[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1927648A1 - Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame - Google Patents

Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame Download PDF

Info

Publication number
EP1927648A1
EP1927648A1 EP20060405504 EP06405504A EP1927648A1 EP 1927648 A1 EP1927648 A1 EP 1927648A1 EP 20060405504 EP20060405504 EP 20060405504 EP 06405504 A EP06405504 A EP 06405504A EP 1927648 A1 EP1927648 A1 EP 1927648A1
Authority
EP
European Patent Office
Prior art keywords
ultra
layer according
gold
water
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20060405504
Other languages
German (de)
French (fr)
Inventor
Samuele Tosatti
Stefan Zürcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolex SA filed Critical Rolex SA
Priority to EP20060405504 priority Critical patent/EP1927648A1/en
Priority to EP07816285.6A priority patent/EP2084253B1/en
Priority to US12/516,231 priority patent/US20100068553A1/en
Priority to PCT/CH2007/000602 priority patent/WO2008064511A1/en
Priority to US12/516,865 priority patent/US20100075138A1/en
Priority to JP2009538570A priority patent/JP5385788B2/en
Priority to PCT/CH2007/000601 priority patent/WO2008064510A1/en
Priority to EP07816284.9A priority patent/EP2084252B1/en
Priority to CN2007800439661A priority patent/CN101611124B/en
Publication of EP1927648A1 publication Critical patent/EP1927648A1/en
Priority to US13/323,773 priority patent/US8951630B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/68Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/20Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/54Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • C10M105/60Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom
    • C10M105/62Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/70Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • C10M2207/085Aldehydes; Ketones used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • C10M2215/0425Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/0806Amides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/2203Heterocyclic nitrogen compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a new ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, a process for preparing this ultra-thin layer and the use thereof as an epilame.
  • the proper functioning of a watch movement depends, among other things, on its lubrication.
  • the durability of the lubricant depends in particular on its maintenance in the operating zone: every watchmaker, however, has noticed that a drop of lubricant spreads rapidly over a clean part.
  • the deposition of an epilame layer generally in the form of a hydrophobic and oleophobic invisible molecular layer, avoids the spreading of the lubricant and its components.
  • the spreading of a liquid depends on the interaction forces between the liquid, the surface and the surrounding air (cf. JC Berg, “Wettability", Marcel Dekker, New York, 1993 and AW Adamson, “Physical Chemistry of Surfaces", Wiley ).
  • the parameter that characterizes the interaction forces between a liquid and the air is the surface tension, ⁇ LV .
  • a surface energy ⁇ SV between a solid and the surrounding air and a parameter ⁇ LS between the solid and the liquid is similarly defined.
  • the Young equation also shows that if the surface tension of the liquid is lower than the surface energy, the contact angle is zero and the liquid wets the surface. This is what happens for a lubricant deposited on a clean metal surface: in In fact, a lubricant has a surface tension of 35-40 mN / m, whereas a common metal surface has a higher surface energy.
  • the deposition of the compound on the substrate is carried out by soaking it in a solution of perfluorinated solvent loaded with polymer.
  • the solvent used is generally tetradecafluorohexane (C 6 F 14 ) which, once volatilized, is a greenhouse gas since it remains stable for 3200 years in the air and has a greenhouse potential of 7400 equivalents. CO 2 .
  • the object of the invention is to propose compounds which can be used as epilame and which can be attached to a solid substrate surface without the use of environmentally toxic fluorinated solvents.
  • the invention indeed proposes a novel ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, and a process for preparing this ultra-thin layer which uses a non-fluorinated solvent which is environmentally friendly.
  • the environment for example a mixture of water and 2-propanol.
  • this ultra-thin layer is firmly fixed to the surface of the solid substrate.
  • This ultra-thin layer has satisfactory properties for use as epilame, particularly a contact angle in advance with water and a spread of a drop of oil, quite comparable to those of the layer obtained from the reference product Fixodrop FK-BS.
  • the invention thus makes an important contribution to the ecological preparation of epilames.
  • the group A serves in particular to allow the attachment of the compounds to the surface of the solid substrate through the catechol group and the solubilization of the amphiphilic molecule AB in the dipping solution.
  • Group B gives the ultra-thin layer its hydrophobic and oleophobic properties.
  • group B is a linear aliphatic group perfluorinated in its terminal part, for example of formula (CH 2 ) n - (CF 2 ) m CF 3 wherein n is 1 to 5, especially 1 to 3, and m is 4 to 11, especially 5 to 9.
  • Interesting groups A are those selected from one of the following groups:
  • a particularly preferred compound is N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- heptadécafluoroundécanamide (SuSoS2).
  • the compounds of formulas A-B can be obtained from known compounds using techniques and reactions well known to the organic chemist.
  • N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide may be got by doing reacting 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl ester and 3-hydroxy-tyrosine hydrochloric acid in solution in DMF in the presence of N-methylmorpholine; 1- (3,4-dihydroxyphenethyl) -3-octadecylurea by reacting octadecylisocyanate and 3-hydroxy-tyramine hydrochloric acid in solution in DMF in the presence of N-methyl-morpholine.
  • 3- (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamido) -6,7-dihydroxy-1,1 dimethyl-1,2,3,4-tétrahydroquinolinium can be prepared from ANACAT and 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl by methods analogous to those described by Y.Bethuel. K. Gademann, J. Orch. Chem 2005, 70, 6258 .
  • 1- (2- (4,4,5,5,6,6,7,7,8,8,9,9,10,10,10,11,11,11-heptadecafluoroundecanamido) ethyl) -3,4- dihydroxypyridinium may also be prepared by methods analogous to those mentioned above, from 1- (2-aminoethyl) -3,4-dihydroxypyridinium and 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl .
  • N- (3,4-dihydroxyphenethyl) -3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10,10-heptadecafluorodecan-1-aminium can also be prepared by methods analogous to those mentioned above, from 3-hydroxy-tyrosine hydrochloric acid and 1,1,1,2,2,3,3,4,4,5,5,6, 6,7,7,8,8-heptadecafluoro-10-iododecane.
  • N- (4,5-dihydroxy-2-nitrophenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide may also be prepared by methods analogous to those mentioned above, starting with 4- (2-aminoethyl) -5-nitrobenzene-1,2-diol and 2H, 2H, 3H, 3H-perfluoro-undecanoic acid. N-succinimidyl.
  • the solid substrate on the surface of which the self-assembly is made can be any solid substrate involved in the operation of a mechanical movement, in particular consisting of a material chosen from gold, steel, in particular 20AP steel, aluminum, brass, cuproberyllium, titanium dioxide, ruby, sapphire, silicon, nickel and nickel-phosphorus, as well as other metal surfaces, such as iron, chromium, tantalum, yttrium, copper, platinum, and metal or ceramic oxides, such as zirconia and niobia (niobium oxide), this list not being limiting.
  • the substrate may also be a substrate in one of these materials or another whose surface has been coated or coated, for example by a galvanic deposition of gold, gold-copper-cadmium and gold, nickel, rhodium, tin-nickel, or treated by anodizing, as in the case of parts made of aluminum alloy or titanium, or modified by a surface treatment such as oxidation, carburization or nitriding.
  • the thickness of the ultra-thin layer measured in ellipsometry is generally from 0.5 to 10 nm, preferably from 1 to 4 nm.
  • the angle of contact in advance with the water is at least 100 °.
  • the ultra-thin layer remains functional as epilame after two watch washes.
  • the invention also relates to a timepiece characterized in that it comprises an ultra-thin layer as defined above.
  • the invention also relates to a method for preparing the ultra-thin layer defined above, characterized in that it comprises immersing the substrate in a solution of the compound of formula AB in water, or a mixture of water and protic solvent such as, for example, 2-propanol. This process does not use a fluorinated solvent and is therefore respectful of the environment.
  • SuSoS2 (0.052 mmol) 33 mg was dissolved in 35 ml of 2-propanol in a graduated 100 ml flask and shaken until completely dissolved. Ultrapure water was added to the mark and shaken vigorously, which increased the temperature of the solution. After returning the solution to room temperature, a few drops of water were added to adjust the volume to 100 ml. The solution was sonicated for 10 seconds for degassing and allowing complete mixing of water and 2-propanol.
  • the samples of gold, polished steel, aluminum, titanium oxide and ruby were cleaned in a UV / ozone chamber for 30 minutes and immersed overnight in the SuSoS1 or SuSoS2 solution.
  • the samples were then immersed in 2-propanol for 10 seconds, rinsed with 2-propanol and dried with a stream of nitrogen.
  • the surfaces were lightly polished with a wipe soaked in 2-propanol, rinsed with additional 2-propanol and dried with nitrogen flow.
  • X-ray photoelectron spectroscopy (XPS) analysis shows that the SuSoS1 and SuSoS2 molecules are present on all surfaces by the detection of N and F elements (for the SuSoS2 molecule).
  • Example 5 Comparison of ultra-thin layers formed by self-assembly of SuSoS2 and Fixodrop FK-BS on surfaces of gold, polished steel and ruby.
  • Fixodrop FK-BS An ultra-thin layer of Fixodrop FK-BS is coated with gold, polished steel and ruby substrates as specified by the manufacturer by dipping the substrates in a solution of tetradecafluorohexane.
  • the thickness of this layer measured by ellipsometry on gold is 0.66 ⁇ 0.01 nm for SuSoS2 and 1.70 ⁇ 0.04 nm for Fixodrop.
  • the contact angles in advance with water, hexadecane, diodomethane and ethylene glycol were measured by dynamic contact angle measurement or direction finding according to a technique similar to that used in Example 4.
  • SuSoS2 For gold, steel and ruby, the layer formed with SuSoS2 shows a dispersive character only, as expected for a molecule of this type. Surface energy seems to vary with the material, but is in any case below 20 mJ / m 2 . The weakest energy (and therefore a priori the best holding) is obtained for steel, followed by ruby and gold.
  • the spreading of the lubricants on a surface is characterized by measuring the average diameter of a drop of typically 0.5 mm in diameter immediately after the drop has been deposited and after 20 minutes.
  • the spread corresponds to the relative variation of the average diameter after 20 minutes.
  • a good performance of a lubricant corresponds to a spread of 2% or less. Spreading greater than 10% is noticeable in the eye and is not acceptable.
  • the oils used for the tests are a watch oil “941" (Moebius and Fils house, mixture of alkyl-aryl-monooleate and two C 10 -C 13 di-esters, viscosity of 110 cSt at 20 ° C, surface tension of 32.8 mN / m) and a test oil CESNIII (Swiss Laboratory for Watchmaking Research, silicone oil, surface tension of 23.1 mN / m, "Watchmaking Switzerland” No 43, 7.11.1974).
  • the contact angle obtained on the ultra-thin layers made with the SuSoS2 molecule is greater than 100 °, the surface energy is less than 20 mJ m -2 , and the spread is less than 1%.
  • the properties of the SuSoS2 ultra-thin layer are at least as good as those obtained with the commercial product Fixodrop, and the solvent used for the dipping is environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Ultra-thin hydrophobic layer and oleophobic layer formed by self-assembly on a solid substrate surface of an aromatic compound (I), is claimed. Ultra-thin hydrophobic layer and oleophobic layer formed by self-assembly on a solid substrate surface of an aromatic compound of formula (A-B 1) (I), is claimed. A : dihydroxy substituted aromatic compound of formula (II); Z : C or N +>; X : C-H or C-L; L : electron attractor group comprising F, Cl, Br, I, CF 3, NO 2 and N(CH 3) 3 +>; either Y 1H or CH3; or XY 15-6 membered heterocyclic atom; T : NH, CO, CONH or NH 2 +>U 1 ->; U 1 ->soluble anion containing F ->, Cl ->, Br ->, I, OH ->, NO 3 ->, HSO 4 ->, SO 4 2->, HCO 3 -> or SCN ->; and B 11-20C aliphatic linear alkyl group substituted by F. An independent claim is included for a preparation of the ultra-thin layer comprising immersing the substrate in a solution containing (I) in water or its mixture and protic solvent. [Image] [Image] [Image].

