[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1911862B1 - Electropolishing method for niobium and tantalum - Google Patents

Electropolishing method for niobium and tantalum Download PDF

Info

Publication number
EP1911862B1
EP1911862B1 EP07018328.0A EP07018328A EP1911862B1 EP 1911862 B1 EP1911862 B1 EP 1911862B1 EP 07018328 A EP07018328 A EP 07018328A EP 1911862 B1 EP1911862 B1 EP 1911862B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
niobium
tantalum
electropolishing
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07018328.0A
Other languages
German (de)
French (fr)
Other versions
EP1911862A3 (en
EP1911862A2 (en
Inventor
Siegfried Piesslinger-Schweiger
Olaf BÖHME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat GmbH
Original Assignee
Poligrat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poligrat GmbH filed Critical Poligrat GmbH
Publication of EP1911862A2 publication Critical patent/EP1911862A2/en
Publication of EP1911862A3 publication Critical patent/EP1911862A3/en
Application granted granted Critical
Publication of EP1911862B1 publication Critical patent/EP1911862B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/26Polishing of heavy metals of refractory metals

Definitions

  • the present invention relates to a process for the electrochemical polishing of surfaces of metals and metal alloys, in particular of such metals and metal alloys, which are selected from the group consisting of niobium, niobium alloys, tantalum and tantalum alloys.
  • the present invention includes an electrolyte for electropolishing surfaces of these metals and metal alloys. This electrolyte contains methanesulfonic acid and ammonium bifluoride, NH 4 HF 2 .
  • the process of electrochemical polishing or electropolishing serves to produce metal surfaces of high purity, to smooth and deburr metal surfaces. Smoothing in the micro-region causes the surfaces thus treated to be high-gloss. In addition, by the electropolishing stresses in the outer material layers can be removed.
  • the prior art discloses a variety of different electropolishing methods that can be used to process various metals and metal alloys. In general, these methods are based on the use of electrolytes containing a concentrated mineral acid or a mixture of concentrated mineral acids, to which additives are often added in order to further improve the effect of the electrolytes, and thus to obtain smoother and more lustrous metal surfaces.
  • Niobium often called niobium
  • niobium and tantalum are used both as pure metals and as constituents of alloys with one another and / or with other metals in the production of workpieces, for example of gas turbines or in engine construction.
  • a method using an electrolyte consisting of a mixture of concentrated sulfuric acid and hydrofluoric acid in the ratio of about 90:10 is used for the electropolishing of niobium.
  • this electrolyte releases large quantities of gaseous hydrogen fluoride, which is toxic and corrosive. In order to minimize the risk to humans and the environment, this procedure can therefore only be carried out under the strictest and most complex safety measures.
  • Another disadvantage of this method is that this electrolyte also chemically attacks the niobium surface, especially when the current flow is interrupted. Significant amounts of hydrogen are released, some of which also diffuse into the metal surface and then have to be removed again at great expense by heating under vacuum.
  • the machined workpieces In order to keep the chemical attack of the electrolyte on the electropolished surface as low as possible, therefore, the machined workpieces usually have to be cooled very rapidly after switching off the current. be taken out of the bath within a few seconds and be completely rinsed. This rapid flushing often requires special equipment and is therefore also associated with high costs. Therefore, the method quickly reaches its limits, especially when working with larger components, and has limited application.
  • the patent application WO 01/71068 A1 discloses electrolytic polishing processes wherein, among others, tantalum and niobium are electropolished with an electrolyte of methanesulfonic acid and methanol. While this tantalum electropolishing process appears to have good results, there is no indication of the quality of the electropolishing process in niobium surface processing.
  • the Japanese patent application JP 60092500 A2 uses a mixture of sulfuric acid and fluorosulfonic acid (fluorosulfuric acid). Although no toxic hydrofluoric acid gases are released, the use of fluorosulphonic acid is extremely complex and expensive because of the high reactivity to a contact between fluorosulfonic acid and air to avoid largely, as this toxic vapors may also arise.
  • FIG. 1 Fig. 10 shows the decrease in roughness values Ra and Rz in electropolishing a niobium sheet according to the method of the present invention (see Example 1).
  • the present invention is a process for electropolishing surfaces of metals and metal alloys, which is particularly suitable for the processing of surfaces of niobium, niobium alloys, tantalum and tantalum alloys.
  • Niobium and tantalum alloys are understood as meaning both solid phase mixtures and compounds of niobium and tantalum with one another and of one or both metals with other elements which have a metallic character or else form intermetallic compounds.
  • the application of this procedure is largely safe for humans and the environment.
  • an electrolyte containing no sulfuric acid, over 80% by weight of methanesulfonic acid, and ammonium bifluoride (ammonium hydrogen difluoride, NH 4 + HF 2 - ) is used. This electrolyte is also an object of the present invention.
  • the concentration of methanesulfonic acid used in the electrolyte is at least 90%.
  • the concentration of ammonium hydrogendifluoride in the electrolyte is between 5 and 100 g / l, preferably between 20 and 70 g / l. If the metal surface is a niobium or niobium alloy surface is particularly preferred that the concentration of ammonium hydrogen difluoride in the electrolyte is about 40 g / l. If the metal surface consists predominantly or exclusively of tantalum or a tantalum alloy, the best results can be obtained with a concentration of ammonium hydrogen difluoride of about 60 g / l in the electrolyte.
  • the electrolyte contains no further acids in addition to the methanesulfonic acid.
  • the electrolyte contains no appreciable constituents of phosphoric acid, nitric acid and free hydrofluoric acid.
  • an electrolyte according to the present invention may form about a binary system consisting only of methanesulfonic acid and ammonium bifluoride.
  • electropolishing method allows the rinsing of the machined workpieces not to take place within a few seconds, but can take place in a period of time which is usual for other metals in conventional electropolishing processes. This makes it possible for the first time also a trouble-free electrochemical polishing of surfaces of larger components or components with difficult to flush surfaces.
  • the process according to the invention is carried out at a temperature between 10 ° C and 50 ° C.
  • the electrolyte can safely remain on the electropolished surfaces for a long time Components remain and are subsequently rinsed with water without the surfaces being attacked during one of the steps.
  • a significant advantage of using the method described here is that no special measures for the protection of man and the environment are required.
  • the handling of an electrolyte containing methanesulfonic acid and ammonium bifluoride can be carried out without further safety precautions, which go beyond the usual protective measures for the handling of strong concentrated acids.
  • the fluoride ions from the ammonium hydrogen difluoride are chemically bound by the metal removed in the course of the electropolishing process.
  • Example 1 Electropolishing of niobium
  • the sheet was rinsed in demineralized water and dried in air.
  • the sheet was rinsed in demineralized water and dried in air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum elektrochemischen Polieren von Oberflächen von Metallen und Metalllegierungen, insbesondere von solchen Metallen und Metalllegierungen, die ausgewählt sind aus der Gruppe bestehend aus Niob, Nioblegierungen, Tantal und Tantallegierungen. Außerdem umfasst die vorliegende Erfindung einen Elektrolyten zum Elektropolieren von Oberflächen dieser Metalle und Metalllegierungen. Dieser Elektrolyt enthält Methansulfonsäure und Ammoniumbifluorid, NH4HF2.The present invention relates to a process for the electrochemical polishing of surfaces of metals and metal alloys, in particular of such metals and metal alloys, which are selected from the group consisting of niobium, niobium alloys, tantalum and tantalum alloys. In addition, the present invention includes an electrolyte for electropolishing surfaces of these metals and metal alloys. This electrolyte contains methanesulfonic acid and ammonium bifluoride, NH 4 HF 2 .

