[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1908972B1 - Decoupling device for mounting a support shaft on a base and radial ondular washer - Google Patents

Decoupling device for mounting a support shaft on a base and radial ondular washer Download PDF

Info

Publication number
EP1908972B1
EP1908972B1 EP08000885A EP08000885A EP1908972B1 EP 1908972 B1 EP1908972 B1 EP 1908972B1 EP 08000885 A EP08000885 A EP 08000885A EP 08000885 A EP08000885 A EP 08000885A EP 1908972 B1 EP1908972 B1 EP 1908972B1
Authority
EP
European Patent Office
Prior art keywords
radial
decoupling device
spring sleeve
spring
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP08000885A
Other languages
German (de)
French (fr)
Other versions
EP1908972A3 (en
EP1908972A2 (en
Inventor
Hartmut Dr.-Ing. Faust
Oswald Friedmann
André Dr. Linnenbrügger
Ronald Glas
Christian Bauer
Hans-Walter Dr. Wodtke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP1908972A2 publication Critical patent/EP1908972A2/en
Publication of EP1908972A3 publication Critical patent/EP1908972A3/en
Application granted granted Critical
Publication of EP1908972B1 publication Critical patent/EP1908972B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • F16C27/066Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/63Gears with belts and pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring

Definitions

  • the invention relates to a decoupling device for a bearing of a shaft on a base body, in particular a shaft of a chain with a belt as a belt CVT.
  • the invention further relates to a radial wave spring for such a decoupling device.
  • Such belt pulleys comprise two pairs of conical pulleys mounted on shafts spaced apart from each other, which are looped around by a belt which is frictionally engaged with the conical surfaces of the pulley pairs.
  • a belt in particular in transmissions, with which higher torques can be transmitted, for example, torques in the range of 300 Nm and more, metallic chains used.
  • a bearing assembly for supporting rotatable shafts of the transmission which comprises a bearing with a bearing outer ring and a bearing inner ring, wherein the bearing outer ring is axially secured in a receptacle on side surfaces of the receptacle and the receptacle has a substantially cylindrical inner wall, wherein between the Bearing outer ring and the inner wall of the receptacle is arranged in the radial direction a flexible element.
  • the flexible element consists of at least one corrugated in the radial direction or provided with projections ring element. Furthermore, flexible elements for vibration damping are provided in the axial direction.
  • An elastic element for tolerance compensating installation of bearings is in the Laid-open application DE 33 38 507 A1 disclosed.
  • This elastic element is cup-shaped, wherein the jacket of a Fedemapfes consists of an arbitrary number of slats and are provided on the slats inwardly or outwardly directed hump.
  • the element can also be formed from a closed shell with inwardly or outwardly exposed spring tongues.
  • the fins or the jacket are formed on the side facing away from the bottom flange.
  • the invention has for its object to reduce the noise transmission, in particular the structure-borne sound transmission of the conical disks in a vehicle.
  • the bottom of the spring sleeve has at least two axially spaced, circumferential radial corrugations with axial wavelength direction.
  • An annular region between the radial corrugations protrudes into a circumferential recess of the outer surface.
  • the bottom of the spring sleeve has at least one radial corrugation with a direction of wavelength extending in the circumferential direction.
  • Radial corrugations of the bottom with axial and / or circumferentially extending wavelength direction have different heights.
  • Radial side surfaces of the outer surface are based on radial side surfaces of the inner surface over the total radially extending, curved side walls of the spring sleeve in the axial direction elastically yielding each other.
  • the radial side walls of the spring sleeve are supported radially on an annular step of radial side walls of the outer surface and the voltage applied to the inner surface bottom of the spring sleeve is formed crowned.
  • the spring sleeve is formed with the bottom wall by cutting radial slots.
  • a circumferential projection of the bottom engages in an annular groove of the inner surface.
  • an annular surface On at least one of the inner surface axially delimiting, radially inwardly extending side surface is formed an annular surface on which the spring sleeve is axially supported.
  • the side walls of the spring sleeve are axially and / or radially elastically yielding.
  • the radial wave spring is formed by extending over parts of the circumference of the inner surface and the outer surface extending spring segments.
  • the at least one radial wave spring is arranged on a radially loaded side of the bearing and extends over only part of the circumference and a positioning device is provided which determines the positioning of the at least one radial wave spring in the circumferential direction.
  • Radialwellfedem be called, which can be used in the decoupling device according to the invention.
  • a radial wave spring for enclosing at least a partial circumference of a bearing ring formed with a circular cylindrical outer surface and adjoining radial side surfaces is considered to be at least one circumferential segment the bearing ring enclosing spring sleeve formed with a total of U-shaped cross section, wherein at least the bottom of the spring sleeve has a resiliently deformable curvature.
  • the bottom of the aforementioned radial wave spring is formed with a circumferential radial projection.
  • the decoupling device according to the invention and the radial corrugated spring (s) according to the invention can be used for any types of bearing arrangements.
  • they are used for rolling bearings, with such bearings, for example, the shafts of a conical-pulley belt are mounted.
  • a shaft, not shown, of a cone pulley pair of a conical-pulley belt drive is enclosed by a bearing inner ring 2, rolling elements 6 are arranged between it and a bearing outer ring 4 arranged concentrically therewith so that the components 2, 4 and 6 together form a roller bearing.
  • the outer surface of the bearing inner ring 2, on which the rolling elements 6 roll off can be formed directly by a correspondingly machined outer surface of the shaft, not shown.
  • the bearing outer ring 4 is received in an annular recess of a base body 8, for example a gear housing, according to FIG. 1 is closed to the right by a removable ring cover 10.
  • the outer surface of the bearing outer ring 4 is not supported directly at the bottom of the annular recess, but with interposition of different More specifically, in the example shown between the outer surface 14 of the bearing outer ring 4 and the inner surface 16 of the shell 12 four annular radial corrugated springs 18a are arranged between which stop rings 20a are arranged for axial distance assurance. On both sides axially outside spacer rings 22a are provided.
  • the stiffness of the radial shaft springs is such that the desired stiffness of the bearing with respect to radial displacements of the bearing shaft, not shown, is achieved with the four radial wave spring rings or radial corrugated springs.
  • the radial wave springs 18a as out FIG. 2 which is a detail view of the FIG. 1 in the direction AA, are shaped so that they are constantly in contact with the outer surface 14 and inner surface 16, the stop rings 20 are dimensioned such that there is a radial clearance d between them and the housing ring 12. In this way, the bearing outer ring 4 according to FIG. 2 move under elastic deformation of the radial wave springs 18a by a distance d up until the stop rings 20 come into contact with the inner surface 16.
  • the housing ring 12 made of steel, for example, is optional and serves, for example, to prevent wear of the recess or bore of the base body 8, which may consist of light metal.
  • the radial wave springs 18a have substantially constant cross-section along the circumference and are corrugated only in the circumferential direction are in accordance with the embodiment FIGS. 3 and 4 the radial corrugated springs 18 b provided with bumps and are provided between the radial corrugated springs 18 b and axially outside only positioning rings 22.
  • the radial wave springs 18a are provided inwardly and outwardly with circumferentially spaced support bumps 24 which are in constant abutment against the outer surface 14 and inner surface 16, respectively. Between the Auflagerhöckern 24 bumps 26 are formed between which and the respective surfaces in the unloaded state of the bearing outwardly a game e and inwardly there is a game f. As shown, the abutment bumps 26 are preferably each on the opposite side of the support cusps 24 of the radial wave springs 18b.
  • the abutment bumps 26 act as stops, so that under high load both the support and the stop bumps support points for supporting the bearing outer ring 4 on the base body 8, resulting in a uniform support of the bearing.
  • FIGS. 5 and 6 show a den FIGS. 3 and 4 largely corresponding training of storage or decoupling of the bearing outer ring 4 from the main body 8, by means of the noise transmission from the rolling bearing is reduced in the body.
  • the stop bumps 26 of different heights. It is assumed that the bearing is loaded vertically upward in the direction of the arrow S or radially displaced. In games of the same length e and f, the play f at the apex S is completely used up, whereas a residual clearance remains between the adjacent bumps and the associated surfaces, since the approach to these points is smaller in accordance with the circumferential angle ⁇ .
  • FIGS. 7 and 8 engages a pin 28 which engages in a recess 30 of the housing ring 12, in addition to a slot 32, with which the radial wave springs 18 are formed.
  • the pin 28 is held in this way in the circumferential direction immovably between the bearing outer ring 4 and the housing ring 12 so that it fixes the or the radial corrugated springs 18 in the circumferential direction.
  • the waves or bumps of adjacent radial corrugated springs are offset in the circumferential direction to each other in order to achieve the most uniform loading of the bearing.
  • different radial wave springs would have to be manufactured with different relative arrangement of slot and bumps or waves.
  • Fig. 10 is located at the continuously drawn radial wave spring 18b left of the pin 28, a radially outward bearing cradle and right of the pin 28 a radially inwardly directed support hump. Further, to the left of the pin is a support hump 24 opposite, radially inwardly directed abutment bump and right of pin 28 a support cusp 24 opposite, radially outwardly directed abutment bump 26. In 180 ° twisted installation of the radial wave spring 18b results in the dashed line arrangement, that is a stop bump is a support cusp axially adjacent.
  • FIGS. 13 and 14 show a feather key 36 which is inserted into a groove in the base body 8 and penetrates slots in the housing ring 12 and the radial field spring 18.
  • FIG. 15 shows an embodiment in which the housing ring 12 is provided with a radial rib which engages in the slot 32 of the radial wave spring 18.
  • the radial wave spring 18 is provided with a radially outwardly extending rib 40 which engages in a recess of the housing ring 12.
  • the housing ring 12 is held immovably in the circumferential direction on the base body 8.
  • each radial wave spring 18 c ends on one side of the slot 32 in an axially extending projection or pin 42.
  • the pin 42 of the axially outermost radial wave spring engages in a recess 44 formed in a radial surface of the base body 8.
  • the pins 42 of the axially adjacent respective radial corrugated springs engage in the slot 32 in accordance with FIG. 17 each right side adjacent radial wave spring.
  • the radial wave spring rings can be inexpensively manufactured as stamped and bent parts.
  • FIGS. 18 to 25 Be explained in the following further advantageous embodiments of devices with which the storage of the main body can be decoupled.
  • the outer surface of the bearing outer ring 4 is provided with a wide circumferential groove 46, are arranged in the radial wave springs 18b.
  • Radial Wave Springs For example, 18b may be similarly pre-assembled as retaining rings are mounted in shaft grooves. The remaining axially outside of the circumferential groove 46 shoulders of the bearing outer ring 4 (enlarged view X) can directly form a radial stop. Further, between side walls of the base body 8 and the ring cover 10 and the bearing outer ring O-rings 48 may be mounted for axial guidance.
  • FIGS. 20 and 21 is different from that of FIGS. 18 and 19 merely in that in the outer surface of the bearing outer ring 4 a plurality of grooves 46 are formed, in each of which a single radial wave spring 18b is arranged.
  • the bearing outer ring 4 is provided with two circumferential grooves 46, wherein in accordance with FIG. 22 left circumferential groove three radial wave springs 18c are arranged and in the axially open right circumferential groove 46 four radial corrugated springs 18c are arranged.
  • the formed on the base body 8 opposite or inner surface 16 has a step 50 on which the left Axialwellfeder is supported.
  • the axially outermost radial wave spring 18 c in the right circumferential groove 46 is supported on a radially extending side surface 52 of the annular cover 10.
  • FIG. 23 shows the section X of the FIG. 22 in an enlarged view.
  • the individual radial corrugated springs 18c are similar in terms of their radial extent with bumps, for example, according to embodiment FIG. 4 trained (see FIG. 24 ).
  • the radial wave springs 18c are corrugated in the axial direction, as shown FIG. 25 apparent, the one Top view of a portion of the axially adjacent radial wave springs 18c shows.
  • a decoupling or acoustic decoupling of the bearing is achieved by the body in the radial and axial directions.
  • the formed between the circumferential grooves 46 nose 54 of the bearing outer ring 4 can be used as a stop.
  • FIGS. 26 and 27 show the arrangement of radial corrugated springs 18a between the bearing outer ring 4 and an attached to the bearing outer ring 4 annular sleeve 54 with a total U-shaped cross-section.
  • the radial wave springs 18a are loosely seated on the bearing outer race 4 and held axially by positioning rings 22 disposed between the outer radial wave springs and the radial side walls 56 of the sleeve 54.
  • the sleeve can be produced inexpensively, for example, as sheet metal forming part and fulfilled by appropriately bent formation of the side walls 56 at the same time the function of an axial spring similar to a plate spring. In this way, the storage is according to FIGS. 26 and 27 axially and radially decoupled from the main body 8.
  • FIGS. 28 and 29 is different from that of FIGS. 26 and 27 in that, instead of the radial corrugated springs 18a, radial corrugated springs 18b provided with bumps are used, and positioning rings 22 are arranged between the radial corrugated springs 18b.
  • the bearing outer ring 4 is provided with two axially outwardly open circumferential grooves 46 in which axially and radially corrugated radial corrugated springs 18 c are arranged, which are enclosed by a sleeve ring 54.
  • the sleeve 54 is bent twice in the transition from its bottom to the side walls 56, and serves for axially and radially biased support of the radial wave springs 18c.
  • the sleeve itself has no function of an axial spring.
  • the function of the axial spring or axial decoupling is taken over by the axially corrugated radial corrugated springs 18c.
  • the sleeve 54 serves only as a stop. FIG.
  • FIG. 31 shows the enlarged section X of the FIG. 30.
  • FIG. 32 shows a side view of a radial wave spring 18c and
  • FIG. 33 shows a plan view of a section of juxtaposed, and axially corrugated radial corrugated springs 18c.
  • FIG. 34 encloses a cross-sectionally U-shaped annular spring sleeve 18d the bearing outer ring 4 in the axial and radial directions.
  • the bottom of the spring sleeve 18d has a radial corrugation with axial wavelength direction such that an externally visible circumferential groove 58 results.
  • FIG. 35 shows the section X of the FIG. 34 in an enlarged view. It is clearly visible how the outer surface 14 is also formed with a shallow recess, so that the axially formed outside the recess or the groove 58 game d between the inside of the spring sleeve 18 d and the outer surface 14 of the outer ring 4 is smaller than the radial corrugation Spring sleeve 18d. This clearance d is available for a radial displacement of the bearing and can be adjusted by appropriate depth of the recess and height of the corrugation.
  • the embodiment is characterized according to FIGS. 34 and 35 by a particularly simple training with few parts. It is understood that the formation of the outer surface 14 of the outer ring 4 with a circumferential recess or groove is not mandatory. With the help of the flat groove in the outer surface 14 of the bearing outer ring 4 is achieved that the curvature of the spring sleeve 18 d can be selected independently of the radial clearance d.
  • the side walls 62 of the spring sleeve 18 d in addition, for example, in the transition region to the bottom 60 outward be curved, so that the spring sleeve takes over the function of an axial spring and radial spring.
  • the spring sleeve 18d according to FIG. 34 has a radial curvature or undulation with axial wave direction.
  • the spring sleeve 18e according to the embodiment FIGS. 36 and 37 a radial corrugation with circumferentially extending wavelength, as shown FIG. 37 can be seen, which is a view in the direction of arrows II-II in FIG. 36 shows.
  • the advantage is achieved that larger elastic compliances are achieved by larger possible wavelengths.
  • the Figures 38 and 39 show a combination of the embodiments of the spring sleeve according to FIGS. 34 to 37 , wherein the spring sleeve 18d of the Figures 38 and 39 having a radial corrugation with axial and circumferentially extending wavelength direction.
  • the spring sleeve 18d of the Figures 38 and 39 having a radial corrugation with axial and circumferentially extending wavelength direction.
  • FIGS. 40 and 41 show an embodiment of a spring sleeve 18g, basically the of FIG. 34 corresponds, but has a plurality of radial bulges with axial wavelength direction, the height of which is different. This allows progressive characteristics to be achieved. With respect to an axial displacement of the bearing, the spring sleeve has 18g no resilient but merely stop action.
  • FIGS. 42 and 43 shows a over the entire width of the outer ring 4 extending radial wave spring whose radial corrugation has a wavelength direction in the circumferential direction, the wave heights are different. This makes it possible to achieve more forgiving, progressive identifiers.
  • radial wave spring 18h can be supplemented by side walls to form a spring sleeve. Further, not only the wave heights but also the wavelengths of the corrugations may be different.
  • FIGS. 44 and 45 corresponds to the FIG. 34 , wherein the outer surface of the bearing outer ring 4 is formed without a recess or groove, so that the wave height of the spring ring 18i is equal to the possible radial displacement of the bearing.
  • the side walls of the spring ring 18i extend parallel to the side walls of the bearing outer ring 4, so that the spring sleeve 18i has no function of an axial spring.
  • the spring sleeve 18d of FIG. 45 corresponds to the FIG. 34 , that is, the spring sleeve 18d additionally has the function of an axial spring.
  • FIG. 46 represents in the left half of the figure in longitudinal section and in the right half of the figure in side view another embodiment of a spring sleeve designed as a radial spring.
  • the bearing outer ring 4 is surrounded by a thin-walled spring steel sheet existing spring sleeve 18j, the is generally U-shaped in cross-section and its radial side walls 66 are radially supported on an annular step 68 which is formed on the side surface of the outer ring 4.
  • a radial compliance is achieved by a crown or radial bulge of the bottom 70 of the spring sleeve 18j.
  • the basic stiffness can be influenced by the sheet thickness.
  • the spring characteristic can be suitably selected by selecting the curvature profile of the floor, optionally multiple corrugated, and / or the contour of the side walls 66.
  • the spring characteristic can be influenced by the fact that the bottom 70 touches the outer surface of the outer ring 4 after a certain radial deformation.
  • an axial compliance of the spring sleeve 18k can be influenced by appropriate design of the side walls 66 and the adjacent side surfaces of the bearing outer ring 4. By asymmetrical bending in its plane, the radial side walls 66 can additionally contribute to the radial compliance of the spring sleeve 18j.
  • Increased compliance in the circumferential direction can be achieved by radial slots 72 penetrating the bottom 70 and partially the sidewalls 66 of the spring sleeve 18k. Due to the interruption of the membrane stresses in the lateral surface or in the bottom of the spring sleeve 18k and their radial compliance is increased.
  • the spring sleeve 18j does not have to extend integrally around the entire circumference of the outer ring 4. It can be designed in the form of two circumferential segments. A cohesion of the spring sleeve is ensured in the installed state by the receiving bore or recess of the base body 8, which is facilitated by the crown of the spring sleeve assembly.
  • a circumferential radial projection 74 of the spring sleeve 18j can be used, which engages in an annular groove 76 on the base body 8.
  • the annular groove 76 may be formed by a formed on the inner surface 16 of the base body 8 gradation, which is laterally closed by the attached to the base 8 ring cover 10. It is understood that at low forces to be absorbed, the spring sleeve 18k may be radially formed so resilient that they can be pressed laterally together with the bearing inner ring 2 and the bearing outer ring 4 and the interposed rolling elements 6 in the body, so that the annular groove 76 in the inner surface 16 may be pierced.
  • FIG. 47 is different from that of FIG. 46 primarily by the fact that the axial fixation of the spring sleeve 18k is effected by annular surfaces 78 of Einlegeingen 78, via which the spring sleeve 18k is supported on a radial side surface of the base body 8 and the correspondingly formed annular cover 10.
  • the Einlegeringe can for example Plastic exist. An axial constraint of the spring sleeve 18k due to a radial displacement can be avoided if necessary by axial play, but this can be very small.
  • Figures 48 to 50 illustrate embodiments of the decoupling device that works with radial wave spring segments, the bearing outer ring, not shown 4 ( FIG. 1 ) do not completely enclose, but only along a peripheral region, for example, of about 180 ° and which are arranged on the loaded side of the bearing outer ring.
  • FIG. 48 shows a side view of a radial wave spring segment 181, which extends over more than half a circumference and is formed with respect to its corrugation similar to, for example, the radial wave spring 18b according to FIG. 4 .
  • a plurality of radial wave spring segments 18I are arranged axially adjacent to each other, as in FIG. 49 shown.
  • a positioning member 82 which is formed as a sleeve segment such that it completely encloses the bearing outer ring 4 together with the radial wave spring segments 181.
  • the positioning member 82 on axial lugs 84 which engage in recesses which on the main body 8 are formed.
  • the positioning member 62 formed such that all radial wave spring segments 18I are arranged axially without offset side by side.
  • the positioning member 82 is provided at its side edges with recesses and projections, so that adjacent radial wave spring segments 18I are each arranged offset in the circumferential direction. This is advantageous for the in FIG. 48 visible support bumps 24 and bumps 26 (for more details see FIG. 4 ) are arranged, for example, on a gap.
  • An advantage associated with the embodiments according to Figures 48 to 50 is achieved, is that the utilization of, for example, complex blanking plate for the radial wave springs with respect to the formation of radial corrugated springs, which extend over the entire circumference (possibly with slot), is significantly improved.

