EP2043211A2 - Laser device - Google Patents
Laser device Download PDFInfo
- Publication number
- EP2043211A2 EP2043211A2 EP08011020A EP08011020A EP2043211A2 EP 2043211 A2 EP2043211 A2 EP 2043211A2 EP 08011020 A EP08011020 A EP 08011020A EP 08011020 A EP08011020 A EP 08011020A EP 2043211 A2 EP2043211 A2 EP 2043211A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser device
- array
- output beam
- output
- merging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract 6
- 238000003491 array Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0028—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0061—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
- G02B19/0066—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
- G02B27/102—Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
- G02B27/104—Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/143—Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/145—Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
Definitions
- the invention relates to a laser device having a plurality of single-emitter laser diodes whose individual output beams are superimposed to form a total output beam, according to the preamble of claim 1.
- Such a laser device is known from the DE 20 2005 009 294 U1 , for the use of such a laser device for show laser projection purposes, it is of central importance that the best possible bundled overall output beam is present with the highest possible average power.
- Cut-off intensities according to claim 2 represent a good compromise between the smallest possible portion of the intensity to be cut off and the closest possible merging of adjacently adjacent single output beams. However, more than 20% of the total intensity of a single output beam should not be cut off.
- a laser device ensures a total output beam, in which all individual output beams advantageously extend closely adjacent to one another.
- An overall collimator according to claim 4 results in a further narrowing of the bundle diameter of the total output beam where the narrow bundle diameter is required in the projection.
- a typical 1 / e bundle cross section is a 1 / e bundle cross section averaged over all cross sectional directions of the bundle.
- An elliptical bundle propagating in the z direction which has a 1 / e bundle cross section of 3 mm in the x direction and a 1 / e bundle cross section of 7 mm in the y direction, has a typical 1 / e bundle cross section of approximately 5 mm up. 1 / e bundle cross sections according to claim 4 have been found to produce a good projection quality as preferred.
- Adjusted according to claim 5 deflection mirror cause a further narrowing of the total output beam.
- the structure of the total output beam is used from a plurality of single output beams, wherein the single output jets can be adjusted independently in their direction.
- the energetic principal rays of the single output beams within the array beam array then collapse along the beam path of the array beam array as the spacing of adjacent energetic principal rays of the single output beams along the beam path decreases.
- the development according to claim 6 makes use of the possibilities of independent adjustment of the single output jets in a particularly advantageous manner for generating a small cross section of the total output beam.
- FIG. 1 To illustrate positional relationships is the Fig. 1 and further figures associated with the drawing a Cartesian xyz coordinate system.
- the x-axis runs in the Fig. 1 up.
- the y-axis is perpendicular to the plane of the Fig. 1 towards the viewer and the z-axis runs to the right.
- a laser device 1 has a plurality of single-emitter laser diodes 2 whose individual output beams 3 are superimposed to form a total output beam 4. The generated total output beam 4 is then used with the Light coupled further laser, so that a white light beam is generated, which is then scanned for show laser purposes, for example via a projection surface 5. The laser device 1 generates the red light portion of the white light beam to be scanned.
- laser diodes having an output wavelength of 660 nm and a mean output power of 130 mW in cw mode (continuous wave) are used as single-emitter laser diodes 2.
- Fig. 6 6 shows a typical emission surface 6 of one of the single-emitter laser diodes 2.
- the emission surface 6 is approximately elliptical and has an extension of typically 1.5 ⁇ m in the x-direction and an extension of typically 1.0 ⁇ m in the y-direction.
- This expansion in the x- and y-direction in each case is associated with a typical beam divergence of the single output beam 3 of this single emitter laser diode 2.
- Each of the single emitter laser diodes 2 has immediately after the emission surface 6 a first collimator 7, which reduces the divergence of the single output beam 3 in the x-direction to about 7 mrad and in the y-direction to about 16 mrad.
- a first collimator 7 which reduces the divergence of the single output beam 3 in the x-direction to about 7 mrad and in the y-direction to about 16 mrad.
- the laser device 1 is due to these very small divergences in the x and y directions virtually no widening of the single output jets 3 available.
- the long main axis of the emission surface 6, ie the x-axis, is no longer than 1.7 ⁇ m in the single-emitter laser diodes 2 used.
- the aspect ratio of the divergences in the x and y directions is 1: 1.3 to 1: 2.5 for the single emitter laser diodes 2 used.
- This divergence ratio x / y is preferably 1: 1.5.
- single emitter laser diodes may also be used, for example a single emitter laser diode with an output wavelength of 642 nm and a cw output power of 90 mW, a divergence in the x direction of 10 mrad and in the y direction of 21 mrad.
- Typical emission areas of the single emitter laser diodes used have extents of 1 ⁇ m in the y-direction and 1.5 to 5 ⁇ m in the x-direction. Shown in the Fig. 1 a total of twelve of the single-emitter laser diodes 2, which are each arranged in three groups 8 to four of the single-emitter laser diodes 2.
- the four laser diodes 2 of a group 8 are each arranged on a common support and heat sink 9 in parallel and equidistant from each other, wherein they radiate in the positive z-direction.
- the laser diodes 2 in the Fig. 1 Group 8 shown on the left are labeled from bottom to top with 2a, 2b, 2c and 2d.
- Each of the laser diodes 2a to 2d is associated with a 90 ° deflecting mirror 10a to 10d. Selected these deflecting mirrors 10 serve to bring together the individual output beams 3 to the total output beam 4 and are therefore also referred to below as merging deflecting mirror.
