EP1915226B1 - Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff - Google Patents
Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff Download PDFInfo
- Publication number
- EP1915226B1 EP1915226B1 EP06775813A EP06775813A EP1915226B1 EP 1915226 B1 EP1915226 B1 EP 1915226B1 EP 06775813 A EP06775813 A EP 06775813A EP 06775813 A EP06775813 A EP 06775813A EP 1915226 B1 EP1915226 B1 EP 1915226B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- metal
- metal foam
- metallic material
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006262 metallic foam Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000004663 powder metallurgy Methods 0.000 title description 4
- 239000011265 semifinished product Substances 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 239000007769 metal material Substances 0.000 claims abstract description 25
- 239000006260 foam Substances 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims abstract description 15
- 230000008018 melting Effects 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 7
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 31
- 239000011148 porous material Substances 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 12
- 238000007711 solidification Methods 0.000 claims description 8
- 230000008023 solidification Effects 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims 3
- 238000007254 oxidation reaction Methods 0.000 claims 3
- 239000004088 foaming agent Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000003825 pressing Methods 0.000 abstract 1
- 238000007789 sealing Methods 0.000 abstract 1
- 239000000155 melt Substances 0.000 description 19
- 239000004604 Blowing Agent Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000003380 propellant Substances 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 238000010310 metallurgical process Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to a method for powder metallurgy production of metal foam and of parts made of metal foam.
- Metal foam is also commonly called metal foam.
- Aqueous solutions, plastics or glass can be foamed.
- foam metals stands for elasticity, strength and temperature resistance
- Foam stands for low weight, cushioning, high porosity and a large specific surface area.
- Metal foam is a novel material with specifically introduced pore structure, it is non-flammable and has a high strength. Foams made of metal are airy materials that are light, stiff, but flexible and absorb a lot of energy in the event of a crash. Metal foam can also fulfill a wide range of other technical tasks and is particularly suitable for applications as thermal insulation, noise and vibration damping or as a compression element.
- Metal foams can be up to 85 percent air and only 15 percent metal, which makes them very light. They look like conventional plastic foams, but are much firmer. The manufacturing processes were too expensive, too expensive and too difficult to control until a few years ago, and the results were therefore rarely reproducible. But there are now melting and powder metallurgical processes that promise a high quality of the foamed metal.
- various methods are known and used. For example, a slurry is prepared at room temperature to produce steel foam from steel powder, water and a stabilizer. Phosphoric acid is added to this mixture as a binding and blowing agent. Two reactions then take place in the slurry, leading to the formation of a stable foam structure.
- a melt metallurgical process is used, for example, in EP 1 288 320 A2 described by gas bubbles are introduced into a melt.
- at least one gas introduction tube with a defined gas outlet cross section protrudes into the melt through which individual bubbles are blown into the melt.
- the size of the bubbles is controlled by the adjustment of the Einströmparameter of the gas.
- a disadvantage of these melt metallurgical processes is that a molten metal in the pure state can not be foamed.
- the melt before carrying out the foaming, the melt must be mixed with a viscosity-increasing agent, for example an inert gas ( GB 1,287,994 ), or with ceramic particles ( EP 0 666 784 B).
- a viscosity-increasing agent for example an inert gas ( GB 1,287,994 ), or with ceramic particles ( EP 0 666 784 B).
- a powder metallurgical process for producing porous metal bodies is described in US Pat DE 101 15 230 C2 and DE 40 18 360 CI, in which a mixture containing a powdered metallic material containing at least one metal and / or a metal alloy and a gas-releasing propellant-containing powder is compacted into a semi-finished product.
- This semifinished product is foamed under the action of temperature, wherein a propellant-containing powder is used, in which the temperature of the maximum decomposition is less than 120 K below the melting temperature of the metal or the solidus temperature of the metal alloy.
- a first step metal particles and at least one at elevated temperature gas (e) donating agent, so-called blowing agents, mixed, whereupon in a second step, the mixture formed under elevated pressure and elevated temperature to a semi-finished part and this while maintaining the Pressurization below the decomposition or outgassing temperature of the propellant is allowed to cool or cooled.
- Another method for producing metal foam bodies is in WO 2004/063406 A2 described.
- This method can be used as a powder metallurgy or as a melt metallurgical process.
- a sufficient gas supply of the melt is achieved in order the solidification of the same can cause the formation of a metal foam body low density.
- This effect can be usefully exploited according to the described solution for producing a metal foam body desired shape when the liquid metal is first placed in a mold and then allowed to solidify in this at least temporarily reduced ambient pressure.
- JP 01-127631 also describes a process in which hydrogen, nitrogen, oxygen is introduced into the liquid metal analogously to the abovementioned solution under atmospheric pressure or blowing agent particles, such as nitride, hydride or oxide, release gas into the melt by thermal cracking.
- the gasified liquid metal is placed in a mold and held under reduced pressure, at 400 to 760 mmHg for a period of time.
- metal foam bodies of high quality can be provided.
- these methods are extremely complicated with respect to the material used and the required devices, because it is necessary to use at least two powder components, namely metal particles and fuel particles.
- the individual powder components must be intimately mixed prior to heating and the powder grains are sintered together, for example by hot isostatic pressing, in order to achieve in the produced metal foam body pores with a homogeneous distribution as possible.
- a further disadvantage is that gas escapes from the blowing agent particles even before the metal melts and accumulates in cracks, defects, etc. This results in different sized and unevenly distributed pores in the metal foam. Pore size and volumetric expansion are difficult to control during the process.
- the object of the invention is to provide a method for the production of metal foam and parts made of metal foam, the easy to perform without the use of blowing agents and without expensive devices, the trapped pores are as small as possible pores, have a nearly the same volume and a homogeneous distribution.
