisingly quite possible to cut off a portion of the single output jets used on merge deflection elements, so that the cut-off part is not available as useful light. The apparent drawback that this truncation entails due to a reduction in total usable intensity is more than offset by the benefit of the possibility of tighter merging of the side-by-side single output jets. Overall, a well bundled overall output beam results, which can be used well for projection purposes.

Ebenfalls überraschend ist, dass Beugungseffekte aufgrund der abgeschnittenen Einzelstrahl-Anteile keinen negativen Effekt auf eine Projektionsqualität des Gesamt-Ausgabestrahls haben.It is also surprising that diffraction effects due to the cut-off individual beam components have no negative effect on a projection quality of the total output beam.

Abgeschnittene Intensitäten nach Anspruch 2 stellen einen guten Kompromiss zwischen einem möglichst geringen abzuschneidenden Intensitäts-Anteil einerseits und einem möglichst engen Zusammenführen benachbart nebeneinander verlaufender Einzel-Ausgabestrahlen dar. Mehr als 20% der Gesamtintensität eines Einzel-Ausgabestrahls sollten allerdings nicht abgeschnitten werden.Cut-off intensities according to claim 2 represent a good compromise between the smallest possible portion of the intensity to be cut off and the closest possible merging of adjacently adjacent single output beams. However, more than 20% of the total intensity of a single output beam should not be cut off.

Eine Laservorrichtung nach Anspruch 3 gewährleistet einen Gesamt-Ausgabestrahl, bei dem alle Einzel-Ausgabestrahlen vorteilhaft eng zueinander benachbart verlaufen.A laser device according to claim 3 ensures a total output beam, in which all individual output beams advantageously extend closely adjacent to one another.

Ein Gesamt-Kollimator nach Anspruch 4 führt zu einer weiteren Verengung des Bündeldurchmessers des Gesamt-Ausgabestrahls dort, wo der enge Bündeldurchmesser bei der Projektion benötigt wird. Ein typischer 1/e-Bündelquerschnitt ist ein über alle Querschnittsrichtungen des Bündels gemittelter 1/e-Bündelquerschnitt. Ein in z-Richtung propagierendes elliptisches Bündel, das beispielsweise in x-Richtung einen 1/e-Bündelquerschnitt von 3 mm und in y-Richtung einen 1/e-Bündelquerschnitt von 7 mm hat, weist einen typischen 1/e-Bündelquerschnitt von etwa 5 mm auf. 1/e-Bündelquerschnitte nach Anspruch 4 haben sich zur Erzeugung einer guten Projektionsqualität als bevorzugt herausgestellt.An overall collimator according to claim 4 results in a further narrowing of the bundle diameter of the total output beam where the narrow bundle diameter is required in the projection. A typical 1 / e bundle cross section is a 1 / e bundle cross section averaged over all cross sectional directions of the bundle. An elliptical bundle propagating in the z direction, which has a 1 / e bundle cross section of 3 mm in the x direction and a 1 / e bundle cross section of 7 mm in the y direction, has a typical 1 / e bundle cross section of approximately 5 mm up. 1 / e bundle cross sections according to claim 4 have been found to produce a good projection quality as preferred.

Nach Anspruch 5 justierte Umlenkspiegel führen eine nochmalige Verengung des Gesamt-Ausgabestrahls herbei. Hierbei wird der Aufbau des Gesamt-Ausgabestrahls aus mehreren Einzel-Ausgabestrahlen genutzt, wobei die Einzel-Ausgabestrahlen unabhängig voneinander in ihrer Richtung justiert werden können. Die energetischen Hauptstrahlen der Einzel-Ausgabestrahlen innerhalb des Gruppen-Strahl-Arrays rücken längs des Strahlengangs des Gruppen-Strahl-Arrays dann zusammen, wenn sich der Abstand benachbarter energetischer Hauptstrahlen der Einzel-Ausgabestrahlen längs des Strahlengangs verringert.Adjusted according to claim 5 deflection mirror cause a further narrowing of the total output beam. Here, the structure of the total output beam is used from a plurality of single output beams, wherein the single output jets can be adjusted independently in their direction. The energetic principal rays of the single output beams within the array beam array then collapse along the beam path of the array beam array as the spacing of adjacent energetic principal rays of the single output beams along the beam path decreases.

Die Weiterbildung nach Anspruch 6 nutzt die Möglichkeiten einer unabhängigen Justage der Einzel-Ausgabestrahlen in besonders vorteilhafter Weise zur Erzeugung eines geringen Querschnitts des Gesamt-Ausgabestrahls.The development according to claim 6 makes use of the possibilities of independent adjustment of the single output jets in a particularly advantageous manner for generating a small cross section of the total output beam.

Spezifikationen der Emissionen der Singleemitter-Laserdioden nach den Ansprüchen 7 bis 10 haben sich für den Einsatz derartiger Laserdioden in der erfindungsgemäßen Laservorrichtung als besonders gut geeignet herausgestellt.Specifications of the emissions of the single-emitter laser diodes according to claims 7 to 10 have been found to be particularly suitable for the use of such laser diodes in the laser device according to the invention.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:

Fig. 1
eine schematische Gesamtübersicht einer Laservorrichtung mit einer Mehrzahl von Singleemitter-Laserdioden, deren Einzel-Ausgabestrahlen zu einem Gesamt-Ausgabestrahl überlagert werden, wobei diese Laservorrichtung Teil einer schematisch dargestellten Gesamtvorrichtung zur scannenden Showlaser-Projektion ist;
Fig. 2
eine schematische Ansicht auf die Laservorrichtung gemäß der Schnittlinie II-II in Fig. 1;
Fig. 3
eine Ausschnittsvergrößerung gemäß dem Ausschnitt III in Fig. 1;
Fig. 4
eine Ausschnittsvergrößerung gemäß dem Ausschnitt IV in Fig. 2;
Fig. 5
ein Intensitätsprofil ausgewählter Einzel-Ausgabestrahlen gemäß den Schnittlinien V-V in den Fig. 3 und 4;
Fig. 6
schematisch die Emissionsfläche einer der Singleemitter-Laserdioden;
Fig. 7
einen Schnitt durch den Gesamt-Ausgabestrahl gemäß Linie VII-VII in Fig. 1, wobei lediglich die Einzel-Ausgabestrahlen der Singleemitter-Laserdioden dargestellt sind; und
Fig. 8 und 9
Schnitte durch den Gesamt-Ausgabestrahl gemäß Linie VIII-VIII in Fig. 1 in einer zu Fig. 7 ähnlichen Darstellung in verschiedenen Justagezuständen der Laservorrichtung.
An embodiment of the invention will be explained in more detail with reference to the drawing. In this show:
Fig. 1
a schematic overall view of a laser device having a plurality of single-emitter laser diodes whose single-output beams are superimposed to form a total output beam, said laser device is part of a schematically illustrated total device for scanning show laser projection;
Fig. 2
a schematic view of the laser device according to the section line II-II in Fig. 1 ;
Fig. 3
an enlarged detail according to the section III in Fig. 1 ;
Fig. 4
an enlarged detail according to the section IV in Fig. 2 ;
Fig. 5
an intensity profile of selected individual output beams according to the section lines VV in the 3 and 4 ;
Fig. 6
schematically the emission area of one of the single emitter laser diodes;
Fig. 7
a section through the total output beam according to line VII-VII in Fig. 1 wherein only the single output beams of the single emitter laser diodes are shown; and
8 and 9
Sections through the total output beam according to line VIII-VIII in Fig. 1 in one too Fig. 7 similar representation in different adjustment states of the laser device.