- the merge serve the deflection mirror 10b to 10d.
- the deflecting mirrors 10 are arranged not only offset relative to one another in the x-direction in accordance with the x-positions of the laser diodes 2 a to 2 d, but also offset relative to one another in the z-direction. This ensures that at each of the merging deflecting mirrors 10b to 10d, a first single output beam 3 not reflected by the merging deflecting mirror 10b to 10d has at least one second, from the merging deflecting mirror 10b to 10d reflected single output beam 3 is merged.
- This situation is exemplified by the merging deflecting mirror 10b in FIG Fig. 3 shown enlarged.
- the non-reflected by Caribbean constitutional-deflecting mirror 10b single output beam 3 is in the Fig. 3 with 3a and by the merging deflection mirror 10b by 90 ° reflected single output beam 3 is in Fig. 3 designated 3b.
- the merging deflection mirror 10b is arranged such that neither the entire bundle cross section of the guided, non-reflected single output beam 3a nor the entire beam cross section of the reflected single output beam 3b is used contributing to a merged intermediate output beam 11. Rather, at the converging deflection mirror 10, a part of the non-reflected single output beam 3a and also a part of the reflected single output beam 3b are cut off, so that the cut-off cross-sectional parts do not contribute to the intermediate output beam 11. A boundary line between the used and the cut, each incident single output beam 3a, 3b and the cut portion of these individual output beams 3a, 3b is in the Fig. 3 shown at 12.
- the intensity ratios between the used and the cut portions of the single output jets 3a, 3b illustrate Fig. 5 ,
- the intensity profile of the single output beams 3 is approximately Gaussian in the single-emitter laser diodes 2. Beyond the boundary line 12, a maximum of 10% of the total bundle intensity is cut off. This means that 90% of the intensities of the individual output jets 3a and 3b are used in the intermediate output beam 11 after the merging deflection mirror 10b.
- the individual output beams 3a, 3b can thus be very narrow, with virtually no gap, with only slight losses, be led side by side.
- This quadruple output beam is then deflected by another 90 ° deflecting mirror 13, so that it subsequently propagates in the positive z-direction.
- this fourfold intermediate output beam 11 is guided past a further merging deflecting mirror 14.
- This passage is in a schematic overview in the Fig. 2 and enlarged in the Fig. 4 shown.
- the merging deflection mirror 14 again about 10% of the intensity of the passing fourfold intermediate output beam 11 is cut off.
- the corresponding boundary line 12 is in the Fig. 4 located.
- another fourfold intermediate output beam 15 is deflected by 90 ° in the xz plane by the merging deflection mirror 14, so that it then likewise propagates in the positive z direction.
- FIG Fig. 4 A truncated portion of the quadruple intermediate output beam 15, which is not reflected, is in FIG Fig. 4 shown in phantom at 16.
- the merging deflecting mirror 14 also ensures that in the beam path this merging deflecting mirror 14, the intermediate output beams 11, 15 closely adjacent to each other virtually without any gap, without losing more than 10% of the incident beam intensity. In each case, 10% of the incident intensity is also cut off from the intermediate output beams 11 and 15, so that with regard to the intensity used and the cut-off intensity, the conditions which have been mentioned above in connection with FIG Fig. 5 were explained.
- this passes through a further merging deflection mirror 18, the function of which corresponds to the merging deflection mirror 14.
- a further fourfold intermediate output beam 19 is coupled to the eightfold intermediate output beam 17 by 90 ° deflection, again 10% of the intensities of the reflected single output beams 3 and 10% of the intensities of the four directly on the convergence deflection mirror 8 passing single output jets 3 of the eight times intermediate output beam 17 are cut off.
- intermediate output beam 20 which is constructed of twelve individual output jets 3 running side by side with virtually no gap, with four individual output jets 3 next to one another in the x direction and three single output jets 3 in y Direction are arranged one above the other.
- This Twelve times the intermediate output beam 20, also referred to as a group beam array, is then narrowed by a group collimator to reduce the beam cross-section to a subsequent 1 / e beam cross-section, which is 4 to 5 mm in the illustrated embodiment. Since twelve times, ie 4x3, intermediate output beam 20 has an approximately square bundle cross section overall, the 1 / e bundle cross section indication represents the 1 / e diameter along the x or along the y direction.
- the group collimator 21 is designed in the manner of a Galilean telescope with a plano-convex lens 21a and a plano-concave lens 21b.
- the narrowed group beam array 20 is then combined via a coupling-polarizer 22 with another narrowed group beam array 23, which was also formed in a corresponding manner from the outputs of twelve single-emitter laser diodes 2.
- the only difference between the group beam arrays 20 and 23 is that the group beam array 20 is linearly polarized in the x direction and the group beam array 23 is linearly polarized in the y direction.
- the red total output beam 4 is present.
- this is combined via a dichroic coupling-in mirror 24 with an overlay beam 25 comprising a green overall output beam 26 and a blue overall output beam 27.
- the dichroic Einkoppelapt 24 is maximum permeable to red light and maximum reflective of green and blue light.
- the overlay beam 25 is generated by superposing the green total output beam 26 and the blue overall output beam 27 on another dichroic launch mirror 28.
- the dichroic Einkoppelspiegel 28 is maximum permeable to green light and blue Light maximum reflective.