Landscapes

  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Springs (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Replacement Of Web Rolls (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Vibration Prevention Devices (AREA)
  • Soil Working Implements (AREA)
  • Pulleys (AREA)
  • Centrifugal Separators (AREA)
  • Golf Clubs (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Decoupling device for mounting a shaft, especially a shaft of a spherical-disk-shaped enveloping gear operating with a chain as the enveloping device, on a base body (8) has an outer bearing ring (4) having a circular cylindrical outer surface (14) and inside which the shaft is mounted, and an inner surface (16) surrounding the outer surface and rigidly connected to the base body. At least one radial ondular washer (18a) arranged between the outer surface and the inner surface allows restricted relative radial movement between the inner surface and the outer surface under elastic deformation. Independent claims are also included for radial ondular washers.

Description

Die Erfindung betrifft eine Entkopplungsvorrichtung für eine Lagerung einer Welle an einem Grundkörper, insbesondere einer Welle eines mit einer Kette als Umschlingungsmittel arbeitenden CVT-Getriebes. Die Erfindung betrifft weiter eine Radialwellfeder für eine solche Entkopplungsvorrichtung.The invention relates to a decoupling device for a bearing of a shaft on a base body, in particular a shaft of a chain with a belt as a belt CVT. The invention further relates to a radial wave spring for such a decoupling device.

In jüngerer Zeit finden in Kraftfahrzeugen zunehmend Kegelscheiben-Umschlingungsgetriebe mit kontinuierlich variabler Übersetzung Verwendung. Solche Kegelscheiben-Umschlingungsgetriebe enthalten zwei auf in gegenseitigem Abstand befindlichen Wellen gelagerte Kegelscheibenpaare, die von einem in Reibeingriff mit den Kegelflächen der Kegelscheibenpaare befindlichen Umschlingungsmittel umschlungen werden. Durch gegensinnige Veränderung des Abstandes zwischen den Kegelscheibenpaaren lässt sich die Übersetzung des Getriebes kontinuierlich verändern. Als Umschlingungsmittel werden insbesondere bei Getrieben, mit denen höhere Drehmomente übertragen werden können, beispielsweise Drehmomente im Bereich von 300 Nm und mehr, metallische Ketten verwendet.Recently, increasingly used in motor vehicles conical-Umschlingungsgetriebe with continuously variable translation use. Such belt pulleys comprise two pairs of conical pulleys mounted on shafts spaced apart from each other, which are looped around by a belt which is frictionally engaged with the conical surfaces of the pulley pairs. By opposing change in the distance between the conical disk pairs, the ratio of the transmission can be changed continuously. As a belt, in particular in transmissions, with which higher torques can be transmitted, for example, torques in the range of 300 Nm and more, metallic chains used.

Aus der deutschen Offenlegungsschrift DE 102 03 307 A1 ist eine Lageranordnung für ein solches Kegelscheibenumschlingungsgetriebe bekannt. Es wird eine Lageranordnung zur Lagerung von drehbaren Wellen des Getriebes beschrieben, das ein Lager mit einem Lageraußenring und einem Lagerinnenring umfasst, wobei der Lageraußenring in einer Aufnahme an Seitenflächen der Aufnahme axial gesichert ist und die Aufnahme eine im Wesentlichen zylindrische Innenwand aufweist, wobei zwischen dem Lageraußenring und der Innenwandung der Aufnahme ein in radialer Richtung flexibles Element angeordnet ist. Das flexible Element besteht aus zumindest einem in radialer Richtung gewellten oder mit Vorsprüngen versehenen Ringelement besteht. Weiterhin sind in axialer Richtung flexible Elemente zur Schwingungsdämpfung vorgesehen.From the German patent application DE 102 03 307 A1 a bearing arrangement for such a conical-pulley transmission is known. A bearing assembly for supporting rotatable shafts of the transmission is described, which comprises a bearing with a bearing outer ring and a bearing inner ring, wherein the bearing outer ring is axially secured in a receptacle on side surfaces of the receptacle and the receptacle has a substantially cylindrical inner wall, wherein between the Bearing outer ring and the inner wall of the receptacle is arranged in the radial direction a flexible element. The flexible element consists of at least one corrugated in the radial direction or provided with projections ring element. Furthermore, flexible elements for vibration damping are provided in the axial direction.

Ein elastisches Element zum toleranzausgleichenden Einbau von Lagern ist in der Offenlegungsschrift DE 33 38 507 A1 offenbart. Dieses elastische Element ist topfförmig ausgebildet, wobei der Mantel eines Fedemapfes aus einer belieben Anzahl von Lamellen besteht und an den Lamellen nach innen oder außen gerichtete Buckel vorgesehen sind. Das Element kann auch aus einem geschlossenen Mantel mit nach innen oder außen herausgestellten Federzungen gebildet sein. Die Lamellen oder der Mantel sind an der dem Boden abgewandten Seite flanschartig ausgebildet.An elastic element for tolerance compensating installation of bearings is in the Laid-open application DE 33 38 507 A1 disclosed. This elastic element is cup-shaped, wherein the jacket of a Fedemapfes consists of an arbitrary number of slats and are provided on the slats inwardly or outwardly directed hump. The element can also be formed from a closed shell with inwardly or outwardly exposed spring tongues. The fins or the jacket are formed on the side facing away from the bottom flange.

Der Erfindung liegt die Aufgabe zugrunde, die Geräuschübertragung, insbesondere die Körperschallübertragung, von den Kegelscheiben in ein Fahrzeug zu vermindern.The invention has for its object to reduce the noise transmission, in particular the structure-borne sound transmission of the conical disks in a vehicle.

Diese Aufgabe wird mit einer Entkopplungsvorrichtung für eine Lagerung einer Welle an einem Grundkörper, insbesondere einer Welle eines mit einer Kette als Umschlingungsmittel arbeitenden Kegelscheiben-Umschlingungsgetriebes mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved with a decoupling device for a bearing of a shaft on a base body, in particular a shaft of a chain belt as a belt-forming conical-pulley with the features of claim 1.

Im folgenden werden vorteilhafte Ausführungsformen und Weiterbildungen der erfindungsgemäßen Entkopplungsvorrichtung beispielhaft genannt, wobei diese Beispiele nicht abschließend sind.In the following advantageous embodiments and developments of the decoupling device according to the invention are exemplified, these examples are not exhaustive.