Description

La présente invention concerne une nouvelle couche ultra-mince hydrophobe et oléophobe formée par auto-assemblage sur une surface de substrat solide de composés à pied catéchol, un procédé pour préparer cette couche ultra-mince et l'utilisation de celle-ci comme épilame.The present invention relates to a new ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, a process for preparing this ultra-thin layer and the use thereof as an epilame.

Le bon fonctionnement d'un mouvement horloger dépend entre autre de sa lubrification. La durabilité du lubrifiant dépend notamment de son maintien dans la zone de fonctionnement : tout horloger a cependant constaté qu'une goutte de lubrifiant s'étale rapidement sur une pièce propre. Le dépôt d'une couche d'épilame, généralement sous la forme d'une couche moléculaire invisible hydrophobe et oléophobe, permet d'éviter l'étalement du lubrifiant et de ses composants.The proper functioning of a watch movement depends, among other things, on its lubrication. The durability of the lubricant depends in particular on its maintenance in the operating zone: every watchmaker, however, has noticed that a drop of lubricant spreads rapidly over a clean part. The deposition of an epilame layer, generally in the form of a hydrophobic and oleophobic invisible molecular layer, avoids the spreading of the lubricant and its components.

L'étalement d'un liquide dépend des forces d'interaction entre le liquide, la surface et l'air environnant (Cf. J.C. Berg, "Wettability", Marcel Dekker, New York, 1993 et A.W. Adamson, "Physical Chemistry of Surfaces", Wiley ). Le paramètre qui caractérise les forces d'interaction entre un liquide et l'air est la tension superficielle, γLV. On définit de façon similaire une énergie de surface γSV entre un solide et l'air environnant et un paramètre γLS entre le solide et le liquide. Pour une goutte de liquide à l'équilibre sur une surface, l'équation de Young stipule que γSV - γLS = γLV·cosθ, où θ est l'angle de contact de la goutte de liquide par rapport à la surface. L'équation de Young montre également que si la tension superficielle du liquide est plus faible que l'énergie de surface, l'angle de contact est nul et le liquide mouille la surface. C'est ce qui se passe pour un lubrifiant déposé sur une surface métallique propre : en effet, un lubrifiant a une tension superficielle de 35-40 mN/m, alors qu'une surface métallique courante a une énergie de surface plus élevée.The spreading of a liquid depends on the interaction forces between the liquid, the surface and the surrounding air (cf. JC Berg, "Wettability", Marcel Dekker, New York, 1993 and AW Adamson, "Physical Chemistry of Surfaces", Wiley ). The parameter that characterizes the interaction forces between a liquid and the air is the surface tension, γ LV . A surface energy γ SV between a solid and the surrounding air and a parameter γ LS between the solid and the liquid is similarly defined. For a drop of equilibrium liquid on a surface, the Young equation states that γ SV - γ LS = γ LV · cosθ, where θ is the contact angle of the drop of liquid with respect to the surface. The Young equation also shows that if the surface tension of the liquid is lower than the surface energy, the contact angle is zero and the liquid wets the surface. This is what happens for a lubricant deposited on a clean metal surface: in In fact, a lubricant has a surface tension of 35-40 mN / m, whereas a common metal surface has a higher surface energy.

L'énergie de surface dépend de plusieurs facteurs ( J.P. Renaud et P. Dinichert, 1956, "Etats de surface et étalement des huiles d'horlogerie", Bulletin SSC III page 681 ) :

  • la composition chimique et la structure cristallographique du solide, et en particulier de sa surface,
  • les caractéristiques géométriques de la surface et sa rugosité (et donc les défauts et/ou l'état de polissage),
  • la présence de molécules adsorbées physiquement ou liées chimiquement à la surface, qui peuvent aisément masquer le solide et modifier considérablement son énergie de surface.
Surface energy depends on several factors ( JP Renaud and P. Dinichert, 1956, "Surface States and Spreading of Clockworks", Bulletin SSC III page 681 ):
  • the chemical composition and the crystallographic structure of the solid, and in particular of its surface,
  • the geometric characteristics of the surface and its roughness (and therefore the defects and / or the polishing state),
  • the presence of molecules physically adsorbed or chemically bonded to the surface, which can easily hide the solid and significantly alter its surface energy.

L'énergie de surface est souvent déterminée par la dernière couche atomique ou moléculaire. La nature chimique du solide a peu d'importance par rapport à l'état de sa surface et à la contamination qui la recouvre. Sur une surface d'acier propre et exempte de contamination organique, l'angle de contact d'avance avec une goutte d'eau est inférieur à 10°. Avec une molécule formant des couches monomoléculaires auto-assemblées (SAM : Self-Assembled Monolayers) montrant un groupe fonctionnel -OH (p.ex. HOC11H22SH), cet angle de contact est d'environ 30°, alors qu'il est d'environ 110° pour un groupe fonctionnel -CH3 (p.ex. C12H25SH) et d'environ 118° pour un groupe fonctionnel -CF3 (p.ex. C10F17H4SH).Surface energy is often determined by the last atomic or molecular layer. The chemical nature of the solid is of little importance in relation to the state of its surface and the contamination that covers it. On a clean steel surface free of organic contamination, the contact angle in advance with a drop of water is less than 10 °. With a self-assembled monomolecular layer (SAM) molecule showing a -OH functional group (eg, HOC 11 H 22 SH), this contact angle is about 30 °, whereas it is about 110 ° for a functional group -CH 3 (eg C 12 H 25 SH) and about 118 ° for a functional group -CF 3 (eg C 10 F 17 H 4 SH ).

Les techniques de fabrication utilisées en horlogerie laissaient jusque dans les années 1930 un état de surface minimisant l'étalement des lubrifiants par la présence d'un film abaissant l'énergie de surface ( M. Osowiecki, 1957, "Un nouvel épilame résistant aux lavages", Bulletin SSC III, page 735 ). Ce film disparut avec les perfectionnements apportés aux techniques de lavage, provoquant un étalement plus ou moins rapide des lubrifiants. En 1930, P. Woog de la Compagnie Française de Raffinage développa un produit anti-migration à base d'acide stéarique qu'il nomma "épilame". Celui-ci fut utilisé dans différentes branches de l'industrie jusqu'à la fin des années 60. Le nom est resté et désigne en horlogerie tout produit servant à garantir la tenue des lubrifiants sur une surface.The manufacturing techniques used in watchmaking left until the 1930s a surface condition minimizing the spread of lubricants by the presence of a film lowering the surface energy ( M. Osowiecki, 1957, "A new epilame resistant to washes", Bulletin SSC III, page 735 ). This film disappeared with the improvements made to the washing techniques, causing a more or less rapid spreading of the lubricants. In 1930, P. Woog of the Compagnie Française de Raffinage developed an anti-migration product based on stearic acid which he named "epilame". It was used in various branches of the industry until the end of the 60s. The name remained and designates in watchmaking any product used to guarantee the resistance of lubricants on a surface.