- the green total output beam 26 is generated, for example, by frequency doubling of a neodymium solid-state laser.
- the blue overall output beam 27 can also be generated by a neodymium solid-state laser, which is frequency-doubled in the resonator.
- the wavelength of the green total output beam is 532 nm.
- the wavelength of the blue total output beam is 473 nm.
- a white total output beam 29 After the dichroic coupling-in mirror 24, there is a white total output beam 29 which passes through a scanner 30.
- This scanner 30 deflects the total output beam 29 in a synchronized manner, so that a desired light pattern is produced on the projection surface 5, which is spaced apart from the scanner 30 by about 10 to 20 m.
- the operation of the scanner 30 is preferably synchronized with unillustrated intensity modulators located in the beam paths of the total output beams 4, 26 and 27 and independently modulating the three primary colors red, green and blue for imaging.
- the cross section of the total output beam 4 after the scanner 30 looks approximately as in FIG Fig. 7 shown. Due to the somewhat higher divergence in the y-direction, the single output jets 3 are widened somewhat more strongly in the y-direction than in the x-direction, so that the beam diameters ⁇ y of the single output jets 3 are larger than the beam diameters ⁇ x in x perpendicular thereto -Direction. This effect is compensated by the fact that in the y direction in the total output beam 4 there are three adjacent single output jets 3, while in the x direction four adjacent single output jets 3 are present be present, so that the total output beam 4 after the scanner 30 has an approximately square envelope.
- Fig. 8 shows the total output beam 4 after further propagation by about 10 to 20 m shortly before hitting the projection surface 5.
- the representation after Fig. 8 is not to scale for illustration Fig. 7 , Due to the divergence, the individual output jets 3 are now widened more strongly, whereby adjacent single output jets 3 now penetrate.
- Fig. 9 shows a situation in which the total output beam 4 was further merged by adjusting the single output beams 3 just before the projection surface 5.
- the deflecting mirrors 10 and in particular 14 and 18 were adjusted so that the single output jets 3 in the y-direction are all approximately at a height. From the three superimposed rows of fourfold intermediate output jets, a fourfold series of single output jets 3 has become, which strongly penetrate due to the long propagation path. Energetic main beams 31 of the individual output beams 3 are combined within the overall output beam 4, that is to say in particular within the group beam arrays 20, 23, along the beam path of these group beam arrays 20, 23 by this adjustment.
- the deflection mirror 10 it is possible for the fourfold intermediate output beam after Fig. 9 to summarize even further in the x-direction.
- the bundle diameter of the total output beam is reduced in this way again, which improves the quality of the projection produced on the projection surface 5, in particular its contrast.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
- Laser Surgery Devices (AREA)
- Glass Compositions (AREA)
- Optical Elements Other Than Lenses (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
Die Erfindung betrifft eine Laservorrichtung mit einer Mehrzahl von Singleemitter-Laserdioden, deren Einzel-Ausgabestrahlen zu einem Gesamt-Ausgabestrahl überlagert werden, nach dem Oberbegriff des Anspruchs 1.The invention relates to a laser device having a plurality of single-emitter laser diodes whose individual output beams are superimposed to form a total output beam, according to the preamble of claim 1.
Eine derartige Laservorrichtung ist bekannt aus der
Es ist daher eine Aufgabe der vorliegenden Erfindung, eine Laservorrichtung der eingangs genannten Art derart weiterzubilden, dass bei gegebener mittlerer Leistung im Gesamt-Ausgabelaserstrahl eine verbesserte Bündelung dieses Ausgabestrahls erreicht werden kann.It is therefore an object of the present invention, a laser device of the type mentioned in such a way that at a given average power in the total output laser beam improved bundling of this output beam can be achieved.
Diese Aufgabe ist erfindungsgemäß gelöst durch eine Laservorrichtung mit den im Kennzeichnungsteil des Anspruchs 1 angegebenen Merkmalen.This object is achieved by a laser device with the features specified in the characterizing part of claim 1.
Erfindungsgemäß wurde erkannt, dass es überraschenderweise durchaus möglich ist, einen Teil der verwendeten Einzel-Ausgabestrahlen an Zusammenführ-Umlenkelementen abzuschneiden, so dass der abgeschnittene Teil nicht als Nutzlicht zur Verfügung steht. Der scheinbare Nachteil, den dieses Abschneiden aufgrund einer Verringerung der nutzbaren Gesamtintensität zur Folge hat, wird durch den Vorteil der Möglichkeit einer engeren Zusammenführung der nebeneinander verlaufenden Einzel-Ausgabestrahlen mehr als aufgewogen. Insgesamt resultiert ein gut gebündelter Gesamt-Ausgabestrahl, der sich gut zu Projektionszwecken einsetzen lässt.According to the invention it was recognized that it is surprisingly quite possible to cut off a portion of the single output jets used on merge deflection elements, so that the cut-off part is not available as useful light. The apparent drawback that this truncation entails due to a reduction in total usable intensity is more than offset by the benefit of the possibility of tighter merging of the side-by-side single output jets. Overall, a well bundled overall output beam results, which can be used well for projection purposes.
Ebenfalls überraschend ist, dass Beugungseffekte aufgrund der abgeschnittenen Einzelstrahl-Anteile keinen negativen Effekt auf eine Projektionsqualität des Gesamt-Ausgabestrahls haben.It is also surprising that diffraction effects due to the cut-off individual beam components have no negative effect on a projection quality of the total output beam.