Zur Veranschaulichung von Lagebeziehungen ist der Fig. 1 und weiteren Figuren der Zeichnung ein kartesisches x-y-z-Koordinatensystem zugeordnet. Die x-Achse verläuft in der Fig. 1 nach oben. Die y-Achse verläuft senkrecht zur Zeichenebene der Fig. 1 auf den Betrachter zu und die z-Achse verläuft nach rechts.To illustrate positional relationships is the Fig. 1 and further figures associated with the drawing a Cartesian xyz coordinate system. The x-axis runs in the Fig. 1 up. The y-axis is perpendicular to the plane of the Fig. 1 towards the viewer and the z-axis runs to the right.

Eine Laservorrichtung 1 hat eine Mehrzahl von Singleemitter-Laserdioden 2, deren Einzel-Ausgabestrahlen 3 zu einem Gesamt-Ausgabestrahl 4 überlagert werden. Der erzeugte Gesamt-Ausgabestrahl 4 wird dann mit dem Licht weiterer Laser zusammengekoppelt, so dass ein Weißlicht-Strahl erzeugt wird, der dann zu Showlaser-Zwecken beispielsweise über eine Projektionsfläche 5 gescannt wird. Die Laservorrichtung 1 erzeugt dabei den Rotlicht-Anteil des zu scannenden Weißlichtstrahls.A laser device 1 has a plurality of single-emitter laser diodes 2 whose individual output beams 3 are superimposed to form a total output beam 4. The generated total output beam 4 is then used with the Light coupled further laser, so that a white light beam is generated, which is then scanned for show laser purposes, for example via a projection surface 5. The laser device 1 generates the red light portion of the white light beam to be scanned.

Als Singleemitter-Laserdioden 2 werden beispielsweise Laserdioden mit einer Ausgabewellenlänge von 660 nm und einer mittleren Ausgabeleistung von 130 mW im cw-Betrieb (continuous wave) eingesetzt.For example, laser diodes having an output wavelength of 660 nm and a mean output power of 130 mW in cw mode (continuous wave) are used as single-emitter laser diodes 2.

Fig. 6 zeigt eine typische Emissionsfläche 6 einer der Singleemitter-Laserdioden 2. Die Emissionsfläche 6 ist in etwa elliptisch und hat in x-Richtung eine Ausdehnung von typisch 1,5 µm und in y-Richtung eine Ausdehnung von typisch 1,0 µm. Diese Ausdehnung in x- und y-Richtung jeweils zugeordnet ist eine typische Strahldivergenz des Einzel-Ausgabestrahls 3 dieser Singleemitter-Laserdiode 2. Je kleiner die Querausdehnung der Emissionsfläche 6 ist, desto größer ist bei der Singleemitter-Laserdiode 2 die Strahldivergenz in der diese Querausdehnung enthaltenden Hauptebene. Jede der Singleemitter-Laserdioden 2 hat unmittelbar nach der Emissionsfläche 6 einen ersten Kollimator 7, der die Divergenz des Einzel-Ausgabestrahls 3 in der x-Richtung auf etwa 7 mrad und in der y-Richtung auf etwa 16 mrad reduziert. Im weiteren Verlauf durch die Laservorrichtung 1 ist aufgrund dieser sehr geringen Divergenzen in x- und y-Richtung praktisch keine Aufweitung der Einzel-Ausgabestrahlen 3 vorhanden. Fig. 6 6 shows a typical emission surface 6 of one of the single-emitter laser diodes 2. The emission surface 6 is approximately elliptical and has an extension of typically 1.5 μm in the x-direction and an extension of typically 1.0 μm in the y-direction. This expansion in the x- and y-direction in each case is associated with a typical beam divergence of the single output beam 3 of this single emitter laser diode 2. The smaller the transverse extent of the emission surface 6, the greater the single-emitter laser diode 2, the beam divergence in this transverse extent containing the main level. Each of the single emitter laser diodes 2 has immediately after the emission surface 6 a first collimator 7, which reduces the divergence of the single output beam 3 in the x-direction to about 7 mrad and in the y-direction to about 16 mrad. In the further course of the laser device 1 is due to these very small divergences in the x and y directions virtually no widening of the single output jets 3 available.

Die lange Hauptachse der Emissionsfläche 6, also die x-Achse, ist bei den verwendeten Singleemitter-Laserdioden 2 nicht länger als 1,7 µm.The long main axis of the emission surface 6, ie the x-axis, is no longer than 1.7 μm in the single-emitter laser diodes 2 used.

Das Aspektverhältnis der Divergenzen in x- und y-Richtung beträgt bei den verwendeten Singleemitter-Laserdioden 2 1:1,3 bis 1:2,5. Bevorzugt beträgt dieses Divergenzverhältnis x/y 1:1,5.The aspect ratio of the divergences in the x and y directions is 1: 1.3 to 1: 2.5 for the single emitter laser diodes 2 used. This divergence ratio x / y is preferably 1: 1.5.

Auch anderen Singleemitter-Laserdioden können eingesetzt werden, beispielsweise eine Singleemitter-Laserdiode mit einer Ausgabewellenlänge von 642 nm und einer cw-Ausgabeleistung von 90 mW, einer Divergenz in x-Richtung von 10 mrad und in y-Richtung von 21 mrad. Typische Emissionsflächen der verwendeten Singleemitter-Laserdioden haben Erstreckungen von 1 µm in y-Richtung und 1,5 bis 5 µm in x-Richtung.
Dargestellt sind in der Fig. 1 insgesamt zwölf der Singleemitter-Laserdioden 2, die jeweils in drei Gruppen 8 zu je vier der Singleemitter-Laserdioden 2 angeordnet sind. Die vier Laserdioden 2 einer Gruppe 8 sind jeweils an einem gemeinsamen Trag- und Kühlkörper 9 parallel und äquidistant zueinander beabstandet angeordnet, wobei sie in positiver z-Richtung abstrahlen. Die Laserdioden 2 der in der Fig. 1 links dargestellten Gruppe 8 sind von unten nach oben mit 2a, 2b, 2c und 2d bezeichnet. Jeder der Laserdioden 2a bis 2d ist ein 90°-Umlenkspiegel 10a bis 10d zugeordnet. Ausgewählte dieser Umlenkspiegel 10 dienen zur Zusammenführung der Einzel-Ausgabestrahlen 3 zum Gesamt-Ausgabestrahl 4 und werden daher nachfolgend auch als Zusammenführ-Umlenkspiegel bezeichnet. Der Zusammenführung dienen dabei die Umlenkspiegel 10b bis 10d.
Other single emitter laser diodes may also be used, for example a single emitter laser diode with an output wavelength of 642 nm and a cw output power of 90 mW, a divergence in the x direction of 10 mrad and in the y direction of 21 mrad. Typical emission areas of the single emitter laser diodes used have extents of 1 μm in the y-direction and 1.5 to 5 μm in the x-direction.
Shown in the Fig. 1 a total of twelve of the single-emitter laser diodes 2, which are each arranged in three groups 8 to four of the single-emitter laser diodes 2. The four laser diodes 2 of a group 8 are each arranged on a common support and heat sink 9 in parallel and equidistant from each other, wherein they radiate in the positive z-direction. The laser diodes 2 in the Fig. 1 Group 8 shown on the left are labeled from bottom to top with 2a, 2b, 2c and 2d. Each of the laser diodes 2a to 2d is associated with a 90 ° deflecting mirror 10a to 10d. Selected these deflecting mirrors 10 serve to bring together the individual output beams 3 to the total output beam 4 and are therefore also referred to below as merging deflecting mirror. The merge serve the deflection mirror 10b to 10d.