Le dépôt d'un composé sur une surface fonctionnelle afin d'abaisser l'énergie de surface et de contrôler la mouillabilité et l'adhérence est un procédé assez répandu. Cependant, son application comme film barrière ou antimigration est limité à l'horlogerie ( M. Massin, "Epilames et lubrifiants associés à haute stabilité : propriétés, technologie d'application et résultats en horlogerie", Actes du congrès de Chronométrie Franco-Allemand, page 85, 1970 , et " Conception de la lubrification en micromécanique : réalisations nouvelles par préparation des surfaces associées à des fluides silicones", Actes du congrès des Sociétés Allemande et Française de Chronométrie, page 95, 1971 ), à l'industrie spatiale ( M. Marchetti, "Aspects globaux et locaux de la mise en oeuvre de la lubrication fluide en ambiance spatiale", Thèse de Doctorat INSA, Lyon, 2000 ) et à l'électronique. Les deux premiers domaines ont comme point commun la difficulté de remplacer un lubrifiant usagé ou épuisé.Deposition of a compound on a functional surface to lower surface energy and control wettability and adhesion is a fairly common process. However, its application as barrier film or antimigration is limited to watchmaking ( M. Massin, "Epilames and associated lubricants with high stability: properties, application technology and results in watchmaking", Proceedings of the Franco-German Chronometry Congress, page 85, 1970 , and " Design of lubrication in micromechanics: new achievements by preparing surfaces associated with silicone fluids ", Proceedings of the Congress of the German and French Chronometry Societies, page 95, 1971 ), to the space industry ( M. Marchetti, "Global and Local Aspects of the Implementation of Fluid Lubrication in the Space Environment", PhD Thesis INSA, Lyon, 2000 ) and electronics. The first two areas have in common the difficulty of replacing a used or exhausted lubricant.

Des produits à base d'acide stéarique dilué dans du toluène furent utilisés en horlogerie jusque dans les années 1970 ( M.Osowiecki, référence ci-dessus et P. Ducommun, 1956, "Les huiles d'horlogerie synthétiques", J. Suisse Horl. Bij. 9-10, 117 ). Des recherches entreprises à la fin des années 60 débouchèrent sur deux développements importants. D'une part, un produit à base de silicone fut développé (P. Massin, références ci-dessus) mais ne connût qu'un succès limité. D'autre part, des produits à base de polymères fluorés furent introduits dans le courant des années 70 et sont encore utilisés aujourd'hui.Products based on stearic acid diluted in toluene were used in watchmaking until the 1970s ( M.Osowiecki, reference above and P. Ducommun, 1956, "Synthetic clockwork oils", J. Switzerland Horl. Bij. 9-10, 117 ). Research undertaken in the late 1960s led to two important developments. On the one hand, a product based on silicone was developed (P. Massin, references above) but knew only limited success. On the other hand, products based on fluoropolymers were introduced in the course of the 1970s and are still used today.

Actuellement, la grande majorité des épilames disponibles sur le marché, comme le Fixodrop FK-BS de Moebius, ou la ligne des produits Fluorad (FC-722 et autres) de 3M, consistent en un polymère fluoré dissous dans un solvant perfluoré.Currently, the vast majority of epilams available on the market, such as Moebius' Fixodrop FK-BS, or the 3M Fluorad (FC-722 and others) line, consist of a fluorinated polymer dissolved in a perfluorinated solvent.

Le dépôt du composé sur le substrat s'effectue par trempage de celui-ci dans une solution de solvant perfluoré chargée en polymère. Le solvant utilisé est généralement du tétradécafluorohexane (C6F14) qui est, une fois volatilisé, un gaz à effet de serre puisqu'il reste stable 3200 ans dans l'air et a un potentiel à effet de serre de 7400 equ. CO2.The deposition of the compound on the substrate is carried out by soaking it in a solution of perfluorinated solvent loaded with polymer. The solvent used is generally tetradecafluorohexane (C 6 F 14 ) which, once volatilized, is a greenhouse gas since it remains stable for 3200 years in the air and has a greenhouse potential of 7400 equivalents. CO 2 .

L'invention a pour but de proposer des composés utilisables comme épilame pouvant être fixés à une surface de substrat solide sans utilisation de solvants fluorés toxiques pour l'environnement.The object of the invention is to propose compounds which can be used as epilame and which can be attached to a solid substrate surface without the use of environmentally toxic fluorinated solvents.

Ces buts sont atteints par l'invention telle que définie dans le jeu de revendications ci-joint.These objects are achieved by the invention as defined in the attached set of claims.

L'invention propose en effet une nouvelle couche ultra-mince hydrophobe et oléophobe formée par auto-assemblage sur une surface de substrat solide de composés à pied catéchol, et un procédé pour préparer cette couche ultra-mince qui utilise un solvant non fluoré respectueux de l'environnement, par exemple un mélange d'eau et de 2-propanol. Grâce au pied catéchol des composés utilisés, cette couche ultra-mince est solidement fixée à la surface du substrat solide. Cette couche ultra-mince présente des propriétés satisfaisantes pour une utilisation comme épilame, en particulier un angle de contact d'avance avec l'eau et un étalement d'une goutte d'huile, tout à fait comparables à celles de la couche obtenue à partir du produit commercial de référence Fixodrop FK-BS.The invention indeed proposes a novel ultra-thin hydrophobic and oleophobic layer formed by self-assembly on a solid substrate surface of catechol foot compounds, and a process for preparing this ultra-thin layer which uses a non-fluorinated solvent which is environmentally friendly. the environment, for example a mixture of water and 2-propanol. Thanks to the catechol foot of the compounds used, this ultra-thin layer is firmly fixed to the surface of the solid substrate. This ultra-thin layer has satisfactory properties for use as epilame, particularly a contact angle in advance with water and a spread of a drop of oil, quite comparable to those of the layer obtained from the reference product Fixodrop FK-BS.

L'invention apporte ainsi une contribution importante à la préparation écologique d'épilames.The invention thus makes an important contribution to the ecological preparation of epilames.

Les composés à pied catéchol ont pour formule générale

         A-B

dans laquelle

  • A représente un groupe de formule
    Figure imgb0001
    dans laquelle
    • Z représente C ou N+,
    • X représente C-H ou C-L, L étant un groupe électroattracteur choisi parmi F, Cl, Br, I, CF3, NO2 et N(CH3)3 +,
    • Y représente H ou CH3, ou Y forme avec X un hétérocycle de 5 ou 6 atomes,
    • T représente NH, NH-CO, NH-CO-NH ou NH2 +U-, U- étant un anion soluble, tel que par exemple F-, Cl-, Br-, I, OH-, NO3 -, HSO4 -, SO4 2-, CO3 2-, HCO3 - ou SCN-, et
  • B représente un groupe alkyl linéaire aliphatique C1-C20 non substitué ou substitué partiellement ou complètement par F.
The catechol foot compounds have the general formula

AB

in which
  • A represents a group of formula
    Figure imgb0001
    in which
    • Z represents C or N + ,
    • X represents CH or CL, L being an electron-withdrawing group chosen from F, Cl, Br, I, CF 3 , NO 2 and N (CH 3 ) 3 + ,
    • Y represents H or CH 3 , or Y forms with X a heterocycle of 5 or 6 atoms,
    • T represents NH, NH-CO, NH-CO-NH or NH 2 + U - , U - being a soluble anion, such as for example F - , Cl - , Br - , I, OH - , NO 3 - , HSO 4 - , SO 4 2- , CO 3 2- , HCO 3 - or SCN - , and
  • B represents a C 1 -C 20 aliphatic linear alkyl group which is unsubstituted or partially or completely substituted with F.

Le groupe A sert notamment à permettre la fixation des composés à la surface du substrat solide grâce au groupe catéchol et la solubilisation de la molécule amphiphile A-B dans la solution de trempage.The group A serves in particular to allow the attachment of the compounds to the surface of the solid substrate through the catechol group and the solubilization of the amphiphilic molecule AB in the dipping solution.

Le groupe B confère à la couche ultra-mince ses propriétés hydrophobes et oléophobes.Group B gives the ultra-thin layer its hydrophobic and oleophobic properties.

De préférence le groupe B est un groupe alkyl linéaire aliphatique perfluoré dans sa partie terminale, par exemple de formule

         (CH2)n-(CF2)mCF3

dans laquelle n est de 1 à 5, en particulier de 1 à 3, et m est de 4 à 11, en particulier de 5 à 9.
Preferably group B is a linear aliphatic group perfluorinated in its terminal part, for example of formula

(CH 2 ) n - (CF 2 ) m CF 3

wherein n is 1 to 5, especially 1 to 3, and m is 4 to 11, especially 5 to 9.

Des groupes A intéressants sont ceux choisis parmi l'un des groupes suivants :

Figure imgb0002
Figure imgb0003
Figure imgb0004
Interesting groups A are those selected from one of the following groups:
Figure imgb0002
Figure imgb0003
Figure imgb0004

Un composé particulièrement apprécié est le N-(3,4-dihydroxyphénéthyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadécafluoroundécanamide

Figure imgb0005
(SuSoS2).A particularly preferred compound is N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- heptadécafluoroundécanamide
Figure imgb0005
(SuSoS2).

Les composés de formules A-B peuvent être obtenus à partir de composés connus en utilisant des techniques et des réactions bien connues du chimiste organicien.The compounds of formulas A-B can be obtained from known compounds using techniques and reactions well known to the organic chemist.

Par exemple le N-(3,4-dihydroxyphénéthyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadécafluoroundécanamide peut être obtenu en faisant réagir du 2H,2H,3H,3H-perfluoro-undécanoïque-acide-N-succinimidyl ester et du 3-hydroxy-tyrosine acide chlorhydrique en solution dans le DMF en présence de N-méthylmorpholine ; le 1-(3,4-dihydroxyphénéthyl)-3-octadecylurée

Figure imgb0006
en faisant réagir de l'octadécylisocyanate et 3-hydroxy-tyramine acide chlorhydrique en solution dans le DMF en présence de N-méthyl-morpholine.For example, N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide may be got by doing reacting 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl ester and 3-hydroxy-tyrosine hydrochloric acid in solution in DMF in the presence of N-methylmorpholine; 1- (3,4-dihydroxyphenethyl) -3-octadecylurea
Figure imgb0006
by reacting octadecylisocyanate and 3-hydroxy-tyramine hydrochloric acid in solution in DMF in the presence of N-methyl-morpholine.

