EP1998589B1 - Channel assignment in a spread spectrum CDMA communication system - Google Patents
Channel assignment in a spread spectrum CDMA communication system Download PDFInfo
- Publication number
- EP1998589B1 EP1998589B1 EP08161137A EP08161137A EP1998589B1 EP 1998589 B1 EP1998589 B1 EP 1998589B1 EP 08161137 A EP08161137 A EP 08161137A EP 08161137 A EP08161137 A EP 08161137A EP 1998589 B1 EP1998589 B1 EP 1998589B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- signature
- base station
- code
- codes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004891 communication Methods 0.000 title claims abstract description 18
- 238000001228 spectrum Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 10
- 230000004044 response Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 108010003272 Hyaluronate lyase Proteins 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/16—Code allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
Definitions
- the invention relates generally to resource allocation in a wireless code division multiple access communication system. More specifically, the invention relates to assigning uplink and downlink channels in response to access requests of user equipment.
- Figure 1 depicts a wireless spread spectrum Code Division Multiple Access (CDMA) communication system 18.
- a base station 20 communicates with user equipment (UE) 22- 26 in its operating area.
- UE user equipment
- data signals are communicated between UEs 22-26 and the base station 20 over the same spread bandwidth.
- Each data signal in the shared bandwidth is spread with a unique chip code sequence.
- Upon reception, using a replica of the chip code sequence, a particular data signal is recovered.
- signals are distinguished by their chip code sequences (code)
- code chip code sequences
- Signals from the base station 20 to the UEs 22-26 are sent on downlink channels and signals from the UEs 22-26 to the base station 20 are sent on uplink channels.
- pilot signals are transmitted to all the UEs 22-26 within the base station's operating range. The UEs 22-26 condition their receivers based on the pilot signals to enable data reception.
- CPCH common packet channel
- a CPCH is capable of carrying packets of data from different UEs 22-26. Each packet is distinguishable by its code. For detection by the base station 20, the packets have a preamble which also distinguishes it from other packets.
- the CPCH is typically used to carry infrequently communicated data at high rates.
- FIG. 2 depicts a CPCH access scheme 28.
- the CPCH access scheme 28 is time divided into intervals having time slots 30-34, such as 8 time slots proposed for the Third Generation Mobile Telecommunications System (IMT-2000).
- a group of predetermined signatures 36-40 are assigned to the time slots 30-34 to allow more than one UE 22-26 to use the same time slot 30-34.
- a particular signature used within a particular time slot is referred to as an access opportunity 66-82. For instance, for each of the 8 time slots in the proposal for IMT-2000, one out of 16 signatures is available to be chosen, resulting in 128 access opportunities.
- Each signature 36-40 is preassigned a virtual channel.
- a virtual channel uniquely defines operating parameters for both the uplink and downlink, i.e., an uplink spreading factor and a unique code for the downlink.
- AICH acknowledge indication channel
- the UE 22-26 monitors the AICH to determine the availability of each virtual channel. Based on the operating parameters required by the UE 22-26 and the availability of the virtual channels, the UE determines the access opportunity to select. Upon identifying a particular access opportunity, the base station 20 sends out an acknowledgment message (ACK) if the corresponding downlink channel is still available. In the proposal for IMT-2000, the ACK simply repeats the signatures 36-40 associated with the access attempt. If the downlink channel is not available, a negative acknowledge (NAK) is sent.
- NAK negative acknowledge
- the UEs 22-26 After receiving a corresponding acknowledgment, the UEs 22-26 determine the proper code to recover communications on the downlink channel based on the access opportunity 66-82 used to send the UEs' packet. Either stored in the UEs 22-26 or transmitted on a Base Station's Broadcast Channel is a list of the code assigned to each access opportunity 66-82. This scheme severely increases the packet collision probability and therefore the packet delay which is undesirable.
- monitoring the AICH is not desirable.
- some UEs 22-26 will be operating in a "sleep" mode. In the "sleep" mode, the UE 22-26 only runs when there is a need to send data. Monitoring the AICH during "sleep” mode will both reduce battery life and introduce a delay in the transmission of the first packet. Additionally, when a UE 22-26 borders between two base station's operating areas, monitoring multiple AICHs further exacerbates -these drawbacks.
- AICH monitoring provides information when a channel becomes busy. The time at which the channel becomes free is deduced on a worst case maximum packet length. If a packet is not maximum length, the channel will be idle while the UEs 22-26 are waiting to transmit. On the other hand, if monitoring is not performed in such a system, channel availability information is unavailable. The UE 22-26 may randomly choose a busy virtual channel increasing the packet delay by causing a collision. Accordingly, it would be desirable to allow the UEs 22-26 to wait a period shorter than the maximum packet length and provide for some other collision reducing mechanism.
