[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1994349B1 - Heat transfer unit - Google Patents

Heat transfer unit Download PDF

Info

Publication number
EP1994349B1
EP1994349B1 EP07712105A EP07712105A EP1994349B1 EP 1994349 B1 EP1994349 B1 EP 1994349B1 EP 07712105 A EP07712105 A EP 07712105A EP 07712105 A EP07712105 A EP 07712105A EP 1994349 B1 EP1994349 B1 EP 1994349B1
Authority
EP
European Patent Office
Prior art keywords
fluid
shut
partial
transmission unit
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07712105A
Other languages
German (de)
French (fr)
Other versions
EP1994349A1 (en
Inventor
Hans-Ulrich Kühnel
Dieter Jelinek
Peter Heuer
Dieter Thönnessen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP1994349A1 publication Critical patent/EP1994349A1/en
Application granted granted Critical
Publication of EP1994349B1 publication Critical patent/EP1994349B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded

Definitions

  • the invention relates to a heat transfer unit with a channel through which a coolant flows and a channel through which a fluid to be cooled flow, which are separated from one another by a wall, from which ribs extend in at least one of the two channels.
  • Such heat transfer units are used for example for exhaust gas cooling in an exhaust gas recirculation train in an internal combustion engine.
  • the ribs usually protrude into the channel through which the fluid to be cooled flows.
  • the ribs extend from the two opposite sides of the heat transfer unit into the channel, as well as cooling devices in which the ribs only extend from one side into the channel.
  • the ribs may take on different shapes and either extend integrally along the main flow direction or be formed as a single ribs, here both pin and tubular as well as wing-shaped ribs are known.
  • the channel through which the coolant flows can be arranged both within the channel through which the fluid to be cooled and also surround it in cross section.
  • intercoolers serve to reduce the combustion temperatures and thus the resulting nitrogen oxides and exhaust gas cooler for heating the air for faster heating of a passenger compartment or in the exhaust system to reduce the exhaust gas temperature of a gas flowing to a catalyst.
  • exhaust gas recirculation lines are using the exhaust gas cooler the exhaust gas temperatures and thus the combustion temperature in the engine lowered, which in turn pollutant emissions can be reduced.
  • the cooling water of the internal combustion engine serve as a coolant, the cooling water of the internal combustion engine.
  • a heat transfer unit which is arranged in an exhaust gas recirculation system of an internal combustion engine is, for example, from DE 10 2004 019 554 A1 known. This consists of an inner U-shaped flowed through by exhaust gas channel, which is surrounded over the entire cross-section of a coolant flow channel. This is a multi-part die-cast cooler, which has different graduation levels.
  • a charge air cooler is known in which the flow through the radiator can be changed via two flaps. With open flaps, this cooler is flowed through over its entire cross-section in one direction, while with the flaps closed, only the third cross-section is traversed over the third section.
  • the known heat transfer units have only low cooling capacities and cooler efficiencies, in particular at low throughputs and temperature differences. However, especially in the field of exhaust gas recirculation, it may be desirable to further reduce the pollutant emissions to achieve a high cooling capacity at low pressure loss, both at high and at low flow rates.
  • shut-off devices are arranged in the heat transfer unit, wherein when the first fluid part inlet is closed by means of the first shut-off device, the second shut-off device is connected such that the cooling path for the fluid in the heat transfer unit lengthens.
  • the shut-off devices are arranged such that the heat transfer unit is flowed through in part by the second barrier in the opposite direction.
  • the heat transfer unit has two partitions, which cooperate with the shut-off devices in such a way that the entire channel flows through in both switching positions of the shut-off devices, wherein the cooling section extends when the cross-section narrows. It is thus used the entire available cross section of the heat transfer unit in both switching positions of the shut-off, which in turn leads to an increase in efficiency.
  • the cooling section preferably extends substantially to the same extent as the cross section through which it flows decreases. This means that when halving the flow-through cross section, the cooling section is doubled. This can be achieved by using the entire heat transfer unit in both switching positions of the shut-off devices and by multiple deflection.
  • the use of the entire available heat transfer surface in both switching positions of the shut-off to increase the efficiency is achieved in particular by a heat transfer unit, wherein the first partition from the fluid inlet between the first and second fluid part inlet in the main flow direction in the heat transfer unit to the opposite to the fluid inlet End extends and the second partition extends from the fluid outlet between the first and the second Fluidteilauslass in the main flow direction in the heat transfer unit to the fluid outlet opposite end, wherein the first and the second shut-off device are designed as a flap and the flaps at the opposite ends of the heat transfer unit are each arranged between the first and the second partition wall, wherein the flaps are arranged perpendicular to each other in both switching positions.
  • a cooler is formed, in which the flow-through cross-section is halved when the first fluid inlet is closed, at the same time the cooling section is doubled.
  • the first flap is closed, the fluid to be cooled is thus flowed through the narrowed cross section into the heat transfer unit behind the first partition due to the closed position of the second shut-off device deflected by 180 °, behind the central wall in turn deflected by 180 °, which again performed behind the second partition becomes. Only here can the exhaust gas flow out.
  • the first partition wall extends in a U-shape from the fluid inlet between the first and second fluid part inlet in the main flow direction to the second fluid part outlet and the second partition wall extends U-shaped from the fluid outlet between the first and second fluid part outlet in the main flow direction to the first fluid part inlet , wherein the first and the second shut-off device are designed as a flap, wherein the first flap through the first Fluid part inlet is closed and closed by the second flap of the second Fluidteilauslass, the flaps open and close parallel to each other.