Hintergrund der ErfindungBackground of the invention

Das Verfahren des elektrochemischen Polierens oder Elektropolierens dient dazu, Metalloberflächen von hoher Reinheit zu erzeugen, die Metalloberflächen zu glätten und zu entgraten. Ein Glätten im Mikrobereich bewirkt, dass die so behandelten Oberflächen hochglänzend sind. Außerdem können durch das Elektropolieren Spannungen in den äußeren Werkstoffschichten abgetragen werden. Im Stand der Technik ist eine Vielzahl unterschiedlicher Elektropolierverfahren bekannt, die zur Bearbeitung verschiedener Metalle und Metalllegierungen verwendet werden können. In der Regel basieren diese Verfahren auf der Verwendung von Elektrolyten, die eine konzentrierte Mineralsäure oder ein Gemisch konzentrierter Mineralsäuren enthalten, denen oftmals Zusätze beigemischt werden, um die Wirkung der Elektrolyte weiter zu verbessern, und so glattere und glänzendere Metalloberflächen zu erhalten.The process of electrochemical polishing or electropolishing serves to produce metal surfaces of high purity, to smooth and deburr metal surfaces. Smoothing in the micro-region causes the surfaces thus treated to be high-gloss. In addition, by the electropolishing stresses in the outer material layers can be removed. The prior art discloses a variety of different electropolishing methods that can be used to process various metals and metal alloys. In general, these methods are based on the use of electrolytes containing a concentrated mineral acid or a mixture of concentrated mineral acids, to which additives are often added in order to further improve the effect of the electrolytes, and thus to obtain smoother and more lustrous metal surfaces.