- One technique to reduce the possibility of collision is to raise the number of codes, for instance to 128 different codes.
- the 128 sequences represent approximately half of the sequences available at the base station 20. Accordingly, this solution is undesirable. Additionally, since monitoring the AICH complicates the UE receiver circuitry increasing its cost, it is undesirable. Accordingly, an alternate approach to assign virtual channels is desirable.
- WO 9849857 discloses a system for transmitting random access packets from mobile stations to a base station.
- a preamble signature is added to each packet to be transmitted by the mobile station in a time slot of repeating frames.
- the signature is a short spreading code which is concatenated with a unique long spreading code.
- the packet including the preamble is received by the base station. The preamble facilitates recovery of data from the packet.
- TIA/EIA-95-B "Mobile Station-Base Station Systems” discloses an approach for channel assignment in a code division multiple access system.
- a channel assignment message is sent to a mobile station.
- the message indicates information regarding the channel, such as its spreading code. Accordingly, an alternate approach to assign virtual channels is desirable.
- a selected user equipment transmits a signature in a selected one of the common packet channel's time slots.
- the base station in response to receiving the transmitted signature, selects a currently unused code, if available, out of a plurality of code associated with the access opportunity defined by the selected signature and selected time slot.
- the base station transmits an acknowledgment signal comprising an identifier of the selected code.
- the selected user equipment receives the acknowledgment signal.
- FIG. 3 illustrates a virtual channel assignment scheme.
- Each virtual channel 48-64 is defined by its operating parameters, such as uplink spreading factor and down link code. Additionally, instead of assigning virtual channels 48-64, the same principles may be applied to assigning physical channels which are defined by their downlink code.
- each physical channel may be multiplexed, such as by using two time slots. Using two time slots will increase the channel's effective data rate, such as from 8 Kbps to 16 Kbps.
- the virtual channel 48-64 also defines which multiplexed signal is assigned to the UE 22-26.
- a set 42-46 of virtual channels are assigned for each grouping 116-120 of access opportunities.
- a grouping may contain all of the channels in one group or as few as 2 or 3 channels.
- One possible virtual channel grouping may group all virtual channels with the same data rate for the uplink.
- the UE 22-26 selects an access opportunity out of the groups having the UE's desired uplink data rate.
- Another grouping may be formed based on the access opportunities' signature 36-40. Based on the selected access request and the UE's priority, one of the virtual channels 48-64 assigned to the group 116-120 associated -with the access attempt is used for the UE if available. Once the virtual channel is assigned, it will not be assigned again until the particular UE's transaction is complete. Additionally, a receiving circuit at the base station 20 with the proper data rate is assigned to the UE 22-26.
- the UEs 22-26 determine which channel is assigned to the downlink based on the access opportunity 66-82.
- Virtual channel assignment transmits a channel identifier 84-88, preferably along with the ACK, indicating which of the set 42-46 of channels assigned to the group 116-120 is selected.
- the identifier 84-88 indicates the selected virtual channel. If no channel is available out of the set 42-46, a no channel is available (NAK) identifier is sent. Since more than one virtual channel is potentially assigned to a particular access attempt, the probability of UE collisions is reduced.
- NAK no channel is available
- Figure 4 is a graph 91 depicting the probability of a collision (Collisions) versus the number of UEs 22-26 requesting access (Demand). As shown, the collisions using 2 or 3 virtual channels per group (2 states/AP or 3 states/AP) is lower than the prior art (AICH monitor) regardless of demand.
- Figure 5 illustrates a simplified base station 20 and a UE 22 for use in implementing channel assignment.
- the UE 22 has a controller 144 for determining the code of the uplink and downlink communications.
- a UE transmitter 140 sends communications, such as access opportunities and uplink packet signals, to the base station 20.
- a UE receiver 142 receives communications, such as ACK messages, - NAK messages and downlink signals.
- the base station 20 has a controller 134 for determining the code of uplink and downlink communications as well as determining channel availability.
- a base station transmitter 136 sends communications, such as ACK messages, NAK messages and downlink signals, to the UE 22.
- the base station receiver 138 receives communications, such as access opportunities and uplink packet signals.
- Techniques for sending the identifiers are to attach extra bits to the ACK or to change the phase of the ACK to indicate the selected identifier. For a system using a single group of virtual channels, the extra bits identify the selected virtual channel. Circuits for sending the identifiers by phase shifting the ACK are depicted in Figures 6 and 7 .