  • the flow-through cross-section is divided by three when the first fluid part inlet is closed, and at the same time the cooling section is tripled so that a very good cooling effect is achieved with even lower throughputs or fluid mass flows due to the long existing cooling section and the small cross section.
  • the pressure loss across the cooler can be kept low.
  • a first embodiment of a heat transfer unit 1 which is preferably used as exhaust gas heat exchanger in motor vehicles. It consists of an outer housing 2, in which an inner housing 3, which can be produced, for example, by die-casting, is arranged. Between the inner housing 3 and the outer housing 2, a channel 4 flows through the fluid to be cooled after assembly. In the interior of the inner housing 3, a coolant through-flow channel 5 is arranged, the inlet and outlet nozzles 6, 7 in FIG. 2 are shown and which are arranged in the present embodiment at one to a fluid inlet 8 and a fluid outlet 9 opposite end 10 of the heat transfer unit.
  • the coolant flowed through channel 5 is limited by a circumferential wall 11 in the wall, from which ribs 12 extend in the flowed through by the fluid to be cooled channel 4.
  • the channel 4 through which the fluid to be cooled flows is designed such that its fluid inlet 8 is arranged on the same side of the head as the fluid outlet 9, so that the fluid to be cooled is deflected by 180 ° at the opposite end 10. Accordingly, the ribs 12 are arranged in this region following the main flow direction.
  • the ribs 12 are seen in the main flow direction, arranged in rows next to each other, with completion of a first row each followed by a second row, the ribs 12 are arranged offset from the ribs 12 of the first row.
  • Such an arrangement of the ribs 12 increases the residence time of the fluid in the heat transfer unit and thus its efficiency, since a straight, obstacle-free flow is no longer possible for the fluid to be cooled.
  • the heat transfer unit additionally has a first partition wall 14, which extends in a U-shape from the fluid inlet 8 via the end 10 to the fluid outlet 9.
  • This partition wall 14 divides in the present embodiment, the channel 4 in two sub-channels 15 and 16 and thus the fluid inlet 8 and the fluid outlet 9 in two approximately equal fluid part inlets 17, 18 and two fluid part outlets 19, 20.
  • the first fluid part inlet 17 is of a Shut-off device 21 dominated in the form of a flap whose axis of rotation 22 is arranged in the present embodiment in extension to the outer housing 2.
  • both the shut-off device 21 and the partition wall 14 extend over the entire height of the heat transfer unit 1.
  • an exhaust gas recirculation valve is usually formed before the heat transfer unit 1, so that different fluid mass flows or exhaust gas mass flows of the heat transfer unit 1 are supplied. Especially at low exhaust gas mass flows and smaller temperature differences between the exhaust gas and the coolant, the cooling capacity of a heat transfer unit without partition 14 and shut-off device 21 is only very small.
  • the first fluid inlet 17 is closed by the shut-off device 21, so that the entire mass flow flows via the second fluid inlet 18 to the second fluid outlet 20. This is compared to a heat transfer unit 1 without disconnectable channel only half the cross-section available.
  • FIG. 3 A further embodiment of this is in the FIG. 3 shown.
  • two partition walls 23 and 24 are arranged, of which the first partition wall 23 extends from the fluid inlet 8 to the opposite end 10 of the heat transfer unit 1 and the second partition wall 24 extends from the fluid outlet 9 to the opposite end 10 of the heat transfer unit 1 extends.
  • Both partitions 23, 24 terminate at a sufficient distance from the end 10, so that when closing one of the fluid part inlets 17, 18 a sufficient cross-section for the flow of fluid behind the ends of the partition walls 23 and 24 and the outer housing 2 is available.
  • a shut-off device in the form of a flap 27, 28 is mounted between the respective ends of the two partitions 23, 24 in extension to the wall 13 .
  • the width of the flaps 27, 28 corresponds to the distance between the two partitions 23, 24.
  • the width of the end of the wall 13 of the axes of rotation 25, 26 each half the width of such a flap 27, 28, so that the first flap 27 in its first position, the first fluid part inlet 17 and the first Fluidteilauslass 19 shuts off, while the second flap 28 is disposed in its first end position offset by 90 ° to the first flap 27 and thus rests in its width with one end against the wall 13 and abuts against the outer housing 2 with its other end. In its second position, the first flap 27 abuts with its two ends against the partitions 23 and 24.
  • the first shut-off device 27 in a position in which it rests against the two partitions 23, 24, the first fluid part inlet 17 is closed.
  • the fluid mass flow thus enters via the second fluid part inlet 18 in the sub-channel 16 and from here to the opposite end 10 of the heat transfer unit 1.
  • the second shut-off device 28 prevents now by their above-mentioned first position a fluid mass flow over the extension of the wall 13 addition. Consequently, the fluid mass flow undergoes a 180 ° turn and passes behind the dividing wall 23 into the partial passage 15, but flows through it in the opposite direction, ie in the direction of the first fluid inlet inlet 10.
  • FIG. 4 shows a further alternative heat transfer unit 1 in which again two partitions 29, 30 and two shut-off devices 31, 32 are used.
  • first partition wall 29 runs the first partition wall 29 from the fluid inlet 8 U-shaped to the fluid outlet 9 and ends at a distance in front of the fluid outlet 9, which corresponds to half the width of the shut-32.
  • parallel to the U-shaped second partition wall 30 extends from the fluid outlet 9 in the direction of the fluid inlet 8 where it in turn ends at a distance from the fluid inlet 8, which corresponds to half the width of the shut-off device 31.
  • These two partitions 29, 30 are arranged so that the fluid inlet 8 and the fluid outlet 9 are approximately divided in their cross-section and in their width.
  • shut-off devices 31, 32 are arranged on axes of rotation 33, 34, which are arranged in extension to the ends of the partitions 29, 30 in the region of the fluid part inlets 17, 18 or fluid part outlets 19, 20.
  • shut-off devices 31, 32 open, that is to say when the flap extension extends in the direction of the dividing walls 29, 30, the usual fluid mass flow is U-shaped through the entire cross section from the fluid inlet 8 to the fluid outlet 9, reliably avoiding excessive pressure losses at high throughputs.
  • the illustrated embodiments of the heat transfer unit allow use with very good cooling performance and cooler efficiencies over a wide range of throughput and temperature. At the same time, the pressure loss across the cooler is kept as small as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • General Details Of Gearings (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