- the metal foam parts produced by the process according to the invention should have a high dimensional stability.
- This object is achieved by a method having the features of claim 1 by a powdered metallic material containing at least one metal and / or a metal alloy, mixed without the use of propellants and then under mechanical pressure and a temperature of up to 400 C. is pressed to form a dimensionally stable semifinished product.
- This semi-finished product is placed in a pressure-tight sealable chamber, which is then sealed pressure-tight and the semifinished product is heated at the selected initial pressure to the melting or solidus temperature of the powdered metallic material. After reaching the melting or solidus temperature of the powdered metallic material, the pressure in the chamber is reduced to a selected final pressure.
- the semifinished product foams up without the use of blowing agents and the resulting metal foam solidifies during the subsequent lowering of the temperature. The lowering of the temperature takes place after the beginning of the pressure reduction according to a predetermined gradient, wherein the selected final pressure is always achieved before the solidification of the powdery metallic material.
- a gas pressure up to approximately 50 bar is generated before or during the heating of the semifinished product in the closed chamber. After reaching the melting or solidus temperature of the pulverulent metallic material, the pressure in the closed chamber is reduced from the initial pressure to a predetermined gradient down to the final pressure of 1 bar.
- the heating of the semifinished product takes place in the closed chamber at an initial pressure of about 1 bar and after reaching the melting or solidus temperature of the powdered metallic material, the pressure in the closed chamber is reduced to a final pressure of about 0.1 to 0.01 bar after a predetermined gradient.
- a certain gas atmosphere can be created, for example an oxygen atmosphere or an atmosphere of moist air.
- the pulverulent metallic material is preferably compacted at a gas pressure of between 1 and 50 bar and a mechanical pressure of 200-400 MPa and a temperature of up to 400 ° C.
- the pulverulent metallic material is pretreated before being compacted into the semifinished product by modifying the surface of the individual granules of the pulverulent metallic material, for example by oxidizing or moistening.
- dimensionally stable metal foam bodies can also be produced simply if, instead of any pressure-tight chamber, a pressure-tight sealable molding tool, which has the shape of the metal foam body to be produced, is used.
- a reservoir provided in the molding tool ensures that the metal foam, which is excessively expanded by the foaming of the metal, can escape from the molding tool through an opening to the reservoir. This also ensures that the molding tool is completely filled with the metal foam. With the reduction of pressure is also the Lowered temperature, so that the metal foam solidifies in the mold and thereby assumes the shape of the molding tool. After solidification of the metal foam, the metal foam body can be removed from the molding tool.
- the advantages of the method according to the invention are, in particular, that it is possible to produce metal foam or body made of metal foam, without complicated devices for introducing gas bubbles into the melt or the use of blowing agents, in a simple manner.
- a further advantage is that with the method according to the invention low-density metal foam can be produced in which the pores have small dimensions (volumes), are distributed almost uniformly and homogeneously throughout the metal foam.
- An additional advantage is that the pore size and the volume expansion can be adjusted within certain limits very easily and precisely by adjustable different pressure differences between the initial and final pressure or during the process, wherein there is a direct relationship between the pore size and the volume expansion. Ie. the pore size and the volume expansion can be predetermined by observing certain limit values by setting the initial pressure and the final pressure. But it is also possible that when observing the process, this can be terminated at any time upon reaching a desired pore size or volume expansion.
- a metal foam is made without the use of additional gas-imparting blowing agents.
- aluminum powder 99.7 with an average particle size of about 20 microns in a metal cylinder at a gas pressure of 1 bar and at a mechanical pressure of 300 MPa and at a temperature of about 400 ° C over a Period of 15 min to a semi-finished uni-axially compacted.
- the semifinished product melts.
- the average pore size is about 2 mm.
- the temperature in the chamber is reduced by about 5 K / s to below the melting temperature of the aluminum, so that the liquid aluminum foam solidifies and thus the aluminum foam is solid.
- This mixture is uni-axially compacted in a metal cylinder at a gas pressure of 1 bar and at a mechanical pressure of 300 MPa and at a temperature of about 400 ° C over a period of about 15 minutes to form a semifinished product. Thereafter, this semi-finished product is placed in a pressure-tight chamber and heated under an air atmosphere at an initial pressure of 8 bar to a temperature of about 550 ° C, which is thus slightly above the solidus temperature of AlSi6Cu4 of about 516 ° C.
- the propellant begins to release hydrogen.
- the gas released and trapped in the molten aluminum of the semifinished product forms very small pores having an average diameter of less than 0.1 mm.
- the gas enclosed in the semi-finished product causes the sample to foam within 15 seconds.
- the temperature is reduced by about 5 K / s to below the solidus temperature of AlSi6Cu4, so that the liquid AlSi6Cu4 foam solidifies and thus the foam solidifies.
- An AlSi6Cu4 foam produced by this comparison method has pores which are homogeneously distributed in the metal foam, round and small, the average pore size being about 0.5 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff. Metallschaumstoff wird üblicherweise auch Metallschaum genannt.
- Wässrige Lösungen, Kunststoffe oder Glas können geschäumt werden. Es hat in den letzten Jahrzehnten immer wieder Bestrebungen gegeben, auch Metalle zu schäumen und neuartige Schaumstoffe herzustellen, die aufgrund der Kombination der typischen Schaummorphologie mit den bekannten Vorzügen metallischer Werkstoffe ein neues Eigenschaftsspektrum aufweisen; Metall steht für Elastizität, Festigkeit und Temperaturbeständigkeit; Schaum steht für geringes Gewicht, Dämpfung, hohe Porosität und eine große spezifische Oberfläche.