- the circuits are capable of sending up to four channel identifiers without a NAK identifier or three channel identifiers with a NAK identifier.
- the ACK sequence is generated by a sequence generator 94.
- the sequence itself is associated with the preamble access opportunity and is unique to the access attempt. Several such sequences may be transmitted to several users at the same time.
- the ACK sequence is passed through a mixer 96 which multiplies the signal with either +1 or -1.
- the mixed signal is subsequently passed through another mixer 98 where the signal is mixed with an in-phase carrier (cos wt) or a quadrature carrier (sin wt).
- cos wt in-phase carrier
- sin wt quadrature carrier
- the transmitted ACK is at one of four phases 0°, 90°, 180° or 270°.
- Each identifier 84-88 is preassigned to one of the phases.
- the receiver circuit 14 of Figure 7 is used to determine the phase of the ACK - sent by the transmitter circuit 92 of Figure 6 .
- the ACK is mixed with both an in-phase carrier by mixer 100 and a quadrature carrier by mixer 102.
- Each of the mixed signals are correlated with a replica of the ACK's sequence by sequence correlators 104, 106.
- the in-phase and quadrature correlation signals are each negated by mixers 108, 110 by multiplying the correlation signals by -1.
- the two correlated signals and the two negated signals are supplied to an identifier circuit 112.
- the identifier circuit 112 determines which of the four phased versions of the correlated signal has the highest magnitude.
- the identifier circuit 112 determines which identifier 84-88 was sent based on the phase of the ACK.
- a list stored either in the UEs 22-26 or transmitted on a Base Station's Broadcast Channel is used to determine the virtual channel 48-64 associated with the identifier 84-88 and the group 116-120 of the UE's access request. Using the determined virtual channel 48-64, transmissions sent by the base station 20 using the selected downlink channel's code are recovered at the UE 22-26.
- Another technique for sending the identifier 84-88 is to use the ACK and a collision resolution signal (CR).
- a collision between UEs 22-26 is detected at a base station 20, in many spread spectrum systems the base station 20 sends a CR directed to the colliding UEs.
- the CR has a sequence which is associated with a specific UE 22 for detection by the UE 22.
- an identifier 84-88 is sent to the specific UE 22.
- An inverted ACK indicates a NAK.
- one virtual channel is assigned to +CR
- a second virtual channel is assigned to -CR. Accordingly, using the ACK and CR an identifier indicating either a NAK or one of two channels is sent.
- a CR with multiple states, such as three one of multiple channels is assigned to the CR.
- the identifier is sent with a signal using a Golay sequence.
- a Golay sequence is constructed out of short sequences, such as X and Y. By inverting the shorter sequences and changing their order many unique longer sequences may be constructed as shown in table 122 of Figure 8 . To reduce the size of the table 122, only half of the possible sequences are shown. By negating each sequence, another unique Golay sequence results. As shown in Figure 8 , each UE 22-26 is assigned a unique set of Golay sequences, such as 4. For instance, user 0 is assigned four sequences, the top two sequences and the negation of those sequences. By assigning each of the Golay sequences a virtual channel, upon reception, the receiving UE 22-26 determines the code of the downlink transmission.
- a Golay sequence detector is shown in Figure 9 .
- the received signal is correlated with a Golay Correlator 123 and interleaved by an interleaver 124 to detect the short codes.
- the arrangement of the short codes for two assigned sequences within the long codes is shown as Signature 0 and 1.
- mixers 125, 126 the signatures are mixed with the detected short codes.
- Adders 127, 128 are coupled to the mixer and also to delay devices 129,130.
- the delay devices 129,130 take the output of the adders 127, 128 and feed them back to those adders 127, 128 for correlation with the next short sequence.
- the output of each adder 127, 128 - determines the Golay sequence of the received signal.
- Figure 10 illustrates an assignment scheme for a system using two time slot multiplexing for the physical channels.
- table 132 each of the sixteen different signatures is assigned a downlink code and one of two time slots.
- the selected time slot is indicated by the transmitted identifier.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Relay Systems (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
Description
- The invention relates generally to resource allocation in a wireless code division multiple access communication system. More specifically, the invention relates to assigning uplink and downlink channels in response to access requests of user equipment.