Abgeschnittene Intensitäten nach Anspruch 2 stellen einen guten Kompromiss zwischen einem möglichst geringen abzuschneidenden Intensitäts-Anteil einerseits und einem möglichst engen Zusammenführen benachbart nebeneinander verlaufender Einzel-Ausgabestrahlen dar. Mehr als 20% der Gesamtintensität eines Einzel-Ausgabestrahls sollten allerdings nicht abgeschnitten werden.Cut-off intensities according to
Eine Laservorrichtung nach Anspruch 3 gewährleistet einen Gesamt-Ausgabestrahl, bei dem alle Einzel-Ausgabestrahlen vorteilhaft eng zueinander benachbart verlaufen.A laser device according to
Ein Gesamt-Kollimator nach Anspruch 4 führt zu einer weiteren Verengung des Bündeldurchmessers des Gesamt-Ausgabestrahls dort, wo der enge Bündeldurchmesser bei der Projektion benötigt wird. Ein typischer 1/e-Bündelquerschnitt ist ein über alle Querschnittsrichtungen des Bündels gemittelter 1/e-Bündelquerschnitt. Ein in z-Richtung propagierendes elliptisches Bündel, das beispielsweise in x-Richtung einen 1/e-Bündelquerschnitt von 3 mm und in y-Richtung einen 1/e-Bündelquerschnitt von 7 mm hat, weist einen typischen 1/e-Bündelquerschnitt von etwa 5 mm auf. 1/e-Bündelquerschnitte nach Anspruch 4 haben sich zur Erzeugung einer guten Projektionsqualität als bevorzugt herausgestellt.An overall collimator according to
Nach Anspruch 5 justierte Umlenkspiegel führen eine nochmalige Verengung des Gesamt-Ausgabestrahls herbei. Hierbei wird der Aufbau des Gesamt-Ausgabestrahls aus mehreren Einzel-Ausgabestrahlen genutzt, wobei die Einzel-Ausgabestrahlen unabhängig voneinander in ihrer Richtung justiert werden können. Die energetischen Hauptstrahlen der Einzel-Ausgabestrahlen innerhalb des Gruppen-Strahl-Arrays rücken längs des Strahlengangs des Gruppen-Strahl-Arrays dann zusammen, wenn sich der Abstand benachbarter energetischer Hauptstrahlen der Einzel-Ausgabestrahlen längs des Strahlengangs verringert.Adjusted according to claim 5 deflection mirror cause a further narrowing of the total output beam. Here, the structure of the total output beam is used from a plurality of single output beams, wherein the single output jets can be adjusted independently in their direction. The energetic principal rays of the single output beams within the array beam array then collapse along the beam path of the array beam array as the spacing of adjacent energetic principal rays of the single output beams along the beam path decreases.
Die Weiterbildung nach Anspruch 6 nutzt die Möglichkeiten einer unabhängigen Justage der Einzel-Ausgabestrahlen in besonders vorteilhafter Weise zur Erzeugung eines geringen Querschnitts des Gesamt-Ausgabestrahls.The development according to
Spezifikationen der Emissionen der Singleemitter-Laserdioden nach den Ansprüchen 7 bis 10 haben sich für den Einsatz derartiger Laserdioden in der erfindungsgemäßen Laservorrichtung als besonders gut geeignet herausgestellt.Specifications of the emissions of the single-emitter laser diodes according to claims 7 to 10 have been found to be particularly suitable for the use of such laser diodes in the laser device according to the invention.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
- Fig. 1
- eine schematische Gesamtübersicht einer Laservorrichtung mit einer Mehrzahl von Singleemitter-Laserdioden, deren Einzel-Ausgabestrahlen zu einem Gesamt-Ausgabestrahl überlagert werden, wobei diese Laservorrichtung Teil einer schematisch dargestellten Gesamtvorrichtung zur scannenden Showlaser-Projektion ist;
- Fig. 2
- eine schematische Ansicht auf die Laservorrichtung gemäß der Schnittlinie II-II in
Fig. 1 ;
- Fig. 3
- eine Ausschnittsvergrößerung gemäß dem Ausschnitt III in
Fig. 1 ; - Fig. 4
- eine Ausschnittsvergrößerung gemäß dem Ausschnitt IV in
Fig. 2 ; - Fig. 5
- ein Intensitätsprofil ausgewählter Einzel-Ausgabestrahlen gemäß den Schnittlinien V-V in den
Fig. 3 und 4 ; - Fig. 6
- schematisch die Emissionsfläche einer der Singleemitter-Laserdioden;
- Fig. 7
- einen Schnitt durch den Gesamt-Ausgabestrahl gemäß Linie VII-VII in
Fig. 1 , wobei lediglich die Einzel-Ausgabestrahlen der Singleemitter-Laserdioden dargestellt sind; und - Fig. 8 und 9
- Schnitte durch den Gesamt-Ausgabestrahl gemäß Linie VIII-VIII in
Fig. 1 in einer zuFig. 7 ähnlichen Darstellung in verschiedenen Justagezuständen der Laservorrichtung.