Gerade auch kerntechnische Forschungsanlagen stellen hohe Anforderungen an Metalloberflächen hinsichtlich ihrer Reinheit und geringer Ausgasungsraten unter Vakuum, damit die in den Anlagen stattfindenden Prozesse und Messungen so kontrolliert wie möglich durchgeführt werden können. Um diesen Anforderung zu genügen, müssen die Metalloberflächen von Werkstücken, die in solchen und ähnlichen Einsatzbereichen verwendet werden sollen, in der Regel hochwertig elektropoliert sein.Especially nuclear research facilities make high demands on metal surfaces in terms of their purity and low Ausgasungsraten under vacuum, so that the processes taking place in the plants and measurements can be performed as controlled as possible. To meet this requirement, the metal surfaces of workpieces to be used in such and similar applications must generally be high-grade electropolished.

Für die meisten der in diesen Bereichen verwendeten Metalle und Metalllegierungen, wie Edelstähle, Titan und Aluminium, sind industriell erprobte und in ihrer Anwendung sichere Elektropolierverfahren verfügbar. Niob (häufig auch als Niobium bezeichnet) hingegen, ist mit den bisher bekannten Elektropolierverfahren bei vertretbaren Belastungen für die Umwelt nicht mit befriedigendem Ergebnis zu bearbeiten.For most of the metals and metal alloys used in these fields, such as stainless steels, titanium and aluminum, industrially proven and safe electropolishing methods are available. Niobium (often called niobium) On the other hand, with the electro-polishing processes known to date, it is not possible to work satisfactorily with acceptable environmental impacts.

Daneben finden Niob und Tantal aufgrund ihrer hohen Temperaturbeständigkeit sowohl als Reinmetalle als auch als Bestandteile von Legierungen miteinander und/oder mit anderen Metallen bei der Herstellung von Werkstücken, beispielsweise von Gasturbinen oder im Triebwerksbau, Verwendung.In addition, because of their high temperature resistance, niobium and tantalum are used both as pure metals and as constituents of alloys with one another and / or with other metals in the production of workpieces, for example of gas turbines or in engine construction.

Gemäß dem gegenwärtigen Stand der Technik wird zum Elektropolieren von Niob ein Verfahren eingesetzt, das einen Elektrolyten verwendet, der aus einem Gemisch aus konzentrierter Schwefelsäure und Flusssäure im Verhältnis von etwa 90:10 besteht. Dieser Elektrolyt setzt im Zuge des Elektropolierprozesses allerdings große Mengen an gasförmigem Fluorwasserstoff frei, der toxisch und korrosiv ist. Um die Gefährdung für Mensch und Umwelt gering zu halten, kann dieses Verfahren daher nur unter strengsten und höchst aufwändigen Sicherheitsmaßnahmen durchgeführt werden. Ein weiterer Nachteil dieses Verfahrens besteht darin, dass dieser Elektrolyt die Nioboberfläche auch chemisch angreift, insbesondere auch bei unterbrochenem Stromfluss. Dabei werden nennenswerte Mengen an Wasserstoff freigesetzt, die teilweise auch in die Metalloberfläche eindiffundieren und anschließend unter hohem Aufwand durch Ausheizen unter Vakuum wieder entfernt werden müssen. Um den chemischen Angriff des Elektrolyten auf die elektropolierte Oberfläche möglichst gering zu halten, müssen die bearbeiteten Werkstücke daher nach dem Abschalten des Stroms meist sehr schnell, d.h. innerhalb weniger Sekunden aus dem Bad genommen und vollständig gespült werden. Dieses rasche Spülen erfordert häufig spezielle Anlagen und ist somit ebenfalls mit hohen Kosten verbunden. Daher stößt das Verfahren insbesondere bei der Bearbeitung größerer Bauteile schnell an seine Grenzen und findet nur eingeschränkt Anwendung.According to the current state of the art, a method using an electrolyte consisting of a mixture of concentrated sulfuric acid and hydrofluoric acid in the ratio of about 90:10 is used for the electropolishing of niobium. However, in the course of the electropolishing process, this electrolyte releases large quantities of gaseous hydrogen fluoride, which is toxic and corrosive. In order to minimize the risk to humans and the environment, this procedure can therefore only be carried out under the strictest and most complex safety measures. Another disadvantage of this method is that this electrolyte also chemically attacks the niobium surface, especially when the current flow is interrupted. Significant amounts of hydrogen are released, some of which also diffuse into the metal surface and then have to be removed again at great expense by heating under vacuum. In order to keep the chemical attack of the electrolyte on the electropolished surface as low as possible, therefore, the machined workpieces usually have to be cooled very rapidly after switching off the current. be taken out of the bath within a few seconds and be completely rinsed. This rapid flushing often requires special equipment and is therefore also associated with high costs. Therefore, the method quickly reaches its limits, especially when working with larger components, and has limited application.