-
Figure 1 depicts a wireless spread spectrum Code Division Multiple Access (CDMA)communication system 18. Abase station 20 communicates with user equipment (UE) 22- 26 in its operating area. In a spreadspectrum CDMA system 18, data signals are communicated between UEs 22-26 and thebase station 20 over the same spread bandwidth. Each data signal in the shared bandwidth is spread with a unique chip code sequence. Upon reception, using a replica of the chip code sequence, a particular data signal is recovered. - Since signals are distinguished by their chip code sequences (code), separate dedicated communication channels are created using different codes. Signals from the
base station 20 to the UEs 22-26 are sent on downlink channels and signals from the UEs 22-26 to thebase station 20 are sent on uplink channels. For coherent detection of downlink transmissions by the UEs 22-26, pilot signals are transmitted to all the UEs 22-26 within the base station's operating range. The UEs 22-26 condition their receivers based on the pilot signals to enable data reception. - In many CDMA systems, a common packet channel (CPCH) is used for uplink transmissions. A CPCH is capable of carrying packets of data from different UEs 22-26. Each packet is distinguishable by its code. For detection by the
base station 20, the packets have a preamble which also distinguishes it from other packets. The CPCH is typically used to carry infrequently communicated data at high rates. -
Figure 2 depicts aCPCH access scheme 28. TheCPCH access scheme 28 is time divided into intervals having time slots 30-34, such as 8 time slots proposed for the Third Generation Mobile Telecommunications System (IMT-2000). A group of predetermined signatures 36-40 are assigned to the time slots 30-34 to allow more than one UE 22-26 to use the same time slot 30-34. A particular signature used within a particular time slot is referred to as an access opportunity 66-82. For instance, for each of the 8 time slots in the proposal for IMT-2000, one out of 16 signatures is available to be chosen, resulting in 128 access opportunities. Each signature 36-40 is preassigned a virtual channel. A virtual channel uniquely defines operating parameters for both the uplink and downlink, i.e., an uplink spreading factor and a unique code for the downlink. - - Broadcast from the
base station 20 to each UE 22-26 is the availability of each virtual channel over an acknowledge indication channel (AICH). The UE 22-26 monitors the AICH to determine the availability of each virtual channel. Based on the operating parameters required by the UE 22-26 and the availability of the virtual channels, the UE determines the access opportunity to select. Upon identifying a particular access opportunity, thebase station 20 sends out an acknowledgment message (ACK) if the corresponding downlink channel is still available. In the proposal for IMT-2000, the ACK simply repeats the signatures 36-40 associated with the access attempt. If the downlink channel is not available, a negative acknowledge (NAK) is sent. - After receiving a corresponding acknowledgment, the UEs 22-26 determine the proper code to recover communications on the downlink channel based on the access opportunity 66-82 used to send the UEs' packet. Either stored in the UEs 22-26 or transmitted on a Base Station's Broadcast Channel is a list of the code assigned to each access opportunity 66-82. This scheme severely increases the packet collision probability and therefore the packet delay which is undesirable.
- In some situations, monitoring the AICH is not desirable. At a particular moment, some UEs 22-26 will be operating in a "sleep" mode. In the "sleep" mode, the UE 22-26 only runs when there is a need to send data. Monitoring the AICH during "sleep" mode will both reduce battery life and introduce a delay in the transmission of the first packet. Additionally, when a UE 22-26 borders between two base station's operating areas, monitoring multiple AICHs further exacerbates -these drawbacks.
- Monitoring creates other problems. It further complicates the UE's receiving circuitry, making the UE 22-26 more expensive.
- Monitoring results in a suboptimum use of the CPCH. AICH monitoring provides information when a channel becomes busy. The time at which the channel becomes free is deduced on a worst case maximum packet length. If a packet is not maximum length, the channel will be idle while the UEs 22-26 are waiting to transmit. On the other hand, if monitoring is not performed in such a system, channel availability information is unavailable. The UE 22-26 may randomly choose a busy virtual channel increasing the packet delay by causing a collision. Accordingly, it would be desirable to allow the UEs 22-26 to wait a period shorter than the maximum packet length and provide for some other collision reducing mechanism.
- One technique to reduce the possibility of collision is to raise the number of codes, for instance to 128 different codes. In the proposal for IMT-2000 the 128 sequences represent approximately half of the sequences available at the
base station 20. Accordingly, this solution is undesirable. Additionally, since monitoring the AICH complicates the UE receiver circuitry increasing its cost, it is undesirable. Accordingly, an alternate approach to assign virtual channels is desirable. -
WO 9849857 - TIA/EIA-95-B, "Mobile Station-Base Station Systems" discloses an approach for channel assignment in a code division multiple access system. A channel assignment message is sent to a mobile station. The message indicates information regarding the channel, such as its spreading code. Accordingly, an alternate approach to assign virtual channels is desirable.