A heat transmission unit includes a channel conducting a coolant, and a channel conducting a fluid to be cooled. The two channels are separated from each other by a wall provided with ribs extending therefrom into at least one of the two channels. The channel conducting the fluid to be cooled includes a fluid inlet and a fluid outlet. The channel is separated by a partition wall, arranged in flow direction, into a first and a second partial channel having a first partial inlet for fluid and a second partial inlet for fluid, and a first partial outlet for fluid and a second partial outlet for fluid. At least the first partial inlet for fluid is adapted to be shut off by a first shut-off device.

Description

Die Erfindung betrifft eine Wärmeübertragungseinheit mit einem Kühlmittel durchströmten Kanal und einem von einem zu kühlenden Fluid durchströmten Kanal, die durch eine Wand voneinander getrennt sind, von welcher ausgehend sich Rippen in zumindest einen der beiden Kanäle erstrecken.The invention relates to a heat transfer unit with a channel through which a coolant flows and a channel through which a fluid to be cooled flow, which are separated from one another by a wall, from which ribs extend in at least one of the two channels.

Derartige Wärmeübertragungseinheiten werden beispielsweise zur Abgaskühlung in einem Abgasrückführstrang in einer Verbrennungskraftmaschine verwendet. Die Rippen ragen dabei gewöhnlich in den vom zu kühlenden Fluid durchströmten Kanal. Hierbei gibt es sowohl Ausführungen, bei denen sich die Rippen von den beiden gegenüber liegenden Seiten der Wärmeübertragungseinheit in den Kanal erstrecken als auch Kühlvorrichtungen bei denen sich die Rippen lediglich von einer Seite in den Kanal erstrecken. Die Rippen können dabei unterschiedliche Formen annehmen und sich entweder einteilig entlang der Hauptströmungsrichtung erstrecken oder als einzelne Rippen ausgebildet sein, wobei hier sowohl Stift- als auch Rohrförmige als auch Tragflächenförmige Rippen bekannt sind.Such heat transfer units are used for example for exhaust gas cooling in an exhaust gas recirculation train in an internal combustion engine. The ribs usually protrude into the channel through which the fluid to be cooled flows. In this case, there are embodiments in which the ribs extend from the two opposite sides of the heat transfer unit into the channel, as well as cooling devices in which the ribs only extend from one side into the channel. The ribs may take on different shapes and either extend integrally along the main flow direction or be formed as a single ribs, here both pin and tubular as well as wing-shaped ribs are known.

Der vom Kühlmittel durchströmte Kanal kann sowohl innerhalb des vom zu kühlenden Fluids durchströmten Kanals angeordnet sein als auch diesen im Querschnitt umgeben.The channel through which the coolant flows can be arranged both within the channel through which the fluid to be cooled and also surround it in cross section.

In Verbrennungskraftmaschinen werden Wärmeübertragungseinheiten beispielsweise zur Luft-, Abgas- oder Ölkühlung verwendet. So dienen Ladeluftkühler zur Verringerung der Verbrennungstemperaturen und somit der entstehenden Stickoxide und Abgaskühler zur Aufheizung der Luft zur schnelleren Erwärmung eines Fahrgastraumes oder im Abgasstrang zur Verminderung der Abgastemperatur eines zu einem Katalysator strömenden Gases. In Abgasrückführleitungen werden mit Hilfe des Abgaskühlers die Abgastemperaturen und somit die Verbrennungstemperatur im Motor herab gesetzt, wodurch wiederum Schadstoffemissionen verringert werden können. Als Kühlmittel kann dabei jeweils das Kühlwasser der Verbrennungskraftmaschine dienen.In internal combustion engines heat transfer units are used for example for air, exhaust or oil cooling. Thus, intercoolers serve to reduce the combustion temperatures and thus the resulting nitrogen oxides and exhaust gas cooler for heating the air for faster heating of a passenger compartment or in the exhaust system to reduce the exhaust gas temperature of a gas flowing to a catalyst. In exhaust gas recirculation lines are using the exhaust gas cooler the exhaust gas temperatures and thus the combustion temperature in the engine lowered, which in turn pollutant emissions can be reduced. In each case serve as a coolant, the cooling water of the internal combustion engine.

Eine Wärmeübertragungseinheit, welche in einem Abgasrückführsystem einer Verbrennungskraftmaschine angeordnet ist, ist beispielsweise aus der DE 10 2004 019 554 A1 bekannt. Diese besteht aus einem inneren U-förmig von Abgas durchströmten Kanal, der über den gesamten Querschnitt von einem Kühlmittel durchströmten Kanal umgeben ist. Es handelt sich hierbei um einen mehrteilig aufgebauten Druckgusskühler, welcher verschiedene Teilungsebenen aufweist.A heat transfer unit, which is arranged in an exhaust gas recirculation system of an internal combustion engine is, for example, from DE 10 2004 019 554 A1 known. This consists of an inner U-shaped flowed through by exhaust gas channel, which is surrounded over the entire cross-section of a coolant flow channel. This is a multi-part die-cast cooler, which has different graduation levels.

Bei derartigen Wärmetauschern ist sowohl ein hoher Wirkungsgrad bezüglich der zu übertragenden Wärme als auch eine möglichst geringe Versottung gewünscht. Gleichzeitig soll der Druckverlust über die Wärmeübertragungseinheiten möglichst gering gehalten werden.In such heat exchangers, both a high efficiency with respect to the heat to be transferred and the lowest possible sooting are desired. At the same time, the pressure loss over the heat transfer units should be kept as low as possible.

Aus der JP 60-050225 ist ein Ladeluftkühler bekannt, bei dem über zwei Klappen die Durchströmung des Kühlers geändert werden kann. Bei geöffneten Klappen wird dieser Kühler über seinen gesamten Querschnitt in einer Richtung durchströmt, während bei geschlossenen Klappen lediglich der gedrittelte Querschnitt über die dreifache Länge durchströmt wird.From the JP 60-050225 a charge air cooler is known in which the flow through the radiator can be changed via two flaps. With open flaps, this cooler is flowed through over its entire cross-section in one direction, while with the flaps closed, only the third cross-section is traversed over the third section.

Die bekannten Wärmeübertragungseinheiten weisen jedoch insbesondere bei geringen Durchsätzen und Temperaturdifferenzen lediglich geringe Kühlleistungen und Kühlerwirkungsgrade auf. Insbesondere im Bereich der Abgasrückführung kann es jedoch zur weiteren Reduzierung der Schadstoffemissionen wünschenswert sein, sowohl bei großen als auch bei kleinen Durchsätzen eine hohe Kühlleistung bei geringem Druckverlust zu erzielen.The known heat transfer units, however, have only low cooling capacities and cooler efficiencies, in particular at low throughputs and temperature differences. However, especially in the field of exhaust gas recirculation, it may be desirable to further reduce the pollutant emissions to achieve a high cooling capacity at low pressure loss, both at high and at low flow rates.

Daher ist es Aufgabe der Erfindung, eine Wärmeübertragungseinheit bereit zu stellen, mit der über einen großen Durchsatz- und Temperaturbereich hohe Kühlleistungen beziehungsweise Wirkungsgrade erzielt werden können und gleichzeitig der Druckverlust möglichst gering gehalten wird.It is therefore the object of the invention to provide a heat transfer unit with high cooling capacities over a large throughput and temperature range Efficiencies can be achieved and at the same time the pressure loss is kept as low as possible.