Die Patentanmeldung WO 01/71068 A1 offenbart elektrolytische Polierverfahren, wobei unter anderem Tantal und Niob mit einem Elektrolyten aus Methansulfonsäure und Methanol elektropoliert werden. Während dieses Elektropolierverfahren für Tantal offenbar gute Ergebnisse zeigt, gibt es keinerlei Angaben über die Qualität des Elektropolierverfahrens bei der Bearbeitung von Nioboberflächen.The patent application WO 01/71068 A1 discloses electrolytic polishing processes wherein, among others, tantalum and niobium are electropolished with an electrolyte of methanesulfonic acid and methanol. While this tantalum electropolishing process appears to have good results, there is no indication of the quality of the electropolishing process in niobium surface processing.

Die japanische Patentanmeldung JP 60092500 A2 verwendet ein Gemisch aus Schwefelsäure und Fluorsulfonsäure (Fluoroschwefelsäure). Dabei werden zwar keine giftigen Flusssäuregase freigesetzt, die Verwendung von Fluorsulfonsäure ist jedoch aufgrund der hohen Reaktivität äußerst komplex und aufwändig, um einen Kontakt zwischen Fluorsulfonsäure und Luft weitgehend zu vermeiden, da auch hierbei giftige Dämpfe entstehen können.The Japanese patent application JP 60092500 A2 uses a mixture of sulfuric acid and fluorosulfonic acid (fluorosulfuric acid). Although no toxic hydrofluoric acid gases are released, the use of fluorosulphonic acid is extremely complex and expensive because of the high reactivity to a contact between fluorosulfonic acid and air to avoid largely, as this toxic vapors may also arise.

Es besteht daher ein erheblicher Bedarf an einem Elektropolierverfahren, mit dem auch Niob-haltige Oberflächen effizient und mit hoher Qualität geglättet und entgratet werden können, ohne dass dabei größere Belastungen bzw. Gefährdungen für Mensch und Umwelt auftreten.There is therefore a considerable need for an electropolishing method, with which niobium-containing surfaces can be smoothed and deburred efficiently and with high quality, without causing major stresses or hazards to man and the environment.

Kurze Beschreibung der FigurBrief description of the figure

Figur 1 zeigt die Abnahme der Rauheitswerte Ra und Rz beim Elektropolieren eines Blechs aus reinem Niob gemäß dem Verfahren gemäß der vorliegenden Erfindung (vgl. Beispiel 1). FIG. 1 Fig. 10 shows the decrease in roughness values Ra and Rz in electropolishing a niobium sheet according to the method of the present invention (see Example 1).

Beschreibung der ErfindungDescription of the invention

Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Elektropolieren von Oberflächen von Metallen und Metalllegierungen, das sich insbesondere für die Bearbeitung von Oberflächen aus Niob, Nioblegierungen, Tantal und Tantallegierungen eignet. Unter Niob- und Tantallegierungen werden dabei sowohl Festphasengemische und -verbindungen von Niob und Tantal miteinander als auch von einem oder beiden Metallen mit anderen Elementen verstanden, die einen metallischen Charakter aufweisen oder auch intermetallische Verbindungen bilden. Die Anwendung dieses Verfahrens ist weitgehend gefahrlos für Mensch und Umwelt. Bei diesem Elektropolierverfahren wird ein Elektrolyt verwendet, der keine Schwefelsäure, über 80 Gew.% Methansulfonsäure, und Ammoniumbifluorid (Ammoniumhydrogendifluorid, NH4 +HF2 -) enthält. Dieser Elektrolyt ist ebenfalls Gegenstand der vorliegenden Erfindung.The present invention is a process for electropolishing surfaces of metals and metal alloys, which is particularly suitable for the processing of surfaces of niobium, niobium alloys, tantalum and tantalum alloys. Niobium and tantalum alloys are understood as meaning both solid phase mixtures and compounds of niobium and tantalum with one another and of one or both metals with other elements which have a metallic character or else form intermetallic compounds. The application of this procedure is largely safe for humans and the environment. In this electropolishing method, an electrolyte containing no sulfuric acid, over 80% by weight of methanesulfonic acid, and ammonium bifluoride (ammonium hydrogen difluoride, NH 4 + HF 2 - ) is used. This electrolyte is also an object of the present invention.

Vorzugsweise beträgt dabei die Konzentration der im Elektrolyten eingesetzten Methansulfonsäure mindestens 90%.Preferably, the concentration of methanesulfonic acid used in the electrolyte is at least 90%.

Diese Angabe bezieht sich - wie alle anderen in der vorliegenden Anmeldung angegebenen Werte, soweit nichts Gegenteiliges angegeben ist - auf das Gewicht der jeweiligen Substanzen und Lösungen.This information, like all other values stated in the present application, unless otherwise specified, refers to the weight of the respective substances and solutions.