Auf die Außenfläche und radial zu dieser verlaufende Seitenflächen ist eine die Radialwellfeder bildende Federhülse mit insgesamt U-förmigem Querschnitt aufgesetzt, deren insgesamt achsparallel verlaufender Boden radial ausgebaucht ist.On the outer surface and radially extending to this side surfaces forming a radial spring spring spring sleeve is placed with a total U-shaped cross-section, the total axially parallel extending bottom is bulged radially.

Der Boden der Federhülse weist wenigstens zwei axial beabstandete, umlaufende radiale Wellungen mit axialer Wellenlängenrichtung auf.The bottom of the spring sleeve has at least two axially spaced, circumferential radial corrugations with axial wavelength direction.

Ein Ringbereich zwischen den radialen Wellungen ragt in eine umlaufende Ausnehmung der Außenfläche ein.An annular region between the radial corrugations protrudes into a circumferential recess of the outer surface.

Der Boden der Federhülse weist wenigstens eine radiale Wellung mit in Umfangsrichtung verlaufender Wellenlängenrichtung auf.The bottom of the spring sleeve has at least one radial corrugation with a direction of wavelength extending in the circumferential direction.

Radiale Wellungen des Bodens mit axialer und/oder in Umfangsrichtung verlaufender Wellenlängenrichtung weisen unterschiedliche Höhen auf.Radial corrugations of the bottom with axial and / or circumferentially extending wavelength direction have different heights.

Radiale Seitenflächen der Außenfläche stützen sich an radialen Seitenflächen der Innenfläche über die insgesamt radial verlaufenden, gebogenen Seitenwände der Federhülse in axialer Richtung elastisch nachgiebig aneinander ab.Radial side surfaces of the outer surface are based on radial side surfaces of the inner surface over the total radially extending, curved side walls of the spring sleeve in the axial direction elastically yielding each other.

Die radialen Seitenwände der Federhülse stützen sich an einer Ringstufe von radialen Seitenwänden der Außenfläche radial ab und der an der Innenfläche anliegende Boden der Federhülse ist ballig ausgebildet.The radial side walls of the spring sleeve are supported radially on an annular step of radial side walls of the outer surface and the voltage applied to the inner surface bottom of the spring sleeve is formed crowned.

Die Federhülse ist mit die Bodenwand durchschneidenden, radialen Schlitzen ausgebildet.The spring sleeve is formed with the bottom wall by cutting radial slots.

Ein umlaufender Vorsprung des Bodens greift in eine Ringnut der Innenfläche ein.A circumferential projection of the bottom engages in an annular groove of the inner surface.

An wenigstens einer die Innenfläche axial begrenzenden, radial einwärts verlaufenden Seitenfläche ist eine Ringfläche ausgebildet, an der sich die Federhülse axial abstützt.On at least one of the inner surface axially delimiting, radially inwardly extending side surface is formed an annular surface on which the spring sleeve is axially supported.

Die Seitenwände der Federhülse sind axial und/oder radial elastisch nachgiebig ausgebildet.The side walls of the spring sleeve are axially and / or radially elastically yielding.

Die Radialwellfeder ist durch sich über Teile des Umfangs der Innenfläche bzw. der Außenfläche erstreckende Federsegmente gebildet.The radial wave spring is formed by extending over parts of the circumference of the inner surface and the outer surface extending spring segments.

Die wenigstens eine Radialwellfeder ist an einer radial belasteten Seite der Lagerung angeordnet ist und erstreckt sich nur über einen Teil des Umfangs und es ist eine Positioniereinrichtung vorgesehen, die die Positionierung der wenigstens einen Radialwellfeder in Umfangsrichtung festlegt.The at least one radial wave spring is arranged on a radially loaded side of the bearing and extends over only part of the circumference and a positioning device is provided which determines the positioning of the at least one radial wave spring in the circumferential direction.

Im folgenden werden Beispiele vorteilhafter Ausbildungen erfindungsgemäßer Radialwellfedem genannt, die in der erfindungsgemäßen Entkopplungseinrichtung eingesetzt werden können.In the following examples of advantageous embodiments of the invention Radialwellfedem be called, which can be used in the decoupling device according to the invention.

Eine Radialwellfeder zum Umschließen wenigstens eines Teilumfangs eines mit einer kreiszylindrischen Außenfläche und daran anschließenden radialen Seitenflächen ausgebildeten Lagerrings ist als eine wenigstens ein Umfangssegment des Lagerrings umschließende Federhülse mit insgesamt U-förmigem Querschnitt ausgebildet, wobei zumindest der Boden der Federhülse eine federnd verformbare Wölbung aufweist.A radial wave spring for enclosing at least a partial circumference of a bearing ring formed with a circular cylindrical outer surface and adjoining radial side surfaces is considered to be at least one circumferential segment the bearing ring enclosing spring sleeve formed with a total of U-shaped cross section, wherein at least the bottom of the spring sleeve has a resiliently deformable curvature.

Der Boden der vorgenannten Radialwellfeder ist mit einem in Umfangsrichtung verlaufenden radialen Vorsprung ausgebildet.The bottom of the aforementioned radial wave spring is formed with a circumferential radial projection.

Die erfindungsgemäße Entkopplungsvorrichtung und der bzw. die erfindungsgemäßen Radialwellfedern können für jedwelche Arten von Lagerungen eingesetzt werden. Vorteilhaft werden sie für Wälzlager eingesetzt, wobei mit solchen Wälzlagern beispielsweise die Wellen eines Kegelscheiben-Umschlingungsgetriebes gelagert sind.The decoupling device according to the invention and the radial corrugated spring (s) according to the invention can be used for any types of bearing arrangements. Advantageously, they are used for rolling bearings, with such bearings, for example, the shafts of a conical-pulley belt are mounted.

Die Erfindung wird im Folgenden anhand schematischer Zeichnungen beispielsweise und mit weiteren Einzelheiten erläutert.The invention is explained below with reference to schematic drawings, for example, and with further details.

Es stellen dar:

  • Figuren 1, 3, 5, 7, 13, 18, 20, 22, 26, 28, 30, 34, 36, 38, 40, 42, 44 und 45 Teilschnitt-Ansichten von Lagerungen, geschnitten parallel zur Lagerachse;
  • Figuren 2, 4, 6, 8, 14, 15, 16, 27, 29, 37, 39 und 43 Teilschnitt-Ansichten der verschiedenen Ausführungsformen von Lagerungen, geschnitten senkrecht zur Lagerachse;
  • Figuren 9 und 11 Teilseiten-Ansichten zweier verschiedener Ausführungsformen von Radialwellfedern;
  • Figuren 10 und 12 Ausschnitte der Ansichten der Figuren 9 und 11;
  • Figur 17 einen Teil-Aufsicht, teilweise geschnitten, einer Lagerung mit einer besonderen Ausführungsform von Radialwellfedern;
  • Figuren 19 und 21 Teil-Seitenansichten von Radialwellfedern;
  • Figuren 23 einen vergrößerten Ausschnitt der Figur 22;
  • Figur 24 eine Teil-Seitenansicht einer Radialwellfeder;
  • Figur 25 eine Teil-Aufsicht auf nebeneinander angeordnete Radialwellfedern;
  • Figur 31 einen vergrößerten Ausschnitt der Figur 30;
  • Figur 32 eine Teil-Seitenansicht auf eine Radialwellfeder;
  • Figur 33 eine Teil-Aufsicht auf nebeneinander angeordnete Radialwellfedern,
  • Figur 35 einen Ausschnitt der Figur 34;
  • Figur 41 einen vergrößerten Ausschnitt der Fig. 40,
  • Figuren 46 und 47 Teilschnitt- und Teilseiten-Ansichten zweier weiterer Ausführungsformen von Radialwellfedern,
  • Figuren 48 und 49 Perspektiv-Ansichten zweier verschiedener Anordnungen von Radialwellfeder-Segmenten mit Positionier-Bauteilen;
  • Figur 50 eine Seitenansicht eines Radialwellfeder-Segments, wie es in den Figuren 48 und 49 verwendet wird;
They show:
  • Figures 1, 3, 5 . 7 . 13 . 18, 20 . 22 . 26, 28 . 30 . 34 . 36 . 38 . 40 . 42, 44 and 45 Partial sectional views of bearings, cut parallel to the bearing axis;
  • FIGS. 2, 4, 6 . 8th . 14, 15, 16 . 27, 29 . 37 . 39 and 43 Partial sectional views of the various embodiments of bearings, cut perpendicular to the bearing axis;
  • FIGS. 9 and 11 Partial side views of two different embodiments of radial wave springs;
  • FIGS. 10 and 12 Excerpts of the views of the FIGS. 9 and 11 ;
  • FIG. 17 a partial plan view, partially in section, a storage with a particular embodiment of radial wave springs;
  • FIGS. 19 and 21 Partial side views of radial wave springs;
  • Figures 23 an enlarged section of the FIG. 22 ;
  • FIG. 24 a partial side view of a radial wave spring;
  • FIG. 25 a partial view of juxtaposed radial wave springs;
  • FIG. 31 an enlarged section of the FIG. 30 ;
  • FIG. 32 a partial side view of a radial wave spring;
  • FIG. 33 a partial view of juxtaposed radial wave springs,
  • FIG. 35 a section of the FIG. 34 ;
  • FIG. 41 an enlarged section of the Fig. 40 .
  • FIGS. 46 and 47 Partial sectional and partial side views of two further embodiments of radial wave springs,
  • Figures 48 and 49 Perspective views of two different arrangements of radial wave spring segments with positioning components;
  • FIG. 50 a side view of a radial wave spring segment, as in the Figures 48 and 49 is used;

Gemäß Figur 1 wird eine nicht dargestellte Welle eines Kegelscheibenpaars eines Kegelscheiben-Umschlingungsgetriebes von einem Lagerinnenring 2 umschlossen, zwischen dem und einem konzentrisch dazu angeordneten Lageraußenring 4 Wälzkörper 6 angeordnet sind, so dass die Bauteile 2, 4 und 6 insgesamt ein Wälzlager bilden. Es versteht sich, dass die Außenfläche des Lagerinnenrings 2, auf der die Wälzkörper 6 sich abwälzen, unmittelbar durch eine entsprechend bearbeitete Außenfläche der nicht dargestellten Welle gebildet sein können. Der Lageraußenring 4 ist in einer Ringausnehmung eines Grundkörpers 8, beispielsweise eines Getriebegehäuses aufgenommen, die gemäß Figur 1 nach rechts durch einen abnehmbaren Ringdeckel 10 verschlossen ist.According to FIG. 1 a shaft, not shown, of a cone pulley pair of a conical-pulley belt drive is enclosed by a bearing inner ring 2, rolling elements 6 are arranged between it and a bearing outer ring 4 arranged concentrically therewith so that the components 2, 4 and 6 together form a roller bearing. It is understood that the outer surface of the bearing inner ring 2, on which the rolling elements 6 roll off, can be formed directly by a correspondingly machined outer surface of the shaft, not shown. The bearing outer ring 4 is received in an annular recess of a base body 8, for example a gear housing, according to FIG. 1 is closed to the right by a removable ring cover 10.

Die Außenfläche des Lageraußenrings 4 stützt sich nicht unmittelbar am Boden der Ringausnehmung ab, sondern unter Zwischenanordnung verschiedener Ringbauteile und eines optional in die Ringausnehmung eingepassten Schale 12. Genauer sind im dargestellten Beispiel zwischen der Außenfläche 14 des Lageraußenrings 4 und der Innenfläche 16 der Schale 12 vier ringförmige Radialwellfedern 18a angeordnet, zwischen denen zur axialen Abstandssicherung Anschlagringe 20a angeordnet sind. Beidseitig axial außen sind Distanzringe 22a vorgesehen.The outer surface of the bearing outer ring 4 is not supported directly at the bottom of the annular recess, but with interposition of different More specifically, in the example shown between the outer surface 14 of the bearing outer ring 4 and the inner surface 16 of the shell 12 four annular radial corrugated springs 18a are arranged between which stop rings 20a are arranged for axial distance assurance. On both sides axially outside spacer rings 22a are provided.

Die Steifigkeit der Radialwellenfedern ist derart, dass mit den vier Radialwellfederringen bzw. Radialwellfedern die gewünschte Steifigkeit der Lagerung gegenüber radialen Verschiebungen der nicht dargestellten Lagerwelle erzielt wird. Während die Radialwellfedern 18a, wie aus Figur 2, die eine Detailansicht der Figur 1 in Richtung A-A zeigt, derart geformt sind, dass sie ständig in Anlage an der Außenfläche 14 und Innenfläche 16 sind, sind die Anschlagringe 20 derart dimensioniert, dass zwischen ihnen und dem Gehäusering 12 ein radiales Spiel d besteht. Auf diese Weise kann sich der Lageraußenring 4 gemäß Figur 2 unter elastischer Verformung der Radialwellfedern 18a um eine Strecke d nach oben bewegen, bis die Anschlagringe 20 in Anlage an die Innenfläche 16 kommen.The stiffness of the radial shaft springs is such that the desired stiffness of the bearing with respect to radial displacements of the bearing shaft, not shown, is achieved with the four radial wave spring rings or radial corrugated springs. While the radial wave springs 18a, as out FIG. 2 which is a detail view of the FIG. 1 in the direction AA, are shaped so that they are constantly in contact with the outer surface 14 and inner surface 16, the stop rings 20 are dimensioned such that there is a radial clearance d between them and the housing ring 12. In this way, the bearing outer ring 4 according to FIG. 2 move under elastic deformation of the radial wave springs 18a by a distance d up until the stop rings 20 come into contact with the inner surface 16.