Diese Aufgabe wird durch den kennzeichnenden Teil des Hauptanspruchs gelöst.
Hierdurch entsteht eine zweistufige Wärmeübertragungseinheit, welche bei geringen Durchsätzen und relativ niedrigen Temperaturdifferenzen zum Kühlmittel dennoch eine hohe Kühlleistung beziehungsweise einen hohen Kühlerwirkungsgrad erreicht, da durch den verringerten durchströmten Querschnitt eine hohe Strömungsgeschwindigkeit durch den Kühler erzielt wird. Eine derartige Bauweise verringert die benötigte axiale Ausdehnung der Wärmeübertragungseinheit, so dass diese kleiner gebaut werden kann.
This object is achieved by the characterizing part of the main claim.
This results in a two-stage heat transfer unit, which at low throughputs and relatively low temperature differences to the coolant still achieves a high cooling capacity or a high radiator efficiency, since a high flow rate is achieved by the radiator through the reduced flow-through cross-section. Such a construction reduces the required axial extent of the heat transfer unit, so that it can be built smaller.

Vorzugsweise sind in der Wärmeübertragungseinheit zwei Absperreinrichtungen angeordnet, wobei bei Verschluss des ersten Fluidteileinlasses mittels der ersten Absperreinrichtung, die zweite Absperreinrichtung derart geschaltet ist, dass sich die Kühlstrecke für das Fluid in der Wärmeübertragungseinheit verlängert. Dies bedeutet, dass die Absperreinrichtungen derart angeordnet werden, dass die Wärmeübertragungseinheit durch die zweite Absperrung zum Teil in entgegengesetzter Richtung durchströmt wird. Dies führt zu einer weiteren Verlängerung der wirksamen Kühlstrecke und somit zu einer weiteren Erhöhung des Wirkungsgrades bei geringen Durchsätzen und Temperaturen, während bei geöffneter Absperreinrichtung im Vergleich zu bekannten Kühlern gleich gute Wirkungsgrade mit geringem Druckverlust erzielt werden.Preferably, two shut-off devices are arranged in the heat transfer unit, wherein when the first fluid part inlet is closed by means of the first shut-off device, the second shut-off device is connected such that the cooling path for the fluid in the heat transfer unit lengthens. This means that the shut-off devices are arranged such that the heat transfer unit is flowed through in part by the second barrier in the opposite direction. This leads to a further extension of the effective cooling section and thus to a further increase in efficiency at low flow rates and temperatures, while with open shut-off device compared to known coolers equally good efficiencies are achieved with low pressure drop.

In einer weiterführenden Ausführungsform weist die Wärmeübertragungseinheit zwei Trennwände auf, welche derart mit den Absperreinrichtungen zusammen wirken, dass der gesamte Kanal in beiden Schaltstellungen der Absperreinrichtungen durchströmt ist, wobei sich die Kühlstrecke bei Verengung des Querschnitts verlängert. Es wird somit der gesamte zur Verfügung stehende Querschnitt der Wärmeübertragungseinheit in beiden Schaltstellungen der Absperreinrichtung genutzt, was wiederum zu einer Wirkungsgraderhöhung führt.In a further embodiment, the heat transfer unit has two partitions, which cooperate with the shut-off devices in such a way that the entire channel flows through in both switching positions of the shut-off devices, wherein the cooling section extends when the cross-section narrows. It is thus used the entire available cross section of the heat transfer unit in both switching positions of the shut-off, which in turn leads to an increase in efficiency.

Vorzugsweise verlängert sich dabei die Kühlstrecke im Wesentlichen im gleichen Maß, wie sich der durchströmte Querschnitt verringert. Dies bedeutet, dass bei Halbierung des durchströmten Querschnittes die Kühlstrecke verdoppelt wird. Dies ist durch Nutzung der gesamten Wärmeübertragungseinheit in beiden Schaltstellungen der Absperreinrichtungen und durch mehrfache Umlenkung erreichbar.In this case, the cooling section preferably extends substantially to the same extent as the cross section through which it flows decreases. This means that when halving the flow-through cross section, the cooling section is doubled. This can be achieved by using the entire heat transfer unit in both switching positions of the shut-off devices and by multiple deflection.

Die Nutzung der gesamten zur Verfügung stehenden Wärmeübertragungsfläche in beiden Schaltstellungen der Absperreinrichtungen zur Erhöhung des Wirkungsgrades wird insbesondere durch eine Wärmeübertragungseinheit erreicht, bei der sich die erste Trennwand vom Fluideinlass zwischen dem ersten und dem zweiten Fluidteileinlass in Hauptströmungsrichtung in die Wärmeübertragungseinheit bis vor dem zum Fluideinlass entgegengesetzten Ende erstreckt und sich die zweite Trennwand vom Fluidauslass zwischen dem ersten und dem zweiten Fluidteilauslass in Hauptströmungsrichtung in die Wärmeübertragungseinheit bis vor dem zum Fluidauslass entgegengesetzten Ende erstreckt, wobei die erste und die zweite Absperreinrichtung als Klappe ausgebildet sind und die Klappen an den entgegengesetzten Enden der Wärmeübertragungseinheit jeweils zwischen der ersten und der zweiten Trennwand angeordnet sind, wobei die Klappen in beiden Schaltstellungen senkrecht zueinander angeordnet sind. Mit einer derartigen Bauform entsteht ein Kühler, bei dem bei geschlossenem ersten Fluideinlass der durchströmte Querschnitt halbiert ist, wobei gleichzeitig die Kühlstrecke verdoppelt wird. Bei geschlossener erster Klappe wird somit das zu kühlende Fluid durch den verengten Querschnitt in die Wärmeübertragungseinheit einströmen hinter der ersten Trennwand aufgrund der Verschlussstellung der zweiten Absperreinrichtung um 180° umgelenkt, hinter der mittleren Wand wiederum um 180° umgelenkt, was erneut hinter der zweiten Trennwand vollzogen wird. Erst hier kann das Abgas ausströmen.The use of the entire available heat transfer surface in both switching positions of the shut-off to increase the efficiency is achieved in particular by a heat transfer unit, wherein the first partition from the fluid inlet between the first and second fluid part inlet in the main flow direction in the heat transfer unit to the opposite to the fluid inlet End extends and the second partition extends from the fluid outlet between the first and the second Fluidteilauslass in the main flow direction in the heat transfer unit to the fluid outlet opposite end, wherein the first and the second shut-off device are designed as a flap and the flaps at the opposite ends of the heat transfer unit are each arranged between the first and the second partition wall, wherein the flaps are arranged perpendicular to each other in both switching positions. With such a design, a cooler is formed, in which the flow-through cross-section is halved when the first fluid inlet is closed, at the same time the cooling section is doubled. When the first flap is closed, the fluid to be cooled is thus flowed through the narrowed cross section into the heat transfer unit behind the first partition due to the closed position of the second shut-off device deflected by 180 °, behind the central wall in turn deflected by 180 °, which again performed behind the second partition becomes. Only here can the exhaust gas flow out.