Die Umlenkspiegel 10 sind entsprechend den x-Positionen der Laserdioden 2a bis 2d nicht nur in x-Richtung zueinander versetzt angeordnet, sondern auch in z-Richtung zueinander versetzt angeordnet. Dies gewährleistet, dass an jedem der Zusammenführ-Umlenkspiegel 10b bis 10d ein erster, vom Zusammenführ-Umlenkspiegel 10b bis 10d nicht reflektierter Einzel-Ausgabestrahl 3 mit mindestens einem zweiten, vom Zusammenführ-Umlenkspiegel 10b bis 10d reflektierten Einzel-Ausgabestrahl 3 zusammengeführt wird. Diese Situation ist am Beispiel des Zusammenführ-Umlenkspiegels 10b in der Fig. 3 vergrößert dargestellt. Der vom Zusammenführ-Umlenkspiegel 10b nicht reflektierte Einzel-Ausgabestrahl 3 ist in der Fig. 3 mit 3a und der vom Zusammenführ-Umlenkspiegel 10b um 90° reflektierte Einzel-Ausgabestrahl 3 ist in Fig. 3 mit 3b bezeichnet.The deflecting mirrors 10 are arranged not only offset relative to one another in the x-direction in accordance with the x-positions of the laser diodes 2 a to 2 d, but also offset relative to one another in the z-direction. This ensures that at each of the merging deflecting mirrors 10b to 10d, a first single output beam 3 not reflected by the merging deflecting mirror 10b to 10d has at least one second, from the merging deflecting mirror 10b to 10d reflected single output beam 3 is merged. This situation is exemplified by the merging deflecting mirror 10b in FIG Fig. 3 shown enlarged. The non-reflected by Zusammenführ-deflecting mirror 10b single output beam 3 is in the Fig. 3 with 3a and by the merging deflection mirror 10b by 90 ° reflected single output beam 3 is in Fig. 3 designated 3b.

Der Fig. 3 ist zu entnehmen, dass der Zusammenführ-Umlenkspiegel 10b derart angeordnet ist, dass weder der gesamte Bündelquerschnitt des vorbeigeführten, nicht reflektierten Einzel-Ausgabestrahls 3a noch der gesamte Bündelquerschnitt des reflektierten Einzel-Ausgabestrahls 3b zu einem zusammengeführten Zwischen-Ausgabestrahl 11 beitragend genutzt wird. Vielmehr wird am Zusammenführ-Umlenkspiegel 10 ein Teil des nicht reflektierten Einzel-Ausgabestrahls 3a und auch ein Teil des reflektierten Einzel-Ausgabestrahls 3b abgeschnitten, so dass die abgeschnittenen Querschnitts-Teile nicht zum Zwischen-Ausgabestrahl 11 beitragen. Eine Grenzlinie zwischen dem genutzten und dem abgeschnittenen, jeweils einfallenden Einzel-Ausgabestrahl 3a, 3b und dem abgeschnittenen Anteil dieser Einzel-Ausgabestrahlen 3a, 3b ist in der Fig. 3 bei 12 dargestellt.Of the Fig. 3 It can be seen that the merging deflection mirror 10b is arranged such that neither the entire bundle cross section of the guided, non-reflected single output beam 3a nor the entire beam cross section of the reflected single output beam 3b is used contributing to a merged intermediate output beam 11. Rather, at the converging deflection mirror 10, a part of the non-reflected single output beam 3a and also a part of the reflected single output beam 3b are cut off, so that the cut-off cross-sectional parts do not contribute to the intermediate output beam 11. A boundary line between the used and the cut, each incident single output beam 3a, 3b and the cut portion of these individual output beams 3a, 3b is in the Fig. 3 shown at 12.

Die Intensitätsverhältnisse zwischen den genutzten und den abgeschnittenen Anteilen der Einzel-Ausgabestrahlen 3a, 3b verdeutlicht Fig. 5. Das Intensitätsprofil der Einzel-Ausgabestrahlen 3 ist bei den Singleemitter-Laserdioden 2 in etwa gaußförmig. Jenseits der Grenzlinie 12 wird maximal 10% der gesamten Bündelintensität abgeschnitten. Dies bedeutet, dass nach dem Zusammenführ-Umlenkspiegel 10b jeweils 90% der Intensitäten der Einzel-Ausgabestrahlen 3a und 3b im Zwischen-Ausgabestrahl 11 genutzt werden. Die Einzel-Ausgabestrahlen 3a, 3b können auf diese Weise bei nur geringen Verlusten sehr eng, nämlich praktisch ohne Zwischenraum, nebeneinander geführt werden. Bei den Zusammenführ-Umlenkspiegeln 10c und 10d liegen in Bezug auf das teilweise Abschneiden der dort vorbeigeführten bzw. reflektierten Einzel-Ausgabestrahlen 3 die gleichen Verhältnisse vor, wie vorstehend unter Bezugnahme auf die Fig. 3 beim Zusammenführ-Umlenkspiegel 10b beschrieben. Im Strahlengang der Einzel-Ausgabestrahlen 3 liegt nach dem Zusammenführ-Umlenkspiegel 10d daher ein Zwischen-Ausgabestrahl 11 mit vier ohne Zwischenraum nebeneinanderliegend angeordneten Einzel-Ausgabestrahlen 3 vor, wobei jeweils 90% der ursprünglichen Strahlemission der Laserdioden 2 genutzt wird.The intensity ratios between the used and the cut portions of the single output jets 3a, 3b illustrate Fig. 5 , The intensity profile of the single output beams 3 is approximately Gaussian in the single-emitter laser diodes 2. Beyond the boundary line 12, a maximum of 10% of the total bundle intensity is cut off. This means that 90% of the intensities of the individual output jets 3a and 3b are used in the intermediate output beam 11 after the merging deflection mirror 10b. The individual output beams 3a, 3b can thus be very narrow, with virtually no gap, with only slight losses, be led side by side. In the case of the merging deflecting mirrors 10c and 10d, the same conditions prevail with respect to the partial cutting off of the individual output beams 3 passed therethrough, as described above with reference to FIG Fig. 3 described at merging deflection mirror 10b. In the beam path of the single output jets 3, therefore, after the merging deflection mirror 10d, there is an intermediate output beam 11 with four individual output jets arranged next to each other without gap, wherein in each case 90% of the original beam emission of the laser diodes 2 is utilized.