Der beispielsweise aus Stahl gefertigte Gehäusering 12 ist optional und dient beispielsweise dazu, Verschleiß der Ausnehmung bzw. Bohrung des Grundkörpers 8, der aus Leichtmetall bestehen kann, zu verhindern.The housing ring 12 made of steel, for example, is optional and serves, for example, to prevent wear of the recess or bore of the base body 8, which may consist of light metal.

In den nachfolgenden Ausführungsbeispielen, die anhand von den Figuren 1 und 2 ähnlichen Ansichten erläutert werden, sind jeweils nur diejenigen Bauteile mit Bezugszeichen versehene, die zur Erläuterung wesentlich sind.In the following embodiments, based on the Figures 1 and 2 are explained in similar views, only those components are provided with reference numerals, which are essential for explanation.

Während bei dem Ausführungsbeispiel gemäß den Figuren 1 und 2 die Radialwellfedern 18a längs des Umfangs im wesentlichen konstanten Querschnitt aufweisen und lediglich in Umfangsrichtung gewellt sind, sind bei der Ausführungsform gemäß Figuren 3 und 4 die Radialwellfedern 18b mit Höckern versehen und sind zwischen den Radialwellfedern 18b und axial außerhalb lediglich Positionierringe 22 vorgesehen.While in the embodiment according to the Figures 1 and 2 the radial wave springs 18a have substantially constant cross-section along the circumference and are corrugated only in the circumferential direction are in accordance with the embodiment FIGS. 3 and 4 the radial corrugated springs 18 b provided with bumps and are provided between the radial corrugated springs 18 b and axially outside only positioning rings 22.

Wie aus Figur 4 ersichtlich, sind die Radialwellfedern 18a nach innen und außen mit im Umfangsrichtung beabstandeten Auflagehöckern 24 versehen, die in ständiger Anlage an der Außenfläche 14 bzw. Innenfläche 16 sind. Zwischen den Auflagehöckern 24 sind Anschlaghöcker 26 ausgebildet, zwischen denen und den jeweiligen Flächen im unbelasteten Zustand des Lagers nach außen hin ein Spiel e und nach innen hin ein Spiel f besteht. Wie dargestellt, befinden sich die Anschlaghöcker 26 bevorzugt jeweils an der den Auflagehöckern 24 gegenüberliegenden Seite der Radialwellfedern 18b. Bei einer bestimmten Verformung der Radialwellfedern 18b wirken die Anschlaghöcker 26 als Anschläge, so dass unter hoher Last sowohl die Auflage- als auch die Anschlaghöcker Auflagepunkte zur Abstützung des Lageraußenrings 4 am Grundkörper 8 bilden, wodurch sich eine gleichmäßige Abstützung des Wälzlagers ergibt.How out FIG. 4 As can be seen, the radial wave springs 18a are provided inwardly and outwardly with circumferentially spaced support bumps 24 which are in constant abutment against the outer surface 14 and inner surface 16, respectively. Between the Auflagerhöckern 24 bumps 26 are formed between which and the respective surfaces in the unloaded state of the bearing outwardly a game e and inwardly there is a game f. As shown, the abutment bumps 26 are preferably each on the opposite side of the support cusps 24 of the radial wave springs 18b. At a certain deformation of the radial wave springs 18b, the abutment bumps 26 act as stops, so that under high load both the support and the stop bumps support points for supporting the bearing outer ring 4 on the base body 8, resulting in a uniform support of the bearing.

Die Figuren 5 und 6 zeigen eine den Figuren 3 und 4 weitgehend entsprechende Ausbildung der Lagerung bzw. der Entkopplung des Lageraußenrings 4 vom Grundkörper 8, mittels der die Geräuschübertragung vom Wälzlager in den Grundkörper vermindert wird. Bei der Ausführungsform gemäß Figuren 5 und 6 sind die Anschlaghöcker 26 unterschiedlich hoch ausgebildet. Es sei angenommen, dass das Lager senkrecht nach oben in Richtung des Pfeils S belastet bzw. radial verschoben wird. Bei längs des Umfangs gleichen Spielen e und f wird das Spiel f beim Scheitel S vollständig aufgebraucht, wohingegen zwischen den benachbarten Anschlaghöckern und den zugehörigen Flächen ein Restspiel verbleibt, da die Annäherung an diesen Stellen entsprechend dem Umfangswinkel ϕ geringer ist.The FIGS. 5 and 6 show a den FIGS. 3 and 4 largely corresponding training of storage or decoupling of the bearing outer ring 4 from the main body 8, by means of the noise transmission from the rolling bearing is reduced in the body. In the embodiment according to FIGS. 5 and 6 are the stop bumps 26 of different heights. It is assumed that the bearing is loaded vertically upward in the direction of the arrow S or radially displaced. In games of the same length e and f, the play f at the apex S is completely used up, whereas a residual clearance remains between the adjacent bumps and the associated surfaces, since the approach to these points is smaller in accordance with the circumferential angle φ.

Damit die Anschläge gleichzeitig zur Wirkung kommen, werden die radialen Spiele an den einzelnen Höckern entsprechend der jeweiligen Winkellage angepasst. Dies führt zu einer gleichmäßigeren Lastverteilung für das Lager. Für die einzelnen Spiele gilt:

  • x(ϕ) = xmax cos (ϕ), wobei xmax das Spiel am Scheitelpunkt ist.
So that the attacks come simultaneously to the effect, the radial games are adapted to the individual humps according to the respective angular position. This leads to a more even load distribution for the bearing. For the individual games:
  • x (φ) = x max cos (φ), where x max is the game at the vertex.

Es ist in vielerlei Hinsicht vorteilhaft, die Radialwellfedern bzw. Federringe in Umfangsrichtung festzulegen. Die Positionierung der Radialwellfedern in Umfangsrichtung kann auf unterschiedlichste Weise erfolgen.It is advantageous in many respects to fix the radial wave springs or spring rings in the circumferential direction. The positioning of the radial wave springs in the circumferential direction can be done in different ways.

Gemäß Figuren 7 und 8 greift ein Stift 28, der in eine Ausnehmung 30 des Gehäuserings 12 eingreift, zusätzlich in einen Schlitz 32 ein, mit dem die Radialwellfedern 18 ausgebildet sind. Wie unmittelbar ersichtlich, ist der Stift 28 auf diese Weise in Umfangsrichtung unverrückbar zwischen dem Lageraußenring 4 und dem Gehäusering 12 gehalten, so dass er den bzw. die Radialwellfedern 18 in Umfangsrichtung fixiert.According to FIGS. 7 and 8 engages a pin 28 which engages in a recess 30 of the housing ring 12, in addition to a slot 32, with which the radial wave springs 18 are formed. As can be seen immediately, the pin 28 is held in this way in the circumferential direction immovably between the bearing outer ring 4 and the housing ring 12 so that it fixes the or the radial corrugated springs 18 in the circumferential direction.

Vorteilhaft ist, wenn die Wellen bzw. Höcker von benachbarten Radialwellfedern in Umfangsrichtung zueinander versetzt sind, um eine möglichst gleichmäßige Belastung des Lagers zu erreichen. Um einen gegenseitigen Versatz der in Umfangsrichtung festgelegten Radialwellfedern zu realisieren, müssten unterschiedliche Radialwellfedern mit verschiedener relativer Anordnung von Schlitz und Höckern bzw. Wellen hergestellt werden. Zur Reduzierung der Variantenvielfalt ist es vorteilhaft, den Schlitz 32 derart zwischen Höcker zu legen, dass bei wechselweise umgekehrter, das heißt um 180° verdrehter Montage der Radialwellfedern die gewünschte Positionierung erreicht wird.It is advantageous if the waves or bumps of adjacent radial corrugated springs are offset in the circumferential direction to each other in order to achieve the most uniform loading of the bearing. In order to realize a mutual offset of the circumferentially fixed radial wave springs, different radial wave springs would have to be manufactured with different relative arrangement of slot and bumps or waves. To reduce the variety of variants, it is advantageous to place the slot 32 between bumps such that when alternately reversed, that is rotated by 180 ° mounting the radial corrugated springs, the desired positioning is achieved.

Vorteilhaft ist, den Schlitz 32 mittig zwischen einem radial äußeren Auflagehöcker 24 und einem radial inneren Auflagehöcker 24 anzubringen, wie in Figuren 9 und 10 dargestellt, wobei Fig. 10 einen vergrößerten Ausschnitt der Fig. 9 zeigt.It is advantageous to attach the slot 32 centrally between a radially outer support bump 24 and a radially inner support bump 24, as in FIGS. 9 and 10 shown, where Fig. 10 an enlarged section of the Fig. 9 shows.

Wie aus Fig. 10 unmittelbar ersichtlich, befindet sich bei der durchgehend eingezeichneten Radialwellfeder 18b links vom Stift 28 ein radial auswärts gerichteter Auflagehöcker und rechts vom Stift 28 ein radial einwärts gerichteter Auflagehöcker. Weiter ist links vom Stift ein dem Auflagehöcker 24 gegenüberliegender, radial einwärts gerichteter Anschlaghöcker und rechts von Stift 28 ein dem Auflagehöcker 24 gegenüberliegender, radial auswärts gerichteter Anschlaghöcker 26. Bei um 180° verdrehtem Einbau der Radialwellfeder 18b ergibt sich die gestrichelt eingezeichnete Anordnung, das heißt einem Anschlaghöcker ist jeweils ein Auflagehöcker axial benachbart.How out Fig. 10 immediately visible, is located at the continuously drawn radial wave spring 18b left of the pin 28, a radially outward bearing cradle and right of the pin 28 a radially inwardly directed support hump. Further, to the left of the pin is a support hump 24 opposite, radially inwardly directed abutment bump and right of pin 28 a support cusp 24 opposite, radially outwardly directed abutment bump 26. In 180 ° twisted installation of the radial wave spring 18b results in the dashed line arrangement, that is a stop bump is a support cusp axially adjacent.

Es versteht sich, dass es zahlreiche weitere Möglichkeiten von Höcker- bzw. Wellenanordnungen und Schlitzen gibt, mit denen sich bei geringer Bauteile-Vielfalt hinsichtlich der Radialwellfeder eine möglichst gleichmäßige Kraftverteilung ergibt.It is understood that there are numerous other possibilities of cusp or shaft arrangements and slots, with which results in the smallest possible component diversity with respect to the radial wave spring as uniform as possible power distribution.

Wegen der geringen Unterschiede der Höckerhöhen ist es schwierig, bei Ausbildung der Radialwellfedern gemäß Figuren 9 und 10 deren richtigen, das heißt jeweils um 180° verdrehten Einbau zu erkennen. Dieses Problem ist dadurch lösbar, dass gemäß Figuren 11 und 12 der Schlitz 32 mit zur radialen Richtung schräg verlaufenden Seitenwänden 34 ausgebildet wird. Damit kann auf einfache Weise erkannt werden, ob axial benachbarte Radialwellfedern um 180° verdreht eingebaut sind.Because of the small differences in the Höckerhöhen it is difficult in accordance with training of the radial wave springs FIGS. 9 and 10 their correct, that is each rotated by 180 ° installation recognized. This problem can be solved by that according to FIGS. 11 and 12 the slot 32 is formed with side walls 34 which are inclined to the radial direction. This can be detected in a simple manner, whether axially adjacent radial corrugated springs are installed rotated by 180 °.

Für die umfangsmäßige Fixierung der Radialwellfedern 18 relativ zum Grundkörper 8 gibt es unterschiedlichste Möglichkeiten. Figuren 13 und 14 zeigen eine Passfeder 36, die in eine Nut im Grundkörper 8 eingesetzt ist und Schlitze im Gehäusering 12 und der radialen Feldfeder 18 durchdringt.For the circumferential fixation of the radial wave springs 18 relative to the base body 8, there are a wide variety of possibilities. FIGS. 13 and 14 show a feather key 36 which is inserted into a groove in the base body 8 and penetrates slots in the housing ring 12 and the radial field spring 18.

Figur 15 zeigt ein Ausführungsform, bei der der Gehäusering 12 mit einer radialen Rippe versehen ist, die in den Schlitz 32 der Radialwellfeder 18 eingreift. FIG. 15 shows an embodiment in which the housing ring 12 is provided with a radial rib which engages in the slot 32 of the radial wave spring 18.

Bei der Ausführungsform gemäß Figur 16 ist die Radialwellfeder 18 mit einer radial auswärts verlaufenden Rippe 40 versehen, die in eine Ausnehmung des Gehäuserings 12 eingreift. Der Gehäusering 12 ist in Umfangsrichtung unverrückbar am Grundkörper 8 gehalten.In the embodiment according to FIG. 16 the radial wave spring 18 is provided with a radially outwardly extending rib 40 which engages in a recess of the housing ring 12. The housing ring 12 is held immovably in the circumferential direction on the base body 8.

Eine weitere Anordnung zur axialen Festlegung der Radialwellfedern ist in Figur 17 dargestellt. Bei dieser Ausführungsform endet jede Radialwellfeder 18c auf einer Seite des Schlitzes 32 in einem axial verlaufenden Vorsprung bzw. Zapfen 42. Der Zapfen 42 der axial äußersten Radialwellfeder greift in eine in einer radialen Fläche des Grundkörpers 8 ausgebildete Ausnehmung 44 ein. Die Zapfen 42 der axial jeweils benachbarten Radialwellfedern greifen in den Schlitz 32 der gemäß Figur 17 jeweils rechtsseitig benachbarten Radialwellfeder ein. Die Radialwellfederringe können kostengünstig als Stanz-Biegeteile hergestellt werden.Another arrangement for the axial fixing of the radial wave springs is in FIG. 17 shown. In this embodiment, each radial wave spring 18 c ends on one side of the slot 32 in an axially extending projection or pin 42. The pin 42 of the axially outermost radial wave spring engages in a recess 44 formed in a radial surface of the base body 8. The pins 42 of the axially adjacent respective radial corrugated springs engage in the slot 32 in accordance with FIG. 17 each right side adjacent radial wave spring. The radial wave spring rings can be inexpensively manufactured as stamped and bent parts.