Le 3-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundécanamido)-6,7-dihydroxy-1,1-diméthyl-1,2,3,4-tétrahydroquinolinium

Figure imgb0007
peut être préparé à partir de ANACAT et de 2H,2H,3H,3H-perfluoro-undécanoïque-acide-N-succinimidyl selon des procédés analogues à ceux décrits par Y.Bethuel. K. Gademann, J. Orch. Chem 2005, 70, 6258 .; Zürcher, S.; Wäckerlin, D.; Bethuel, Y.; Malisova, B.; Textor, M.; Tosatti, S.; Gademann, K. Journal of the American Chemical Society 2006, 128, 1064-1065 .3- (4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamido) -6,7-dihydroxy-1,1 dimethyl-1,2,3,4-tétrahydroquinolinium
Figure imgb0007
can be prepared from ANACAT and 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl by methods analogous to those described by Y.Bethuel. K. Gademann, J. Orch. Chem 2005, 70, 6258 . Zürcher, S .; Wäckerlin, D .; Bethuel, Y .; Malisova, B .; Textor, M .; Tosatti, S .; Gademann, K. Journal of the American Chemical Society 2006, 128, 1064-1065 .

Le 1-(2-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamido)éthyl)-3,4-dihydroxypyridinium

Figure imgb0008
peut également être préparé par des procédés analogues à ceux mentionnés ci-dessus, à partir de 1-(2-aminoéthyl)-3,4-dihydroxypyridinium et de 2H,2H,3H,3H-perfluoro-undécanoïque-acide-N-succinimidyl.1- (2- (4,4,5,5,6,6,7,7,8,8,9,9,10,10,10,11,11,11-heptadecafluoroundecanamido) ethyl) -3,4- dihydroxypyridinium
Figure imgb0008
may also be prepared by methods analogous to those mentioned above, from 1- (2-aminoethyl) -3,4-dihydroxypyridinium and 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl .

Le N-(3,4-dihydroxyphenethyl)-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodécan-1-aminium

Figure imgb0009
peut également être préparé par des procédés analogues à ceux mentionnés ci-dessus, à partir de 3-hydroxy-tyrosine acide chlorhydrique et 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-heptadécafluoro-10-iododécane.N- (3,4-dihydroxyphenethyl) -3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10,10-heptadecafluorodecan-1-aminium
Figure imgb0009
can also be prepared by methods analogous to those mentioned above, from 3-hydroxy-tyrosine hydrochloric acid and 1,1,1,2,2,3,3,4,4,5,5,6, 6,7,7,8,8-heptadecafluoro-10-iododecane.

Le N-(4,5-dihydroxy-2-nitrophénéthyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadécafluoroundecanamide

Figure imgb0010
peut également être préparé par des procédés analogues à ceux mentionnés ci-dessus, à partir de 4-(2-aminoéthyl)-5-nitrobenzène-1,2-diol et 2H,2H,3H,3H-perfluoro-undécanoïque-acide-N-succinimidyl.N- (4,5-dihydroxy-2-nitrophenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide
Figure imgb0010
may also be prepared by methods analogous to those mentioned above, starting with 4- (2-aminoethyl) -5-nitrobenzene-1,2-diol and 2H, 2H, 3H, 3H-perfluoro-undecanoic acid. N-succinimidyl.

Le substrat solide sur la surface duquel se fait l'auto-assemblage peut être n'importe quel substrat solide impliqué dans le fonctionnement d'un mouvement mécanique, en particulier constitué d'une matière choisie parmi l'or, l'acier, notamment l'acier 20AP, l'aluminium, le laiton, le cuprobéryllium, le dioxyde de titane, le rubis, le saphir, le silicium, le nickel et le nickel-phosphore, ainsi que d'autres surfaces métalliques, tels que le fer, le chrome, le tantale, l'yttrium, le cuivre, le platine, et d'oxydes métalliques ou céramiques, tels la zircone et la niobie (oxyde de niobium), cette liste n'étant pas limitative. Comme substrat, on peut utiliser aussi des polymères tels que les polyéthylènes, les polystyrols, les polyamides, les polydiméthylsiloxanes, les chlorures de polyvinyle, les résines époxy, cette liste n'étant pas là aussi limitative. Le substrat peut aussi être un substrat en une de ces matières ou une autre dont la surface a été recouverte ou revêtue, par exemple par un dépôt galvanique d'or, d'or-cuivre-cadmium et d'or, de nickel, de rhodium, d'étain-nickel, ou traitée par anodisation, comme dans le cas des pièces en alliage d'aluminium ou de titane, ou modifiée par un traitement de surface comme l'oxydation, la carburation ou la nitruration.The solid substrate on the surface of which the self-assembly is made can be any solid substrate involved in the operation of a mechanical movement, in particular consisting of a material chosen from gold, steel, in particular 20AP steel, aluminum, brass, cuproberyllium, titanium dioxide, ruby, sapphire, silicon, nickel and nickel-phosphorus, as well as other metal surfaces, such as iron, chromium, tantalum, yttrium, copper, platinum, and metal or ceramic oxides, such as zirconia and niobia (niobium oxide), this list not being limiting. As substrate, it is also possible to use polymers such as polyethylenes, polystyrols, polyamides, polydimethylsiloxanes, chlorides of polyvinyl, epoxy resins, this list is not also limiting. The substrate may also be a substrate in one of these materials or another whose surface has been coated or coated, for example by a galvanic deposition of gold, gold-copper-cadmium and gold, nickel, rhodium, tin-nickel, or treated by anodizing, as in the case of parts made of aluminum alloy or titanium, or modified by a surface treatment such as oxidation, carburization or nitriding.

L'épaisseur de la couche ultra-mince mesurée en ellipsométrie est en général de 0,5 à 10 nm, de préférence de 1 à 4 nm.The thickness of the ultra-thin layer measured in ellipsometry is generally from 0.5 to 10 nm, preferably from 1 to 4 nm.

Pour être efficace comme épilame, c'est à dire empêcher de façon satisfaisante l'étalement d'huile, il est nécessaire que l'angle de contact d'avance avec l'eau soit d'au moins 100°.To be effective as an epilame, that is to say to prevent the spread of oil satisfactorily, it is necessary that the angle of contact in advance with the water is at least 100 °.

De préférence la couche ultra-mince reste fonctionnelle comme épilame après deux lavages horlogers.Preferably the ultra-thin layer remains functional as epilame after two watch washes.

L'invention concerne aussi une pièce d'horlogerie caractérisée en ce qu'elle comprend une couche ultra-mince telle que définie ci-dessus.The invention also relates to a timepiece characterized in that it comprises an ultra-thin layer as defined above.

L'invention concerne aussi un procédé de préparation de la couche ultra-mince définie ci-dessus, caractérisé en ce qu'il comprend l'immersion du substrat dans une solution du composé de formule A-B dans de l'eau, ou un mélange d'eau et de solvant protique tel que, par exemple, le 2-propanol. Ce procédé n'utilise pas de solvant fluoré et est donc respectueux de l'environnement.The invention also relates to a method for preparing the ultra-thin layer defined above, characterized in that it comprises immersing the substrate in a solution of the compound of formula AB in water, or a mixture of water and protic solvent such as, for example, 2-propanol. This process does not use a fluorinated solvent and is therefore respectful of the environment.

L'invention sera mieux comprise à l'aide des exemples ci-après qui ont un caractère illustratif et non limitatif.The invention will be better understood with the aid of the following examples which have an illustrative and nonlimiting character.

Exemple 1 Synthèse de 1-(3,4-dihydroxyphénéthyl)-3-octadecylurée (SoSuS1) Example 1 Synthesis of 1- (3,4-dihydroxyphenethyl) -3-octadecylurea (SoSuS1)

On a fait tomber goutte à goutte de l'octadécylisocyanate (668 mg, 2,26 mmol) dans une solution de 3-hydroxy-tyramine acide chlorhydrique (428 mg, 2,26 mmol) et de N-méthyl-morpholine (372 µl) dans du DMF (5 ml).On a agité le mélange sous atmosphère d'azote pendant 6 heures. On a ajouté de l'eau (50 ml) et on a filtré le précipité blanc formé et lavé avec de l'eau (10 ml) et de l'acétone (10 ml). La recristallisation à partir d'acétone (160 ml) à - 20 °C a donné 870 mg de poudre blanche.

  • Poids moléculaire : 448,68
  • % pondéral : C 72,28 ; H 10,78 ; N 6,24 ; O 10,70
  • sans H : C 84,375 ; N 6,25 ; O 9,373
  • 1H RMN (DMSO-d6, 300 MHz, 300 K, ppm) : 8,72 (s, 1H OH), 8,62 (s, 1H OH), 6,7-6,5 (m, 3H dopamine), 5,82 (t, 1H NH), 5,68 (t, 1H NH), 3, 12 (q, 2H CH2), 2,95 (q, 2H CH2), 2,5 (m, 4H CH2), 1,20 (m, 30H CH2), 0.86 (t, 3H CH3).
correspondant au 1-(3,4-dihydroxyphénéthyl)-3-octadecylurée :
Figure imgb0011
Octadecylisocyanate (668 mg, 2.26 mmol) was dripped into a solution of 3-hydroxy-tyramine hydrochloric acid (428 mg, 2.26 mmol) and N-methyl-morpholine (372 μl). ) in DMF (5 ml). The mixture was stirred under a nitrogen atmosphere for 6 hours. Water (50 ml) was added and the white precipitate formed was filtered and washed with water (10 ml) and acetone (10 ml). Recrystallization from acetone (160 ml) at -20 ° C gave 870 mg of white powder.
  • Molecular weight: 448.68
  • % by weight: C 72.28; H, 7.78; N, 6.24; O 10.70
  • without H: C, 84.375; N, 6.25; O, 9.373
  • 1 H NMR (DMSO-d6, 300 MHz, 300 K, ppm): 8.72 (s, 1H OH), 8.62 (s, 1H OH), 6.7-6.5 (m, 3H dopamine) , 5.82 (t, 1H NH), 5.68 (t, 1H NH), 3, 12 (q, 2H CH 2 ), 2.95 (q, 2H CH 2 ), 2.5 (m, 4H). CH 2 ), 1.20 (m, 30H CH 2 ), 0.86 (t, 3H CH 3 ).
corresponding to 1- (3,4-dihydroxyphenethyl) -3-octadecylurea:
Figure imgb0011