- Metallschaum ist ein neuartiger Werkstoff mit gezielt eingebrachter Porenstruktur, er ist nicht brennbar und hat eine große Festigkeit. Schäume aus Metall sind luftige Werkstoffe, die leicht, steif, aber flexibel sind und im Crash-Fall viel Energie aufnehmen. Metallschaum kann auch ein breites Spektrum weiterer technischer Aufgaben erfüllen und ist besonders geeignet für Anwendungen als Wärmedämmung, Geräusch- und Vibrationsdämpfung oder als Stauchelement.
- Metallschäume können bis zu 85 Prozent aus Luft und nur zu 15 Prozent aus Metall bestehen, das macht sie sehr leicht. Sie sehen aus wie konventionelle Kunststoffschäume, sind aber viel fester. Die Herstellungsverfahren waren bis vor einigen Jahren zu aufwändig, zu teuer und zu schwierig zu kontrollieren, und die Ergebnisse waren daher nur selten reproduzierbar. Doch mittlerweile gibt es schmelz- und pulvermetallurgische Verfahren, die eine hohe Qualität des geschäumten Metalls versprechen. Zur Herstellung von Metallschäumen sind verschiedene Verfahren bekannt und gebräuchlich. Beispielsweise wird zur Herstellung von Stahlschaum aus Stahlpulver, Wasser und einem Stabilisator bei Raumtemperatur ein Schlicker hergestellt. Dieser Mischung wird Phosphorsäure als Binde- und Treibmittel zugegeben. Im Schlicker finden dann zwei Reaktionen statt, die zur Bildung einer stabilen Schaumstruktur führen. Zum einen entstehen bei der Reaktion zwischen Stahlpulver und Säure Wasserstoffgasbläschen, die ein Aufschäumen bewirken. Zum anderen bildet sich ein Metallphosphat, das durch seine Klebewirkung die Porenstruktur verfestigt. Der so hergestellte Schaum wird getrocknet und anschließend schadstofffrei zum metallischen Verbund gesintert.
- Ein schmelzmetallurgisches Verfahren wird beispielsweise in der
EP 1 288 320 A2 beschrieben, indem Gasblasen in eine Schmelze eingebracht werden. Dazu ragt mindestens ein Gaseintragsrohr mit einem definierten Gasaustrittsquerschnitt in die Schmelze hinein durch welches Einzelblasen in die Schmelze geblasen werden. Die Größe der Blasen wird dabei durch die Einstellung der Einströmparameter des Gases gesteuert. - In der
EP 1 419 835 A1 wird ein Verfahren und eine Vorrichtung zur Herstellung von fließfähigem Metallschaum mit einer monomodalen Verteilung der Abmessungen der Hohlräume vorgestellt, denen ebenfalls ein schmelzmetallurgisches Verfahren zu Grunde liegt. Dabei ragen mindestens zwei benachbarte gleichartig dimensionierte Eintragsrohre mit einem definierten Abstand zueinander in ein metallurgisches Gefäß mit einer schäumbaren Metallschmelze hinein. In den Bereichen der einragenden Rohrenden werden jeweils Blasen gebildet, wobei unter Aneinanderlegen von Bereichen der Blasenoberflächen und unter Ausformung von Partikel enthaltenden Zwischenwänden eine zusammenhängende Schaumformation gebildet wird. - Nachteilig ist bei diesen schmelzmetallurgischen Verfahren, dass eine Metallschmelze in reinem Zustand nicht aufschäumbar ist. Zum Zweck der Erzielung einer Aufschäumbarkeit muss vor einer Durchführung des Aufschäumens die Schmelze mit einem viskositätssteigernden Mittel, beispielsweise einem Inertgas (
GB 1,287,994 EP 0 666 784 B) versetzt werden. Nur der an der Schmelzenoberfläche angesammelte Metallschaum ist fließfähig. Dies ist zwar für eine formgebende Verarbeitung des Metallschaumes günstig, kann aber in Folge mangelnder Stabilisierung der metallischen Wände zu einem partiellen Zusammenfallen des gebildeten Metallschaumes und damit zur einer unkontrollierbaren Ausbildung dichter Zonen im Inneren eines so erstellten Gegenstandes führen. Ferner kann ein Teil der gebildeten Blasen bzw. das gelösten Gases während der Erstarrung einer Schmelze aus dieser austreten, so dass ein Einschluss des freigesetzten Gases in der Schmelze nicht erfolgt und folglich die Porosität der mit diesem Verfahren erstellten Gegenstände gering ist. Außerdem sind zur Einbringung der Gasblasen in die Schmelze aufwändige Vorrichtungen erforderlich. - Ein pulvermetallurgisches Verfahren zur Herstellung poröser Metallkörper wird in der
DE 101 15 230 C2 undDE 40 18 360 CI vorgestellt, bei dem eine Mischung, die ein pulverförmiges metallisches Material, welches mindestens ein Metall und/oder eine Metalllegierung sowie ein gasabspaltendes treibmittelhaltiges Pulver enthält, zu einem Halbzeug kompaktiert wird. Dieses Halbzeug wird unter Temperatureinwirkung aufgeschäumt wobei ein treibmittelhaltiges Pulver verwendet wird, bei dem die Temperatur der maximalen Zersetzung weniger als 120 K unter der Schmelztemperatur des Metalls oder der Solidustemperatur der Metalllegierung liegt. In derWO 2005/011901 A1 wird vorgeschlagen, dass zur Herstellung von Metallteilen mit innerer Porosität zuerst ein schäumbares Halbzeug bestehend aus Metall und mindestens einem bei erhöhter Temperatur Gas abgebenden Treibmittel, bei welchem das Metall eine im Wesentlichen geschlossene Matrix bildet, in welcher Treibmittelteilchen eingelagert sind, hergestellt wird. Eine gesteigerte Güte eines erstellten Metallschaumkörpers soll mit einem Halbzeug erreicht werden, bei welchem die die Treibmittelteilchen einschießende Metallmatrix durch Diffusions- und/oder Press-Schweißung von Metallpartikeln gebildet ist. In einem ersten Schritt werden dazu Metallpartikel und mindestens ein bei erhöhter Temperatur Gas(e) abgebendes Mittel, so genannte Treibmittel, gemischt, worauf in einem zweiten Schritt die Mischung unter erhöhtem Druck und erhöhter Temperatur zu einem Halbzeug-Teil geformt und dieses bei Aufrechterhaltung der Druckbeaufschlagung unter die Zersetzungs- bzw. Ausgastemperatur des Treibmittels erkalten gelassen oder gekühlt wird. In einem dritten Schritt wird eine Erwärmung des Halbzeugteiles über die Zersetzungstemperatur des Treibmittels und bei Bildung einer inneren Porosität eine Ausformung des Halbzeuges zu einem Metallschaum-Teil erfolgen. - Ein weitere Verfahren zur Herstellung von Metallschaumkörpern ist in der