Dieser Vierfach-Ausgabestrahl wird anschließend von einem weiteren 90°-Umlenkspiegel 13 umgelenkt, so dass er nachfolgend in positiver z-Richtung propagiert. Im weiteren Verlauf wird dieser vierfache Zwischen-Ausgabestrahl 11 an einem weiteren Zusammenführ-Umlenkspiegel 14 vorbeigeführt. Dieses Vorbeiführen ist in einer schematischen Übersicht in der Fig. 2 und vergrößert in der Fig. 4 dargestellt. Am Zusammenführ-Umlenkspiegel 14 werden wiederum etwa 10% der Intensität des vorbeigeführten vierfachen Zwischen-Ausgabestrahls 11 abgeschnitten. Die entsprechende Grenzlinie 12 ist in der Fig. 4 eingezeichnet. Gleichzeitig wird vom Zusammenführ-Umlenkspiegel 14 ein weiterer vierfacher Zwischen-Ausgabestrahl 15 in der x-z-Ebene um 90° umgelenkt, so dass er anschließend ebenfalls in positiver z-Richtung propagiert. Wie der Darstellung der Fig. 4 entnommen werden kann, wird, analog wie bei den Zusammenführ-Umlenkspiegeln 10b bis 10d, nicht die gesamte Intensität des Zwischen-Ausgabestrahls 15 reflektiert, sondern lediglich 90% hiervon. Ein abgeschnittener Anteil des vierfachen Zwischen-Ausgabestrahls 15, der nicht reflektiert wird, ist in der Fig. 4 gestrichelt bei 16 dargestellt. Auch der Zusammenführ-Umlenkspiegel 14 sorgt dafür, dass im Strahlengang nach diesem Zusammenführ-Umlenkspiegel 14 die Zwischen-Ausgabestrahlen 11, 15 praktisch ohne Zwischenraum eng zueinander benachbart verlaufen, ohne hierbei mehr als 10% der einfallenden Strahlintensität zu verlieren. Auch von den Zwischen-Ausgabestrahlen 11 und 15 wird also jeweils 10% der einfallenden Intensität abgeschnitten, so dass hinsichtlich der genutzten und der abgeschnittenen Intensität ebenfalls die Verhältnisse gelten, die vorstehend im Zusammenhang mit der Fig. 5 erläutert wurden.This quadruple output beam is then deflected by another 90 ° deflecting mirror 13, so that it subsequently propagates in the positive z-direction. In the further course of this fourfold intermediate output beam 11 is guided past a further merging deflecting mirror 14. This passage is in a schematic overview in the Fig. 2 and enlarged in the Fig. 4 shown. At the merging deflection mirror 14, again about 10% of the intensity of the passing fourfold intermediate output beam 11 is cut off. The corresponding boundary line 12 is in the Fig. 4 located. At the same time, another fourfold intermediate output beam 15 is deflected by 90 ° in the xz plane by the merging deflection mirror 14, so that it then likewise propagates in the positive z direction. As the representation of Fig. 4 can be removed is, analogous to the merging deflecting mirrors 10b to 10d, not the entire intensity of the intermediate output beam 15 is reflected, but only 90% thereof. A truncated portion of the quadruple intermediate output beam 15, which is not reflected, is in FIG Fig. 4 shown in phantom at 16. The merging deflecting mirror 14 also ensures that in the beam path this merging deflecting mirror 14, the intermediate output beams 11, 15 closely adjacent to each other virtually without any gap, without losing more than 10% of the incident beam intensity. In each case, 10% of the incident intensity is also cut off from the intermediate output beams 11 and 15, so that with regard to the intensity used and the cut-off intensity, the conditions which have been mentioned above in connection with FIG Fig. 5 were explained.

Nach dem Zusammenführ-Umlenkspiegel 14 liegt daher ein Zwischen-Ausgabestrahl 17 vor, der aus insgesamt acht Einzel-Ausgabestrahlen 3 in einem 4x2-Muster zusammengesetzt ist, wobei in x-Richtung vier Ausgabestrahlen 3 nebeneinander und in y-Richtung zwei Ausgabestrahlen 3 übereinander verlaufen.After the merging deflection mirror 14, therefore, there is an intermediate output beam 17 which is composed of a total of eight individual output jets 3 in a 4x2 pattern, wherein four output jets 3 run next to one another in the x direction and two output jets 3 in the y direction one above the other ,

Im weiteren Verlauf des Zwischen-Ausgabestrahls 17 passiert dieser einen weiteren Zusammenführ-Umlenkspiegel 18, dessen Funktion dem Zusammenführ-Umlenkspiegel 14 entspricht. Am Zusammenführ-Umlenkspiegel 18 wird durch 90°-Umlenkung ein weiterer vierfacher Zwischen-Ausgabestrahl 19 zum achtfachen Zwischen-Ausgabestrahl 17 dazugekoppelt, wobei wiederum 10% der Intensitäten der reflektierten Einzel-Ausgabestrahlen 3 und 10% der Intensitäten der vier direkt am Zusammenführ-Umlenkspiegel 8 vorbeigeführten Einzel-Ausgabestrahlen 3 des achtfachen Zwischen-Ausgabestrahls 17 abgeschnitten werden.In the further course of the intermediate output beam 17, this passes through a further merging deflection mirror 18, the function of which corresponds to the merging deflection mirror 14. At merging deflection mirror 18, a further fourfold intermediate output beam 19 is coupled to the eightfold intermediate output beam 17 by 90 ° deflection, again 10% of the intensities of the reflected single output beams 3 and 10% of the intensities of the four directly on the convergence deflection mirror 8 passing single output jets 3 of the eight times intermediate output beam 17 are cut off.

Nach dem Zusammenführ-Umlenkspiegel 18 liegt somit ein Zwischen-Ausgabestrahl 20 vor, der aus praktisch ohne Zwischenraum nebeneinander verlaufenden zwölf Einzel-Ausgabestrahlen 3 aufgebaut ist, wobei jeweils vier Einzel-Ausgabestrahlen 3 in x-Richtung nebeneinander und drei Einzel-Ausgabestrahlen 3 in y-Richtung übereinander angeordnet sind. Dieser zwölffache Zwischen-Ausgabestrahl 20, der auch als Gruppen-Strahl-Array bezeichnet wird, wird sodann von einem Gruppen-Kollimator zur Verringerung des Bündelquerschnitts auf einen nachfolgenden 1/e-Bündelquerschnitt verengt, der bei der dargestellten Ausführung bei 4 bis 5 mm liegt. Da der zwölffache, also 4x3, Zwischen-Ausgabestrahl 20 insgesamt einen angenähert quadratischen Bündelquerschnitt hat, stellt die 1/e-Bündelquerschnitts-Angabe den 1/e-Durchmesser längs der x- oder längs der y-Richtung dar.After the merging deflecting mirror 18, there is thus an intermediate output beam 20, which is constructed of twelve individual output jets 3 running side by side with virtually no gap, with four individual output jets 3 next to one another in the x direction and three single output jets 3 in y Direction are arranged one above the other. This Twelve times the intermediate output beam 20, also referred to as a group beam array, is then narrowed by a group collimator to reduce the beam cross-section to a subsequent 1 / e beam cross-section, which is 4 to 5 mm in the illustrated embodiment. Since twelve times, ie 4x3, intermediate output beam 20 has an approximately square bundle cross section overall, the 1 / e bundle cross section indication represents the 1 / e diameter along the x or along the y direction.