Anhand der Figuren 18 bis 25 werden im Folgenden weitere vorteilhafte Ausführungsformen von Vorrichtungen erläutert, mit denen die Lagerung vom Grundkörper entkoppelt werden kann.Based on FIGS. 18 to 25 Be explained in the following further advantageous embodiments of devices with which the storage of the main body can be decoupled.

Gemäß Figur 18 ist die Außenfläche des Lageraußenrings 4 mit einer breiten Umfangsnut 46 versehen, in der Radialwellfedern 18b angeordnet sind. Radialwellfedern 18b können beispielsweise ähnlich vormontiert werden, wie Sicherungsringe in Wellennuten angebracht werden. Die axial außerhalb der Umfangsnut 46 verbleibenden Schultern des Lageraußenrings 4 (vergrößerte Darstellung X) kann unmittelbar einen radialen Anschlag bilden. Weiter können zwischen Seitenwänden des Grundkörpers 8 bzw. des Ringdeckels 10 und dem Lageraußenring O-Ringe 48 zur axialen Führung angebracht sein.According to FIG. 18 the outer surface of the bearing outer ring 4 is provided with a wide circumferential groove 46, are arranged in the radial wave springs 18b. Radial Wave Springs For example, 18b may be similarly pre-assembled as retaining rings are mounted in shaft grooves. The remaining axially outside of the circumferential groove 46 shoulders of the bearing outer ring 4 (enlarged view X) can directly form a radial stop. Further, between side walls of the base body 8 and the ring cover 10 and the bearing outer ring O-rings 48 may be mounted for axial guidance.

Die Ausführungsform gemäß Figuren 20 und 21 unterscheidet sich von der der Figuren 18 und 19 lediglich darin, dass in der Außenfläche des Lageraußenrings 4 mehrere Nuten 46 ausgebildet sind, in denen jeweils eine einzelne Radialwellfeder 18b angeordnet ist.The embodiment according to FIGS. 20 and 21 is different from that of FIGS. 18 and 19 merely in that in the outer surface of the bearing outer ring 4 a plurality of grooves 46 are formed, in each of which a single radial wave spring 18b is arranged.

Bei der Ausführungsform gemäß Figuren 22 bis 25 ist der Lageraußenring 4 mit zwei Umfangsnuten 46 versehen, wobei in der gemäß Figur 22 linken Umfangsnut drei Radialwellfedern 18c angeordnet sind und in der axial offenen rechten Umfangsnut 46 vier Radialwellfedern 18c angeordnet sind. Die am Grundkörper 8 ausgebildete Gegen- bzw. Innenfläche 16 weist ein Stufe 50 auf, an der sich die linke Axialwellfeder abstützt. Die axial äußerste Radialwellfeder 18c in der rechten Umfangsnut 46 stützt sich an einer radial verlaufenden Seitenfläche 52 des Ringdeckels 10 ab. Figur 23 zeigt den Ausschnitt X der Figur 22 in vergrößerter Darstellung. Die einzelnen Radialwellfedern 18c sind bezüglich ihrer radialen Erstreckung mit Höckern ähnlich beispielsweise Ausführungsform gemäß Figur 4 ausgebildet (siehe Figur 24). Zusätzlich sind die Radialwellfedern 18c in axialer Richtung gewellt, wie aus Figur 25 ersichtlich, die eine Aufsicht auf einen Teil der axial benachbarten Radialwellfedern 18c zeigt. Mit der Anordnung gemäß Figuren 22 bis 25 wird eine Abkopplung bzw. akustische Entkopplung des Lagers vom Grundkörper in radialer und axialer Richtung erzielt. Die zwischen den Umfangsnuten 46 ausgebildete Nase 54 des Lageraußenrings 4 kann als Anschlag genutzt werden.In the embodiment according to FIGS. 22 to 25 the bearing outer ring 4 is provided with two circumferential grooves 46, wherein in accordance with FIG. 22 left circumferential groove three radial wave springs 18c are arranged and in the axially open right circumferential groove 46 four radial corrugated springs 18c are arranged. The formed on the base body 8 opposite or inner surface 16 has a step 50 on which the left Axialwellfeder is supported. The axially outermost radial wave spring 18 c in the right circumferential groove 46 is supported on a radially extending side surface 52 of the annular cover 10. FIG. 23 shows the section X of the FIG. 22 in an enlarged view. The individual radial corrugated springs 18c are similar in terms of their radial extent with bumps, for example, according to embodiment FIG. 4 trained (see FIG. 24 ). In addition, the radial wave springs 18c are corrugated in the axial direction, as shown FIG. 25 apparent, the one Top view of a portion of the axially adjacent radial wave springs 18c shows. With the arrangement according to FIGS. 22 to 25 a decoupling or acoustic decoupling of the bearing is achieved by the body in the radial and axial directions. The formed between the circumferential grooves 46 nose 54 of the bearing outer ring 4 can be used as a stop.

Es versteht sich, dass die Anordnung gemäß den Figuren 22 bis 25 ähnlich wie die anderen Ausführungsbeispiele in vielfacher Hinsicht abgeändert werden kann. Die Anzahl der Nuten, die Wellung der Radialwellfedern bzw. deren Ausbildung mit Höckern, die axiale und radiale Führung und die Anschläge können in jeweils zweckentsprechender Weise durch Änderung der Anzahl der Radialwellfedern, der Nuten, zusätzlicher axialer Wellung, der Verwendung von O-Ringen usw. ausgebildet werden.It is understood that the arrangement according to the FIGS. 22 to 25 similar to how the other embodiments can be modified in many ways. The number of grooves, the corrugation of the radial corrugated springs or their formation with bumps, the axial and radial guidance and the stops can in each zweckentsprechender way by changing the number of radial corrugated springs, the grooves, additional axial corrugation, the use of O-rings, etc .. . be formed.

Figuren 26 und 27 zeigen die Anordnung von Radialwellfedern 18a zwischen dem Lageraußenring 4 und einer auf den Lageraußenring 4 aufgesetzten Ringhülse 54 mit insgesamt U-förmigen Querschnitt. Die Radialwellfedern 18a sitzen lose auf dem Lageraußenring 4 und werden axial von Positionierringen 22 gehalten, die zwischen den äußeren Radialwellfedern und den radialen Seitenwänden 56 der Hülse 54 angeordnet sind. Die Hülse kann beispielsweise als Blechumformteil kostengünstig hergestellt werden und erfüllt durch zweckentsprechend gebogene Ausbildung der Seitenwände 56 gleichzeitig die Funktion einer axialen Feder ähnlich einer Tellerfeder. Auf diese Weise ist die Lagerung gemäß Figuren 26 und 27 axial und radial vom Grundkörper 8 abgekoppelt. FIGS. 26 and 27 show the arrangement of radial corrugated springs 18a between the bearing outer ring 4 and an attached to the bearing outer ring 4 annular sleeve 54 with a total U-shaped cross-section. The radial wave springs 18a are loosely seated on the bearing outer race 4 and held axially by positioning rings 22 disposed between the outer radial wave springs and the radial side walls 56 of the sleeve 54. The sleeve can be produced inexpensively, for example, as sheet metal forming part and fulfilled by appropriately bent formation of the side walls 56 at the same time the function of an axial spring similar to a plate spring. In this way, the storage is according to FIGS. 26 and 27 axially and radially decoupled from the main body 8.

Die Ausführungsform gemäß Figuren 28 und 29 unterscheidet sich von der der Figuren 26 und 27 dadurch, dass anstelle der Radialwellfedern 18a mit Höckern versehene Radialwellfedern 18b verwendet werden und dass zwischen den Radialwellfedern 18b Positionierringe 22 angeordnet sind.The embodiment according to FIGS. 28 and 29 is different from that of FIGS. 26 and 27 in that, instead of the radial corrugated springs 18a, radial corrugated springs 18b provided with bumps are used, and positioning rings 22 are arranged between the radial corrugated springs 18b.

Bei der Ausführungsform gemäß Figuren 30 bis 33 ist der Lageraußenring 4 mit zwei axial nach außen hin offenen Umfangsnuten 46 versehen, in denen axial und radial gewellte Radialwellfedern 18c angeordnet sind, die von einem Hülsenring 54 umschlossen sind. Bei dieser Ausführungsform ist die Hülse 54 im Übergang von ihrem Boden zu den Seitenwänden 56 doppelt abgebogen, und dient zur axial und radial vorgespannten Halterung der Radialwellfedern 18c. Die Hülse selbst hat keine Funktion einer Axialfeder. Die Funktion der Axialfeder bzw. axialen Entkopplung wird von den auch axial gewellten Radialwellfedern 18c übernommen. Die Hülse 54 dient lediglich als Anschlag. Figur 31 zeigt den vergrößerten Ausschnitt X der Figur 30. Figur 32 zeigt eine Seitenansicht auf eine Radialwellfeder 18c und Figur 33 zeigt eine Aufsicht auf einen Ausschnitt der nebeneinander angeordneten, auch axial gewellten Radialwellfedern 18c.In the embodiment according to FIGS. 30 to 33 the bearing outer ring 4 is provided with two axially outwardly open circumferential grooves 46 in which axially and radially corrugated radial corrugated springs 18 c are arranged, which are enclosed by a sleeve ring 54. In this embodiment, the sleeve 54 is bent twice in the transition from its bottom to the side walls 56, and serves for axially and radially biased support of the radial wave springs 18c. The sleeve itself has no function of an axial spring. The function of the axial spring or axial decoupling is taken over by the axially corrugated radial corrugated springs 18c. The sleeve 54 serves only as a stop. FIG. 31 shows the enlarged section X of the FIG. 30. FIG. 32 shows a side view of a radial wave spring 18c and FIG. 33 shows a plan view of a section of juxtaposed, and axially corrugated radial corrugated springs 18c.

Anhand der Figuren 34 bis 45 werden im Folgenden Ausführungsformen von Entkopplungsvorrichtungen erläutert, bei denen die Radialwellfedern durch eine ringförmige Federhülse gebildet sind.Based on FIGS. 34 to 45 hereinafter embodiments of decoupling devices will be explained, in which the radial wave springs are formed by an annular spring sleeve.

Gemäß Figur 34 umschließt eine im Querschnitt insgesamt U-förmige ringförmige Federhülse 18d den Lageraußenring 4 in axialer und radialer Richtung. Der Boden der Federhülse 18d weist eine radiale Wellung mit axialer Wellenlängenrichtung derart auf, dass sich eine von außen sichtbare umlaufende Nut 58 ergibt. Figur 35 zeigt den Ausschnitt X der Figur 34 in vergrößerter Darstellung. Deutlich sichtbar ist, wie die Außenfläche 14 ebenfalls mit einer flachen Ausnehmung ausgebildet ist, sodass das axial außerhalb der Ausnehmung bzw. der Nut 58 gebildete Spiel d zwischen der Innenseite der Federhülse 18d und der Außenfläche 14 des Außenrings 4 kleiner ist als die radiale Wellung der Federhülse 18d. Dieses Spiel d steht für eine radiale Verschiebung des Lagers zur Verfügung und kann durch zweckentsprechende Tiefe der Ausnehmung und Höhe der Wellung eingestellt werden.According to FIG. 34 encloses a cross-sectionally U-shaped annular spring sleeve 18d the bearing outer ring 4 in the axial and radial directions. The bottom of the spring sleeve 18d has a radial corrugation with axial wavelength direction such that an externally visible circumferential groove 58 results. FIG. 35 shows the section X of the FIG. 34 in an enlarged view. It is clearly visible how the outer surface 14 is also formed with a shallow recess, so that the axially formed outside the recess or the groove 58 game d between the inside of the spring sleeve 18 d and the outer surface 14 of the outer ring 4 is smaller than the radial corrugation Spring sleeve 18d. This clearance d is available for a radial displacement of the bearing and can be adjusted by appropriate depth of the recess and height of the corrugation.

Gegenüber den bisher geschilderten Ausführungsformen zeichnet sich die Ausführungsform gemäß Figuren 34 und 35 durch eine besonders einfache Ausbildung mit wenigen Teilen aus. Es versteht sich, dass die Ausbildung der Außenfläche 14 des Außenrings 4 mit einer umlaufenden Ausnehmung bzw. Nut nicht zwingend ist. Mit Hilfe der flachen Nut in der Außenfläche 14 des Lageraußenrings 4 wird erreicht, dass die Wölbungshöhe der Federhülse 18d unabhängig von dem radialen Spiel d gewählt werden kann.Compared with the previously described embodiments, the embodiment is characterized according to FIGS. 34 and 35 by a particularly simple training with few parts. It is understood that the formation of the outer surface 14 of the outer ring 4 with a circumferential recess or groove is not mandatory. With the help of the flat groove in the outer surface 14 of the bearing outer ring 4 is achieved that the curvature of the spring sleeve 18 d can be selected independently of the radial clearance d.

Wie aus Figur 34 weiter ersichtlich, können die Seitenwände 62 der Federhülse 18d zusätzlich beispielsweise im Übergangsbereich zu dem Boden 60 auswärts gewölbt sein, so dass die Federhülse die Funktion einer Axialfeder und Radialfeder übernimmt.How out FIG. 34 can be seen, the side walls 62 of the spring sleeve 18 d in addition, for example, in the transition region to the bottom 60 outward be curved, so that the spring sleeve takes over the function of an axial spring and radial spring.