WO 2004/063406 A2 beschrieben. Dieses Verfahren kann als pulvermetallurgisches oder auch als schmelzmetallurgisches Verfahren angewendet werden. Bei dieser Lösung wird beim Aufschmelzen eines Einsatzmaterials unter Atmosphärendruck in einem offenen Schmelzgefäß ohne Überdruckvorrichtungen und einem gleichzeitigen und/oder darauf folgenden Einbringen von Gas in die flüssige Phase des Einsatzmateriales, durch eingebrachte Treibmittel oder durch Gaseinbringung, eine ausreichende Gasbeaufschlagung der Schmelze erreicht, um bei der Erstarrung derselben die Ausbildung eines Metallschaumkörpers geringer Dichte bewirken zu können. Diese Wirkung kann gemäß der beschriebenen Lösung zur Herstellung eines Metallschaumkörpers gewünschter Form dann nutzbringend ausgenutzt werden, wenn das Flüssigmetall zuerst in eine Form gebracht wird und dann in dieser bei zumindest zeitweilig vermindertem Umgebungsdruck erstarren gelassen wird. Durch eine Verfestigung der Schmelze bei vermindertem Umgebungsdruck, vorzugsweise 0,03 bar bis 0,2 bar, kommt es in der Schmelze zu einer Ausbildung einer Vielzahl von Gasblasen, welche jedoch auf Grund der einsetzenden bzw. fortschreitenden Erstarrung der Schmelze in dieser eingeschlossen werden und so erstellte Metallschaumkörper eine geringe Dichte aufweisen. - In der
JP 01-127631 - Mit derartigen pulvermetallurgischen Verfahren können Metallschaumkörper hoher Qualität bereitgestellt werden. Allerdings sind diese Verfahren bezüglich des eingesetzten Materials und der erforderlichen Vorrichtungen äußerst aufwändig, weil ein Einsatz wenigstens zweier Pulverkomponenten, nämlich von Metallpartikeln und Treibstoffpartikeln, notwendig ist. Auch müssen die einzelnen Pulverkomponenten vor einem Erwärmen innig vermengt und die Pulverkörner miteinander gesintert werden, beispielsweise durch heißisostatisches Pressen, um im hergestellten Metallschaumkörper Poren mit einer möglichst homogenen Verteilung zu erzielen. Ein weiterer Nachteil besteht darin, dass bereits vor dem Schmelzen des Metalls Gas aus den Treibmittelpartikel entweicht und sich in Rissen, Defekten, etc. ansammelt. Dadurch entstehen unterschiedlich große und ungleichmäßig verteilte Poren im Metallschaumstoff.
Die Porengröße und die Volurpenexpansion sind während des Prozesses schwer regelbar. - Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff anzugeben, das einfach, ohne Einsatz von Treibmitteln und ohne aufwändige Vorrichtungen durchzuführen ist, wobei die eingeschlossenen Poren möglichst kleinporig sind, ein nahezu gleiches Volumen und eine homogene Verteilung aufweisen. Die nach dem erfindungsgemäßen Verfahren hergestellten Teile aus Metallschaumstoff sollen eine hohe Maßhaltigkeit aufweisen.
- Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst, indem ein pulverförmiges metallisches Material, welches mindestens ein Metall und/oder eine Metalllegierung enthält, gemischt ohne Einsatz von Treibmitteln und anschließend unter mechanischem Druck und einer Temperatur von bis zur 400 C zu einem formstabilen Halbzeug gepresst wird. Dieses Halbzeug wird in eine druckdicht verschließbare Kammer eingelegt, die anschließend druckdicht verschlossen und das Halbzeug bei dem gewählten Anfangsdruck auf die Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials aufgeheizt wird. Nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials wird der Druck in der Kammer auf einen gewählten Enddruck reduziert. Dabei schäumt sich das Halbzeug auf ohne Einsatz von Treibmitteln und der sich dadurch gebildete Metallschaumstoff erstarrt während der anschließenden Absenkung der Temperatur. Das Absenken der Temperatur erfolgt nach dem Beginn der Druckreduzierung nach einem vorgegebenen Gradienten, wobei der gewählte Enddruck immer vor dem Erstarren des pulverförmigen metallischen Materials erreicht wird.
- Als besonders vorteilhaft hat sich erwiesen, dass vor bzw. während des Aufheizens des Halbzeugs in der geschlossenen Kammer ein Gasdruck bis ca. 50 bar erzeugt wird. Nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials wird der Druck in der geschlossenen Kammer vom Anfangsdruck nach einem vorgegebenen Gradienten bis auf den Enddruck von 1 bar reduziert. Eine andere Alternative besteht darin, dass das Aufheizen des Halbzeugs in der geschlossenen Kammer bei einem Anfangsdruck von ca. 1 bar erfolgt und nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials der Druck in der geschlossenen Kammer auf einen Enddruck von ca. 0,1 bis 0,01 bar nach einem vorgegebenen Gradienten reduziert wird. Es ist aber auch möglich, die Druckreduzierung nach dem Aufschäumen auf andere Enddrücke, beispielsweise von einem Anfangsdruck von bis zu 50 bar auf einen Enddruck von > 1 bar oder aber auch auf < 1 bar zu realisieren.