- Fig. 1
- a schematic overall view of a laser device having a plurality of single-emitter laser diodes whose single-output beams are superimposed to form a total output beam, said laser device is part of a schematically illustrated total device for scanning show laser projection;
- Fig. 2
- a schematic view of the laser device according to the section line II-II in
Fig. 1 ;
- Fig. 3
- an enlarged detail according to the section III in
Fig. 1 ; - Fig. 4
- an enlarged detail according to the section IV in
Fig. 2 ; - Fig. 5
- an intensity profile of selected individual output beams according to the section lines VV in the
3 and 4 ; - Fig. 6
- schematically the emission area of one of the single emitter laser diodes;
- Fig. 7
- a section through the total output beam according to line VII-VII in
Fig. 1 wherein only the single output beams of the single emitter laser diodes are shown; and - 8 and 9
- Sections through the total output beam according to line VIII-VIII in
Fig. 1 in one tooFig. 7 similar representation in different adjustment states of the laser device.
Zur Veranschaulichung von Lagebeziehungen ist der
Eine Laservorrichtung 1 hat eine Mehrzahl von Singleemitter-Laserdioden 2, deren Einzel-Ausgabestrahlen 3 zu einem Gesamt-Ausgabestrahl 4 überlagert werden. Der erzeugte Gesamt-Ausgabestrahl 4 wird dann mit dem Licht weiterer Laser zusammengekoppelt, so dass ein Weißlicht-Strahl erzeugt wird, der dann zu Showlaser-Zwecken beispielsweise über eine Projektionsfläche 5 gescannt wird. Die Laservorrichtung 1 erzeugt dabei den Rotlicht-Anteil des zu scannenden Weißlichtstrahls.A laser device 1 has a plurality of single-
Als Singleemitter-Laserdioden 2 werden beispielsweise Laserdioden mit einer Ausgabewellenlänge von 660 nm und einer mittleren Ausgabeleistung von 130 mW im cw-Betrieb (continuous wave) eingesetzt.For example, laser diodes having an output wavelength of 660 nm and a mean output power of 130 mW in cw mode (continuous wave) are used as single-
Die lange Hauptachse der Emissionsfläche 6, also die x-Achse, ist bei den verwendeten Singleemitter-Laserdioden 2 nicht länger als 1,7 µm.The long main axis of the
Das Aspektverhältnis der Divergenzen in x- und y-Richtung beträgt bei den verwendeten Singleemitter-Laserdioden 2 1:1,3 bis 1:2,5. Bevorzugt beträgt dieses Divergenzverhältnis x/y 1:1,5.The aspect ratio of the divergences in the x and y directions is 1: 1.3 to 1: 2.5 for the single
Auch anderen Singleemitter-Laserdioden können eingesetzt werden, beispielsweise eine Singleemitter-Laserdiode mit einer Ausgabewellenlänge von 642 nm und einer cw-Ausgabeleistung von 90 mW, einer Divergenz in x-Richtung von 10 mrad und in y-Richtung von 21 mrad. Typische Emissionsflächen der verwendeten Singleemitter-Laserdioden haben Erstreckungen von 1 µm in y-Richtung und 1,5 bis 5 µm in x-Richtung.
Dargestellt sind in der
Shown in the
Die Umlenkspiegel 10 sind entsprechend den x-Positionen der Laserdioden 2a bis 2d nicht nur in x-Richtung zueinander versetzt angeordnet, sondern auch in z-Richtung zueinander versetzt angeordnet. Dies gewährleistet, dass an jedem der Zusammenführ-Umlenkspiegel 10b bis 10d ein erster, vom Zusammenführ-Umlenkspiegel 10b bis 10d nicht reflektierter Einzel-Ausgabestrahl 3 mit mindestens einem zweiten, vom Zusammenführ-Umlenkspiegel 10b bis 10d reflektierten Einzel-Ausgabestrahl 3 zusammengeführt wird. Diese Situation ist am Beispiel des Zusammenführ-Umlenkspiegels 10b in der
Der
Die Intensitätsverhältnisse zwischen den genutzten und den abgeschnittenen Anteilen der Einzel-Ausgabestrahlen 3a, 3b verdeutlicht
Dieser Vierfach-Ausgabestrahl wird anschließend von einem weiteren 90°-Umlenkspiegel 13 umgelenkt, so dass er nachfolgend in positiver z-Richtung propagiert. Im weiteren Verlauf wird dieser vierfache Zwischen-Ausgabestrahl 11 an einem weiteren Zusammenführ-Umlenkspiegel 14 vorbeigeführt. Dieses Vorbeiführen ist in einer schematischen Übersicht in der
Nach dem Zusammenführ-Umlenkspiegel 14 liegt daher ein Zwischen-Ausgabestrahl 17 vor, der aus insgesamt acht Einzel-Ausgabestrahlen 3 in einem 4x2-Muster zusammengesetzt ist, wobei in x-Richtung vier Ausgabestrahlen 3 nebeneinander und in y-Richtung zwei Ausgabestrahlen 3 übereinander verlaufen.After the merging
Im weiteren Verlauf des Zwischen-Ausgabestrahls 17 passiert dieser einen weiteren Zusammenführ-Umlenkspiegel 18, dessen Funktion dem Zusammenführ-Umlenkspiegel 14 entspricht. Am Zusammenführ-Umlenkspiegel 18 wird durch 90°-Umlenkung ein weiterer vierfacher Zwischen-Ausgabestrahl 19 zum achtfachen Zwischen-Ausgabestrahl 17 dazugekoppelt, wobei wiederum 10% der Intensitäten der reflektierten Einzel-Ausgabestrahlen 3 und 10% der Intensitäten der vier direkt am Zusammenführ-Umlenkspiegel 8 vorbeigeführten Einzel-Ausgabestrahlen 3 des achtfachen Zwischen-Ausgabestrahls 17 abgeschnitten werden.In the further course of the