Die Federhülse 18d gemäß Figur 34 weist eine radiale Wölbung bzw. Wellung mit axialer Wellenrichtung auf. Im Gegensatz dazu weist die Federhülse 18e der Ausführungsform gemäß Figuren 36 und 37 eine radiale Wellung mit in Umfangsrichtung verlaufender Wellenlänge auf, wie aus Figur 37 ersichtlich, die eine Ansicht in Richtung der Pfeile II-II in Figur 36 zeigt. Mit der Ausführungsform gemäß Figuren 36 und 37 wird der Vorteil erzielt, dass durch größere mögliche Wellenlängen größere elastische Nachgiebigkeiten erzielt werden.The spring sleeve 18d according to FIG. 34 has a radial curvature or undulation with axial wave direction. In contrast, the spring sleeve 18e according to the embodiment FIGS. 36 and 37 a radial corrugation with circumferentially extending wavelength, as shown FIG. 37 can be seen, which is a view in the direction of arrows II-II in FIG. 36 shows. With the embodiment according to FIGS. 36 and 37 the advantage is achieved that larger elastic compliances are achieved by larger possible wavelengths.

Die Figuren 38 und 39 zeigen eine Kombination der Ausführungsformen der Federhülse gemäß Figuren 34 bis 37, wobei die Federhülse 18d der Figuren 38 und 39 eine radiale Wellung mit axialer und in Umfangsrichtung verlaufender Wellenlängenrichtung aufweist. Damit wird ein noch größeres Energieaufnahmevermögen aufgrund der elastischen Verformungen in größeren Werkstoffbereichen der Federhülse erzielt.The Figures 38 and 39 show a combination of the embodiments of the spring sleeve according to FIGS. 34 to 37 , wherein the spring sleeve 18d of the Figures 38 and 39 having a radial corrugation with axial and circumferentially extending wavelength direction. Thus, an even greater energy absorption capacity due to the elastic deformations in larger material areas of the spring sleeve is achieved.

Figuren 40 und 41 zeigen eine Ausführungsform einer Federhülse 18g, die grundsätzlich der der Figur 34 entspricht, jedoch mehrere radiale Wölbungen mit axialer Wellenlängenrichtung hat, deren Höhe unterschiedlich hoch ist. Damit lassen sich progressive Kennlinien erzielen. Bezüglich einer axialen Verschiebung des Lager hat die Federhülse 18g keine federnde sondern lediglich Anschlagwirkung. FIGS. 40 and 41 show an embodiment of a spring sleeve 18g, basically the of FIG. 34 corresponds, but has a plurality of radial bulges with axial wavelength direction, the height of which is different. This allows progressive characteristics to be achieved. With respect to an axial displacement of the bearing, the spring sleeve has 18g no resilient but merely stop action.

Die Ausführungsform gemäß Figur 42 und 43 zeigt eine sich über die gesamte Breite des Außenrings 4 erstreckende Radialwellfeder, deren radiale Wellung eine Wellenlängenrichtung in Umfangsrichtung hat, wobei die Wellenhöhen unterschiedlich sind. Damit lassen sich nachgiebigere, progressive Kennungen erzielen.The embodiment according to FIGS. 42 and 43 shows a over the entire width of the outer ring 4 extending radial wave spring whose radial corrugation has a wavelength direction in the circumferential direction, the wave heights are different. This makes it possible to achieve more forgiving, progressive identifiers.

Es versteht sich, dass die Radialwellfeder 18h durch Seitenwände zu einer Federhülse ergänzt werden kann. Weiter können nicht nur die Wellenhöhen sondern auch die Wellenlängen der Wellungen unterschiedlich sein.It is understood that the radial wave spring 18h can be supplemented by side walls to form a spring sleeve. Further, not only the wave heights but also the wavelengths of the corrugations may be different.

Die Ausführungsform gemäß Figuren 44 und 45 entspricht der der Figur 34, wobei die Außenfläche des Lageraußenrings 4 ohne Ausnehmung bzw. Nut ausgebildet ist, so dass die Wellenhöhe des Federrings 18i gleich der möglichen radialen Verschiebung des Lagers ist. Die Seitenwände des Federrings 18i verlaufen parallel zu den Seitenwänden des Lageraußenrings 4, so dass die Federhülse 18i keine Funktion einer Axialfeder hat. Die Federhülse 18d der Figur 45 entspricht der der Figur 34, das heißt die Federhülse 18d hat zusätzlich die Funktion einer Axialfeder.The embodiment according to FIGS. 44 and 45 corresponds to the FIG. 34 , wherein the outer surface of the bearing outer ring 4 is formed without a recess or groove, so that the wave height of the spring ring 18i is equal to the possible radial displacement of the bearing. The side walls of the spring ring 18i extend parallel to the side walls of the bearing outer ring 4, so that the spring sleeve 18i has no function of an axial spring. The spring sleeve 18d of FIG. 45 corresponds to the FIG. 34 , that is, the spring sleeve 18d additionally has the function of an axial spring.

Figur 46 stellt in der linken Figurenhälfte im Längsschnitt und in der rechten Figurenhälfte in Seitenansicht eine weitere Ausführungsform einer als Federhülse ausgebildeten Radialwellfeder dar. Der Lageraußenring 4 wird von einer aus dünnwandigen Federstahlblech bestehenden Federhülse 18j umschlossen, die im Querschnitt insgesamt U-förmig ist und deren radiale Seitenwände 66 sich radial an einer Ringstufe 68 abstützen, die an der Seitenfläche des Außenrings 4 ausgebildet ist. Eine radiale Nachgiebigkeit wird durch eine Balligkeit bzw. radiale Auswölbung des Bodens 70 der Federhülse 18j erzielt. Die Grundsteifigkeit kann über die Blechdicke beeinflusst werden. Die Federkennlinie kann durch Wahl des Krümmungsverlaufes des Bodens, ggf. mehrfach gewellt, und/oder die Kontur der Seitenwände 66 zweckentsprechend gewählt werden. Beispielsweise kann die Federkennlinie dadurch beeinflusst werden, dass der Boden 70 die Außenfläche des Außenrings 4 nach einer gewissen radialen Verformung berührt. Weiter kann eine axiale Nachgiebigkeit der Federhülse 18k durch entsprechende Ausbildung der Seitenwände 66 und der benachbarten Seitenflächen des Lageraußenrings 4 beeinflusst werden. Durch unsymmetrische Biegung in ihrer Ebene können die radialen Seitenwände 66 zusätzlichen eine Beitrag zur radialen Nachgiebigkeit der Federhülse 18j leisten. FIG. 46 represents in the left half of the figure in longitudinal section and in the right half of the figure in side view another embodiment of a spring sleeve designed as a radial spring. The bearing outer ring 4 is surrounded by a thin-walled spring steel sheet existing spring sleeve 18j, the is generally U-shaped in cross-section and its radial side walls 66 are radially supported on an annular step 68 which is formed on the side surface of the outer ring 4. A radial compliance is achieved by a crown or radial bulge of the bottom 70 of the spring sleeve 18j. The basic stiffness can be influenced by the sheet thickness. The spring characteristic can be suitably selected by selecting the curvature profile of the floor, optionally multiple corrugated, and / or the contour of the side walls 66. For example, the spring characteristic can be influenced by the fact that the bottom 70 touches the outer surface of the outer ring 4 after a certain radial deformation. Furthermore, an axial compliance of the spring sleeve 18k can be influenced by appropriate design of the side walls 66 and the adjacent side surfaces of the bearing outer ring 4. By asymmetrical bending in its plane, the radial side walls 66 can additionally contribute to the radial compliance of the spring sleeve 18j.

Eine erhöhte Nachgiebigkeit in Umfangsrichtung kann durch radiale Schlitze 72 erzielt werden, die den Boden 70 und teilweise die Seitenwände 66 der Federhülse 18k durchdringen. Durch die Unterbrechung der Membranspannungen in der Mantelfläche bzw. im Boden der Federhülse 18k wird auch deren radiale Nachgiebigkeit erhöht.Increased compliance in the circumferential direction can be achieved by radial slots 72 penetrating the bottom 70 and partially the sidewalls 66 of the spring sleeve 18k. Due to the interruption of the membrane stresses in the lateral surface or in the bottom of the spring sleeve 18k and their radial compliance is increased.

Dadurch, dass die radialen Seitenwände 66 den Außenring 4 weit über- bzw. umgreifen, wird einerseits der radiale Platzbedarf minimiert und andererseits eine relativ große axiale Nachgiebigkeit ermöglicht. Ein Abrutschen der Seitenwände 66 von der Ringstufe 68 kann erforderlichenfalls durch die Ausbildung der Stufe 68 mit einer entsprechenden Hinterschneidung verhindert werden. Die Federhülse 18j muss sich nicht einteilig um den gesamten Umfang des Außenrings 4 erstrecken. Sie kann in Form zweier Umfangssegmente ausgebildet sein. Ein Zusammenhalt der Federhülse ist im Einbauzustand durch die aufnehmende Bohrung bzw.- Ausnehmung des Grundkörpers 8 gewährleistet, wobei durch die Balligkeit der Federhülse deren Montage erleichtert wird.Due to the fact that the radial side walls 66 far exceed or surround the outer ring 4, on the one hand the radial space requirement is minimized and on the other hand a relatively large axial compliance is enabled. Slipping off the side walls 66 of the annular step 68 can be prevented if necessary by the formation of the step 68 with a corresponding undercut. The spring sleeve 18j does not have to extend integrally around the entire circumference of the outer ring 4. It can be designed in the form of two circumferential segments. A cohesion of the spring sleeve is ensured in the installed state by the receiving bore or recess of the base body 8, which is facilitated by the crown of the spring sleeve assembly.

Zur axialen Fixierung des Lagers kann ein umlaufender radialer Vorsprung 74 der Federhülse 18j dienen, der in eine Ringnut 76 am Grundkörper 8 eingreift. Die Ringnut 76 kann durch eine an der Innenfläche 16 des Grundkörpers 8 ausgebildete Abstufung gebildet sein, die durch den an dem Grundkörper 8 befestigten Ringdeckel 10 seitlich geschlossen wird. Es versteht sich, dass bei geringen aufzunehmenden Kräften die Federhülse 18k radial derart nachgiebig ausgebildet sein kann, dass sie zusammen mit dem Lagerinnenring 2 und dem Lageraußenring 4 und dem dazwischen angeordneten Wälzkörpern 6 seitlich in den Grundkörper eingepresst werden kann, so dass die Ringnut 76 in die Innenfläche 16 eingestochen sein kann.For axially fixing the bearing, a circumferential radial projection 74 of the spring sleeve 18j can be used, which engages in an annular groove 76 on the base body 8. The annular groove 76 may be formed by a formed on the inner surface 16 of the base body 8 gradation, which is laterally closed by the attached to the base 8 ring cover 10. It is understood that at low forces to be absorbed, the spring sleeve 18k may be radially formed so resilient that they can be pressed laterally together with the bearing inner ring 2 and the bearing outer ring 4 and the interposed rolling elements 6 in the body, so that the annular groove 76 in the inner surface 16 may be pierced.

Die Ausführungsform der Figur 47 unterscheidet sich von der der Figur 46 in erster Linie dadurch, dass die axiale Fixierung der Federhülse 18k durch Ringflächen 78 von Einlegeringen 78 erfolgt, über die sich die Federhülse 18k an einer radialen Seitenfläche des Grundkörpers 8 bzw. des entsprechend ausgebildeten Ringdeckels 10 abstützt. Die Einlegeringe können beispielsweise aus Kunststoff bestehen. Eine axiale Zwängung der Federhülse 18k infolge einer radialen Verschiebung kann erforderlichenfalls durch axiales Spiel vermieden werden, das jedoch sehr klein sein kann.The embodiment of the FIG. 47 is different from that of FIG. 46 primarily by the fact that the axial fixation of the spring sleeve 18k is effected by annular surfaces 78 of Einlegeingen 78, via which the spring sleeve 18k is supported on a radial side surface of the base body 8 and the correspondingly formed annular cover 10. The Einlegeringe can for example Plastic exist. An axial constraint of the spring sleeve 18k due to a radial displacement can be avoided if necessary by axial play, but this can be very small.

Figuren 48 bis 50 stellen Ausführungsformen der Entkopplungsvorrichtung dar, die mit Radialwellfeder-Segmenten arbeitet, die den nicht dargestellten Lageraußenring 4 (Figur 1) nicht vollständig umschließen, sondern nur längs eines Umfangsbereiches beispielsweise von etwa 180° und die auf der belasteten Seite des Lageraußenrings angeordnet sind. Figures 48 to 50 illustrate embodiments of the decoupling device that works with radial wave spring segments, the bearing outer ring, not shown 4 ( FIG. 1 ) do not completely enclose, but only along a peripheral region, for example, of about 180 ° and which are arranged on the loaded side of the bearing outer ring.

Figur 48 zeigt eine Seitenansicht eines Radialwellfeder-Segments 181, das sich über mehr als einen halben Umfang erstreckt und bezüglich seiner Wellung ähnlich ausgebildet ist wie beispielsweise die Radialwellfeder 18b gemäß Figur 4. Um den nicht dargestellten Lageraußenring sind axial nebeneinander mehrere Radialwellfeder-Segmente 18I angeordnet, wie in Figur 49 gezeigt. Zur Positionierung der Radialwellfeder-Segmente 18I in Umfangsrichtung dient ein Positionierbauteil 82, das als Hülsensegment derart ausgebildet ist, dass es zusammen mit den Radialwellfeder-Segmenten 181 den Lageraußenring 4 vollständig umschließt. Zur Fixierung in Umfangsrichtung weist das Positionierbauteil 82 axiale Ansätze 84 auf, die in Ausnehmungen eingreifen, die an dem Grundkörper 8 (Figur 1) ausgebildet sind. Bei der Ausführungsform gemäß Figur 47 ist das Positionierbauteil 62 derart ausgebildet, dass alle Radialwellfeder-Segmente 18I axial ohne Versatz nebeneinander angeordnet sind. FIG. 48 shows a side view of a radial wave spring segment 181, which extends over more than half a circumference and is formed with respect to its corrugation similar to, for example, the radial wave spring 18b according to FIG. 4 , To the bearing outer ring, not shown, a plurality of radial wave spring segments 18I are arranged axially adjacent to each other, as in FIG. 49 shown. For positioning the radial wave spring segments 18I in the circumferential direction is a positioning member 82 which is formed as a sleeve segment such that it completely encloses the bearing outer ring 4 together with the radial wave spring segments 181. For fixing in the circumferential direction, the positioning member 82 on axial lugs 84 which engage in recesses which on the main body 8 (FIGS. FIG. 1 ) are formed. In the embodiment according to FIG. 47 is the positioning member 62 formed such that all radial wave spring segments 18I are arranged axially without offset side by side.