- In der geschlossenen Kammer kann vorteilhafterweise eine bestimmte Gasatmosphäre geschaffen werden, beispielsweise eine Sauerstoffatmosphäre oder eine Atmosphäre aus feuchter Luft.
- Zur Herstellung des formstabilen Halbzeugs wird das pulverförmige metallische Material vorzugsweise bei einem Gasdruck zwischen 1 und 50 bar sowie einem mechanischen Druck von 200-400 MPa und einer Temperatur von bis zu 400 °C kompaktiert.
- Es ist vorteilhaft, wenn das pulverförmige metallische Material vor dem Kompaktieren zu dem Halbzeug vorbehandelt wird, indem die Oberfläche der einzelnen Körner des pulverförmigen metallischen Materials modifiziert wird, beispielsweise durch oxydieren oder anfeuchten.
- Mit dem erfindungsgemäßen Verfahren können auch einfach maßhaltige Metallschaumkörper hergestellt werden, wenn anstelle einer beliebigen druckdichten Kammer ein druckdicht verschließbares Formteilwerkzeug, welches die Form des herzustellenden Metallschaumkörpers aufweist, verwendet wird.
- Ein im Formteilwerkzeug vorhandenes Reservoir gewährleistet, dass der durch das Aufschäumen des Metalls überschüssige Metallschaum aus dem Formteilwerkzeug durch eine Öffnung zu dem Reservoir austreten kann. Dadurch wird auch erreicht, dass das Formteilwerkzeug vollständig mit dem Metallschaum gefüllt ist. Mit der Reduzierung des Drucks wird auch die Temperatur gesenkt, so dass der Metallschaumstoff in der Form erstarrt und dabei die Form des Formteilwerkzeugs annimmt. Nach dem Erstarren des Metallschaums kann der Metallschaumkörper dem Formteilwerkzeug entnommen werden.
- Weitere vorteilhafte Ausgestaltungen der Erfindung können den Unteransprüchen entnommen werden.
- Die Vorteile des erfindungsgemäßen Verfahrens liegen insbesondere darin, dass es möglich ist, Metallschaumstoff bzw. Körper aus Metallschaumstoff, ohne aufwändige Vorrichtungen zum Einbringen von Gasblasen in die Schmelze oder die Verwendung von Treibmitteln, auf einfache Art und Weise herzustellen. Ein weiterer Vorteil besteht darin, dass mit dem erfindungsgemäßen Verfahren Metallschaumstoff mit geringer Dichte hergestellt werden kann, bei dem die Poren kleine Abmessungen (Volumina) aufweisen, nahezu gleichmäßig groß und homogen im gesamten Metallschaumstoff verteilt sind. Ein zusätzlicher Vorteil besteht darin, dass durch einstellbare unterschiedliche Druckdifferenzen zwischen Anfangs- und Enddruck die Porengröße und die Volumenexpansion in bestimmten Grenzen sehr einfach und genau wählbar bzw. während des Prozesses einstellbar sind, wobei zwischen der Porengröße und der Volumenexpansion ein unmittelbarer Zusammenhang besteht. D. h. die Porengröße und die Volumenexpansion können, unter Beachtung bestimmter Grenzwerte, dadurch vorbestimmt werden, dass der Anfangsdruck und der Enddruck festgelegt werden. Es ist aber auch möglich, dass bei Beobachtung des Prozesses, dieser jederzeit bei Erreichen einer gewünschten Porengröße bzw. Volumenexpansion beendet werden kann.
- Wenn das Aufschäumen des Halbzeugs aus dem pulverförmigen metallischen Material nicht in einer einfachen Kammer sondern in einem Formteilwerkzeug, erfolgt, kann man auf einfache Weise maßhaltige Metallschaumkörper herstellen.
- Die Erfindung soll nachstehend an Hand von zwei ausgewählten Ausführungsbeispielen näher erläutert werden:
- Im ersten bevorzugten Verfahren wird ein Metallschaumstoff ohne Verwendung von zusätzlichen gasabgebenden Treibmitteln hergestellt. Dazu wird in einem ersten Prozessschritt Aluminiumpulver (99,7) mit einer durchschnittlichen Korngröße von ca. 20 µm in einem Metallzylinder bei einem Gasdruck von 1 bar sowie bei einem mechanischen Druck von 300 MPa und bei einer Temperatur von ca. 400 °C über einen Zeitraum von 15 min zu einem Halbzeug uni-axial kompaktiert.
Danach wird dieses Halbzeug in einer druckdichten Kammer platziert und unter einer Luftatmosphäre bei einem Anfangsdruck p1 = 10 bar auf eine Temperatur von ca. 700°C erhitzt, die somit etwas oberhalb der Schmelztemperatur des Aluminium von ca. 660°C liegt. Wenn diese Temperatur ausreichend lange aufrecht erhalten bleibt schmilzt das Halbzeug. Sobald das Halbzeug vollständig geschmolzen ist, wird der Gasdruck in der Kammer vom Anfangsdruck p1 = 10 bar auf den Enddruck p2= 1 bar mit einem Gradienten von 0,2 bar/s reduziert, so dass sich das im Halbzeug eingeschlossene Gas, in dem gleichen Verhältnis wie der Gasdruck in der Kammer reduziert wird, ausdehnt und somit die Probe innerhalb von ca. 45 s zum Schäumen bringt. Die durchschnittliche Porengröße beträgt ca. 2 mm. Abschließend wird die Temperatur in der Kammer mit ca. 5 K/s bis unter die Schmelztemperatur des Aluminium reduziert, so dass der flüssige Aluminiumschaum erstarrt und somit der Aluminiumschaumstoff fest wird. - In einem weiteren Vergleichsbeispiel wird ein Verfahren dargestellt, mit dem ein Aluminiumschaumstoff unter Verwendung von geringen Mengen von gasabgebenden Treibmitteln hergestellt wird.