Der Gruppen-Kollimator 21 ist nach Art eines Galilei-Teleskops mit einer Plankonvexlinse 21a und einer Plankonkavlinse 21b ausgeführt. Das verengte Gruppen-Strahl-Array 20 wird anschließend über einen Einkoppel-Polarisator 22 mit einem weiteren verengten Gruppen-Strahl-Array 23 vereinigt, welches in entsprechender Weise ebenfalls aus den Ausgaben von zwölf Singleemitter-Laserdioden 2 gebildet wurde. Der einzige Unterschied zwischen den Gruppen-Strahl-Arrays 20 und 23 ist, dass das Gruppen-Strahl-Array 20 linear in der x-Richtung und das Gruppen-Strahl-Array 23 linear in der y-Richtung polarisiert ist.The group collimator 21 is designed in the manner of a Galilean telescope with a plano-convex lens 21a and a plano-concave lens 21b. The narrowed group beam array 20 is then combined via a coupling-polarizer 22 with another narrowed group beam array 23, which was also formed in a corresponding manner from the outputs of twelve single-emitter laser diodes 2. The only difference between the group beam arrays 20 and 23 is that the group beam array 20 is linearly polarized in the x direction and the group beam array 23 is linearly polarized in the y direction.

Nach dem Einkoppel-Polarisator 22 liegt der rote Gesamt-Ausgabestrahl 4 vor. Dieser wird im weiteren Verlauf über einen dichroitischen Einkoppelspiegel 24 mit einem Überlagerungsstrahl 25 aus einem grünen Gesamt-Ausgabestrahl 26 und einem blauen Gesamt-Ausgabestrahl 27 zusammengeführt. Der dichroitische Einkoppelspiegel 24 ist für rotes Licht maximal durchlässig und für grünes und blaues Licht maximal reflektierend. Der Überlagerungsstrahl 25 wird durch Überlagerung des grünen Gesamt-Ausgabestrahls 26 und des blauen Gesamt-Ausgabestrahls 27 an einem weiteren dichroitischen Einkoppelspiegel 28 erzeugt. Der dichroitische Einkoppelspiegel 28 ist für grünes Licht maximal durchlässig und für blaues Licht maximal reflektierend. Der grüne Gesamt-Ausgabestrahl 26 wird beispielsweise durch Frequenzverdoppelung eines Neodym-Festkörperlasers erzeugt. Auch der blaue Gesamt-Ausgabestrahl 27 kann durch einen Neodym-Festkörperlaser erzeugt werden, der resonatorintern frequenzverdoppelt wird. Die Wellenlänge des grünen Gesamt-Ausgabestrahls beträgt 532 nm. Die Wellenlänge des blauen Gesamt-Ausgabestrahls beträgt 473 nm.After the coupling-in polarizer 22, the red total output beam 4 is present. In the further course, this is combined via a dichroic coupling-in mirror 24 with an overlay beam 25 comprising a green overall output beam 26 and a blue overall output beam 27. The dichroic Einkoppelspiegel 24 is maximum permeable to red light and maximum reflective of green and blue light. The overlay beam 25 is generated by superposing the green total output beam 26 and the blue overall output beam 27 on another dichroic launch mirror 28. The dichroic Einkoppelspiegel 28 is maximum permeable to green light and blue Light maximum reflective. The green total output beam 26 is generated, for example, by frequency doubling of a neodymium solid-state laser. The blue overall output beam 27 can also be generated by a neodymium solid-state laser, which is frequency-doubled in the resonator. The wavelength of the green total output beam is 532 nm. The wavelength of the blue total output beam is 473 nm.

Nach dem dichroitischen Einkoppelspiegel 24 liegt ein weißer Gesamt-Ausgabestrahl 29 vor, der einen Scanner 30 durchtritt. Dieser Scanner 30 lenkt den Gesamt-Ausgabestrahl 29 synchronisiert ab, so dass auf der Projektionsfläche 5, die vom Scanner 30 etwa 10 bis 20 m beabstandet ist, ein erwünschtes Lichtmuster entsteht. Der Betrieb des Scanners 30 ist bevorzugt mit nicht dargestellten Intensitätsmodulatoren synchronisiert, die in den Strahlengängen der Gesamt-Ausgabestrahlen 4, 26 und 27 angeordnet sind und die drei Grundfarben Rot, Grün und Blau unabhängig zur Bilderzeugung modulieren.After the dichroic coupling-in mirror 24, there is a white total output beam 29 which passes through a scanner 30. This scanner 30 deflects the total output beam 29 in a synchronized manner, so that a desired light pattern is produced on the projection surface 5, which is spaced apart from the scanner 30 by about 10 to 20 m. The operation of the scanner 30 is preferably synchronized with unillustrated intensity modulators located in the beam paths of the total output beams 4, 26 and 27 and independently modulating the three primary colors red, green and blue for imaging.

Wenn alle Einzel-Ausgabestrahlen 3 exakt parallel zueinander verlaufen, sieht der Querschnitt des Gesamt-Ausgabestrahls 4 nach dem Scanner 30 in etwa so aus, wie in der Fig. 7 dargestellt. Bedingt durch die etwas höhere Divergenz in der y-Richtung sind die Einzel-Ausgabestrahlen 3 in y-Richtung etwas stärker aufgeweitet als in x-Richtung, so dass die Strahldurchmesser Δy der Einzel-Ausgabestrahlen 3 größer sind als die Strahldurchmesser Δx in hierzu senkrechter x-Richtung. Dieser Effekt wird durch die Tatsache ausgeglichen, dass in y-Richtung im Gesamt-Ausgabestrahl 4 drei nebeneinanderliegende Einzel-Ausgabestrahlen 3 vorliegen, während in der x-Richtung vier nebeneinanderliegende Einzel-Ausgabestrahlen 3 vorliegen, so dass der Gesamt-Ausgabestrahl 4 nach dem Scanner 30 eine angenähert quadratische Einhüllende hat.When all the single output jets 3 are exactly parallel to each other, the cross section of the total output beam 4 after the scanner 30 looks approximately as in FIG Fig. 7 shown. Due to the somewhat higher divergence in the y-direction, the single output jets 3 are widened somewhat more strongly in the y-direction than in the x-direction, so that the beam diameters Δy of the single output jets 3 are larger than the beam diameters Δx in x perpendicular thereto -Direction. This effect is compensated by the fact that in the y direction in the total output beam 4 there are three adjacent single output jets 3, while in the x direction four adjacent single output jets 3 are present be present, so that the total output beam 4 after the scanner 30 has an approximately square envelope.