Exemple 2 Synthèse de N-(3,4-dihydroxyphénéthyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadécafluoroundécanamide (SoSuS2) Example 2 Synthesis of N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide ( SoSuS2) Synthèse de 2H,2H,3H,3H-perfluoro-undécanoïque-acide-N-succinimidyl esterSynthesis of 2H, 2H, 3H, 3H-perfluoro-undecanoic acid-N-succinimidyl ester

De l'acide 2H,2H,3H,3H-perfluoro-undécanoïque (1,354 g, 2,75 mmol), du N-hydroxysuccimide (348 mg, 3,02 mmol), du dicyclohexylcarbodiimide (622 mg, 3,02 mmol) ont été dissous dans de l'éthylacétate (120 ml) et mélangés pendant 18 heures à température ambiante. On a filtré le précipité blanc formé (dicyclohexylurée DCU) et évaporé la solution restante à sec. On a recristallisé deux fois le résidu à partir d'éthyl acétate. Rendement 1,00 g (62%) contenant des traces de DCU.2H, 2H, 3H, 3H-perfluoro-undecanoic acid (1.354 g, 2.75 mmol), N-hydroxysuccimide (348 mg, 3.02 mmol), Dicyclohexylcarbodiimide (622 mg, 3.02 mmol) was dissolved in ethyl acetate (120 mL) and mixed for 18 hours at room temperature. The white precipitate formed (dicyclohexylurea DCU) was filtered and the remaining solution evaporated to dryness. The residue was recrystallized twice from ethyl acetate. Yield 1.00 g (62%) containing traces of DCU.

1H RMN (CDCl3, 300 MHz, ppm) : 3,0 (m, 2H CH2), 2,88 (s, 4H CH2 NHS), 2,6 (m, 2H CH2). 1 H NMR (CDCl 3 , 300 MHz, ppm): 3.0 (m, 2H CH 2 ), 2.88 (s, 4H CH 2 NHS), 2.6 (m, 2H CH 2 ).

Synthèse de N-(3,4-dihydroxyphénéthyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadécafluoroundécanamideSynthesis of N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide

Du 3-hydroxy-tyrosine acide chlorhydrique (257,5 mg, 1,35 mmol) et de la N-méthylmorpholine (241 µl) ont été dissous dans du DMF (8ml). On a ajouté le perfluoro-NHS-ester (800 mg) et agité le mélange sous atmosphère d'azote pendant une nuit. On a ajouté de l'eau (40 ml), filtré le précipité formé et lavé avec de l'eau. On a dissout le solide dans de l'éthylacétate et séché la phase organique avec du sulfate de magnésium. On a évaporé le solvant et recristallisé le résidu à partir du chloroforme (30ml, 4°C). Rendement 752 mg (88%).

  • Poids moléculaire : 627,29
  • % pondéral : C 36,38 ; H 2,25 ; F 51,49 ; N 2,23 ; O 7,65 sans H : C 47,5 ; F 42,5 ; N 2,5 ; O 7,5
  • 1H RMN (CDCl3, 300 MHz, ppm) : 8,7 (s large, 2H OH), 8,08 (t, 1H NH), 6.7-6.4 (m, 3H dopamine), 3,2 (q, 2H CH2), 2,7-2,3 (m, 6H CH2).
correspondant au N-(3,4-dihydroxyphénéthyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadécafluoroundécanamide
Figure imgb0012
Hydrochloric acid 3-hydroxy-tyrosine (257.5 mg, 1.35 mmol) and N-methylmorpholine (241 μl) were dissolved in DMF (8 ml). Perfluoro-NHS-ester (800 mg) was added and the mixture was stirred under a nitrogen atmosphere overnight. Water (40 ml) was added, the precipitate formed filtered off and washed with water. The solid was dissolved in ethyl acetate and the organic phase was dried with magnesium sulfate. The solvent was evaporated and the residue was recrystallized from chloroform (30ml, 4 ° C). Yield 752 mg (88%).
  • Molecular weight: 627.29
  • % by weight: C 36.38; H, 2.25; F 51.49; N, 2.23; O 7.65 without H: C 47.5; F 42.5; N 2.5; O 7.5
  • 1 H NMR (CDCl 3 , 300 MHz, ppm): 8.7 (bs, 2H OH), 8.08 (t, 1H NH), 6.7-6.4 (m, 3H dopamine), 3.2 (q, 2H CH 2 ), 2.7-2.3 (m, 6H CH 2 ).
corresponding to N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide
Figure imgb0012

Exemple 3 Préparation de solutions de trempage et immersion de différents substrats dans celles-ci Example 3 Preparation of dipping solutions and immersion of different substrates therein Préparation de la solution de trempage de SuSoS1Preparation of the soaking solution of SuSoS1

On a dissout 23,4 mg de SuSoS1 (0,052 mmol) dans 80 ml de 2-propanol dans une fiole de 100 ml graduée. On a soumis la solution aux ultrasons (avec l'appareil Sonorex super 10 P à 100 %) jusqu'à dissolution complète. On a ajouté de l'eau ultrapure jusqu'à la marque de la fiole et secoué vigoureusement, ce qui a fait augmenter la température de la solution. Après retour de la solution à température ambiante, on a ajouté quelques gouttes d'eau pour ajuster le volume à 100 ml. On a soumis la solution aux ultrasons pendant 10 secondes pour la dégazer et permettre un mélange complet de l'eau et du 2-propanol.23.4 mg of SuSoS1 (0.052 mmol) in 80 ml of 2-propanol was dissolved in a graduated 100 ml flask. The solution was sonicated (with Sonorex super 10P 100%) until completely dissolved. Ultrapure water was added to the vial mark and shaken vigorously, which increased the temperature of the solution. After returning the solution to room temperature, a few drops of water were added to adjust the volume to 100 ml. The solution was sonicated for 10 seconds to degas it and allow complete mixing of water and 2-propanol.

Préparation de la solution de trempage de SuSoS2Preparation of SuSoS2 soaking solution

On a dissout 33 mg de SuSoS2 (0,052 mmol) dans 35 ml de 2-propanol dans une fiole de 100 ml graduée et secoué jusqu'à dissolution complète. On a ajouté de l'eau ultrapure jusqu'à la marque et secoué vigoureusement, ce qui a fait augmenter la température de la solution. Après retour de la solution à température ambiante, on a ajouté quelques gouttes d'eau pour ajuster le volume à 100 ml. On a soumis la solution aux ultrasons pendant 10 secondes pour la dégazer et permettre un mélange complet de l'eau et du 2-propanol.SuSoS2 (0.052 mmol) 33 mg was dissolved in 35 ml of 2-propanol in a graduated 100 ml flask and shaken until completely dissolved. Ultrapure water was added to the mark and shaken vigorously, which increased the temperature of the solution. After returning the solution to room temperature, a few drops of water were added to adjust the volume to 100 ml. The solution was sonicated for 10 seconds for degassing and allowing complete mixing of water and 2-propanol.

Immersion des substrats d'or, d'acier poli, d'aluminium d'oxyde de titane et de rubis dans les solutions de trempageImmersion of gold, polished steel, titanium oxide and ruby substrates in soaking solutions

Les échantillons d'or, d'acier poli, d'aluminium, d'oxyde de titane et de rubis ont été nettoyés dans une chambre UV/ozone pendant 30 minutes et immergés pendant une nuit dans la solution de SuSoS1 ou SuSoS2. Les échantillons ont été ensuite immergés dans du 2-propanol pendant 10 secondes, rincés avec du 2-propanol et séchés avec un flux d'azote. Dans le cas de l'acier, les surfaces ont été légèrement polies avec une lingette imbibée de 2-propanol, rincées avec du 2-propanol supplémentaire et séchées avec un flux d'azote.The samples of gold, polished steel, aluminum, titanium oxide and ruby were cleaned in a UV / ozone chamber for 30 minutes and immersed overnight in the SuSoS1 or SuSoS2 solution. The samples were then immersed in 2-propanol for 10 seconds, rinsed with 2-propanol and dried with a stream of nitrogen. In the case of steel, the surfaces were lightly polished with a wipe soaked in 2-propanol, rinsed with additional 2-propanol and dried with nitrogen flow.

Exemple 4 Analyse des couches ultra-minces formées par auto-assemblage sur différents substrats Example 4 Analysis of ultra-thin layers formed by self-assembly on different substrates

Les monocouches formées par auto-assemblage sur les différents substrats ont été analysées par

  • ellipsomètrie spectroscopique à angle variable (VASE : Variable Angle Spectroscopique Ellipsometry ; cf. Feller et al. (2005). "Influence of poly(propylene sulfide-block-ethylene glycol) di-and triblock copolymer architecture on the formation of molecular adlayers on gold surfaces and their effect on protein resistance: A candidate for surface modification in biosensor research.", Macromolecules 38(25): 10503-10510 ),
  • mesure d'angle de contact dynamique (CA : Contact Angle ; cf. Tosatti et al. (2002) "Self-Assembled Monolayers of Dodecyl and Hydroxy-dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces", Langmuir 18(9): 3537-3548 ) et
  • spectrométrie spectroscopique à rayons X (XPS ; Tosatti et al. ci-dessus).
Monolayers formed by self-assembly on the different substrates were analyzed by
  • variable angle spectroscopic ellipsometry (VASE: Variable Angle Spectroscopic Ellipsometry; Feller et al. (2005). "Influence of poly (propylene sulfide-block-ethylene glycol) di-and triblock copolymer architecture on the formation of molecular adlayers and their effect on protein resistance biosensor research. ", Macromolecules 38 (25): 10503-10510 )
  • dynamic contact angle measurement (CA: Angle contact; Tosatti et al. (2002) "Self-Assembled Monolayers of Dodecyl and Hydroxy-dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces", Langmuir 18 (9): 3537-3548 ) and
  • X-ray spectroscopic spectrometry (XPS, Tosatti et al., supra).