Bei der Ausführungsform gemäß Figur 50 ist das Positionierbauteil 82 an seinen Seitenrändern mit Ausnehmungen und Vorsprüngen versehen, so dass benachbarte Radialwellfeder-Segmente 18I jeweils in Umfangsrichtung versetzt angeordnet sind. Dies ist vorteilhaft, damit die in Figur 48 sichtbaren Auflagehöcker 24 und Anschlaghöcker 26 (genaueres siehe Figur 4) beispielsweise auf Lücke angeordnet sind.In the embodiment according to FIG. 50 the positioning member 82 is provided at its side edges with recesses and projections, so that adjacent radial wave spring segments 18I are each arranged offset in the circumferential direction. This is advantageous for the in FIG. 48 visible support bumps 24 and bumps 26 (for more details see FIG. 4 ) are arranged, for example, on a gap.

Ein Vorteil, der mit den Ausführungsformen gemäß Figuren 48 bis 50 erzielt wird, liegt darin, dass die Ausnutzung von beispielsweise aufwendigem Stanzblech für die Radialwellfedern gegenüber der Ausbildung von Radialwellfedern, die sich über den gesamten Umfang (ggf. mit Schlitz) erstrecken, deutlich verbessert ist.An advantage associated with the embodiments according to Figures 48 to 50 is achieved, is that the utilization of, for example, complex blanking plate for the radial wave springs with respect to the formation of radial corrugated springs, which extend over the entire circumference (possibly with slot), is significantly improved.

Die mit der Anmeldung eingereichten Patentansprüche sind Formulierungsvorschläge ohne Präjudiz für die Erzielung weitergehenden Patentschutzes. Die Anmelderin behält sich vor, noch weitere, bisher nur in der Beschreibung und/oder Zeichnungen offenbarte Merkmalskombination zu beanspruchen.The claims filed with the application are formulation proposals without prejudice to the achievement of further patent protection. The Applicant reserves the right to claim further, previously only disclosed in the description and / or drawings feature combination.

In Unteransprüchen verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines selbstständigen, gegenständlichen Schutzes für die Merkmalskombinationen der rückbezogenen Unteransprüche zu verstehen.Relationships used in subclaims indicate the further development of the subject of the main claim by the features of the respective subclaim; they should not be construed as a waiver of the attainment of independent, objective protection for the feature combinations of the dependent claims.

Da die Gegenstände der Unteransprüche im Hinblick auf den Stand der Technik am Prioritätstag eigene und unabhängige Erfindungen bilden können, behält die Anmelderin sich vor, sie zum Gegenstand unabhängiger Ansprüche oder Teilungserklärungen zu machen. Sie können weiterhin auch selbstständige Erfindungen enthalten, die eine von den Gegenständen der vorhergehenden Unteransprüche unabhängige Gestaltung aufweisen.Since the subject-matter of the subclaims can form separate and independent inventions with regard to the prior art on the priority date, the Applicant reserves the right to make them the subject of independent claims or statements of division. They may further contain independent inventions having an independent of the subjects of the preceding sub-claims design.

Die Ausführungsbeispiele sind nicht als Einschränkung der Erfindung zu verstehen. Vielmehr sind im Rahmen der vorliegenden Offenbarung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche Varianten, Elemente und Kombinationen und/oder Materialien, die zum Beispiel durch Kombination oder Abwandlung von einzelnen in Verbindung mit den in der allgemeinen Beschreibung und Ausführungsformen sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten für den Fachmann im Hinblick auf die Lösung der Aufgabe entnehmbar sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder zu neuen Verfahrensschritten bzw. Verfahrensschrittfolgen führen, auch soweit sie Herstell-, Prüf- und Arbeitsverfahren betreffen.The embodiments are not to be understood as limiting the invention. Rather, numerous modifications and variations are possible within the scope of the present disclosure, in particular those variants, elements and combinations and / or materials, for example, by combination or modification of individual in conjunction with those described in the general description and embodiments and the claims and in The features or elements or method steps contained in the drawings for the expert with regard to the solution of the problem can be removed and lead by combinable features to a new subject or to new process steps or process steps, even if they concern manufacturing, testing and working procedures.

Claims (14)

  1. Decoupling device for a bearing arrangement of a shaft on a basic body (8), in particular of a shaft of a continuously variable cone-pulley transmission which operates with a chain as an endless chain-belt, comprising
    - a bearing outer ring (4) which is formed with a cylindrical outer surface (14) and within which the shaft is mounted, and
    - an inner surface (16) which is rigidly connected to the basic body (8) and which surrounds the outer surface (14),
    wherein at least one radial ondular washer (18d - 18k) is arranged between the outer surface (14) and the inner surface (16), which radial ondular washer, under elastic deformation, permits a limited relative radial movement between the inner surface (16) and the outer surface (14), characterized in that a spring sleeve which forms the radial ondular washer (18d - 18k) and which has a U-shaped overall cross section is placed onto the outer surface (14) and onto side surfaces which run radially relative to said outer surface, the base (60) of which spring sleeve runs axially parallel overall and is radially bulged.
  2. Decoupling device according to Claim 1, wherein the base (60) has at least two axially spaced apart encircling radial undulations with an axial wavelength direction.
  3. Decoupling device according to Claim 1 or 2, wherein an annular region (58) between the radial undulations projects into an encircling recess of the outer surface (14).
  4. Decoupling device according to one of Claims 1 to 3, wherein the base (60) of the spring sleeve (18e) has a radial undulation with a wavelength direction running in the circumferential direction.
  5. Decoupling device according to Claim 1, wherein radial undulations of the base (60) with a wavelength direction running in the axial and/or in the circumferential direction have different heights.
  6. Decoupling device according to one of Claims 1 to 5, wherein radial side surfaces of the outer surface (14) are supported in an elastically flexible manner in the axial direction against radial side surfaces of the inner surface (16) via the curved side walls (62), which run radially overall, of the spring sleeve (18d).
  7. Decoupling device according to Claim 1, wherein the radial side walls (66) of the spring sleeve (18j; 18k) are supported radially on an annular step (68) of radial side surfaces of the outer surface (14), and the base (70), which bears against the inner surface (16), of the spring sleeve (18j; 18k) is of convex design.
  8. Decoupling device according to Claim 7, wherein the spring sleeve (18j; 18k) is formed with radial slots (72) which cut through the base (70).
  9. Decoupling device according to Claim 7 or 8, wherein an encircling projection (74) of the base (70) engages into an annular groove (76) of the inner surface (16).
  10. Decoupling device according to Claim 7 or 8, wherein, on at least one radially inwardly running side surface which axially delimits the inner surface (16), there is formed an annular surface (78) against which the spring sleeve is axially supported.
  11. Decoupling device according to one of Claims 7 to 9, wherein the side walls (66) of the spring sleeve (18; 18k) are of axially and/or radially elastically flexible design.
  12. Decoupling device according to one of Claims 1 to 11, wherein the radial ondular washer is formed by spring segments which extend over parts of the circumference of the inner surface or the outer surface.
  13. Radial ondular washer for a decoupling device according to one of the preceding claims for surrounding at least a part of the circumference of a bearing ring (4) which is formed with a round cylindrical outer surface and with radial side surfaces adjoining said outer surface, characterized in that the radial ondular washer is formed as a spring sleeve (18d - 18k) which surrounds at least one circumferential segment of the bearing ring and which has a U-shaped overall cross section, wherein at least the base (60; 70)
    of the spring sleeve has a resiliently deformable bulge.
  14. Radial ondular washer according to Claim 13, wherein the base (70) is formed with a radial projection (74) running in the circumferential direction.
EP08000885A 2002-02-28 2003-02-25 Decoupling device for mounting a support shaft on a base and radial ondular washer Expired - Lifetime EP1908972B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10208995 2002-02-28
EP03722195A EP1481174B1 (en) 2002-02-28 2003-02-25 Decoupling device for mounting a shaft on a base and radial ondular washer

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP03722195.9 Division 2003-02-25
EP03722195A Division EP1481174B1 (en) 2002-02-28 2003-02-25 Decoupling device for mounting a shaft on a base and radial ondular washer

Publications (3)

Publication Number Publication Date
EP1908972A2 EP1908972A2 (en) 2008-04-09
EP1908972A3 EP1908972A3 (en) 2010-08-18
EP1908972B1 true EP1908972B1 (en) 2011-11-02

Family

ID=27740559

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03722195A Expired - Lifetime EP1481174B1 (en) 2002-02-28 2003-02-25 Decoupling device for mounting a shaft on a base and radial ondular washer
EP08000885A Expired - Lifetime EP1908972B1 (en) 2002-02-28 2003-02-25 Decoupling device for mounting a support shaft on a base and radial ondular washer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03722195A Expired - Lifetime EP1481174B1 (en) 2002-02-28 2003-02-25 Decoupling device for mounting a shaft on a base and radial ondular washer

Country Status (10)

Country Link
US (2) US7478952B2 (en)
EP (2) EP1481174B1 (en)
JP (1) JP4431395B2 (en)
KR (1) KR20040094742A (en)
CN (1) CN1327144C (en)
AT (2) ATE410610T1 (en)
AU (1) AU2003229478A1 (en)
DE (3) DE10307842A1 (en)
NL (1) NL1022788C2 (en)
WO (1) WO2003072969A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209459A1 (en) 2012-06-05 2013-12-05 Schaeffler Technologies AG & Co. KG Bearing for continuously variable transmission gear box for motor car, has shell located in contact with side flanges at two axial surfaces of outer bearing ring, where one side flange is fixed at outer bearing ring in form-fit manner
DE102013211461A1 (en) 2012-06-22 2013-12-24 Schaeffler Technologies AG & Co. KG Bearing of stepless gear box for e.g. truck, has outer bearing ring whose recess portion is extended in radially oriented side wall, and embracing shell that is spaced apart from a separate intermediate element of outer bearing ring
DE102012222802A1 (en) 2012-12-11 2014-06-12 Schaeffler Technologies Gmbh & Co. Kg Rolling bearing arrangement for e.g. motor vehicle, has reduction unit comprising multiple identical metallic spring clips, which are formed in U-shape and comprise spherical center part connected with each other with two legs
DE102014220068A1 (en) 2014-10-02 2016-04-07 Schaeffler Technologies AG & Co. KG Storage for acoustic decoupling
DE102015222644A1 (en) 2015-01-14 2016-07-14 Schaeffler Technologies AG & Co. KG Noise-isolated bearing for a CVT gearbox with oval groove
US11291195B2 (en) * 2020-01-15 2022-04-05 Shimano Inc. Fishing reel