In einer Ausführungsform liegt die Konzentration an Ammoniumhydrogendifluorid im Elektrolyten zwischen 5 und 100 g/l, vorzugsweise zwischen 20 und 70 g/l. Wenn es sich bei der Metalloberfläche um eine Oberfläche aus Niob oder einer Nioblegierung handelt, wird besonders bevorzugt, dass die Konzentration an Ammoniumhydrogendifluorid im Elektrolyten bei ca. 40 g/l liegt. Besteht die Metalloberfläche überwiegend oder ausschließlich aus Tantal oder einer Tantallegierung, lassen sich die besten Ergebnisse bei einer Konzentration an Ammoniumhydrogendifluorid von etwa 60 g/l im Elektrolyten erhalten.In one embodiment, the concentration of ammonium hydrogendifluoride in the electrolyte is between 5 and 100 g / l, preferably between 20 and 70 g / l. If the metal surface is a niobium or niobium alloy surface is particularly preferred that the concentration of ammonium hydrogen difluoride in the electrolyte is about 40 g / l. If the metal surface consists predominantly or exclusively of tantalum or a tantalum alloy, the best results can be obtained with a concentration of ammonium hydrogen difluoride of about 60 g / l in the electrolyte.

In einer weiteren bevorzugten Ausführungsform enthält der Elektrolyt neben der Methansulfonsäure keine weiteren Säuren. Insbesondere enthält der Elektrolyt hier keine merklichen Bestandteile von Phosphorsäure, Salpetersäure und freier Flusssäure. So kann ein Elektrolyt gemäß der vorliegenden Erfindung etwa ein binäres System bilden, das lediglich aus Methansulfonsäure und Ammoniumbifluorid besteht.In a further preferred embodiment, the electrolyte contains no further acids in addition to the methanesulfonic acid. In particular, the electrolyte contains no appreciable constituents of phosphoric acid, nitric acid and free hydrofluoric acid. Thus, an electrolyte according to the present invention may form about a binary system consisting only of methanesulfonic acid and ammonium bifluoride.

Es zeigte sich überraschenderweise, dass es bei der Verwendung eines Elektrolyten gemäß der vorliegenden Erfindung möglich ist, Oberflächen von Metallen und Metalllegierungen, insbesondere auch solchen, die im Wesentlichen aus Niob und/oder Tantal bestehen, zu elektropolieren und auf diese Weise Oberflächen zu erhalten, die eine ausgezeichnete Glätte und Entgratung aufweisen. Dabei überraschte es insbesondere, dass dieser Elektrolyt die Niob-haltigen Oberflächen weder während des Elektropoliervorgangs noch nach dem Abschalten des Stroms chemisch angreift und somit auch kein Wasserstoff freigesetzt wird, der in die Metalloberfläche eindiffundieren könnte. Somit gestattet das hier vorgestellte Elektropolierverfahren, dass das Spülen der bearbeiteten Werkstücke nicht innerhalb weniger Sekunden erfolgen muss, sondern in einem Zeitraum erfolgen kann, wie er auch bei den gängigen Elektropolierverfahren für andere Metalle üblich ist. Dies ermöglicht erstmals auch ein problemloses elektrochemisches Polieren von Oberflächen größerer Bauteile bzw. von Bauteilen mit schwierig zu spülenden Oberflächen.It has surprisingly been found that, when using an electrolyte according to the present invention, it is possible to electropolish surfaces of metals and metal alloys, in particular also those consisting essentially of niobium and / or tantalum, and thus to obtain surfaces, which have excellent smoothness and deburring. In particular, it was surprising that this electrolyte does not chemically attack the niobium-containing surfaces either during the electropolishing process or after the current has been switched off, and thus also that no hydrogen is released which could diffuse into the metal surface. Thus, the electropolishing method presented here allows the rinsing of the machined workpieces not to take place within a few seconds, but can take place in a period of time which is usual for other metals in conventional electropolishing processes. This makes it possible for the first time also a trouble-free electrochemical polishing of surfaces of larger components or components with difficult to flush surfaces.

Besonders hochglänzende und mikroglatte Oberflächen aus Niob, Nioblegierungen, Tantal und Tantallegierungen werden erhalten, wenn das Verfahren bei einer anodischen Stromdichte von 5 bis 25 A/dm2 durchgeführt wird. Unter diesen Bedingungen lässt sich kein selektiver Angriff des Elektrolyten an den Korngrenzen des metallischen Gefüges beobachten. Vorzugsweise wird das Verfahren somit etwa bei ca. 10 A/dm2 durchgeführt.Particularly high gloss and micro-smooth surfaces of niobium, niobium alloys, tantalum and tantalum alloys are obtained when the process is carried out at an anodic current density of 5 to 25 A / dm 2 . Under these conditions, no selective attack of the electrolyte at the grain boundaries of the metallic structure can be observed. The method is thus preferably carried out at about 10 A / dm 2 .