Les différents substrats utilisés sont

  • des plaques de silicium recouverts d'une fine couche d'or
  • des disques d'acier poli
  • des disques de rubis poli
  • des plaques d'aluminium
  • des plaques de silicium recouverts d'une fine couche de dioxyde de titane
The different substrates used are
  • silicon wafers covered with a thin layer of gold
  • polished steel discs
  • polished ruby discs
  • aluminum plates
  • silicon wafers coated with a thin layer of titanium dioxide

Les principaux paramètres mesurés par VASE et CA sont rassemblés dans le Tableau 1 ci-après. Tableau 1 : Epaisseur mesurée par ellipsométrie et angles de contact d'avance avec l'eau Substrat Modification Epaisseur mesurée par ellipsométrie [nm] Angle de contact d'avance avec l'eau [°] Or Propre - environ 50 SuSOS1 1,03 93,4±2,1 SuSOS2 0,66 115,6±0,8 Acier poli Propre - < 10 SuSOS1 2,674 108,5±1,0 SuSOS2 3,303 116,8±2,5 Aluminium Propre non mesuré < 10 SuSOS1 non mesuré 98,8±0,6 SuSOS2 non mesuré 126,2±1,9 Dioxyde de titane Propre - < 10 SuSOS1 3,43 111,8±0,7 SuSOS2 1,39 116,5±0,6 Rubis Propre non mesuré < 10 SuSOS1 non mesuré - SuSOS2 non mesuré 109,9±2,1 The main parameters measured by VASE and CA are summarized in Table 1 below. <u> Table 1: Thickness measured by ellipsometry and advance contact angles with water </ u> substratum change Thickness measured by ellipsometry [nm] Contact angle in advance with water [°] Gold Clean - about 50 SuSOS1 1.03 93.4 ± 2.1 SuSoS2 0.66 115.6 ± 0.8 Polished steel Clean - <10 SuSOS1 2,674 108.5 ± 1.0 SuSoS2 3,303 116.8 ± 2.5 Aluminum Clean not measured <10 SuSOS1 not measured 98.8 ± 0.6 SuSoS2 not measured 126.2 ± 1.9 Titanium dioxide Clean - <10 SuSOS1 3.43 111.8 ± 0.7 SuSoS2 1.39 116.5 ± 0.6 Ruby Clean not measured <10 SuSOS1 not measured - SuSoS2 not measured 109.9 ± 2.1

L'analyse par spectroscopie de photoélectrons par rayons X (XPS) montre que les molécules SuSoS1 et SuSoS2 sont présentes sur toutes les surfaces par la détection des éléments N et F (pour la molécule SuSoS2).X-ray photoelectron spectroscopy (XPS) analysis shows that the SuSoS1 and SuSoS2 molecules are present on all surfaces by the detection of N and F elements (for the SuSoS2 molecule).

Ces résultats montrent qu'on obtient sur tous les substrats testés une couche ultra-mince de SuSoS1 ou SuSoS2.These results show that we obtain on all substrates tested an ultra-thin layer of SuSoS1 or SuSoS2.

Les valeurs d'angle de contact d'avance avec l'eau sont satisfaisantes pour une utilisation comme épilame (supérieures à 100°)

  • pour SuSoS2, pour tous les substrats testés et
  • pour SuSoS1, pour l'acier poli et le dioxyde de titane.
Advance contact angle values with water are satisfactory for use as epilam (greater than 100 °)
  • for SuSoS2, for all substrates tested and
  • for SuSoS1, for polished steel and titanium dioxide.

Exemple 5 Comparaison des couches ultra-fines formées par auto-assemblage de SuSoS2 et Fixodrop FK-BS sur des surfaces d'or, d'acier poli et de rubis. Example 5 Comparison of ultra-thin layers formed by self-assembly of SuSoS2 and Fixodrop FK-BS on surfaces of gold, polished steel and ruby. 1) Préparation des couches ultra-fines de SuSoS2 et Fixodrop sur les surfaces des différents substrats 1) Preparation of the ultra-thin layers of SuSoS2 and Fixodrop on the surfaces of the different substrates

On revêt d'une couche ultra-fine de SuSoS2 des surfaces de substrats d'or, d'acier poli et de rubis comme décrit dans l'exemple 3. L'aspect de surface est excellent et on ne distingue aucune marque due au dépôt.An ultra-thin layer of SuSoS2 is coated with substrates of gold, polished steel and ruby as described in Example 3. The surface appearance is excellent and no markings can be distinguished due to the deposit .

On revêt d'une couche ultra-fine de Fixodrop FK-BS des surfaces de substrats d'or, d'acier poli et de rubis selon les indications du fabricant par trempage des substrats dans une solution de tétradécafluorohexane.An ultra-thin layer of Fixodrop FK-BS is coated with gold, polished steel and ruby substrates as specified by the manufacturer by dipping the substrates in a solution of tetradecafluorohexane.

L'épaisseur de cette couche mesurée par ellipsométrie sur l'or est de 0,66 ± 0,01 nm pour SuSoS2 et 1,70 ± 0,04 nm pour le Fixodrop.The thickness of this layer measured by ellipsometry on gold is 0.66 ± 0.01 nm for SuSoS2 and 1.70 ± 0.04 nm for Fixodrop.

2) Mesure des angles de contact avec différents solvants et détermination des énergies de surface2) Measurement of contact angles with different solvents and determination of surface energies

Les angles de contact d'avance avec l'eau, l'hexadécane, le diodométhane et l'éthylèneglycol ont été mesurés par mesure d'angle de contact dynamique ou goniométrie selon une technique proche de celle utilisée dans l'Exemple 4.The contact angles in advance with water, hexadecane, diodomethane and ethylene glycol were measured by dynamic contact angle measurement or direction finding according to a technique similar to that used in Example 4.

Les composantes dispersive et polaire de l'énergie de surface ont été déduites à partir de ces mesures avec le modèle de Owens-Wendt ( Owens D.K. et Wendt R.C., 1969, Journal of Applied Polymer Science, 13, 8, p. 1741 ).The dispersive and polar components of surface energy were deduced from these measurements with the Owens-Wendt model ( Owens DK and Wendt RC, 1969, Journal of Applied Polymer Science, 13, 8, p. 1741 ).

Les principaux résultats obtenus sont rassemblés dans le tableau 2 ci-après. Tableau 2 : Angles de contact et énergies de surface avec différents solvants Liquide Acier SuSoS2 Rubis SuSoS2 Or SuSoS2 Or Fixodrop Angle de contact [°] Hexadécane 64.1 56.8 47.3 56.8 Diiodométhane 90.4 84.4 77.8 78.0 Ethylèneglycol 93.2 87.2 84.9 88.4 Eau 103.0 113.8 104.8 104.2 Energie de surface [mJ/m2] Dispersive 12.5 16.3 18.6 16.8 Polaire 2.2 0.2 0.8 0.4 Totale 14.6 16.6 19.4 17.3 The main results obtained are summarized in Table 2 below. <u> Table 2: Contact angles and surface energies with different solvents </ u> Liquid SuSoS2 steel Ruby SuSoS2 Gold SuSoS2 Fixodrop Gold Contact angle [°] hexadecane 64.1 56.8 47.3 56.8 diiodomethane 90.4 84.4 77.8 78.0 Ethylene glycol 93.2 87.2 84.9 88.4 Water 103.0 113.8 104.8 104.2 Surface energy [mJ / m 2 ] dispersive 12.5 16.3 18.6 16.8 Polar 2.2 0.2 0.8 0.4 total 14.6 16.6 19.4 17.3

Pour l'or, l'acier et le rubis, les angles de contact avec l'eau, l'hexadécane, le diodométhane et l'éthylèneglycol sont acceptables pour une utilisation comme épilame, et comparables avec ceux mesurés pour le Fixodrop.For gold, steel and ruby, contact angles with water, hexadecane, diodomethane and ethylene glycol are acceptable for use as epilam, and comparable with those measured for Fixodrop.

Pour l'or, l'acier et le rubis, la couche formée avec SuSoS2 montre un caractère dispersif uniquement, comme attendu pour une molécule de ce type. L'énergie de surface semble varier avec le matériau, mais se trouve en tout cas en dessous de 20 mJ/m2. L'énergie la plus faible (et donc a priori la meilleure tenue) est obtenue pour l'acier, suivi du rubis et de l'or.For gold, steel and ruby, the layer formed with SuSoS2 shows a dispersive character only, as expected for a molecule of this type. Surface energy seems to vary with the material, but is in any case below 20 mJ / m 2 . The weakest energy (and therefore a priori the best holding) is obtained for steel, followed by ruby and gold.

3) Mesure d'étalement de lubrifiants3) Measurement of spreading lubricants

On caractérise l'étalement des lubrifiants sur une surface en mesurant le diamètre moyen d'une goutte de typiquement 0,5 mm de diamètre immédiatement après dépôt de la goutte et après 20 minutes. L'étalement correspond à la variation relative du diamètre moyen après 20 minutes. Une bonne tenue d'un lubrifiant correspond à un étalement de 2% ou moins. Un étalement supérieur à 10% se remarque à l'oeil et n'est pas acceptable. Les huiles utilisées pour les tests sont une huile horlogère "941 "(maison Moebius et Fils, mélange d'alkyl-aryl-monooléate et de deux C10-C13 di-esters, viscosité de 110 cSt à 20°C, tension superficielle de 32.8 mN/m) et une huile de test CESNIII (Laboratoire Suisse de Recherches Horlogères, huile silicone, tension superficielle de 23.1 mN/m, "La Suisse Horlogère" No 43, 7.11.1974).The spreading of the lubricants on a surface is characterized by measuring the average diameter of a drop of typically 0.5 mm in diameter immediately after the drop has been deposited and after 20 minutes. The spread corresponds to the relative variation of the average diameter after 20 minutes. A good performance of a lubricant corresponds to a spread of 2% or less. Spreading greater than 10% is noticeable in the eye and is not acceptable. The oils used for the tests are a watch oil "941" (Moebius and Fils house, mixture of alkyl-aryl-monooleate and two C 10 -C 13 di-esters, viscosity of 110 cSt at 20 ° C, surface tension of 32.8 mN / m) and a test oil CESNIII (Swiss Laboratory for Watchmaking Research, silicone oil, surface tension of 23.1 mN / m, "Watchmaking Switzerland" No 43, 7.11.1974).