- A selected user equipment transmits a signature in a selected one of the common packet channel's time slots. The base station, in response to receiving the transmitted signature, selects a currently unused code, if available, out of a plurality of code associated with the access opportunity defined by the selected signature and selected time slot. The base station transmits an acknowledgment signal comprising an identifier of the selected code. The selected user equipment receives the acknowledgment signal. The selected user equipment and the base station
-
-
Figure 1 is an illustration of a typical wireless spread spectrum CDMA communication system. -
Figure 2 is an illustration of a common packet channel access scheme. -
Figure 3 is an illustration assigning virtual channels. -
Figure 4 is a graph of the probability of a collision versus demand for the prior art and the virtual channel assignment. -
Figure 5 illustrates a simplified base station and user equipment. -
Figure 6 is an identifier transmitter circuit. -
Figure 7 is an identifier receiver circuit. -
Figure 8 is a table of an assignment of Golay sequences. -
Figure 9 is a circuit for detecting the Golay sequences ofFigure 8 . -
Figure 10 is an assignment table for a system having physical channels with two time slots. - The preferred embodiments will be described with reference to the drawing figures where like numerals represent like elements throughout.
Figure 3 illustrates a virtual channel assignment scheme. Each virtual channel 48-64 is defined by its operating parameters, such as uplink spreading factor and down link code. Additionally, instead of assigning virtual channels 48-64, the same principles may be applied to assigning physical channels which are defined by their downlink code. - To reduce the number of used physical channels and increase the power level of each channel, each physical channel may be multiplexed, such as by using two time slots. Using two time slots will increase the channel's effective data rate, such as from 8 Kbps to 16 Kbps. In such a system, the virtual channel 48-64 also defines which multiplexed signal is assigned to the UE 22-26.
- Instead of assigning a single virtual channel for each signature 36-40 as in the prior art, a set 42-46 of virtual channels are assigned for each grouping 116-120 of access opportunities. A grouping may contain all of the channels in one group or as few as 2 or 3 channels. One possible virtual channel grouping may group all virtual channels with the same data rate for the uplink. For groups having the same uplink data rate, the UE 22-26 selects an access opportunity out of the groups having the UE's desired uplink data rate. Another grouping may be formed based on the access opportunities' signature 36-40. Based on the selected access request and the UE's priority, one of the virtual channels 48-64 assigned to the group 116-120 associated -with the access attempt is used for the UE if available. Once the virtual channel is assigned, it will not be assigned again until the particular UE's transaction is complete. Additionally, a receiving circuit at the
base station 20 with the proper data rate is assigned to the UE 22-26. - In the prior art system, the UEs 22-26 determine which channel is assigned to the downlink based on the access opportunity 66-82. Virtual channel assignment transmits a channel identifier 84-88, preferably along with the ACK, indicating which of the set 42-46 of channels assigned to the group 116-120 is selected. When all of the virtual channels are in the same group, the identifier 84-88 indicates the selected virtual channel. If no channel is available out of the set 42-46, a no channel is available (NAK) identifier is sent. Since more than one virtual channel is potentially assigned to a particular access attempt, the probability of UE collisions is reduced.
-
Figure 4 is agraph 91 depicting the probability of a collision (Collisions) versus the number of UEs 22-26 requesting access (Demand). As shown, the collisions using 2 or 3 virtual channels per group (2 states/AP or 3 states/AP) is lower than the prior art (AICH monitor) regardless of demand. -
Figure 5 illustrates asimplified base station 20 and aUE 22 for use in implementing channel assignment. TheUE 22 has acontroller 144 for determining the code of the uplink and downlink communications. AUE transmitter 140 sends communications, such as access opportunities and uplink packet signals, to thebase station 20. AUE receiver 142 receives communications, such as ACK messages, - NAK messages and downlink signals. - The
base station 20 has acontroller 134 for determining the code of uplink and downlink communications as well as determining channel availability. Abase station transmitter 136 sends communications, such as ACK messages, NAK messages and downlink signals, to theUE 22. Thebase station receiver 138 receives communications, such as access opportunities and uplink packet signals. - Techniques for sending the identifiers are to attach extra bits to the ACK or to change the phase of the ACK to indicate the selected identifier. For a system using a single group of virtual channels, the extra bits identify the selected virtual channel. Circuits for sending the identifiers by phase shifting the ACK are depicted in