Üblicherweise wird das Verfahren gemäß der Erfindung bei einer Temperatur zwischen 10°C und 50°C durchgeführt. Nach dem Abschalten des Stroms kann der Elektrolyt gefahrlos auch über längere Zeit auf den elektropolierten Oberflächen der Bauteile verbleiben und nachfolgend mit Wasser abgespült werden, ohne dass bei einem der Schritte die Oberflächen angegriffen werden.Usually, the process according to the invention is carried out at a temperature between 10 ° C and 50 ° C. After the current has been switched off, the electrolyte can safely remain on the electropolished surfaces for a long time Components remain and are subsequently rinsed with water without the surfaces being attacked during one of the steps.

Ein wesentlicher Vorteil bei der Anwendung des hier beschriebenen Verfahrens liegt darin, dass keinerlei besondere Maßnahmen zum Schutz von Mensch und Umwelt erforderlich sind. Im Gegensatz zu den im Stand der Technik verwendeten Elektrolyten ist die Handhabung eines Elektrolyten, der Methansulfonsäure und Ammoniumbifluorid enthält, ohne weitere Sicherheitsvorkehrungen durchführbar, die über die bei der Handhabung starker konzentrierter Säuren üblichen Schutzmaßnahmen hinausgehen. Insbesondere findet bei einem Elektrolyten gemäß der vorliegenden Erfindung kein Ausgasen von Fluorwasserstoff aus dem Elektrolyten statt. Die Fluoridionen aus dem Ammoniumhydrogendifluorid werden durch das im Zuge des Elektropolierprozesses abgetragene Metall chemisch gebunden.A significant advantage of using the method described here is that no special measures for the protection of man and the environment are required. In contrast to the electrolytes used in the prior art, the handling of an electrolyte containing methanesulfonic acid and ammonium bifluoride can be carried out without further safety precautions, which go beyond the usual protective measures for the handling of strong concentrated acids. In particular, in an electrolyte according to the present invention, there is no outgassing of hydrogen fluoride from the electrolyte. The fluoride ions from the ammonium hydrogen difluoride are chemically bound by the metal removed in the course of the electropolishing process.

Die Erfindung wird in den folgenden Beispielen näher erläutert. Diese Beispiele stellen nur mögliche Ausführungsformen des hier beschriebenen Elektropolierverfahrens dar und sollen in keiner Weise eine Beschränkung auf die hier verwendeten Bedingungen implizieren.The invention is explained in more detail in the following examples. These examples are only possible embodiments of the electropolishing process described herein and are not intended to imply any limitation to the conditions used herein.

BeispieleExamples Beispiel 1: Elektropolieren von NiobExample 1: Electropolishing of niobium

Ein Blech aus reinem Niob wurde vor den Elektropolieren alkalisch entfettet, in Wasser gespült und getrocknet. Die verwendeten Elektropolierparameter sind wie folgt:

  • Werkstoff: Niob rein (Blech von 1,2 mm Dicke)
  • Elektrolyt: Methansulfonsäure + 30 g/l Ammoniumhydrogendifluorid
  • Badtemperatur: 30°C
  • Stromdichte: 10 A/dm2
  • Polierdauer: 12 Minuten
A sheet of pure niobium was alkaline degreased before the electropolishing, rinsed in water and dried. The electropolishing parameters used are as follows:
  • Material: niobium pure (sheet of 1.2 mm thickness)
  • Electrolyte: methanesulfonic acid + 30 g / l ammonium hydrogen difluoride
  • Bath temperature: 30 ° C
  • Current density: 10 A / dm 2
  • Polishing time: 12 minutes

Nach dem Elektropolieren wurde das Blech in vollentsalztem Wasser gespült und an Luft getrocknet.After electropolishing, the sheet was rinsed in demineralized water and dried in air.

Ergebnis: hochglänzende Oberfläche; die Rauheitswerte Ra und Rz sind gegenüber dem Ausgangszustand des Wertstoffs um mehr als 60% verringert (vgl. Figur 1).Result: high-gloss surface; the roughness values Ra and Rz are reduced by more than 60% compared with the initial state of the valuable substance (cf. FIG. 1 ).