Fig. 8 zeigt den Gesamt-Ausgabestrahl 4 nach weiterer Propagation um etwa 10 bis 20 m kurz vor dem Auftreffen auf die Projektionsfläche 5. Die Darstellung nach Fig. 8 ist nicht maßstäblich zur Darstellung nach Fig. 7. Divergenzbedingt sind die Einzel-Ausgabestrahlen 3 nun stärker aufgeweitet, wobei sich benachbarte Einzel-Ausgabestrahlen 3 nun durchdringen. Fig. 8 shows the total output beam 4 after further propagation by about 10 to 20 m shortly before hitting the projection surface 5. The representation after Fig. 8 is not to scale for illustration Fig. 7 , Due to the divergence, the individual output jets 3 are now widened more strongly, whereby adjacent single output jets 3 now penetrate.

Fig. 9 zeigt eine Situation, bei der der Gesamt-Ausgabestrahl 4 durch Justage der Einzel-Ausgabestrahlen 3 kurz vor der Projektionsfläche 5 noch weiter zusammengeführt wurde. Die Umlenkspiegel 10 und insbesondere 14 und 18 wurden dabei so justiert, dass die Einzel-Ausgabestrahlen 3 in der y-Richtung allesamt in etwa auf einer Höhe liegen. Aus den drei übereinanderliegenden Reihen von jeweils vierfachen Zwischen-Ausgabestrahlen ist dann eine vierfache Reihe von Einzel-Ausgabestrahlen 3 geworden, die sich aufgrund des langen Propagationsweges stark durchdringen. Energetische Hauptstrahlen 31 der Einzel-Ausgabestrahlen 3 sind innerhalb des Gesamt-Ausgabestrahls 4, also insbesondere innerhalb der Gruppen-Strahl-Arrays 20, 23, längs des Strahlenganges dieser Gruppen-Strahl-Arrays 20, 23 durch diese Justage zusammengeführt. Durch weitere Justage der Umlenkspiegel 10 ist es möglich, den vierfachen Zwischen-Ausgabestrahl nach Fig. 9 auch in x-Richtung noch weiter zusammenzufassen. Der Bündeldurchmesser des Gesamt-Ausgabestrahls ist auf diese Weise nochmals verringert, was die Qualität der erzeugten Projektion auf der Projektionsfläche 5, insbesondere deren Kontrast, verbessert. Fig. 9 shows a situation in which the total output beam 4 was further merged by adjusting the single output beams 3 just before the projection surface 5. The deflecting mirrors 10 and in particular 14 and 18 were adjusted so that the single output jets 3 in the y-direction are all approximately at a height. From the three superimposed rows of fourfold intermediate output jets, a fourfold series of single output jets 3 has become, which strongly penetrate due to the long propagation path. Energetic main beams 31 of the individual output beams 3 are combined within the overall output beam 4, that is to say in particular within the group beam arrays 20, 23, along the beam path of these group beam arrays 20, 23 by this adjustment. By further adjustment of the deflection mirror 10, it is possible for the fourfold intermediate output beam after Fig. 9 to summarize even further in the x-direction. The bundle diameter of the total output beam is reduced in this way again, which improves the quality of the projection produced on the projection surface 5, in particular its contrast.

Claims (10)