Nach dem Zusammenführ-Umlenkspiegel 18 liegt somit ein Zwischen-Ausgabestrahl 20 vor, der aus praktisch ohne Zwischenraum nebeneinander verlaufenden zwölf Einzel-Ausgabestrahlen 3 aufgebaut ist, wobei jeweils vier Einzel-Ausgabestrahlen 3 in x-Richtung nebeneinander und drei Einzel-Ausgabestrahlen 3 in y-Richtung übereinander angeordnet sind. Dieser zwölffache Zwischen-Ausgabestrahl 20, der auch als Gruppen-Strahl-Array bezeichnet wird, wird sodann von einem Gruppen-Kollimator zur Verringerung des Bündelquerschnitts auf einen nachfolgenden 1/e-Bündelquerschnitt verengt, der bei der dargestellten Ausführung bei 4 bis 5 mm liegt. Da der zwölffache, also 4x3, Zwischen-Ausgabestrahl 20 insgesamt einen angenähert quadratischen Bündelquerschnitt hat, stellt die 1/e-Bündelquerschnitts-Angabe den 1/e-Durchmesser längs der x- oder längs der y-Richtung dar.After the
Der Gruppen-Kollimator 21 ist nach Art eines Galilei-Teleskops mit einer Plankonvexlinse 21a und einer Plankonkavlinse 21b ausgeführt. Das verengte Gruppen-Strahl-Array 20 wird anschließend über einen Einkoppel-Polarisator 22 mit einem weiteren verengten Gruppen-Strahl-Array 23 vereinigt, welches in entsprechender Weise ebenfalls aus den Ausgaben von zwölf Singleemitter-Laserdioden 2 gebildet wurde. Der einzige Unterschied zwischen den Gruppen-Strahl-Arrays 20 und 23 ist, dass das Gruppen-Strahl-Array 20 linear in der x-Richtung und das Gruppen-Strahl-Array 23 linear in der y-Richtung polarisiert ist.The
Nach dem Einkoppel-Polarisator 22 liegt der rote Gesamt-Ausgabestrahl 4 vor. Dieser wird im weiteren Verlauf über einen dichroitischen Einkoppelspiegel 24 mit einem Überlagerungsstrahl 25 aus einem grünen Gesamt-Ausgabestrahl 26 und einem blauen Gesamt-Ausgabestrahl 27 zusammengeführt. Der dichroitische Einkoppelspiegel 24 ist für rotes Licht maximal durchlässig und für grünes und blaues Licht maximal reflektierend. Der Überlagerungsstrahl 25 wird durch Überlagerung des grünen Gesamt-Ausgabestrahls 26 und des blauen Gesamt-Ausgabestrahls 27 an einem weiteren dichroitischen Einkoppelspiegel 28 erzeugt. Der dichroitische Einkoppelspiegel 28 ist für grünes Licht maximal durchlässig und für blaues Licht maximal reflektierend. Der grüne Gesamt-Ausgabestrahl 26 wird beispielsweise durch Frequenzverdoppelung eines Neodym-Festkörperlasers erzeugt. Auch der blaue Gesamt-Ausgabestrahl 27 kann durch einen Neodym-Festkörperlaser erzeugt werden, der resonatorintern frequenzverdoppelt wird. Die Wellenlänge des grünen Gesamt-Ausgabestrahls beträgt 532 nm. Die Wellenlänge des blauen Gesamt-Ausgabestrahls beträgt 473 nm.After the coupling-in
Nach dem dichroitischen Einkoppelspiegel 24 liegt ein weißer Gesamt-Ausgabestrahl 29 vor, der einen Scanner 30 durchtritt. Dieser Scanner 30 lenkt den Gesamt-Ausgabestrahl 29 synchronisiert ab, so dass auf der Projektionsfläche 5, die vom Scanner 30 etwa 10 bis 20 m beabstandet ist, ein erwünschtes Lichtmuster entsteht. Der Betrieb des Scanners 30 ist bevorzugt mit nicht dargestellten Intensitätsmodulatoren synchronisiert, die in den Strahlengängen der Gesamt-Ausgabestrahlen 4, 26 und 27 angeordnet sind und die drei Grundfarben Rot, Grün und Blau unabhängig zur Bilderzeugung modulieren.After the dichroic coupling-in
Wenn alle Einzel-Ausgabestrahlen 3 exakt parallel zueinander verlaufen, sieht der Querschnitt des Gesamt-Ausgabestrahls 4 nach dem Scanner 30 in etwa so aus, wie in der
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007045845A DE102007045845A1 (en) | 2007-09-26 | 2007-09-26 | laser device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2043211A2 true EP2043211A2 (en) | 2009-04-01 |
EP2043211A3 EP2043211A3 (en) | 2011-02-23 |
EP2043211B1 EP2043211B1 (en) | 2011-10-26 |
Family
ID=40239743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08011020A Active EP2043211B1 (en) | 2007-09-26 | 2008-06-18 | Laser device |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2043211B1 (en) |
AT (1) | ATE531106T1 (en) |
DE (1) | DE102007045845A1 (en) |
DK (1) | DK2043211T3 (en) |
ES (1) | ES2372883T3 (en) |
HR (1) | HRP20110843T1 (en) |
SI (1) | SI2043211T1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010138190A1 (en) * | 2009-05-28 | 2010-12-02 | Eastman Kodak Company | Beam alignment system using arrayed light sources |
US7959297B2 (en) | 2008-05-15 | 2011-06-14 | Eastman Kodak Company | Uniform speckle reduced laser projection using spatial and temporal mixing |
US8066389B2 (en) | 2009-04-30 | 2011-11-29 | Eastman Kodak Company | Beam alignment chamber providing divergence correction |
US8132919B2 (en) | 2009-04-30 | 2012-03-13 | Eastman Kodak Company | Digital projector using arrayed light sources |
DE102012208088A1 (en) | 2011-05-25 | 2012-11-29 | LASAIR e.K. | Laser device used in laser TV, has refractive dispersion merging component that merges single output beams depending on emission wavelength to produce overall output beam |
EP2767859A1 (en) * | 2011-10-11 | 2014-08-20 | Appotronics Corporation Limited | Light source system and laser light source |
GB2511483A (en) * | 2013-01-15 | 2014-09-10 | Coolled Ltd | LED Illumination |
WO2015149877A1 (en) * | 2014-04-04 | 2015-10-08 | Barco Nv | Laser projection illumination system |
EP2933673A1 (en) * | 2014-04-16 | 2015-10-21 | KVANT spol. s r.o. | Device for creation of intensive full-color light beam with circular cross-section, homogenous light intensity distribution and beam divergence from 0 to 10° |