Figures 6 and 7 . The circuits are capable of sending up to four channel identifiers without a NAK identifier or three channel identifiers with a NAK identifier. In thetransmitter circuit 92 ofFigure 6 , the ACK sequence is generated by asequence generator 94. The sequence itself is associated with the preamble access opportunity and is unique to the access attempt. Several such sequences may be transmitted to several users at the same time. The ACK sequence is passed through amixer 96 which multiplies the signal with either +1 or -1. The mixed signal is subsequently passed through anothermixer 98 where the signal is mixed with an in-phase carrier (cos wt) or a quadrature carrier (sin wt). As a result of the twomixers phases 0°, 90°, 180° or 270°. Each identifier 84-88 is preassigned to one of the phases. - The
receiver circuit 14 ofFigure 7 is used to determine the phase of the ACK - sent by thetransmitter circuit 92 ofFigure 6 . The ACK is mixed with both an in-phase carrier bymixer 100 and a quadrature carrier bymixer 102. Each of the mixed signals are correlated with a replica of the ACK's sequence bysequence correlators mixers identifier circuit 112. Theidentifier circuit 112 determines which of the four phased versions of the correlated signal has the highest magnitude. Since the downlink transmissions from the base station are synchronized and their phase is known, theidentifier circuit 112 determines which identifier 84-88 was sent based on the phase of the ACK. A list stored either in the UEs 22-26 or transmitted on a Base Station's Broadcast Channel is used to determine the virtual channel 48-64 associated with the identifier 84-88 and the group 116-120 of the UE's access request. Using the determined virtual channel 48-64, transmissions sent by thebase station 20 using the selected downlink channel's code are recovered at the UE 22-26. - Another technique for sending the identifier 84-88 is to use the ACK and a collision resolution signal (CR). After a collision between UEs 22-26 is detected at a
base station 20, in many spread spectrum systems thebase station 20 sends a CR directed to the colliding UEs. The CR has a sequence which is associated with aspecific UE 22 for detection by theUE 22. By inverting the ACK and CR, an identifier 84-88 is sent to thespecific UE 22. An inverted ACK indicates a NAK. - By inverting the CR, one virtual channel is assigned to +CR a second virtual channel is assigned to -CR. Accordingly, using the ACK and CR an identifier indicating either a NAK or one of two channels is sent. Additionally, using a CR with multiple states, such as three, one of multiple channels is assigned to the CR. - Alternatively, the identifier is sent with a signal using a Golay sequence. A Golay sequence is constructed out of short sequences, such as X and Y. By inverting the shorter sequences and changing their order many unique longer sequences may be constructed as shown in table 122 of
Figure 8 . To reduce the size of the table 122, only half of the possible sequences are shown. By negating each sequence, another unique Golay sequence results. As shown inFigure 8 , each UE 22-26 is assigned a unique set of Golay sequences, such as 4. For instance,user 0 is assigned four sequences, the top two sequences and the negation of those sequences. By assigning each of the Golay sequences a virtual channel, upon reception, the receiving UE 22-26 determines the code of the downlink transmission. - A Golay sequence detector is shown in
Figure 9 . The received signal is correlated with aGolay Correlator 123 and interleaved by aninterleaver 124 to detect the short codes. The arrangement of the short codes for two assigned sequences within the long codes is shown asSignature mixers Adders adders adders adder 127, 128 - determines the Golay sequence of the received signal. -
Figure 10 illustrates an assignment scheme for a system using two time slot multiplexing for the physical channels. In table 132, each of the sixteen different signatures is assigned a downlink code and one of two time slots. The selected time slot is indicated by the transmitted identifier.
Claims (8)
- A method for sending data in a wireless spread spectrum code division multiple access communication system having a common packet channel using a predetermined set of codes, the common packet channel having a plurality of access opportunities, each defined by a time slot (30-34) and signature (36-40), the method characterized by:receiving a signature in the common packet channel;selecting a code out of a plurality of codes associated with the common packet channel;transmitting a combined collision signal and channel identifier, the channel identifier indicating the selected code and the channel identifier being associated with the received signature; andcommunicating data using the selected code.
- The method of claim 1 wherein the combined collision signal and channel identifier distinguishes between codes using an inversion.
- The method of claim 1 wherein the received signature is selected from a set of sixteen signatures and the signature is sent in one of eight slots.
- The method of claim 1 wherein the selected code is used to define a downlink physical channel for downlink communications.
- A wireless spread spectrum code division multiple access communication base station (20) for using a common packet channel for communication, the common packet channel using a predetermined set of codes and having a plurality of access opportunities, each access opportunity defined by a time slot (30-34) and signature (36-40), the base station (20) characterized by:means, in response to receiving a signature, for selecting a selected code out of a plurality of codes,means (136) for transmitting a combined collision signal and a channel identifier, the channel identifier indicating the selected code and the channel identifier being associated with the received signature, andmeans for communicating using the selected code.