On compare l'étalement obtenu sur des surfaces d'acier, de rubis et d'or revêtues de la molécule SuSoS2, ainsi que d'une surface d'or revêtue du produit commercial Fixodrop FK-BS de la maison Moebius et Fils selon les indications du fabricant. Pour la molécule SuSoS2, l'étalement est en tous les cas inférieur à 1%, et est comparable à celui mesuré pour le Fixodrop, comme montré par le tableau ci-après. Tableau 3 :Etalement de lubrifiants Surface Couche ultra-mince Huile Moebius 941 Huile CESNIII Acier SuSoS2 0,11% 0,92% Rubis SuSoS2 0,37% 0,46% Or SuSoS2 0,30% 0,14% Or Fixodrop FK-BS -0,90% 0,86% The spread obtained on steel, ruby and gold surfaces coated with the SuSoS2 molecule, as well as a gold surface coated with the commercial product Fixodrop FK-BS of the Moebius et Fils house, is compared according to the manufacturer's instructions. For the SuSoS2 molecule, the spread is in all cases less than 1%, and is comparable to that measured for the Fixodrop, as shown by the table below. <u> Table 3: Lubricant spreading </ u> Area Ultra thin layer Moebius 941 Oil CESNIII oil Steel SuSoS2 0.11% 0.92% Ruby SuSoS2 0.37% 0.46% Gold SuSoS2 0.30% 0.14% Gold Fixodrop FK-BS -0.90% 0.86%

4) Conclusion4) Conclusion

Pour toutes les surfaces étudiées, l'angle de contact obtenu sur les couches ultra-minces réalisées avec la molécule SuSoS2 est supérieur à 100°, l'énergie de surface est inférieure à 20 mJ m-2, et l'étalement est inférieur à 1%.For all the surfaces studied, the contact angle obtained on the ultra-thin layers made with the SuSoS2 molecule is greater than 100 °, the surface energy is less than 20 mJ m -2 , and the spread is less than 1%.

Les propriétés de la couche ultra-mince SuSoS2 sont au moins aussi bonnes que celles obtenues avec le produit commercial Fixodrop, et le solvant utilisé pour le trempage est respectueux de l'environnement.The properties of the SuSoS2 ultra-thin layer are at least as good as those obtained with the commercial product Fixodrop, and the solvent used for the dipping is environmentally friendly.

Claims (12)

Couche ultra-mince hydrophobe et oléophobe formée par auto-assemblage sur une surface de substrat solide de composés de formule générale

         A-B

dans laquelle A représente un groupe de formule
Figure imgb0013
dans laquelle Z représente C ou N+, X représente C-H ou C-L, L étant un groupe électroattracteur choisi parmi F, Cl, Br, I, CF3, NO2 et N(CH3)3 +, Y représente H ou CH3, ou Y forme avec X un hétérocycle de 5 ou 6 atomes, T représente NH, CO, CONH ou NH2 +U-, U- étant un anion soluble tel que par exemple F-, Cl-, Br-, I, OH-, NO3 -, HSO4 -, SO4 2-, CO3 2-, HCO3 - ou SCN-, , et
B représente un groupe alkyl linéaire aliphatique C1-C20 non substitué ou substitué partiellement ou complètement par F.
Hydrophobic and oleophobic ultra-thin layer formed by self-assembly on a solid substrate surface of compounds of the general formula

AB

in which A represents a group of formula
Figure imgb0013
in which Z represents C or N + , X represents CH or CL, L being an electron-withdrawing group chosen from F, Cl, Br, I, CF 3 , NO 2 and N (CH 3 ) 3 + , Y represents H or CH 3 , or Y forms with X a heterocycle of 5 or 6 atoms, T represents NH, CO, CONH or NH 2 + U - , U - being a soluble anion such as for example F - , Cl - , Br - , I, OH - , NO 3 - , HSO 4 - , SO 4 2- , CO 3 2- , HCO 3 - or SCN - ,, and
B represents a C 1 -C 20 aliphatic linear alkyl group which is unsubstituted or partially or completely substituted with F.
Couche ultra-mince selon la revendication 1, caractérisée en ce que B est un groupe alkyl linéaire aliphatique perfluoré dans sa partie terminale de formule

         (CH2)n-(CF2)mCF3

dans laquelle n est de 1 à 5, et m est de 4 à 11.
Ultrathin layer according to Claim 1, characterized in that B is a perfluorinated aliphatic linear alkyl group in its terminal part of formula

(CH 2 ) n - (CF 2 ) m CF 3

in which n is 1 to 5, and m is 4 to 11.
Couche ultra-mince selon la revendication 2, caractérisée en ce que n est de 1 à 3 et m de 5 à 9.Ultrathin layer according to Claim 2, characterized in that n is 1 to 3 and m is 5 to 9. Couche ultra-mince selon l'une des revendications précédentes, caractérisée en ce que A est choisi parmi l'un des groupes suivants :
Figure imgb0014
Figure imgb0015
Figure imgb0016
Ultrathin layer according to one of the preceding claims, characterized in that A is chosen from one of the following groups:
Figure imgb0014
Figure imgb0015
Figure imgb0016
Couche ultra-mince selon l'une des revendications précédentes caractérisée en ce qu'elle est obtenue à partir de N-(3,4-dihydroxyphenethyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanamide.Ultrathin layer according to one of the preceding claims, characterized in that it is obtained from N- (3,4-dihydroxyphenethyl) -4,4,5,5,6,6,7,7,8, 8,9,9,10,10,11,11,11-heptadecafluoroundecanamide. Couche ultra-mince selon l'une des revendications précédentes, caractérisée en ce que le substrat solide est constitué d'une matière choisie parmi l'or, l'acier, l'aluminium, le laiton, le cuprobéryllium, le dioxyde de titane, le rubis, le saphir, le silicium, le nickel et le nickel-phosphore, ainsi que d'autres surfaces métalliques, tels que le fer, le chrome, le tantale, l'yttrium, le silicium, le germanium, le cuivre, le platine, et d'oxydes métalliques ou céramiques, tels la zircone ou la niobie (oxyde de niobium), ou des polymères tels que les polyéthylènes, les polystyrols, les polyamides, les polydiméthylsiloxanes, les chlorures de polyvinyle, les résines époxy, ou encore un substrat en une de ces matières ou une autre dont la surface a été recouverte ou revêtue, par exemple par un dépôt galvanique d'or, d'or-cuivre-cadmium et d'or, de nickel, de rhodium, d'étain-nickel, ou traitée par anodisation, comme dans le cas des pièces en alliage d'aluminium ou de titane, ou modifiée par un traitement de surface comme l'oxydation, la carburation ou la nitruration.Ultrathin layer according to one of the preceding claims, characterized in that the solid substrate consists of a material selected from gold, steel, aluminum, brass, cuproberyllium, titanium dioxide, ruby, sapphire, silicon, nickel and nickel-phosphorus, as well as other metallic surfaces, such as iron, chromium, tantalum, yttrium, silicon, germanium, copper, platinum, and metal or ceramic oxides, such as zirconia or niobium (niobium oxide), or polymers such as polyethylenes, polystyrols, polyamides, polydimethylsiloxanes, polyvinyl chlorides, epoxy resins, or a substrate of one of these materials or another whose surface has been covered or coated, for example by a galvanic deposition of gold, gold-copper-cadmium and gold, nickel, rhodium, tin-nickel, or treated by anodization, as in the case of aluminum alloy parts or titanium, or modified by a surface treatment such as oxidation, carburization or nitriding. Couche ultra-mince selon l'une des revendications précédentes, caractérisée en ce que son angle de contact d'avance avec l'eau est d'au moins 100°.Ultrathin layer according to one of the preceding claims, characterized in that its contact angle in advance with the water is at least 100 °. Couche ultra-mince selon l'une des revendications précédentes, caractérisée en ce que son épaisseur mesurée en ellipsométrie est de 0,5 à 10 nm.Ultrathin layer according to one of the preceding claims, characterized in that its thickness measured in ellipsometry is 0.5 to 10 nm. Pièce d'horlogerie, caractérisée en ce qu'elle comprend une couche ultra-mince selon l'une des revendications précédentes.Timepiece, characterized in that it comprises an ultra-thin layer according to one of the preceding claims. Procédé de préparation d'une couche ultra-mince selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend l'immersion du substrat dans une solution du composé de formule A-B dans de l'eau ou un mélange d'eau et de solvant protique.Process for the preparation of an ultra-thin layer according to one of Claims 1 to 9, characterized in that it comprises immersing the substrate in a solution of the compound of formula AB in water or a mixture of water and protic solvent. Procédé selon la revendication 10, caractérisé en ce que le solvant protique est le 2-propanol.Process according to claim 10, characterized in that the protic solvent is 2-propanol. Utilisation d'une couche ultra-mince selon l'une des revendications 1 à 9 comme épilame.Use of an ultra-thin layer according to one of claims 1 to 9 as an epilame.
EP20060405504 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame Withdrawn EP1927648A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP20060405504 EP1927648A1 (en) 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
JP2009538570A JP5385788B2 (en) 2006-12-01 2007-11-29 Hydrophobic and oleophobic ultra-thin film, its production method and use as epilam in watchmaking
US12/516,231 US20100068553A1 (en) 2006-12-01 2007-11-29 Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame
PCT/CH2007/000602 WO2008064511A1 (en) 2006-12-01 2007-11-29 Ultra-thin hydrophobic and oleophobic layer, its method of manufacture and use in clockmaking as an epilame
US12/516,865 US20100075138A1 (en) 2006-12-01 2007-11-29 Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame
EP07816285.6A EP2084253B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
PCT/CH2007/000601 WO2008064510A1 (en) 2006-12-01 2007-11-29 Ultra-thin hydrophobic and oleophobic layer, its method of manufacture and use in clockmaking as an epilame
EP07816284.9A EP2084252B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
CN2007800439661A CN101611124B (en) 2006-12-01 2007-11-29 Ultra-thin hydrophobic and oleophobic layer, its method of manufacture and use in clock making as an epilame
US13/323,773 US8951630B2 (en) 2006-12-01 2011-12-12 Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame and in mechanical engineering as a barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060405504 EP1927648A1 (en) 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Publications (1)