Beispiel 2: Elektropolieren von TantalExample 2: Electropolishing of tantalum

Ein Blech aus Tantal wurde vor den Elektropolieren alkalisch entfettet, in Wasser gespült und getrocknet. Die verwendeten Elektropolierparameter sind wie folgt:

  • Werkstoff: Tantal (Blech von 0,5 mm Dicke)
  • Elektrolyt: Methansulfonsäure + 60 g/l Ammoniumhydrogendifluorid
  • Badtemperatur: 30°C
  • Stromdichte: 13 A/dm2
  • Polierdauer: 10 Minuten
A sheet of tantalum was alkaline degreased before the electropolishing, rinsed in water and dried. The electropolishing parameters used are as follows:
  • Material: tantalum (sheet of 0.5 mm thickness)
  • Electrolyte: methanesulfonic acid + 60 g / l ammonium hydrogen difluoride
  • Bath temperature: 30 ° C
  • Current density: 13 A / dm 2
  • Polishing time: 10 minutes

Nach dem Elektropolieren wurde das Blech in vollentsalztem Wasser gespült und an Luft getrocknet.After electropolishing, the sheet was rinsed in demineralized water and dried in air.

Ergebnis: hochglänzende OberflächeResult: high-gloss surface

Claims (13)

  1. An electrolyte for the electropolishing of surfaces of metals and metal alloys that are selected from the group comprising niobium, niobium alloys, tantalum and tantalum alloys, characterized in that the electrolyte contains methanesulfonic acid and ammonium bifluoride, wherein the concentration of the methanesulfonic acid used is greater than 80 wt.% and the electrolyte contains no sulfuric acid.
  2. The electrolyte according to claim 1, characterized in that the concentration of methanesulfonic acid in the electrolyte is at least 90 wt.%.
  3. The electrolyte according to claim 1 or 2, characterized in that the concentration of ammonium bifluoride in the electrolyte is between 5 and 100 g/l.
  4. The electrolyte according to any one of claims 1 to 3, characterized in that the concentration of ammonium bifluoride in the electrolyte is between 20 and 70 g/l.
  5. The electrolyte according to any one of claims 1 to 3, characterized in that the concentration of ammonium bifluoride in the electrolyte is about 40 g/l, when the surface comprises niobium or a niobium alloy.
  6. The electrolyte according to any one of claims 1 to 3, characterized in that the concentration of ammonium bifluoride in the electrolyte is about 60 g/l, when the surface comprises tantalum or a tantalum alloy.
  7. The electrolyte according to any one of the preceding claims, characterized in that the electrolyte does not contain any other acids.
  8. The electrolyte according to any one of the preceding claims, characterized in that the electrolyte consists of methanesulfonic acid and ammonium bifluoride.
  9. A method of electropolishing of surfaces of metals and metal alloys with an electrolyte as claimed in one of claims 1 to 8.
  10. The method according to claim 9, characterized in that the metals and metal alloys comprise substantially niobium and/or tantalum.
  11. The method according to claim 9 or 10, characterized in that the method is carried out at a temperature between 10°C and 50°C.
  12. The method according to any one of claims 9 to 11, characterized in that the method is carried out at an anodic current density from 5 to 25 A/dm2.
  13. The method according to any one of claims 9 to 11, characterized in that the method is carried out at an anodic current density of about 10 A/dm2.
EP07018328.0A 2006-10-09 2007-09-18 Electropolishing method for niobium and tantalum Not-in-force EP1911862B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006047713A DE102006047713B3 (en) 2006-10-09 2006-10-09 Electrolyte for electro-polishing surfaces of metal and metal alloys used in the production of gas turbines contains methane sulfonic acid and ammonium difluoride

Publications (3)

Publication Number Publication Date
EP1911862A2 EP1911862A2 (en) 2008-04-16
EP1911862A3 EP1911862A3 (en) 2010-08-25
EP1911862B1 true EP1911862B1 (en) 2017-03-01

Family

ID=38786963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07018328.0A Not-in-force EP1911862B1 (en) 2006-10-09 2007-09-18 Electropolishing method for niobium and tantalum

Country Status (5)

Country Link
US (1) US20080099345A1 (en)
EP (1) EP1911862B1 (en)
JP (1) JP2008095192A (en)
CA (1) CA2605859A1 (en)
DE (1) DE102006047713B3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213078A1 (en) * 2009-02-25 2010-08-26 Ryszard Rokicki Electrolyte composition for electropolishing niobium and tantalum and method for using same
EA201500017A1 (en) * 2009-11-23 2015-07-30 МЕТКОН, ЭлЭлСи ELECTROLYTE SOLUTION AND METHOD OF ELECTROLYTIC POLISHING
RU2561549C2 (en) * 2010-11-22 2015-08-27 МЕТКОН, ЭлЭлСи Electrolyte solution and electrochemical methods of surface modification
US8580103B2 (en) 2010-11-22 2013-11-12 Metcon, Llc Electrolyte solution and electrochemical surface modification methods
ES2604830B1 (en) 2016-04-28 2017-12-18 Drylyte, S.L. Process for smoothing and polishing metals by ionic transport by means of free solid bodies, and solid bodies to carry out said process.
DK3551786T3 (en) * 2016-12-09 2021-06-28 Rena Tech Austria Gmbh ELECTROPOLATION PROCEDURE AND ELECTROLYTE THEREOF
AT520365B1 (en) * 2017-08-29 2019-10-15 Hirtenberger Eng Surfaces Gmbh ELECTROLYTE FOR ELECTROPOLISHING METAL SURFACES
ES2734499B2 (en) * 2018-11-12 2020-06-03 Drylyte Sl Use of sulfonic acids in dry electrolytes to polish metal surfaces through ion transport