Laservorrichtung (1) mit einer Mehrzahl von Singleemitter-Laserdioden (2), deren Einzel-Ausgabestrahlen (3) zu einem Gesamt-Ausgabestrahl (4) überlagert werden, - wobei jeder Singleemitter-Laserdiode (2) ein erster Kollimator (7) zur Bündelung jedes Einzel-Ausgabestrahls (3) zugeordnet ist, - wobei die Einzel-Ausgabestrahlen (3) zumindest einer Gruppe (8) von Singleemitter-Laserdioden (2) mit Hilfe einer Mehrzahl von Zusammenführ-Umlenkspiegeln (10b bis 10d, 14, 18) zu mindestens einem Gruppen-Strahl-Array (20, 23) zusammengeführt werden, in dem die Einzel-Ausgabestrahlen (3) zumindest während eines ersten gemeinsamen Strahlweges eng benachbart nebeneinander verlaufen, - wobei an jedem Zusammenführ-Umlenkspiegel (10b bis 10d, 14, 18) mindestens ein erster, vom Zusammenführ-Umlenkspiegel (10b bis 10d, 14, 18) nicht reflektierter Einzel-Ausgabestrahl (3a) mit mindestens einem zweiten, vom Zusammenführ-Umlenkspiegel (10b bis 10d, 14, 18) reflektierten Einzel-Ausgabestrahl (3b) zusammengeführt wird, dadurch gekennzeichnet, dass zumindest an einzelnen Zusammenführ-Umlenkspiegeln (10b bis 10d, 14, 18) ein Teil des nicht reflektierten (3a) und/oder ein Teil des reflektierten (3b) Einzel-Ausgabestrahls (3) abgeschnitten wird und nicht zum Gruppen-Strahl-Array (20, 23) beiträgt.Laser device (1) having a plurality of single-emitter laser diodes (2) whose individual output beams (3) are superimposed to form a total output beam (4), - wherein each single-emitter laser diode (2) is associated with a first collimator (7) for focusing each individual output beam (3), - wherein the individual output beams (3) of at least one group (8) of single emitter laser diodes (2) by means of a plurality of merging deflecting mirrors (10b to 10d, 14, 18) to at least one group beam array (20, 23) are merged, in which the individual output jets (3) run close to each other at least during a first common beam path, - Wherein at each merge deflection mirror (10b to 10d, 14, 18) at least a first, not reflected by the merge deflection mirror (10b to 10d, 14, 18) single output beam (3a) with at least a second, from the merge deflection mirror (10b to 10d, 14, 18) reflected single output beam (3b) is merged, characterized in that at least at individual merge deflection mirrors (10b to 10d, 14, 18) a portion of the non-reflected (3a) and / or a portion of the reflected (3b) single output beam (3) is cut off and not grouped Beam array (20, 23) contributes. Laservorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der abgeschnittene Teil (16) mindestens 5%, bevorzugt mindestens 10% der Gesamtintensität des Einzel-Ausgabestrahls (3) vor dem Zusammenführ-Umlenkspiegel (10b bis 10d, 14, 18) beinhaltet.Laser device according to claim 1, characterized in that the cut-off part (16) at least 5%, preferably at least 10% of the total intensity of the single output beam (3) before the merging deflection mirror (10b to 10d, 14, 18). Laservorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an allen Zusammenführ-Umlenkspiegeln (10b bis 10d, 14, 18) ein Teil zumindest eines der Einzel-Ausgabestrahlen (3) abgeschnitten wird und nicht zum Gruppen-Strahl-Array (20, 23) beiträgt.Laser device according to claim 1 or 2, characterized in that at all merging deflecting mirrors (10b to 10d, 14, 18) a part of at least one of the single output beams (3) is cut off and not to the group beam array (20, 23 ) contributes. Laservorrichtung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen Gesamt-Kollimator (21) zur Verringerung eines Bündelquerschnitts des mindestens einen erzeugten Gruppen-Strahl-Arrays (20, 23), insbesondere auf einen typischen 1/e-Bündelquerschnitt, der höchstens 10 mm, insbesondere höchstens 8 mm, mehr bevorzugt mindestens 6 mm und noch mehr bevorzugt höchstens 5 mm beträgt.Laser apparatus according to one of Claims 1 to 3, characterized by an overall collimator (21) for reducing a bundle cross section of the at least one generated group beam array (20, 23), in particular to a typical 1 / e bundle cross section which is at most 10 mm, in particular at most 8 mm, more preferably at least 6 mm and even more preferably at most 5 mm. Laservorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zusammenführ-Umlenkspiegel (10b bis 10d, 14, 18) und gegebenenfalls weitere Umlenkspiegel (10a, 13) so justiert sind, dass die energetischen Hauptstrahlen der Einzel-Ausgabestrahlen (3) innerhalb des Gruppen-Strahl-Arrays (20, 23) längs des Strahlenganges des Gruppen-Strahl-Arrays (20, 23) zusammenrücken.Laser device according to one of claims 1 to 4, characterized in that the merging deflecting mirrors (10b to 10d, 14, 18) and optionally further deflecting mirrors (10a, 13) are adjusted so that the energetic main beams of the single output beams (3) within the array beam array (20, 23) along the beam path of the array beam array (20, 23) together. Laservorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die energetischen Hauptstrahlen der Einzel-Ausgabestrahlen (3) nach einem Lichtweg des Gruppen-Strahl-Arrays (20, 23) von mehr als einem 1 m, bevorzugt von mehr als 5 m, noch mehr bevorzugt von mehr als 10 m, noch mehr bevorzugt von 20 m, zusammenfallen.Laser device according to claim 5, characterized in that the energetic main rays of the single output beams (3) after an optical path of the group beam array (20, 23) of more than 1 m, preferably more than 5 m, even more preferred more than 10 meters, more preferably 20 meters. Laservorrichtung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch den Einsatz von Singleemitter-Laserdioden (2) mit einem Aspektverhältnis (y/x) einer Emissionsfläche (6), der zwischen 1:1 1 und 1:5 liegt, insbesondere mit einem Aspektverhältnis (y/x) im Bereich zwischen 1:1,3 und 1:1,7.Laser device according to one of Claims 1 to 6, characterized by the use of single-emitter laser diodes (2) with an aspect ratio (y / x) of an emission surface (6) which lies between 1: 1 1 and 1: 5, in particular with an aspect ratio (y / x) in the range between 1: 1.3 and 1: 1.7. Laservorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass eine lange Hauptachse (x) der Emissionsfläche (6) nicht länger ist als 2 µm, insbesondere nicht länger ist als 1,7 µm.Laser device according to claim 7, characterized in that a long major axis (x) of the emission surface (6) is not longer than 2 μm, in particular not longer than 1.7 μm. Laservorrichtung nach Anspruch 7 oder 8, gekennzeichnet durch den Einsatz von Singleemitter-Laserdioden (2) mit einem Aspektverhältnis einer Divergenz (x/y) des Einzel-Ausgabestrahls (3), der zwischen 1:1 und 1:2 liegt, insbesondere mit einem Aspektverhältnis (x/y) im Bereich von 1:1,3 und 1:1,7.Laser device according to claim 7 or 8, characterized by the use of single emitter laser diodes (2) with an aspect ratio of a divergence (x / y) of the single output beam (3), which lies between 1: 1 and 1: 2, in particular with a Aspect ratio (x / y) in the range of 1: 1.3 and 1: 1.7. Laservorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die maximale Strahldivergenz der Singleemitter-Laserdioden (2) nicht größer ist als 30 mrad, insbesondere nicht größer ist als 20 mrad.Laser device according to one of claims 7 to 9, characterized in that the maximum beam divergence of the single-emitter laser diodes (2) is not greater than 30 mrad, in particular not greater than 20 mrad.
EP08011020A 2007-09-26 2008-06-18 Laser device Active EP2043211B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007045845A DE102007045845A1 (en) 2007-09-26 2007-09-26 laser device

Publications (3)

Publication Number Publication Date
EP2043211A2 true EP2043211A2 (en) 2009-04-01
EP2043211A3 EP2043211A3 (en) 2011-02-23
EP2043211B1 EP2043211B1 (en) 2011-10-26

Family

ID=40239743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08011020A Active EP2043211B1 (en) 2007-09-26 2008-06-18 Laser device

Country Status (7)

Country Link
EP (1) EP2043211B1 (en)
AT (1) ATE531106T1 (en)
DE (1) DE102007045845A1 (en)
DK (1) DK2043211T3 (en)
ES (1) ES2372883T3 (en)
HR (1) HRP20110843T1 (en)
SI (1) SI2043211T1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138190A1 (en) * 2009-05-28 2010-12-02 Eastman Kodak Company Beam alignment system using arrayed light sources
US7959297B2 (en) 2008-05-15 2011-06-14 Eastman Kodak Company Uniform speckle reduced laser projection using spatial and temporal mixing
US8066389B2 (en) 2009-04-30 2011-11-29 Eastman Kodak Company Beam alignment chamber providing divergence correction
US8132919B2 (en) 2009-04-30 2012-03-13 Eastman Kodak Company Digital projector using arrayed light sources
DE102012208088A1 (en) 2011-05-25 2012-11-29 LASAIR e.K. Laser device used in laser TV, has refractive dispersion merging component that merges single output beams depending on emission wavelength to produce overall output beam
EP2767859A1 (en) * 2011-10-11 2014-08-20 Appotronics Corporation Limited Light source system and laser light source
GB2511483A (en) * 2013-01-15 2014-09-10 Coolled Ltd LED Illumination
WO2015149877A1 (en) * 2014-04-04 2015-10-08 Barco Nv Laser projection illumination system
EP2933673A1 (en) * 2014-04-16 2015-10-21 KVANT spol. s r.o. Device for creation of intensive full-color light beam with circular cross-section, homogenous light intensity distribution and beam divergence from 0 to 10°
CN105071224A (en) * 2015-07-28 2015-11-18 深圳市创鑫激光股份有限公司 Laser
DE202014010545U1 (en) 2014-06-17 2015-12-07 Christian Marx Laser arrangement for generating a high-power output beam
CN105826816A (en) * 2015-01-23 2016-08-03 朗美通运营有限责任公司 Laser diode subassembly and method of generating light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005009294U1 (en) 2005-06-13 2005-11-17 Arctos Showlasertechnik E.Kfm. Laser equipment for generation of laser beam has first partial laser beam device for producing red laser beam and second partial laser device for producing cyan laser beam whereby two beams are combined to produce white laser beam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826269A (en) * 1987-10-16 1989-05-02 Spectra Diode Laboratories, Inc. Diode laser arrangement forming bright image
JPH0260179A (en) * 1988-08-26 1990-02-28 Fuji Photo Film Co Ltd Laser ray source device for wave multiplexing
US5319528A (en) * 1990-08-01 1994-06-07 Diomed Limited High power light source
US5715270A (en) * 1996-09-27 1998-02-03 Mcdonnell Douglas Corporation High efficiency, high power direct diode laser systems and methods therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005009294U1 (en) 2005-06-13 2005-11-17 Arctos Showlasertechnik E.Kfm. Laser equipment for generation of laser beam has first partial laser beam device for producing red laser beam and second partial laser device for producing cyan laser beam whereby two beams are combined to produce white laser beam