Alternativ erstreckt sich die erste Trennwand U-förmig vom Fluideinlass zwischen dem ersten und dem zweiten Fluidteileinlass in Hauptströmungsrichtung bis vor den zweiten Fluidteilauslass und die zweite Trennwand erstreckt sich U-förmig vom Fluidauslass zwischen dem ersten und dem zweiten Fluidteilauslass in Hauptströmungsrichtung bis vor den ersten Fluidteileinlass, wobei die erste und die zweite Absperreinrichtung als Klappe ausgebildet sind, wobei durch die erste Klappe der erste Fluidteileinlass verschließbar ist und durch die zweite Klappe der zweite Fluidteilauslass verschließbar ist, wobei die Klappen parallel zueinander öffnen und schließen. Durch eine derartige Anordnung wird der durchströmte Querschnitt bei geschlossenem ersten Fluidteileinlass gedrittelt und gleichzeitig die Kühlstrecke verdreifacht, so dass bei noch geringeren Durchsätzen bzw. Fluidmassenströmen dennoch durch die lange vorhandene Kühlstrecke und den kleinen Querschnitt eine sehr gute Kühlwirkung erzielt wird. Gleichzeitig kann bei geöffnetem ersten Fluidteileinlass der Druckverlust über den Kühler niedrig gehalten werden.Alternatively, the first partition wall extends in a U-shape from the fluid inlet between the first and second fluid part inlet in the main flow direction to the second fluid part outlet and the second partition wall extends U-shaped from the fluid outlet between the first and second fluid part outlet in the main flow direction to the first fluid part inlet , wherein the first and the second shut-off device are designed as a flap, wherein the first flap through the first Fluid part inlet is closed and closed by the second flap of the second Fluidteilauslass, the flaps open and close parallel to each other. By means of such an arrangement, the flow-through cross-section is divided by three when the first fluid part inlet is closed, and at the same time the cooling section is tripled so that a very good cooling effect is achieved with even lower throughputs or fluid mass flows due to the long existing cooling section and the small cross section. At the same time, with the first fluid part inlet open, the pressure loss across the cooler can be kept low.

Insbesondere bei einer Anwendung einer derartigen Wärmeübertragungseinheit in einer Brennkraftmaschine zur Abgaskühlung werden hohe Kühlerwirkungsgrade unabhängig vom Durchsatz beziehungsweise vorhandenen Temperaturbereich des die Wärmeübertragungseinheit durchströmenden Abgases beziehungsweise Fluides erreicht. Bei hohen vorhandenen Durchsätzen und hohen Temperaturen kann eine hohe Kühlleistung bei geringen Druckverlusten gewährleistet werden. Es vergrößert sich somit der Arbeitsbereich eines derartigen Kühlers.Particularly when such a heat transfer unit is used in an internal combustion engine for exhaust gas cooling, high radiator efficiencies are achieved independently of the throughput or existing temperature range of the exhaust gas or fluid flowing through the heat transfer unit. At high existing throughputs and high temperatures, a high cooling capacity can be ensured with low pressure losses. It thus increases the working range of such a cooler.

in den Figuren sind drei alternative Ausführungsformen erfindungsgemäßer Wärmeübertragungseinheiten dargestellt und werden nachfolgend beschrieben.

  • Figur 1 zeigt eine Draufsicht einer ersten Ausführung einer erfindungsgemäßen Wärmeübertragungseinheit in geschnittener Darstellung.
  • Figur 2 zeigt einen Schnitt durch die Wärmeübertragungseinheit gemäß der Fig.1 entlang der Linie A-A
  • Figur 3 zeigt eine Draufsicht einer alternativen erfindungsgemäßen Wärmeübertragungseinheit.
  • Figur 4 zeigt eine weitere alternative Ausführung einer erfindungsgemäßen Wärmeübertragungseinheit wiederum in Draufsicht und geschnittener Darstellung.
In the figures, three alternative embodiments of heat transfer units according to the invention are shown and will be described below.
  • FIG. 1 shows a plan view of a first embodiment of a heat transfer unit according to the invention in a sectional view.
  • FIG. 2 shows a section through the heat transfer unit according to the Fig.1 along the line AA
  • FIG. 3 shows a plan view of an alternative heat transfer unit according to the invention.
  • FIG. 4 shows a further alternative embodiment of a heat transfer unit according to the invention again in plan view and a sectional view.

Für funktional gleiche Bauteile der verschiedenen Ausführungsformen der erfindungsgemäßen Wärmeübertragungseinheiten werden im Folgenden gleiche Bezugszeichen verwendet.For functionally identical components of the various embodiments of the heat transfer units according to the invention, the same reference numerals are used below.

In den Figuren 1 und 2 ist eine erste Ausführung einer erfindungsgemäßen Wärmeübertragungseinheit 1 dargestellt welche vorzugsweise als Abgaswärmetauscher in Kraftfahrzeugen verwendet wird. Sie besteht aus einem Außengehäuse 2, in dem ein Innengehäuse 3, welches beispielsweise im Druckgussverfahren herstellbar ist, angeordnet ist. Zwischen dem Innengehäuse 3 und dem Außengehäuse 2 entsteht nach dem Zusammenbau ein vom zu kühlenden Fluid durchströmter Kanal 4. Im Inneren des Innengehäuses 3 ist ein Kühlmittel durchströmter Kanal 5 angeordnet, dessen Ein- und Ausströmstutzen 6, 7 in Figur 2 dargestellt sind und welche in vorliegender Ausführung an einem zu einem Fluideinlass 8 und einem Fluidauslass 9 entgegengesetztem Ende 10 der Wärmeübertragungseinheit angeordnet sind. Der Kühlmittel durchströmte Kanal 5 wird durch eine im Querschnitt umlaufende Wand 11 begrenzt, von der aus sich Rippen 12 in den vom zu kühlenden Fluid durchströmten Kanal 4 erstrecken. Der vom zu kühlenden Fluid durchströmte Kanal 4 ist derart ausgebildet, dass sein Fluideinlass 8 an der gleichen Kopfseite wie der Fluidauslass 9 angeordnet ist, so dass das zu kühlende Fluid am entgegengesetzten Ende 10 um 180° umgelenkt wird. Dementsprechend sind die Rippen 12 in diesem Bereich der Hauptströmungsrichtung folgend angeordnet.In the Figures 1 and 2 a first embodiment of a heat transfer unit 1 according to the invention is shown which is preferably used as exhaust gas heat exchanger in motor vehicles. It consists of an outer housing 2, in which an inner housing 3, which can be produced, for example, by die-casting, is arranged. Between the inner housing 3 and the outer housing 2, a channel 4 flows through the fluid to be cooled after assembly. In the interior of the inner housing 3, a coolant through-flow channel 5 is arranged, the inlet and outlet nozzles 6, 7 in FIG. 2 are shown and which are arranged in the present embodiment at one to a fluid inlet 8 and a fluid outlet 9 opposite end 10 of the heat transfer unit. The coolant flowed through channel 5 is limited by a circumferential wall 11 in the wall, from which ribs 12 extend in the flowed through by the fluid to be cooled channel 4. The channel 4 through which the fluid to be cooled flows is designed such that its fluid inlet 8 is arranged on the same side of the head as the fluid outlet 9, so that the fluid to be cooled is deflected by 180 ° at the opposite end 10. Accordingly, the ribs 12 are arranged in this region following the main flow direction.