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806827B2 (en) * 2003-04-07 2011-11-02 シェフラー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Conical disk-type winding transmission and ring with protrusion
DE102004006888A1 (en) * 2004-02-12 2005-09-01 Hilti Ag suction
FR2880661B1 (en) * 2005-01-10 2008-08-08 Timken France Soc Par Actions BEARING MODULE
DE102006012598B4 (en) * 2006-03-18 2010-10-07 Zf Lenksysteme Gmbh roller bearing
PL1898108T3 (en) 2006-09-07 2012-12-31 Saint Gobain Performance Plastics Rencol Ltd Combination mounting ring
US7589447B2 (en) * 2006-12-05 2009-09-15 Honeywell International Inc. High speed aerospace generator resilient mount
EP2087984B1 (en) * 2008-02-05 2010-05-12 Texmag GmbH Vertriebsgesellschaft Roller for applying contact pressure to sheets of material
DE102008013131B4 (en) * 2008-03-07 2015-12-31 Ab Skf Bearing arrangement for a carrying roller
JP5167514B2 (en) * 2008-05-29 2013-03-21 Ntn株式会社 Rolling bearing assembly
WO2010062519A1 (en) * 2008-10-27 2010-06-03 The Timken Company Noise isolating rolling element bearing for a crankshaft
US8851227B2 (en) * 2009-01-23 2014-10-07 Aktiebolaget Skf Bearing assembly for a power steering mechanism
US8337090B2 (en) * 2009-09-10 2012-12-25 Pratt & Whitney Canada Corp. Bearing support flexible ring
US8540258B2 (en) * 2009-11-30 2013-09-24 Mando Corporation Rack assist type electric power steering apparatus
DE102009056352B4 (en) 2009-11-30 2015-06-18 Schaeffler Technologies AG & Co. KG Rolling bearing mounted on the bearing outer ring hump-like projections
DE102011012913A1 (en) 2010-03-22 2011-09-22 Schaeffler Technologies Gmbh & Co. Kg bearing element
DE102010015709A1 (en) 2010-04-21 2011-10-27 Schaeffler Technologies Gmbh & Co. Kg Acoustic decoupling device for roller bearing for bearing shaft of cone disk set in cone disk embracing gear in motor car, has axial middle area curved outward in convex manner along recesses that are arranged in distributed manner
PT2412528E (en) * 2010-07-28 2015-02-27 Felix Böttcher GmbH & Co KG Method for repairing a cylinder
DE102010054937A1 (en) * 2010-12-17 2012-06-21 Schaeffler Technologies Gmbh & Co. Kg Bearing arrangement for a turbocharger
DE102011005761A1 (en) * 2011-03-18 2012-09-20 Schaeffler Technologies Gmbh & Co. Kg Bearing arrangement with a fishing camp
CA2840231A1 (en) 2011-07-11 2013-01-17 Paper Software LLC System and method for processing document
BR112014026821A2 (en) * 2012-04-25 2018-11-27 Gen Electric shock absorber bearing assembly, one-piece assembly method and rotor assembly.
WO2014000797A1 (en) * 2012-06-28 2014-01-03 Aktiebolaget Skf Machine arrangement
DE102012216447A1 (en) 2012-09-14 2014-05-15 Schaeffler Technologies Gmbh & Co. Kg Antifriction bearing unit i.e. safety bearing unit, for use in magnetic bearing for supporting shaft of continuously variable transmission in e.g. lorry, has damping coating arranged radially on surface at outer side of bearing outer ring
DE102012221066A1 (en) * 2012-11-19 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Bearing arrangement for supporting a shaft section, in particular in an internal rotor motor
WO2014150356A1 (en) 2013-03-15 2014-09-25 King Cycle Group, Inc. Cylinder assembly using a shim
DE102013213172A1 (en) * 2013-07-04 2015-01-08 Bosch Mahle Turbo Systems Gmbh & Co. Kg turbocharger
DE102013215837A1 (en) * 2013-08-12 2015-02-12 Schaeffler Technologies Gmbh & Co. Kg roller bearing
JP2015068307A (en) * 2013-09-30 2015-04-13 三浦工業株式会社 Scroll fluid machine
DE102013226527A1 (en) * 2013-12-18 2015-06-18 Zf Friedrichshafen Ag Combined rolling and sliding bearing of a gear shaft
US20150252841A1 (en) * 2014-03-05 2015-09-10 Schaeffler Technologies AG & Co. KG Bearing assembly with integrated spring
JP6481260B2 (en) * 2014-04-14 2019-03-13 日本精工株式会社 Rolling bearing
DE102014213880B4 (en) * 2014-07-16 2016-04-07 Aktiebolaget Skf Bearing ring of a bearing, in particular a rolling bearing
DE102015207156A1 (en) 2015-04-20 2016-10-20 Schaeffler Technologies AG & Co. KG Double clutch
JP6513501B2 (en) * 2015-06-15 2019-05-15 大豊工業株式会社 Washer manufacturing method and washer
EP3255289B1 (en) * 2016-06-09 2020-12-09 Claverham Limited Relief slot for a load bearing assembly
DE102016211741A1 (en) * 2016-06-29 2018-01-04 Schaeffler Technologies AG & Co. KG Rolling and housing for a transmission
DE102016211714B3 (en) * 2016-06-29 2017-09-07 Ford Global Technologies, Llc Transmission unit for a motor vehicle
KR101854984B1 (en) * 2016-07-05 2018-05-04 주식회사 만도 Rack Assist Type Electric Power Steering Apparatus
US10228051B2 (en) * 2016-07-22 2019-03-12 Ford Global Technologies, Llc Two-piece molded pulley having radial bearing distortion-reducing characteristics
DE102016214505A1 (en) 2016-08-05 2018-02-08 Robert Bosch Gmbh Compensation sleeve for a bearing device, bearing device with a compensating sleeve and method for mounting a compensating sleeve
US10247237B2 (en) * 2016-09-09 2019-04-02 Lg Electronics Inc. Rolling bearing and motor having the same
CN106352016A (en) * 2016-11-16 2017-01-25 沈阳航空航天大学 Resistance increasing type squeeze film damper with bosses on outer ring or shaft neck
CN106402270A (en) * 2016-11-16 2017-02-15 沈阳航空航天大学 Resistance increasing type extrusion oil film damper with grooves in outer ring and bosses on shaft neck
US10400817B2 (en) 2016-11-22 2019-09-03 Woodward, Inc. Radial bearing device
FR3063310B1 (en) * 2017-02-28 2019-04-26 Safran Aircraft Engines AIRCRAFT ENGINE COMPRISING A BEARING BETWEEN TWO CONCENTRIC TREES
JP2020522649A (en) 2017-05-18 2020-07-30 ジーケーエヌ・オートモーティブ・リミテッド Closed-shape differential gear washer with defined liquid flow path
JP6961507B2 (en) * 2018-02-01 2021-11-05 本田技研工業株式会社 Bearing equipment
DE102018102270B4 (en) * 2018-02-01 2021-06-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bearing washer for a vehicle bearing of a vehicle
US10495144B1 (en) * 2018-05-25 2019-12-03 Borgwarner Inc. Single-row ball bearing with integrated squeeze-film damper
US11137032B1 (en) * 2020-05-29 2021-10-05 Bell Textron Inc. Ceramic bearing system
FR3135655A1 (en) * 2022-05-20 2023-11-24 Psa Automobiles Sa Circlip type locking device for mounting bearings on MOTOR VEHICLES
US11971079B2 (en) * 2022-07-11 2024-04-30 GM Global Technology Operations LLC Dual deflection ring vibration reduction system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1386255A (en) * 1919-04-29 1921-08-02 John George William Gruban Roller, ball, and other bearing
US1423950A (en) * 1919-11-03 1922-07-25 Nordiska Kullager Ab Antifriction ball or roller bearing
CH361692A (en) 1957-06-24 1962-04-30 Gen Motors Corp Gas turbine engine
US3372963A (en) * 1965-12-02 1968-03-12 Rotron Mfg Co Corrugated bearing ring
GB1246263A (en) * 1967-11-29 1971-09-15 Anthony Raphael Gaster Improvements in or relating to tolerance rings
GB1247494A (en) * 1967-11-29 1971-09-22 Molins Machine Co Ltd Improvements in or relating to tolerance rings
FR2271443B2 (en) * 1974-01-23 1977-06-10 Pitner Alfred
DD218655A1 (en) 1983-05-02 1985-02-13 Elektrogeraete Ingbuero Veb ELASTIC ELEMENT FOR TOLERANCE-EFFICIENT INSTALLATION OF BEARINGS
US4981390A (en) * 1987-03-06 1991-01-01 The Ray Engineering Co., Ltd. Tolerance ring with retaining means
DE3738039A1 (en) 1987-11-09 1989-05-18 Thieme Werner Gmbh & Co SCREEN PRINTING MACHINE
US5062721A (en) * 1989-04-28 1991-11-05 Nippon Seiko Kabushiki Kaisha Rolling bearing with sleeve
US5044789A (en) * 1990-04-16 1991-09-03 Eaton Corporation Roller and ball bearing bearing isolator
US5584582A (en) * 1994-12-15 1996-12-17 Air Products And Chemicals, Inc. Bump foil design for improved damping and load capacity from compliant foil gas bearings
DE29500585U1 (en) 1995-01-16 1995-03-02 INA Wälzlager Schaeffler KG, 91074 Herzogenaurach Spacer ring
GB9518018D0 (en) * 1995-09-05 1995-11-08 Lilleshall Plastics Eng Tolerence rings
US5902049A (en) * 1997-03-28 1999-05-11 Mohawk Innovative Technology, Inc. High load capacity compliant foil hydrodynamic journal bearing
US6123462A (en) * 1998-09-28 2000-09-26 General Electric Company Bearing system having reduced noise and axial preload
DE19958073B4 (en) * 1998-12-16 2012-04-26 Schaeffler Technologies Gmbh & Co. Kg cone pulley
JP3536022B2 (en) * 2000-10-04 2004-06-07 ミネベア株式会社 Pivot bearing device
JP4839473B2 (en) * 2001-02-01 2011-12-21 シェフラー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Bearing device
US6939052B1 (en) * 2003-01-27 2005-09-06 Precision Components, Inc. Bearing with integrated mounting features
US7052183B2 (en) * 2004-06-15 2006-05-30 Honeywell International Inc. Composite resilient mount

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209459A1 (en) 2012-06-05 2013-12-05 Schaeffler Technologies AG & Co. KG Bearing for continuously variable transmission gear box for motor car, has shell located in contact with side flanges at two axial surfaces of outer bearing ring, where one side flange is fixed at outer bearing ring in form-fit manner
DE102013211461A1 (en) 2012-06-22 2013-12-24 Schaeffler Technologies AG & Co. KG Bearing of stepless gear box for e.g. truck, has outer bearing ring whose recess portion is extended in radially oriented side wall, and embracing shell that is spaced apart from a separate intermediate element of outer bearing ring
DE102012222802A1 (en) 2012-12-11 2014-06-12 Schaeffler Technologies Gmbh & Co. Kg Rolling bearing arrangement for e.g. motor vehicle, has reduction unit comprising multiple identical metallic spring clips, which are formed in U-shape and comprise spherical center part connected with each other with two legs
DE102014220068A1 (en) 2014-10-02 2016-04-07 Schaeffler Technologies AG & Co. KG Storage for acoustic decoupling
DE102015222644A1 (en) 2015-01-14 2016-07-14 Schaeffler Technologies AG & Co. KG Noise-isolated bearing for a CVT gearbox with oval groove
US11291195B2 (en) * 2020-01-15 2022-04-05 Shimano Inc. Fishing reel

Also Published As

Publication number Publication date
AU2003229478A8 (en) 2003-09-09
JP4431395B2 (en) 2010-03-10
AU2003229478A1 (en) 2003-09-09
US7927020B2 (en) 2011-04-19
US20050232525A1 (en) 2005-10-20
US20090103846A1 (en) 2009-04-23
NL1022788A1 (en) 2003-08-29
ATE531961T1 (en) 2011-11-15
ATE410610T1 (en) 2008-10-15
EP1481174A2 (en) 2004-12-01
WO2003072969A3 (en) 2003-11-06
DE10390781D2 (en) 2005-01-13
EP1908972A3 (en) 2010-08-18
CN1639478A (en) 2005-07-13
WO2003072969A2 (en) 2003-09-04
NL1022788C2 (en) 2003-11-04
JP2005519238A (en) 2005-06-30
CN1327144C (en) 2007-07-18
EP1908972A2 (en) 2008-04-09
EP1481174B1 (en) 2008-10-08
DE10307842A1 (en) 2003-09-11
DE50310608D1 (en) 2008-11-20
KR20040094742A (en) 2004-11-10
US7478952B2 (en) 2009-01-20

Similar Documents

Publication Publication Date Title
EP1908972B1 (en) Decoupling device for mounting a support shaft on a base and radial ondular washer
DE102006010784B4 (en) Overrunning clutch
DE10203307A1 (en) Bearing unit for rotating shaft has flexible element consisting of at least one annular element which is radially corrugated or has projections
DE19904857A1 (en) Hydrodynamic torque converter overcoming slip in its coupling permits mechanical assembly with free fluid flow and selective conversion, simplifying operation
DE10216289B4 (en) Device for damping torsional vibrations
DE102004027149B4 (en) torsional vibration damper
DE102004011153A1 (en) Damper and lock-up clutch
DE3347203C2 (en) Clutch disc
DE2823894C2 (en) Torsional vibration damper
WO2015043587A1 (en) Centrifugal pendulum device
DE102004062949A1 (en) Vehicle`s torsional vibration damper, has damping unit for coupling two masses along rotational axis of engine crankshaft, and friction part to rub against inner wall and outer wall of ring shaped chamber
DE3049670T1 (en) TWO-STAGE COAXIAL SPRING DAMPER
DE102018113585B4 (en) Torsional vibration damper
EP1272776B1 (en) Spring element, in particular for a torsional vibration damper
DE19629497B4 (en) Disc arrangement with damper
DE60117647T2 (en) Belt for a continuously variable transmission
EP2598774B1 (en) Torsional vibration damper
DE102004015215A1 (en) Cone pulley looping gear for use in motor vehicles, comprises a shaft located inside bearing outer ring which has cylindrical outer ring
DE10223815B4 (en) Coupling device for coupling a motor vehicle engine with a transmission
DE102012212895A1 (en) Centrifugal force pendulum device for power train of internal combustion engine-driven motor car, has pendulum mass provided with mass portions spaced from each other, where mass portions are interconnected by carrier plate
DE2738860A1 (en) CLUTCH HUB
DE102017201913A1 (en) Torque transmitting assembly
EP1753975A1 (en) Friction wheel drive
DE19916871B4 (en) Damper disk assembly
EP3050194A2 (en) Assembly with an electric machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1481174

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LINNENBRUEGGER, ANDRE, DR.

Inventor name: WODTKE, HANS-WALTER, DR.

Inventor name: FAUST, HARTMUT, DR.-ING.

Inventor name: GLAS, RONALD

Inventor name: BAUER, CHRISTIAN

Inventor name: FRIEDMANN, OSWALD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17P Request for examination filed

Effective date: 20110218

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F16C 25/08 20060101ALI20110513BHEP

Ipc: F16C 35/077 20060101AFI20110513BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1481174

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314053

Country of ref document: DE

Effective date: 20111229

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111102

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

Free format text: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG#INDUSTRIESTRASSE 1-3#91074 HERZOGENAURACH (DE) -TRANSFER TO- SCHAEFFLER TECHNOLOGIES AG & CO. KG#INDUSTRIESTRASSE 1-3#91074 HERZOGENAURACH (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120203

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314053

Country of ref document: DE

BERE Be: lapsed

Owner name: SCHAEFFLER TECHNOLOGIES G.M.B.H. & CO. KG

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20120803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314053

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120828

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314053

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120828

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314053

Country of ref document: DE

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 531961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314053

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140218

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314053

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314053

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160502

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314053

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522