- In einem ersten Prozessschritt wird Pulver aus AlSi6Cu4 mit einer durchschnittlichen Korngröße von ca. 20 µm mit 0,5 Gew.% TiH2 , welches eine durchschnittliche Korngröße von ca. 10 µm aufweist, homogen vermischt. Dieses Gemisch wird in einem Metallzylinder bei einem Gasdruck von 1 bar sowie bei einem mechanischen Druck von 300 MPa und bei einer Temperatur von ca. 400 °C über einen Zeitraum von ca. 15 min zu einem Halbzeug uni-axial kompaktiert. Danach wird dieses Halbzeug in einer druckdichten Kammer platziert und unter einer Luftatmosphäre bei einem Anfangsdruck von 8 bar auf eine Temperatur von ca. 550°C erhitzt, die somit etwas oberhalb der Solidustemperatur des AlSi6Cu4 von ca. 516°C liegt. Bereits bei Temperaturen oberhalb von 400°C beginnt das Treibmittel Wasserstoff abzugeben. Das im geschmolzenen Aluminium des Halbzeugs freigesetzte und eingeschlossene Gas bildet, durch den äußeren Druck bedingt, sehr kleine Poren, die einen durchschnittlichen Durchmesser von weniger als 0,1 mm aufweisen. Sobald das Halbzeug vollständig geschmolzen ist, wird der Gasdruck in der Kammer vom Anfangsdruck p1 = 8 bar um ca. 3 bar auf einen Enddruck p2 = 5 bar mit einem Gradienten von 0,2 bar/s reduziert. Dabei bringt das im Halbzeug eingeschlossene Gas die Probe innerhalb 15 s zum Schäumen. Nachdem der AlSi6Cu4-Schaum das vorgegebene Volumen erreicht hat, wird die Temperatur mit ca. 5 K/s bis unter die Solidustemperatur von AlSi6Cu4 reduziert, so dass der flüssige AlSi6Cu4-Schaum erstarrt und somit der Schaumstoff fest wird.
- Ein mit diesem Vergleichsverfahren hergestellter AlSi6Cu4-Schaumstoff weist Poren auf, die im Metallschaumstoff homogen verteilt, rund und klein sind, wobei die durchschnittliche Porengröße ca. 0,5 mm beträgt. Die Größe der Poren kann durch den gewählten Druckunterschied zwischen Anfangsdruck und Enddruck (Δp = p1-p2 ) einfach über zwei Größenordnungen von ca. 0,1 mm bis ca. 10 mm Durchmesser eingestellt werden.
Claims (19)
- Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff bei dem ein pulverförmiges metallisches Material, welches mindestens ein Metall und/oder eine Metalllegierung enthält, gemischt und unter mechanischem Druck zu einem formstabilen Halbzeug gepresst wird,
dadurch gekennzeichnet, dass
das Halbzeug in eine druckdicht verschließbare Kammer eingelegt wird, anschließend die Kammer geschlossen wird, danach das Halbzeug auf die Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials aufgeheizt wird und nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials der Druck in der Kammer von einem Anfangsdruck (p1) auf einen Enddruck (p2) reduziert wird, wobei sich das Halbzeug ohne Einsatz von Trabmitteln aufschäumt und der sich gebildete Metallschaum während der anschließenden Absenkung der Temperatur erstarrt. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das pulverförmige metallische Material vorbehandelt wird, indem die Oberfläche der einzelnen Pulverkörner modifiziert wird, beispielsweise durch oxydieren oder anfeuchten. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Pulverkörner des pulverförmigen metallischen Materials Abmessungen von durchschnittlich ca. 1 µm bis 100 µm aufweisen. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Halbzeug bei einem Gasdruck zwischen 1 und 50 bar sowie einem mechanischen Druck von 200-400 MPa und einer Temperatur von unter 400 °C kompaktiert wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Halbzeug vorbehandelt wird, indem die Oberfläche modifiziert wird, wie durch oxydieren, eloxieren oder anfeuchten. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
in der geschlossenen Kammer eine definierte Gasatmosphäre herrscht. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
in der geschlossenen Kammer eine Sauerstoffatmosphäre herrscht. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
in der geschlossenen Kammer eine Atmosphäre aus feuchter Luft herrscht. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
vor bzw. während des Aufheizens des Halbzeugs in der geschlossenen Kammer ein Anfangsdruck (p1) von bis zu ca. 50 bar erzeugt wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Aufheizen des Halbzeugs in der geschlossenen Kammer bei einem Anfangsdruck (p1) von ca. 1 bar erfolgt. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials der Druck in der geschlossenen Kammer vom Anfangsdruck (p1) nach einem vorgegebenen Gradienten bis auf den Enddruck (p2) von ca. 1 bar reduziert wird. - Verfahren nach Anspruch 1 oder 10,
dadurch gekennzeichnet, dass
nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials der Druck in der geschlossenen Kammer vom Anfangsdruck (p1) nach einem vorgegebenen Gradienten auf den Enddruck (p2) von ca. 0,1 bis 0,01 bar reduziert wird. - Verfahren nach Anspruch 1 und 9 oder 10,
dadurch gekennzeichnet, dass
der Druck in der geschlossenen Kammer vom Anfangsdruck (p1) auf den Enddruck (p2) in einer Zeitspanne von ca. 1 s bis 1000 s reduziert wird. - Verfahren nach Anspruch 1,10, 12 und 13
dadurch gekennzeichnet, dass