Um eine derartige U-förmige Durchströmung zu erreichen, ist es notwendig, zwischen dem Fluideinlass 8 und dem Fluidauslass 9 eine sich in Strömungsrichtung in den vom zu kühlenden Fluid durchströmten Kanal 4 erstreckende Wand 13 vorzusehen, welche in einem Abstand vom zum Einlass 8 entgegengesetzten Ende 10 der Wärmeübertragungseinheit 1 endet, der in etwa der Breite des Fluideinlasses 8 beziehungsweise des Fluidauslasses 9 entspricht, so dass keine Strömungsverluste auftreten, sondern lediglich eine Richtungsumkehr des Fluids an diesem Ende 10 erfolgt. Diese Wand 13 ist in ihrer Höhe so ausgestaltet, dass sie bis zum Außengehäuse 2 reicht, wodurch eine Querströmung und ein Überströmen unmittelbar vom Einlass 8 zum Ausiass 9 verhindert wird.In order to achieve such a U-shaped flow, it is necessary to provide between the fluid inlet 8 and the fluid outlet 9 a in the flow direction in the flowed through by the fluid to be cooled channel 4 wall 13, which at a distance from the inlet 8 opposite end 10 of the heat transfer unit 1 ends, which corresponds approximately to the width of the fluid inlet 8 and the fluid outlet 9, so that no flow losses occur, but only a direction reversal of the fluid takes place at this end 10. This wall 13 is designed in height so that it extends to the outer housing 2, whereby a cross flow and an overflow is prevented directly from the inlet 8 to Ausiass 9.

Wie insbesondere in Figur 1 zu erkennen ist, sind die Rippen 12 in Hauptströmungsrichtung gesehen, jeweils in Reihen nebeneinander angeordnet, wobei mit Abschluss einer ersten Reihe jeweils eine zweite Reihe folgt, deren Rippen 12 zu den Rippen 12 der ersten Reihe versetzt angeordnet sind. Eine derartige Anordnung der Rippen 12 erhöht die Verweilzeit des Fluids in der Wärmeübertragungseinheit und somit dessen Wirkungsgrad, da eine gerade, hindernisfreie Durchströmung für das zu kühlende Fluid nicht mehr möglich ist.As in particular in FIG. 1 can be seen, the ribs 12 are seen in the main flow direction, arranged in rows next to each other, with completion of a first row each followed by a second row, the ribs 12 are arranged offset from the ribs 12 of the first row. Such an arrangement of the ribs 12 increases the residence time of the fluid in the heat transfer unit and thus its efficiency, since a straight, obstacle-free flow is no longer possible for the fluid to be cooled.

Erfindungsgemäß weist die Wärmeübertragungseinheit zusätzlich eine erste Trennwand 14 auf, welche sich U-förmig vom Fluideinlass 8 über das Ende 10 zum Fluidauslass 9 erstreckt. Diese Trennwand 14 teilt im vorliegenden Ausführungsbeispiel den Kanal 4 in zwei Teilkanäle 15 und 16 und somit auch den Fluideinlass 8 und den Fluidauslass 9 in zwei in etwa gleich große Fluidteileinlässe 17, 18 und zwei Fluidteilauslässe 19, 20. Der erste Fluidteileinlass 17 wird von einer Absperreinrichtung 21 in Form einer Klappe beherrscht, deren Drehachse 22 im vorliegenden Ausführungsbeispiel in Verlängerung zum Außengehäuse 2 angeordnet ist. Sowohl die Absperreinrichtung 21 als auch die Trennwand 14 erstrecken sich selbstverständlich über die gesamte Höhe der Wärmeübertragungseinheit 1.According to the invention, the heat transfer unit additionally has a first partition wall 14, which extends in a U-shape from the fluid inlet 8 via the end 10 to the fluid outlet 9. This partition wall 14 divides in the present embodiment, the channel 4 in two sub-channels 15 and 16 and thus the fluid inlet 8 and the fluid outlet 9 in two approximately equal fluid part inlets 17, 18 and two fluid part outlets 19, 20. The first fluid part inlet 17 is of a Shut-off device 21 dominated in the form of a flap whose axis of rotation 22 is arranged in the present embodiment in extension to the outer housing 2. Of course, both the shut-off device 21 and the partition wall 14 extend over the entire height of the heat transfer unit 1.