- The base station of claim 5 wherein the combined collision signal and channel identifier distinguishes between codes using an inversion.
- The base station of claim 5 wherein the received signature is selected from a set of sixteen signatures and the signature is sent in one out of eight slots.
- The base station of claim 5 wherein the selected code is used to define a downlink physical channel for downlink communications.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13488199P | 1999-05-19 | 1999-05-19 | |
US13558899P | 1999-05-24 | 1999-05-24 | |
US13892299P | 1999-06-11 | 1999-06-11 | |
EP00932658A EP1183892B1 (en) | 1999-05-19 | 2000-05-19 | Channel assignment in a spread spectrum cdma communication system |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00932658A Division EP1183892B1 (en) | 1999-05-19 | 2000-05-19 | Channel assignment in a spread spectrum cdma communication system |
EP00932658.8 Division | 2000-05-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1998589A2 EP1998589A2 (en) | 2008-12-03 |
EP1998589A3 EP1998589A3 (en) | 2009-02-25 |
EP1998589B1 true EP1998589B1 (en) | 2011-06-22 |
Family
ID=27384641
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00932658A Expired - Lifetime EP1183892B1 (en) | 1999-05-19 | 2000-05-19 | Channel assignment in a spread spectrum cdma communication system |
EP08161137A Expired - Lifetime EP1998589B1 (en) | 1999-05-19 | 2000-05-19 | Channel assignment in a spread spectrum CDMA communication system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00932658A Expired - Lifetime EP1183892B1 (en) | 1999-05-19 | 2000-05-19 | Channel assignment in a spread spectrum cdma communication system |
Country Status (18)
Country | Link |
---|---|
EP (2) | EP1183892B1 (en) |
JP (3) | JP4043717B2 (en) |
KR (1) | KR100408982B1 (en) |
CN (3) | CN1137598C (en) |
AT (2) | ATE412319T1 (en) |
AU (1) | AU775980B2 (en) |
BR (1) | BRPI0010635B1 (en) |
CA (1) | CA2371482C (en) |
DE (2) | DE60040599D1 (en) |
DK (1) | DK1183892T3 (en) |
ES (1) | ES2315232T3 (en) |
HK (2) | HK1044255B (en) |
IL (1) | IL146507A0 (en) |
MX (1) | MXPA01011773A (en) |
MY (1) | MY125499A (en) |
NO (1) | NO328334B1 (en) |
TW (1) | TW476199B (en) |
WO (1) | WO2000070903A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0007337D0 (en) * | 2000-03-28 | 2000-05-17 | Koninkl Philips Electronics Nv | Radio communication system |
TWI271054B (en) | 2002-03-25 | 2007-01-11 | Interdigital Tech Corp | Apparatus for blind code detection |
EP1877628A2 (en) | 2005-03-14 | 2008-01-16 | Masco Corporation Of Indiana | Quick change mounting system for a faucet |
GB2429605B (en) | 2005-08-24 | 2008-06-04 | Ipwireless Inc | Apparatus and method for communicating signalling information |
US7698755B2 (en) | 2005-08-29 | 2010-04-20 | Masco Corporation Of Indiana | Overhead cam faucet mounting system |
JP2008061227A (en) * | 2006-08-02 | 2008-03-13 | Advanced Telecommunication Research Institute International | Wireless apparatus, wireless communication network with the same and method of detecting channel in wireless apparatus |
CN101132618B (en) * | 2006-08-21 | 2010-05-12 | 大唐移动通信设备有限公司 | Response to random access signal, random access method and mobile communication system |
CN100554922C (en) * | 2006-12-20 | 2009-10-28 | 南京大学 | Fog collector and application process thereof |
US8407828B2 (en) | 2007-11-30 | 2013-04-02 | Masco Corporation Of Indiana | Faucet mounting system including a lift rod |
KR101448980B1 (en) * | 2008-07-01 | 2014-10-14 | 에스케이텔레콤 주식회사 | Mobile telecomminication system for allocating wireless resources dynamically, and method thereof |
US8644244B2 (en) | 2008-12-12 | 2014-02-04 | Research In Motion Limited | Sensor-based wireless communication systems using compressive sampling |
CN102906479B (en) | 2010-05-21 | 2014-11-05 | 印地安纳马斯科公司 | Faucet mounting anchor |
CN102651913B (en) * | 2011-02-23 | 2014-12-03 | 华为技术有限公司 | Access method of group terminals and terminals |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW306102B (en) * | 1993-06-14 | 1997-05-21 | Ericsson Telefon Ab L M | |
US6163533A (en) * | 1997-04-30 | 2000-12-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Random access in a mobile telecommunications system |
-
2000
- 2000-05-19 CN CNB008077312A patent/CN1137598C/en not_active Expired - Fee Related
- 2000-05-19 DK DK00932658T patent/DK1183892T3/en active
- 2000-05-19 CN CNB2003101242974A patent/CN1278584C/en not_active Expired - Lifetime
- 2000-05-19 CA CA002371482A patent/CA2371482C/en not_active Expired - Lifetime