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663005A (en) * 1985-11-15 1987-05-05 Edson Gwynne I Electropolishing process
US5632966A (en) * 1996-03-07 1997-05-27 Alliedsignal Inc. Process for hydrogen fluoride separation
US6352636B1 (en) * 1999-10-18 2002-03-05 General Electric Company Electrochemical system and process for stripping metallic coatings
US6407047B1 (en) * 2000-02-16 2002-06-18 Atotech Deutschland Gmbh Composition for desmutting aluminum
NL1014727C2 (en) * 2000-03-23 2001-09-25 Univ Eindhoven Tech A method for electrolytically polishing a metal in the presence of an electrolyte composition, as well as a molded article obtained by such a method.
DE10259934B3 (en) * 2002-12-20 2004-10-14 H.C. Starck Gmbh Process for the production of molded parts from niobium or tantalum by electrochemical etching and molded parts obtainable in this way
DE10320909A1 (en) * 2003-05-09 2004-11-18 Poligrat Holding Gmbh Electrolyte for the electrochemical polishing of metal surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1911862A3 (en) 2010-08-25
EP1911862A2 (en) 2008-04-16
JP2008095192A (en) 2008-04-24
US20080099345A1 (en) 2008-05-01
DE102006047713B3 (en) 2008-03-27
CA2605859A1 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
EP1911862B1 (en) Electropolishing method for niobium and tantalum
EP1970473B1 (en) Electropolishing method for titanium
EP1923490B1 (en) Electropolishing method
DE2907875C2 (en) Process for the electrolytic removal of tungsten carbide coatings on workpieces made of titanium or titanium alloys
DE69324729T2 (en) Process for treating an aluminum-based substrate for anodizing, the bath used in this process, and a concentrate for producing the bath
EP1625246B1 (en) Electrolyte for electrochemically polishing metallic surfaces
DE4116910A1 (en) METHOD FOR PRODUCING OXIDE-CERAMIC SURFACE LAYERS ON LIGHT METAL CAST ALLOYS
DE3780117T2 (en) METHOD FOR CLEANING ALUMINUM SURFACES.
DE3020012C2 (en) Method of exposing the silicon crystals on the surface of a body made of an aluminum alloy with a high silicon content
EP0139958B1 (en) Process for electrolytically polishing a work piece made of a nickel, cobalt or iron based alloy
EP1664391B1 (en) Electropolishing method
EP1913181B1 (en) Electropolishing method
DE69705448T2 (en) Manufacturing process of an austenitic stainless steel sheet with high wafer surface gloss and high corrosion resistance
DE2654484A1 (en) ELECTROLYTE FOR THE ELECTROCHEMICAL PROCESSING OF NICKEL-BASED SUPER ALLOYS
DE19808440A1 (en) Aqueous solution and process for phosphating metallic surfaces
DE19931820C2 (en) Process for descaling titanium material and descaled titanium material
DE69932035T2 (en) METHOD FOR TREATING A METAL PRODUCT
DE1109478B (en) Process for descaling objects made of titanium or titanium alloys
EP3201281B1 (en) Method for the wet chemical polishing and deburring of moulded parts made of zinc
DE3701728A1 (en) METHOD FOR APPLYING OXALATUE COATINGS ON STAINLESS STEEL
DE60216291T2 (en) SURFACE TREATMENT AGENT AND METHOD FOR REMOVING THE SI COMPONENTS AND REDUCED METAL SALTS WHICH APPEAR WHEN ESTABLISHING ALUMINUM PRESSURE CAST IRONS
EP1101840B1 (en) Process for manufacturing stainless steel strips with improved surface characteristics
DE10156624B4 (en) Method and pickling solution for cleaning deposits of a steel workpiece
DE10309888A1 (en) Surface processing method for aluminum or an aluminum alloy and processing fluid used therefor
DE2714136C3 (en) Method of descaling a body made of stainless steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20110210

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 871451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015471

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170301

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170927

Year of fee payment: 11

Ref country code: FR

Payment date: 20170927

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015471

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170928

Year of fee payment: 11

26N No opposition filed

Effective date: 20171204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 871451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015471

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301