Bei Verwendung einer derartigen Wärmeübertragungseinheit 1 als Abgaskühler ist üblicherweise vor der Wärmeübertragungseinheit 1 ein Abgasrückführventil ausgebildet, so dass unterschiedliche Fluidmassenströme beziehungsweise Abgasmassenströme der Wärmeübertragungseinheit 1 zugeführt werden. Insbesondere bei geringen Abgasmassenströmen und kleineren Temperaturdifferenzen zwischen dem Abgas und dem Kühlmittel ist die Kühlleistung einer Wärmeübertragungseinheit ohne Trennwand 14 und Absperreinrichtung 21 nur sehr gering. Bei der vorliegenden erfindungsgemäßen Ausführung der Wärmeübertragungseinheit 1 wird der erste Fluideinlass 17 durch die Absperreinrichtung 21 verschlossen, so dass der gesamte Massenstrom über den zweiten Fluideinlass 18 zum zweiten Fluidauslass 20 strömt. Hierzu steht im Vergleich zu einer Wärmeübertragungseinheit 1 ohne abschaltbaren Kanal lediglich der halbe Querschnitt zu Verfügung. Hierdurch entstehen zwar etwas höher Druckverluste, weiche durch den geringen Durchsatz jedoch kleiner sind als bei geöffneter Absperreinrichtung 21 und vollem Durchsatz. Des weiteren wird die Kühlleistung und somit der Wirkungsgrad der Wärmeübertragungseinheit 1 im Vergleich zu bekannten Ausführungen bei geringem Durchsatz und verringertem Querschnitt deutlich erhöht. Bei entsprechend großem Fluidmassenstrom wird die Absperreinrichtung 21 geöffnet, so dass der gesamte Querschnitt des Kanals 4 zur Kühlung zur Verfügung steht, so dass keine zu hohen Druckverluste entstehen und gleichzeitig die bekannt gute Kühlwirkung erzielt wird.When using such a heat transfer unit 1 as an exhaust gas cooler, an exhaust gas recirculation valve is usually formed before the heat transfer unit 1, so that different fluid mass flows or exhaust gas mass flows of the heat transfer unit 1 are supplied. Especially at low exhaust gas mass flows and smaller temperature differences between the exhaust gas and the coolant, the cooling capacity of a heat transfer unit without partition 14 and shut-off device 21 is only very small. In the present embodiment of the heat transfer unit 1 according to the invention, the first fluid inlet 17 is closed by the shut-off device 21, so that the entire mass flow flows via the second fluid inlet 18 to the second fluid outlet 20. This is compared to a heat transfer unit 1 without disconnectable channel only half the cross-section available. Although this results in somewhat higher pressure losses, which are smaller due to the low throughput than when the shut-off device 21 is open and the throughput is full. Furthermore, the Cooling capacity and thus the efficiency of the heat transfer unit 1 compared to known designs with low throughput and reduced cross-section significantly increased. With a correspondingly large fluid mass flow, the shut-off device 21 is opened, so that the entire cross-section of the channel 4 is available for cooling, so that no excessive pressure losses occur and at the same time the known good cooling effect is achieved.

Eine hierzu weiterführende Ausführungsform ist in der Figur 3 dargestellt. Im Vergleich zum ersten Ausführungsbeispiel sind in dieser Wärmeübertragungseinheit 1 zwei Trennwände 23 und 24 angeordnet, wovon sich die erste Trennwand 23 vom Fluideinlass 8 zum entgegengesetzten Ende 10 der Wärmeübertragungseinheit 1 erstreckt und die zweite Trennwand 24 sich vom Fluidauslass 9 zum entgegengesetzten Ende 10 der Wärmeübertragungseinheit 1 erstreckt. Beide Trennwände 23, 24 enden in einem ausreichenden Abstand zum Ende 10, so dass bei Verschluss einer der Fluidteileinlässe 17, 18 ein ausreichender Querschnitt zur Durchströmung des Fluids hinter den Enden der Trennwände 23 und 24 sowie dem Außengehäuse 2 zur Verfügung steht.A further embodiment of this is in the FIG. 3 shown. Compared to the first embodiment, in this heat transfer unit 1, two partition walls 23 and 24 are arranged, of which the first partition wall 23 extends from the fluid inlet 8 to the opposite end 10 of the heat transfer unit 1 and the second partition wall 24 extends from the fluid outlet 9 to the opposite end 10 of the heat transfer unit 1 extends. Both partitions 23, 24 terminate at a sufficient distance from the end 10, so that when closing one of the fluid part inlets 17, 18 a sufficient cross-section for the flow of fluid behind the ends of the partition walls 23 and 24 and the outer housing 2 is available.

Zwischen den jeweiligen Enden der beiden Trennwände 23, 24 in Verlängerung zur Wand 13 sind Drehachsen 25, 26 angeordnet, auf denen jeweils eine Absperreinrichtung in Form einer Klappe 27, 28 gelagert ist. Die Breite der Klappen 27, 28 entspricht dabei dem Abstand zwischen den beiden Trennwänden 23, 24. Gleichzeitig entspricht der Abstand des Endes der Wand 13 von den Drehachsen 25, 26 jeweils der halben Breite einer solchen Klappe 27, 28, so dass die erste Klappe 27 in ihrer ersten Stellung den ersten Fluidteileinlass 17 sowie den ersten Fluidteilauslass 19 absperrt, während die zweite Klappe 28 in ihrer ersten Endlage um 90° versetzt zur ersten Klappe 27 angeordnet ist und somit in ihrer Breite mit dem einen Ende gegen die Wand 13 anliegt und mit ihrem anderen Ende gegen das Außengehäuse 2 anliegt. In ihrer zweiten Stellung stößt die erste Klappe 27 mit ihren beiden Enden gegen die Trennwände 23 und 24 an.Between the respective ends of the two partitions 23, 24 in extension to the wall 13 are axes of rotation 25, 26 are arranged, on each of which a shut-off device in the form of a flap 27, 28 is mounted. The width of the flaps 27, 28 corresponds to the distance between the two partitions 23, 24. At the same time corresponds to the distance of the end of the wall 13 of the axes of rotation 25, 26 each half the width of such a flap 27, 28, so that the first flap 27 in its first position, the first fluid part inlet 17 and the first Fluidteilauslass 19 shuts off, while the second flap 28 is disposed in its first end position offset by 90 ° to the first flap 27 and thus rests in its width with one end against the wall 13 and abuts against the outer housing 2 with its other end. In its second position, the first flap 27 abuts with its two ends against the partitions 23 and 24.