CN105071224A (en) * | 2015-07-28 | 2015-11-18 | 深圳市创鑫激光股份有限公司 | Laser |
DE202014010545U1 (en) | 2014-06-17 | 2015-12-07 | Christian Marx | Laser arrangement for generating a high-power output beam |
CN105826816A (en) * | 2015-01-23 | 2016-08-03 | 朗美通运营有限责任公司 | Laser diode subassembly and method of generating light |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202005009294U1 (en) | 2005-06-13 | 2005-11-17 | Arctos Showlasertechnik E.Kfm. | Laser equipment for generation of laser beam has first partial laser beam device for producing red laser beam and second partial laser device for producing cyan laser beam whereby two beams are combined to produce white laser beam |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4826269A (en) * | 1987-10-16 | 1989-05-02 | Spectra Diode Laboratories, Inc. | Diode laser arrangement forming bright image |
JPH0260179A (en) * | 1988-08-26 | 1990-02-28 | Fuji Photo Film Co Ltd | Laser ray source device for wave multiplexing |
US5319528A (en) * | 1990-08-01 | 1994-06-07 | Diomed Limited | High power light source |
US5715270A (en) * | 1996-09-27 | 1998-02-03 | Mcdonnell Douglas Corporation | High efficiency, high power direct diode laser systems and methods therefor |
-
2007
- 2007-09-26 DE DE102007045845A patent/DE102007045845A1/en not_active Ceased
-
2008
- 2008-06-18 AT AT08011020T patent/ATE531106T1/en active
- 2008-06-18 ES ES08011020T patent/ES2372883T3/en active Active
- 2008-06-18 DK DK08011020.8T patent/DK2043211T3/en active
- 2008-06-18 SI SI200830531T patent/SI2043211T1/en unknown
- 2008-06-18 EP EP08011020A patent/EP2043211B1/en active Active
-
2011
- 2011-11-14 HR HR20110843T patent/HRP20110843T1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202005009294U1 (en) | 2005-06-13 | 2005-11-17 | Arctos Showlasertechnik E.Kfm. | Laser equipment for generation of laser beam has first partial laser beam device for producing red laser beam and second partial laser device for producing cyan laser beam whereby two beams are combined to produce white laser beam |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959297B2 (en) | 2008-05-15 | 2011-06-14 | Eastman Kodak Company | Uniform speckle reduced laser projection using spatial and temporal mixing |
US8066389B2 (en) | 2009-04-30 | 2011-11-29 | Eastman Kodak Company | Beam alignment chamber providing divergence correction |
US8132919B2 (en) | 2009-04-30 | 2012-03-13 | Eastman Kodak Company | Digital projector using arrayed light sources |
WO2010138190A1 (en) * | 2009-05-28 | 2010-12-02 | Eastman Kodak Company | Beam alignment system using arrayed light sources |
US8033666B2 (en) | 2009-05-28 | 2011-10-11 | Eastman Kodak Company | Beam alignment system using arrayed light sources |
JP2012528356A (en) * | 2009-05-28 | 2012-11-12 | イーストマン コダック カンパニー | Beam alignment system with light source array |
DE102012208088A1 (en) | 2011-05-25 | 2012-11-29 | LASAIR e.K. | Laser device used in laser TV, has refractive dispersion merging component that merges single output beams depending on emission wavelength to produce overall output beam |
EP2767859A1 (en) * | 2011-10-11 | 2014-08-20 | Appotronics Corporation Limited | Light source system and laser light source |
US10530131B2 (en) | 2011-10-11 | 2020-01-07 | Appotronics Corporation Limited | Light source system and laser light source |
EP2767859A4 (en) * | 2011-10-11 | 2015-04-29 | Appotronics Corp Ltd | Light source system and laser light source |
CN104868361A (en) * | 2011-10-11 | 2015-08-26 | 深圳市光峰光电技术有限公司 | Light source system and laser light source |
CN104868362A (en) * | 2011-10-11 | 2015-08-26 | 深圳市光峰光电技术有限公司 | Light source system and laser light source |
CN104868361B (en) * | 2011-10-11 | 2019-07-16 | 深圳光峰科技股份有限公司 | Light-source system and laser light source |
US9819154B2 (en) | 2011-10-11 | 2017-11-14 | Appotronics Corporation Limited | Light source system and laser light source |
GB2511483B (en) * | 2013-01-15 | 2016-11-23 | Coolled Ltd | LED Illumination |
US9720219B2 (en) | 2013-01-15 | 2017-08-01 | Coolled Limited | LED illumination |
GB2511483A (en) * | 2013-01-15 | 2014-09-10 | Coolled Ltd | LED Illumination |
WO2015149877A1 (en) * | 2014-04-04 | 2015-10-08 | Barco Nv | Laser projection illumination system |
US11067885B2 (en) | 2014-04-04 | 2021-07-20 | Barco Nv | Laser projection illumination system |
EP2933673A1 (en) * | 2014-04-16 | 2015-10-21 | KVANT spol. s r.o. | Device for creation of intensive full-color light beam with circular cross-section, homogenous light intensity distribution and beam divergence from 0 to 10° |
DE202014010545U1 (en) | 2014-06-17 | 2015-12-07 | Christian Marx | Laser arrangement for generating a high-power output beam |
CN105826816A (en) * | 2015-01-23 | 2016-08-03 | 朗美通运营有限责任公司 | Laser diode subassembly and method of generating light |
CN105071224B (en) * | 2015-07-28 | 2016-09-28 | 深圳市创鑫激光股份有限公司 | A kind of laser instrument |
CN105071224A (en) * | 2015-07-28 | 2015-11-18 | 深圳市创鑫激光股份有限公司 | Laser |
Also Published As
Publication number | Publication date |
---|---|