die Temperatur in der Kammer erst nach Beginn der Druckreduzierung nach einem vorgegebenen Gradienten reduziert wird, wobei die Erstarrungstemperatur des pulverförmigen metallischen Materials erst nach Erreichen des Enddrucks (p2) erreicht wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Größe der Poren im Metallschaumstoff, in einem Bereich von ca. 0,1 mm bis ca. 10 mm, durch die Wahl der Druckdifferenz (Δp=p1-p2) zwischen Anfangsdruck (p1) und Enddruck (p2) gezielt einstellbar ist. - Verfahren nach Anspruch 1 und 15,
dadurch gekennzeichnet, dass
die Zunahme der Porengröße im Metallschaumstoff durch Beendigung der Druckreduzierung und anschließende Absenkung der Temperatur des Metallschaums unter die Erstarrungstemperatur des pulverförmigen metallischen Materials jederzeit, beispielsweise bei Erreichen einer gewünschten Porengröße, beendet werden kann. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Volumenexpansion des Metallschaumstoffes, bis zum etwa Zehnfachen des Ausgangsvolumens, durch die Wahl der Druckdifferenz (Δp=p1-p2) zwischen Anfangsdruck (p1) und Enddruck (p2) gezielt einstellbar ist. - Verfahren nach Anspruch 1 und 17,
dadurch gekennzeichnet, dass
die Volumenexpansion des Metallschaumstoffes durch Beendigung der Druckreduzierung und anschließende Absenkung der Temperatur des Metallschaums unter die Erstarrungstemperatur des pulverförmigen metallischen Materials jederzeit, beispielsweise bei Erreichen eines vorgebbaren Volumens, beendet werden kann. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
ein maßhaltiger Metallschaumkörper herstellbar ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005037305A DE102005037305B4 (de) | 2005-08-02 | 2005-08-02 | Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff |
PCT/DE2006/001375 WO2007014559A1 (de) | 2005-08-02 | 2006-08-02 | Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1915226A1 EP1915226A1 (de) | 2008-04-30 |
EP1915226B1 true EP1915226B1 (de) | 2009-06-17 |
Family
ID=37199001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06775813A Active EP1915226B1 (de) | 2005-08-02 | 2006-08-02 | Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff |
Country Status (7)
Country | Link |
---|---|
US (1) | US8562904B2 (de) |
EP (1) | EP1915226B1 (de) |
JP (1) | JP2009503260A (de) |
AT (1) | ATE433814T1 (de) |
DE (2) | DE102005037305B4 (de) |
ES (1) | ES2327066T3 (de) |
WO (1) | WO2007014559A1 (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024468A (ja) * | 2008-07-15 | 2010-02-04 | Tohoku Univ | ポーラス金属の製造方法およびポーラス金属 |
DE102009020004A1 (de) | 2009-05-05 | 2010-11-11 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Pulvermetallurgisches Verfahren zur Herstellung von Metallschaum |
CN101948962B (zh) * | 2010-09-19 | 2012-07-25 | 昆明理工大学 | 一种泡沫铝/铝合金的真空发泡制备方法 |
DE102011109693B3 (de) * | 2011-08-06 | 2012-09-13 | Lfk-Lenkflugkörpersysteme Gmbh | Strukturkomponente für ein operationelles Flugkörpersystem |
DE102011111614B3 (de) * | 2011-08-25 | 2013-01-03 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Schmelzmetallurgisches Verfahren zur Herstellung eines Metallschaumkörpers und Anordnung zur Durchführung des Verfahrens |
JP6270851B2 (ja) * | 2012-09-21 | 2018-01-31 | スミスズ ディテクション−ワトフォード リミテッド | 試料採取熱脱離装置 |
DE102017121511A1 (de) | 2017-09-15 | 2019-03-21 | Pohltec Metalfoam Gmbh | Verfahren zur Herstellung eines Halbzeuges für einen Verbundwerkstoff |
WO2019053181A1 (de) | 2017-09-15 | 2019-03-21 | Pohltec Metalfoam Gmbh | Verfahren zum schäumen von metall mit wärmekontakt |
DE102017121512A1 (de) | 2017-09-15 | 2019-03-21 | Pohltec Metalfoam Gmbh | Verfahren zum Schäumen von Metall mit Wärmekontakt |
DE102017121513A1 (de) | 2017-09-15 | 2019-03-21 | Pohltec Metalfoam Gmbh | Verfahren zum Schäumen von Metall im Flüssigkeitsbad |
PL241832B1 (pl) * | 2018-04-19 | 2022-12-12 | Akademia Gorniczo Hutnicza Im Stanislawa Staszica W Krakowie | Sposób recyklingu wiórów z aluminium lub jego stopów |
CN111331138B (zh) * | 2020-02-19 | 2021-11-16 | 北京锦灏科技有限公司 | 一种制备填充密度梯度可控泡沫金属薄壁复合管的方法 |
CN115416358B (zh) * | 2022-08-24 | 2024-05-28 | 山东英乐威装备科技有限公司 | 一种用于碳化硅反应板的压合工艺 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2006445C3 (de) * | 1969-02-19 | 1975-01-02 | Ethyl Corp., Richmond, Va. (V.St.A.) | Verfahren zur Herstellung von Aluminiumschaumformkörpern |
JPH01127631A (ja) * | 1987-11-10 | 1989-05-19 | Agency Of Ind Science & Technol | 発泡金属の製造方法 |
DE4101630A1 (de) * | 1990-06-08 | 1991-12-12 | Fraunhofer Ges Forschung | Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben |
DE4018360C1 (en) * | 1990-06-08 | 1991-05-29 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De | Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal |
US5281251A (en) * | 1992-11-04 | 1994-01-25 | Alcan International Limited | Process for shape casting of particle stabilized metal foam |
AT406027B (de) * | 1996-04-19 | 2000-01-25 | Leichtmetallguss Kokillenbau W | Verfahren zur herstellung von formteilen aus metallschaum |
DE10115230C2 (de) * | 2000-03-28 | 2002-11-28 | Fraunhofer Ges Forschung | Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben |
DE10045494C2 (de) * | 2000-09-13 | 2002-07-18 | Neue Materialien Fuerth Gmbh | Verfahren zum Herstellen eines Formkörpers aus Metallschaum |