Publication Number Publication Date
EP1927648A1 true EP1927648A1 (en) 2008-06-04

Family

ID=38031431

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20060405504 Withdrawn EP1927648A1 (en) 2006-12-01 2006-12-01 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP07816284.9A Active EP2084252B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP07816285.6A Active EP2084253B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP07816284.9A Active EP2084252B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP07816285.6A Active EP2084253B1 (en) 2006-12-01 2007-11-29 Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame

Country Status (5)

Country Link
US (2) US20100068553A1 (en)
EP (3) EP1927648A1 (en)
JP (1) JP5385788B2 (en)
CN (1) CN101611124B (en)
WO (2) WO2008064511A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009059A1 (en) * 2012-07-10 2014-01-16 The Swatch Group Research And Development Ltd Surface lubrication of an article
EP2865738A1 (en) * 2013-10-28 2015-04-29 The Swatch Group Research and Development Ltd. Fine epilame product
EP3315214A1 (en) 2016-10-25 2018-05-02 The Swatch Group Research and Development Ltd Method for epilame coating of a timepiece or piece of jewellery
EP4075205A1 (en) * 2021-04-16 2022-10-19 ETA SA Manufacture Horlogère Suisse Method for manufacturing a timepiece mobile and timepiece mobile obtained by implementing same
US12147200B2 (en) 2021-04-16 2024-11-19 Eta Sa Manufacture Horlogère Suisse Method for manufacturing a horological disc and horological disc obtained by its implementation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1927648A1 (en) * 2006-12-01 2008-06-04 Rolex Sa Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
US8951630B2 (en) 2006-12-01 2015-02-10 Rolex S.A. Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame and in mechanical engineering as a barrier film
US9714469B2 (en) * 2010-12-23 2017-07-25 Rolex Sa Composition for increasing the lipophobicity of a watch-making component
DE102011088232A1 (en) * 2011-12-12 2013-06-13 Aktiebolaget Skf Bearing cage and bearing cage segment
FR2990433A1 (en) * 2012-05-10 2013-11-15 Surfactis Technologies CATANIONIC SURFACE RECOVERY COMPOSITIONS THROUGH PHOSPHONIC MOLECULES AND AMINES
CN107974680A (en) * 2016-10-21 2018-05-01 苏州汉力新材料有限公司 A kind of method that aluminium base basal surface prepares superoleophobic surface
EP3398978B1 (en) * 2017-05-05 2020-03-11 The Swatch Group Research and Development Ltd Epilame-coating agent and epilame-coating method using such an epilame-coating agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD238812A1 (en) * 1985-06-27 1986-09-03 Ruhla Uhren Veb K METHOD FOR PRODUCING A LUBRICANT, LUBRICANT AND ANTISPREAD FOR BEARING AND SLIDING ELEMENTS

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583168B2 (en) * 1994-08-03 2004-10-27 株式会社ネオス Fluorinated benzacetal derivatives
US7858679B2 (en) * 2001-07-20 2010-12-28 Northwestern University Polymeric compositions and related methods of use
US20030087338A1 (en) * 2001-07-20 2003-05-08 Messersmith Phillip B. Adhesive DOPA-containing polymers and related methods of use
US7618937B2 (en) * 2001-07-20 2009-11-17 Northwestern University Peptidomimetic polymers for antifouling surfaces
US8815793B2 (en) * 2001-07-20 2014-08-26 Northwestern University Polymeric compositions and related methods of use
DE10163892A1 (en) * 2001-12-27 2003-07-17 Basf Ag Derivatives of polymers for metal treatment
JP2006291266A (en) * 2005-04-08 2006-10-26 Daikin Ind Ltd Method of vapor-phase surface treatment with fluorine compound
US8568872B2 (en) * 2005-08-24 2013-10-29 Eth Zurich Catechol functionalized polymers and method for preparing them
JP5597836B2 (en) * 2006-08-04 2014-10-01 ケンジー ナッシュ コーポレイション Biomimetic compound and synthesis method thereof
EP2097119A4 (en) * 2006-11-21 2012-10-17 Abbott Lab Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings
EP1927648A1 (en) * 2006-12-01 2008-06-04 Rolex Sa Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
EP1927649A1 (en) * 2006-12-01 2008-06-04 SurfaceSolutions GmbH Ultra-thin water and oil repellent layer, manufacturing method and use in mechanics as a barrier film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD238812A1 (en) * 1985-06-27 1986-09-03 Ruhla Uhren Veb K METHOD FOR PRODUCING A LUBRICANT, LUBRICANT AND ANTISPREAD FOR BEARING AND SLIDING ELEMENTS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN ET AL: "Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer-matrix nanocomposites", COMPOSITES SCIENCE AND TECHNOLOGY, ELSEVIER, vol. 66, no. 9, July 2006 (2006-07-01), pages 1198 - 1204, XP005434295, ISSN: 0266-3538 *
MARIA TILLWICH: "Synthetic lubricants in precision mechanisms - an overview", JOURNAL OF SYNTHETIC LUBRICATION, vol. 5, no. 2, July 1988 (1988-07-01), pages 91 - 104, XP002438119 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009059A1 (en) * 2012-07-10 2014-01-16 The Swatch Group Research And Development Ltd Surface lubrication of an article
CN104603247A (en) * 2012-07-10 2015-05-06 斯沃奇集团研究和开发有限公司 Surface lubrication of an article
EP2865738A1 (en) * 2013-10-28 2015-04-29 The Swatch Group Research and Development Ltd. Fine epilame product
EP2865737A1 (en) * 2013-10-28 2015-04-29 The Swatch Group Research and Development Ltd. Fine epilame product
EP3315214A1 (en) 2016-10-25 2018-05-02 The Swatch Group Research and Development Ltd Method for epilame coating of a timepiece or piece of jewellery
EP4075205A1 (en) * 2021-04-16 2022-10-19 ETA SA Manufacture Horlogère Suisse Method for manufacturing a timepiece mobile and timepiece mobile obtained by implementing same
US12147200B2 (en) 2021-04-16 2024-11-19 Eta Sa Manufacture Horlogère Suisse Method for manufacturing a horological disc and horological disc obtained by its implementation

Also Published As

Publication number Publication date
US20100068553A1 (en) 2010-03-18
EP2084252B1 (en) 2017-03-29
EP2084252A1 (en) 2009-08-05
EP2084253B1 (en) 2017-03-29
JP2010511099A (en) 2010-04-08
WO2008064511A1 (en) 2008-06-05
EP2084253A1 (en) 2009-08-05
US20100075138A1 (en) 2010-03-25
CN101611124B (en) 2013-11-06
CN101611124A (en) 2009-12-23
WO2008064510A1 (en) 2008-06-05
JP5385788B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
EP2084252B1 (en) Ultra-thin water and oil repellent layer, manufacturing method and use in watchmaking as epilame
US8951630B2 (en) Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame and in mechanical engineering as a barrier film
EP2102319B1 (en) Ultra-thin water and oil repellent layer, manufacturing method and use in mechanics as a barrier film
EP2655577B1 (en) Composition for increasing the lipophobicity of a watch-making component
EP2846931B1 (en) Covering of surfaces intended for clock- and watchmaking using cationic compositions containing phosphonic molecules and amines
JP2002501057A (en) Fluorochemical benzotriazole
EP3290451B1 (en) Substrate comprising a surface covered with an epilame agent and method for coating such a substrate with epilame
WO2008052378A2 (en) Timepiece
JP5130408B1 (en) Method for forming noble metal protective film
EP2655523B1 (en) Hydrophilic and lipophobic composition comprising components having a disphosphonic and a thiol group
JP2018069233A (en) Epilame method of element of watch or jewelry
EP1963545B1 (en) Method for the carboxylation treatment of metal surfaces, use of said method in order to provide temporary protection against corrosion and method for producing shaped sheet metal thus carboxylated
JP4723161B2 (en) UV-resistant self-assembled monolayers with polyaromatic ring compounds
CA2962057C (en) Surface treatment of metal substrates
EP3420037A1 (en) Compositions comprising bisphosphonic compounds dissolved in a fluorinated solvent, and use thereof for covering the surface of a part
EP3192854B1 (en) Item in which the surface is treated with a coupling agent having oleophobic and/or hydrophobic nature
EP3192853B1 (en) Method for treating a surface in order to obtain a hydrophobic and/or oleophobic coating
EP4394021A1 (en) Substrate comprising a surface coated with an epilame agent and method for epilaming such a substrate
JP2009191168A (en) Lubrication method using hydrocarbon type monomolecular film
EP4394020A1 (en) Substrate comprising a surface coated with an epilame agent and method for epimerising such a substrate
FR2918998A1 (en) Optimized process for degreasing and/or scouring metal, ceramic, glass, plastic composite material or semiconductor surface, comprises plunging the surfaces in a solution comprising an ionic liquid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081205