- 2000-05-19 CN CN031489699A patent/CN1486009B/en not_active Expired - Lifetime
- 2000-05-19 TW TW089109687A patent/TW476199B/en not_active IP Right Cessation
- 2000-05-19 EP EP00932658A patent/EP1183892B1/en not_active Expired - Lifetime
- 2000-05-19 BR BRPI0010635-6A patent/BRPI0010635B1/en active IP Right Grant
- 2000-05-19 AU AU50351/00A patent/AU775980B2/en not_active Ceased
- 2000-05-19 IL IL14650700A patent/IL146507A0/en not_active IP Right Cessation
- 2000-05-19 JP JP2000619230A patent/JP4043717B2/en not_active Expired - Fee Related
- 2000-05-19 MX MXPA01011773A patent/MXPA01011773A/en active IP Right Grant
- 2000-05-19 DE DE60040599T patent/DE60040599D1/en not_active Expired - Lifetime
- 2000-05-19 ES ES00932658T patent/ES2315232T3/en not_active Expired - Lifetime
- 2000-05-19 WO PCT/US2000/013924 patent/WO2000070903A1/en active IP Right Grant
- 2000-05-19 MY MYPI20002214A patent/MY125499A/en unknown
- 2000-05-19 DE DE1183892T patent/DE1183892T1/en active Pending
- 2000-05-19 AT AT00932658T patent/ATE412319T1/en not_active IP Right Cessation
- 2000-05-19 AT AT08161137T patent/ATE514300T1/en not_active IP Right Cessation
- 2000-05-19 KR KR10-2001-7014621A patent/KR100408982B1/en not_active IP Right Cessation
- 2000-05-19 EP EP08161137A patent/EP1998589B1/en not_active Expired - Lifetime
-
2001
- 2001-11-16 NO NO20015616A patent/NO328334B1/en not_active IP Right Cessation
-
2002
- 2002-07-31 HK HK02105640.1A patent/HK1044255B/en not_active IP Right Cessation
-
2005
- 2005-03-18 JP JP2005079697A patent/JP4249718B2/en not_active Expired - Fee Related
- 2005-10-03 JP JP2005289747A patent/JP4249738B2/en not_active Expired - Lifetime
-
2009
- 2009-06-03 HK HK09104999.4A patent/HK1127208A1/en not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6850514B1 (en) | Channel assignment in a spread spectrum CDMA communication system | |
US6480525B1 (en) | Second level collision resolution for packet data communications | |
EP1062829B1 (en) | Signalling configuration in a radio communication system | |
US20040081115A1 (en) | Hybrid DSMA/CDMA (digital sense multiple access/ code division multiple access) method with collision resolution for packet communications | |
EP1998589B1 (en) | Channel assignment in a spread spectrum CDMA communication system | |
US6958989B1 (en) | Uplink scrambling code assignment for a random access channel | |
CA2473828C (en) | Channel assignment in a spread spectrum cdma communication system | |
AU2004202869B2 (en) | User equipment for communicating in a spread spectrum CDMA communication system | |
KR100651445B1 (en) | Apparatus and method for communicating using common packet channel in cdma syatem | |
KR100576027B1 (en) | Apparatus and method for acquisition indication in cdma syatem | |
KR100576003B1 (en) | Apparatus and method for acquisition indication in cdma syatem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080725 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1183892 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04W 28/16 20090101AFI20090122BHEP Ipc: H04W 72/04 20090101ALN20090122BHEP |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1127208 Country of ref document: HK |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1183892 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60046121 Country of ref document: DE Effective date: 20110728 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110622 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110622 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1127208 Country of ref document: HK |
|
26N | No opposition filed |
Effective date: 20120323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110622 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60046121 Country of ref document: DE Effective date: 20120323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120519 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20170421 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20180424 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190426 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190418 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190419 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190423 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190519 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20200518 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20200518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200518 |