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959297B2 (en) 2008-05-15 2011-06-14 Eastman Kodak Company Uniform speckle reduced laser projection using spatial and temporal mixing
US8066389B2 (en) 2009-04-30 2011-11-29 Eastman Kodak Company Beam alignment chamber providing divergence correction
US8132919B2 (en) 2009-04-30 2012-03-13 Eastman Kodak Company Digital projector using arrayed light sources
WO2010138190A1 (en) * 2009-05-28 2010-12-02 Eastman Kodak Company Beam alignment system using arrayed light sources
US8033666B2 (en) 2009-05-28 2011-10-11 Eastman Kodak Company Beam alignment system using arrayed light sources
JP2012528356A (en) * 2009-05-28 2012-11-12 イーストマン コダック カンパニー Beam alignment system with light source array
DE102012208088A1 (en) 2011-05-25 2012-11-29 LASAIR e.K. Laser device used in laser TV, has refractive dispersion merging component that merges single output beams depending on emission wavelength to produce overall output beam
EP2767859A1 (en) * 2011-10-11 2014-08-20 Appotronics Corporation Limited Light source system and laser light source
US10530131B2 (en) 2011-10-11 2020-01-07 Appotronics Corporation Limited Light source system and laser light source
EP2767859A4 (en) * 2011-10-11 2015-04-29 Appotronics Corp Ltd Light source system and laser light source
CN104868361A (en) * 2011-10-11 2015-08-26 深圳市光峰光电技术有限公司 Light source system and laser light source
CN104868362A (en) * 2011-10-11 2015-08-26 深圳市光峰光电技术有限公司 Light source system and laser light source
CN104868361B (en) * 2011-10-11 2019-07-16 深圳光峰科技股份有限公司 Light-source system and laser light source
US9819154B2 (en) 2011-10-11 2017-11-14 Appotronics Corporation Limited Light source system and laser light source
GB2511483B (en) * 2013-01-15 2016-11-23 Coolled Ltd LED Illumination
US9720219B2 (en) 2013-01-15 2017-08-01 Coolled Limited LED illumination
GB2511483A (en) * 2013-01-15 2014-09-10 Coolled Ltd LED Illumination
WO2015149877A1 (en) * 2014-04-04 2015-10-08 Barco Nv Laser projection illumination system
US11067885B2 (en) 2014-04-04 2021-07-20 Barco Nv Laser projection illumination system
EP2933673A1 (en) * 2014-04-16 2015-10-21 KVANT spol. s r.o. Device for creation of intensive full-color light beam with circular cross-section, homogenous light intensity distribution and beam divergence from 0 to 10°
DE202014010545U1 (en) 2014-06-17 2015-12-07 Christian Marx Laser arrangement for generating a high-power output beam
CN105826816A (en) * 2015-01-23 2016-08-03 朗美通运营有限责任公司 Laser diode subassembly and method of generating light
CN105071224B (en) * 2015-07-28 2016-09-28 深圳市创鑫激光股份有限公司 A kind of laser instrument
CN105071224A (en) * 2015-07-28 2015-11-18 深圳市创鑫激光股份有限公司 Laser

Also Published As

Publication number Publication date
EP2043211B1 (en) 2011-10-26
DE102007045845A1 (en) 2009-04-09
HRP20110843T1 (en) 2011-12-31
ATE531106T1 (en) 2011-11-15
SI2043211T1 (en) 2012-03-30
DK2043211T3 (en) 2012-02-27
ES2372883T3 (en) 2012-01-27
EP2043211A3 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
EP2043211B1 (en) Laser device
DE19939750C2 (en) Optical arrangement for use in a laser diode arrangement and laser diode arrangement with such an optical arrangement
DE19780124B4 (en) Arrangement for forming the geometric cross section of a plurality of solid-state and / or semiconductor lasers
DE19725262C2 (en) Optical beam transformation device
EP2973899B1 (en) Device for coupling wavelengths of laser beams
EP0984312B1 (en) Laser diode assembly
EP2288955B1 (en) Device and method for beam forming
EP3824338A1 (en) Device, laser system and method for combining coherent laser beams
DE19751106A1 (en) Laser printer with array of laser diodes
WO2007140969A1 (en) Apparatus for beam shaping
WO2009068192A1 (en) Beam forming device
DE10245811A1 (en) Method and device for illuminating a room light modulator
WO2000008726A2 (en) Laser amplification system
EP2184818A1 (en) Laser pump arrangement and laser pump method with beam homogenisation
DE10148167A1 (en) lighting arrangement
EP1617275A1 (en) Device for illuminating a surface area comprising a semiconductor laser bar and a beam tansformation device
DE19846532C1 (en) Apparatus used for high performance diode lasers comprises an optical transformation device for dividing the laser beam into a number of partial beams
DE102011016253B4 (en) diode laser
DE102009059894B4 (en) Optical arrangement for optically pumping an active medium
DE202007019521U1 (en) laser device
DE10062453A1 (en) Superimposing beams, involves producing virtual intermediate images of sources by common element, deflecting beams differently in second element to superimpose on light spot(s)
DE102004040608B4 (en) Diode laser with an optical device for increasing the radiance of an output laser beam emerging from it
EP3821288A1 (en) Beam shaping laser optic
DE102021126377B4 (en) Diode laser optics and associated diode laser system
EP1799392B1 (en) Laser arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20110413

RIC1 Information provided on ipc code assigned before grant

Ipc: H01S 5/40 20060101AFI20110509BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCTOS SHOWLASERTECHNIK GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20110843

Country of ref document: HR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005318

Country of ref document: DE

Effective date: 20111222

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20110843

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2372883

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120127

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11008

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20120606

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005318

Country of ref document: DE

Effective date: 20120727

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E013381

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20130618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110843

Country of ref document: HR

Payment date: 20190606

Year of fee payment: 12

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110843

Country of ref document: HR

Payment date: 20200608

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110843

Country of ref document: HR

Payment date: 20210609

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20110843

Country of ref document: HR

Payment date: 20220606

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20220606

Year of fee payment: 15

Ref country code: DK

Payment date: 20220623

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20220621

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220702

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230719

Year of fee payment: 16

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20110843

Country of ref document: HR

Effective date: 20230618

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231208

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230618

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240612

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 17

Ref country code: SI

Payment date: 20240611

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240621

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240628

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240809

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240718

Year of fee payment: 17