US6733722B2 (en) * | 2000-09-13 | 2004-05-11 | Neue Materialien Furth Gmbh | Method for producing a moulded body from foamed metal |
JP2003112253A (ja) * | 2001-06-15 | 2003-04-15 | Huette Klein-Reichenbach Gmbh | 泡状金属を製造する装置及び方法 |
AT411768B (de) * | 2002-09-09 | 2004-05-25 | Huette Klein Reichenbach Gmbh | Verfahren und vorrichtung zur herstellung von fliessfähigem metallschaum |
AT413344B (de) * | 2003-01-13 | 2006-02-15 | Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh | Verfahren zur herstellung von metallschaumkörpern |
AT412876B (de) * | 2003-08-05 | 2005-08-25 | Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh | Schäumbares halbzeug und verfahren zur herstellung von metallteilen mit innerer porosität |
-
2005
- 2005-08-02 DE DE102005037305A patent/DE102005037305B4/de not_active Expired - Fee Related
-
2006
- 2006-08-02 US US11/997,818 patent/US8562904B2/en not_active Expired - Fee Related
- 2006-08-02 AT AT06775813T patent/ATE433814T1/de active
- 2006-08-02 WO PCT/DE2006/001375 patent/WO2007014559A1/de active Application Filing
- 2006-08-02 ES ES06775813T patent/ES2327066T3/es active Active
- 2006-08-02 DE DE502006004012T patent/DE502006004012D1/de active Active
- 2006-08-02 JP JP2008524357A patent/JP2009503260A/ja active Pending
- 2006-08-02 EP EP06775813A patent/EP1915226B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
ES2327066T3 (es) | 2009-10-23 |
ATE433814T1 (de) | 2009-07-15 |
DE502006004012D1 (de) | 2009-07-30 |
JP2009503260A (ja) | 2009-01-29 |
US20080314546A1 (en) | 2008-12-25 |
US8562904B2 (en) | 2013-10-22 |
WO2007014559A1 (de) | 2007-02-08 |
EP1915226A1 (de) | 2008-04-30 |
DE102005037305A1 (de) | 2007-03-29 |
DE102005037305B4 (de) | 2007-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1915226B1 (de) | Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff | |
DE69006359T2 (de) | Verfahren zur herstellung eines dispersionsverfestigten metallschaumes sowie verfahren zu seiner herstellung. | |
DE10248888B4 (de) | Verfahren zur Herstellung endkonturnaher, metallischer und/oder keramischer Bauteile | |
EP2044230B1 (de) | Verfahren zur herstellung von metallschäumen | |
EP1397223A2 (de) | Herstellung von metallschäumen | |
EP1017864B1 (de) | Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen | |
DE10115230C2 (de) | Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben | |
EP1587772B1 (de) | Verfahren zur herstellung poröser sinterformkörper | |
AT413344B (de) | Verfahren zur herstellung von metallschaumkörpern | |
EP2427284B1 (de) | Pulvermetallurgisches verfahren zur herstellung von metallschaum | |
DE19638927C2 (de) | Verfahren zur Herstellung hochporöser, metallischer Formkörper | |
DE102017121512A1 (de) | Verfahren zum Schäumen von Metall mit Wärmekontakt | |
EP1597004B1 (de) | Verfahren zum schäumen von sinterformkörpern mit zellstruktur | |
DE102011118295A1 (de) | Herstellung eines hochfesten Aluminium-Schaumkörpers und entsprechender Schaumkörper | |
DE19810979C2 (de) | Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen | |
EP0868956B1 (de) | Verfahren zur Herstellung von Metallkörpern mit innerer Porosität | |
EP1602739B1 (de) | Verfahren zum Recyclen von Leichtmetallteilen | |
EP1323616A1 (de) | Fahrzeuglenkrad aus Metallschaum | |
DE102017121513A1 (de) | Verfahren zum Schäumen von Metall im Flüssigkeitsbad | |
AT412876B (de) | Schäumbares halbzeug und verfahren zur herstellung von metallteilen mit innerer porosität | |
WO2019053181A1 (de) | Verfahren zum schäumen von metall mit wärmekontakt | |
DE10236047A1 (de) | Herstellung eines Metallschaumkörpers | |
WO2019053192A1 (de) | Verfahren zur herstellung eines halbzeuges für einen verbundwerkstoff | |
WO2003069002A1 (de) | Aufschäumbarer metallkörper, verfahren zu seiner herstellung und seine verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GARCIA-MORENO, FRANCISCO Inventor name: BANHART, JOHN |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006004012 Country of ref document: DE Date of ref document: 20090730 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2327066 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090917 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091017 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
BERE | Be: lapsed |
Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090917 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
26N | No opposition filed |
Effective date: 20100318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090802 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091218 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110610 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100802 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090617 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110727 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20110715 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 433814 Country of ref document: AT Kind code of ref document: T Effective date: 20120802 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502006004012 Country of ref document: DE Effective date: 20140412 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240819 Year of fee payment: 19 |