EP2043211B1 (en) | 2011-10-26 |
DE102007045845A1 (en) | 2009-04-09 |
HRP20110843T1 (en) | 2011-12-31 |
ATE531106T1 (en) | 2011-11-15 |
SI2043211T1 (en) | 2012-03-30 |
DK2043211T3 (en) | 2012-02-27 |
ES2372883T3 (en) | 2012-01-27 |
EP2043211A3 (en) | 2011-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2043211B1 (en) | Laser device | |
DE19939750C2 (en) | Optical arrangement for use in a laser diode arrangement and laser diode arrangement with such an optical arrangement | |
DE19780124B4 (en) | Arrangement for forming the geometric cross section of a plurality of solid-state and / or semiconductor lasers | |
DE19725262C2 (en) | Optical beam transformation device | |
EP2973899B1 (en) | Device for coupling wavelengths of laser beams | |
EP0984312B1 (en) | Laser diode assembly | |
EP2288955B1 (en) | Device and method for beam forming | |
EP3824338A1 (en) | Device, laser system and method for combining coherent laser beams | |
DE19751106A1 (en) | Laser printer with array of laser diodes | |
WO2007140969A1 (en) | Apparatus for beam shaping | |
WO2009068192A1 (en) | Beam forming device | |
DE10245811A1 (en) | Method and device for illuminating a room light modulator | |
WO2000008726A2 (en) | Laser amplification system | |
EP2184818A1 (en) | Laser pump arrangement and laser pump method with beam homogenisation | |
DE10148167A1 (en) | lighting arrangement | |
EP1617275A1 (en) | Device for illuminating a surface area comprising a semiconductor laser bar and a beam tansformation device | |
DE19846532C1 (en) | Apparatus used for high performance diode lasers comprises an optical transformation device for dividing the laser beam into a number of partial beams | |
DE102011016253B4 (en) | diode laser | |
DE102009059894B4 (en) | Optical arrangement for optically pumping an active medium | |
DE202007019521U1 (en) | laser device | |
DE10062453A1 (en) | Superimposing beams, involves producing virtual intermediate images of sources by common element, deflecting beams differently in second element to superimpose on light spot(s) | |
DE102004040608B4 (en) | Diode laser with an optical device for increasing the radiance of an output laser beam emerging from it | |
EP3821288A1 (en) | Beam shaping laser optic | |
DE102021126377B4 (en) | Diode laser optics and associated diode laser system | |
EP1799392B1 (en) | Laser arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20110413 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01S 5/40 20060101AFI20110509BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCTOS SHOWLASERTECHNIK GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20110843 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008005318 Country of ref document: DE Effective date: 20111222 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20110843 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2372883 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120127 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 11008 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120227 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120126 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20120606 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120727 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008005318 Country of ref document: DE Effective date: 20120727 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E013381 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MM4D Effective date: 20130618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120618 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20110843 Country of ref document: HR Payment date: 20190606 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20110843 Country of ref document: HR Payment date: 20200608 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20110843 Country of ref document: HR Payment date: 20210609 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20110843 Country of ref document: HR Payment date: 20220606 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HR Payment date: 20220606 Year of fee payment: 15 Ref country code: DK Payment date: 20220623 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20220621 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20220702 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230719 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20110843 Country of ref document: HR Effective date: 20230618 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231208 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20230630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230618 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240522 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240612 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240621 Year of fee payment: 17 Ref country code: SI Payment date: 20240611 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240621 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240628 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240809 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240718 Year of fee payment: 17 |