ist nun die erste Absperreinrichtung 27 in einer Stellung in der sie gegen die beiden Trennwände 23, 24 anliegt, ist der erste Fluidteileinlass 17 geschlossen. Der Fluidmassenstrom tritt somit über den zweiten Fluidteileinlass 18 in den Teilkanal 16 ein und gelangt von hier zum entgegengesetzten Ende 10 der Wärmeübertragungseinheit 1. Die zweite Absperreinrichtung 28 verhindert nun durch ihre oben erwähnte erste Stellung einen Fluidmassenstrom über die Verlängerung der Wand 13 hinaus. Folglich erfährt der Fluidmassenstrom eine 180° Wendung und gelangt hinter der Trennwand 23 in den Teilkanal 15, durchströmt diesen jedoch in entgegengesetzter Richtung also in Richtung zum ersten Fluidteileinlass 10 führt. Ein Ausströmen wird hier durch die Schließstellung der ersten Absperreinrichtung 27 verhindert, so dass erneut eine Umkehr des Fluidmassenstromes in den Bereich des ersten Teilkanals 15 hinter dem ersten Fluidteilauslass 19 erfolgt, so dass erneut die übliche Strömungsrichtung im Vergleich zur ersten Ausführung oder zur entgegengesetzten Stellung der Klappen 27, 28 geändert wird. Das Fluid strömt nun erneut zum entgegengesetzten Ende 10, wo wiederum eine Umkehr in Richtung zum zweiten Fluidteilauslass 20 erfolgt, wo das Fluid ausströmen kann.is now the first shut-off device 27 in a position in which it rests against the two partitions 23, 24, the first fluid part inlet 17 is closed. The fluid mass flow thus enters via the second fluid part inlet 18 in the sub-channel 16 and from here to the opposite end 10 of the heat transfer unit 1. The second shut-off device 28 prevents now by their above-mentioned first position a fluid mass flow over the extension of the wall 13 addition. Consequently, the fluid mass flow undergoes a 180 ° turn and passes behind the dividing wall 23 into the partial passage 15, but flows through it in the opposite direction, ie in the direction of the first fluid inlet inlet 10. An outflow is prevented here by the closed position of the first shut-off device 27, so that again a reversal of the fluid mass flow in the region of the first sub-channel 15 behind the first Fluidteilauslass 19, so again the usual flow direction compared to the first embodiment or the opposite position of the Flaps 27, 28 is changed. The fluid now flows again to the opposite end 10, where again a reversal takes place in the direction of the second fluid part outlet 20, where the fluid can flow out.

Es entsteht somit bei dieser Stellung der Klappen 27, 28 eine Verdopplung des insgesamt zurückgelegten Strömungsweges bei Halbierung des zur Verfügung stehenden Strömungsquerschnitts. Hierdurch wird die Kühlwirkung deutlich erhöht, da in jedem Zustand die gesamte zur Verfügung stehende Wärmetauscherfläche genutzt wird.Thus, with this position of the flaps 27, 28, there is a doubling of the total flow path that has been covered in the event of halving the available flow cross-section. As a result, the cooling effect is significantly increased because in each state, the entire available heat exchanger surface is used.

In der entgegengesetzten Stellung der beiden Absperreinrichtungen 27, 28 liegt somit die Außenfläche der ersten Klappe 27 in Verlängerung zur Wand 13, so dass beide Fluidteileinlässe 17, 18 geöffnet sind. Somit strömt das Fluid vom Fluideinlass 8 in beide Teilkanäle 15, 16. Die zweite Klappe 28 verhindert eine Strömung vom Teilkanal 15 zum Teilkanal 16, so dass beide Teilkanäle 15, 16 U- förmig und parallel durchströmt werden. Vom ersten Fluidteileinlass 17 erfolgt die Strömung somit zum ersten Fluidteilauslass 19 und vom zweiten Fluidteileinlass 18 strömt das Fluid zum zweiten Fluidteilauslass 20. Eine derartige Schaltstellung wird bei großen Massendurchsätzen gewählt.In the opposite position of the two shut-off devices 27, 28 is thus the outer surface of the first flap 27 in extension to the wall 13, so that both fluid part inlets 17, 18 are opened. Thus, the fluid flows from the fluid inlet 8 in both sub-channels 15, 16. The second flap 28 prevents flow from the sub-channel 15 to the sub-channel 16, so that both sub-channels 15, 16 are flowed through in a U-shaped and parallel. From the first fluid part inlet 17, the flow thus takes place to the first fluid part outlet 19 and from the second fluid part inlet 18 the fluid flows to the second fluid part outlet 20. Such a switching position is selected at high mass flow rates.

Figur 4 zeigt eine weitere alternative Wärmeübertragungseinheit 1 bei der wiederum zwei Trennwände 29, 30 sowie zwei Absperreinrichtungen 31, 32 verwendet werden. FIG. 4 shows a further alternative heat transfer unit 1 in which again two partitions 29, 30 and two shut-off devices 31, 32 are used.

Allerdings verläuft hier die erste Trennwand 29 vom Fluideinlass 8 U-förmig zum Fluidauslass 9 und endet in einem Abstand vor dem Fluidauslass 9, der der halben Breite der Absperreinrichtung 32 entspricht. Parallel U-förmig verläuft die zweite Trennwand 30 jedoch vom Fluidauslass 9 in Richtung zum Fluideinlass 8 wo sie wiederum in einem Abstand vom Fluideinlass 8 endet, welcher der halben Breite der Absperreinrichtung 31 entspricht. Diese beiden Trennwände 29, 30 sind so angeordnet, dass der Fluideinlass 8 und der Fluidauslass 9 in etwa in ihrem Querschnitt bzw. in ihrer Breite gedrittelt werden.However, here runs the first partition wall 29 from the fluid inlet 8 U-shaped to the fluid outlet 9 and ends at a distance in front of the fluid outlet 9, which corresponds to half the width of the shut-32. However, parallel to the U-shaped second partition wall 30 extends from the fluid outlet 9 in the direction of the fluid inlet 8 where it in turn ends at a distance from the fluid inlet 8, which corresponds to half the width of the shut-off device 31. These two partitions 29, 30 are arranged so that the fluid inlet 8 and the fluid outlet 9 are approximately divided in their cross-section and in their width.

Die Absperreinrichtungen 31, 32 sind auf Drehachsen 33, 34 angeordnet, die in Verlängerung zu den Enden der Trennwände 29, 30 im Bereich der Fluidteileinlässe 17, 18 beziehungsweise Fluidteilauslässe 19, 20 angeordnet sind.The shut-off devices 31, 32 are arranged on axes of rotation 33, 34, which are arranged in extension to the ends of the partitions 29, 30 in the region of the fluid part inlets 17, 18 or fluid part outlets 19, 20.

In geschlossener Stellung der beiden Klappen 31, 32 also bei Anliegen der Klappe 31 an der Trennwand 29 sowie der Wand 13 und Anliegen der Klappe 32 an der Trennwand 30 sowie dem Außengehäuse 2 gelangt der Fluidmassenstrom über den zweiten Fluidteileinlass 18 in die Wärmetauschereinheit 1 und strömt zwischen dem Außengehäuse 2 und der ersten Trennwand 29 U-förmig bis zur zweiten Absperreinrichtung 32, wo er hinter der ersten Trennwand 29 umgelenkt wird und nun erneut in entgegengesetzter Richtung U-förmig in Richtung zum ersten Fluidteileinlass 17 zwischen den Trennwänden 29 und 30 strömt. Bei Erreichen des ersten Fluidteileinlasses 17 wird der Weg durch die Absperreinrichtung 31 erneut versperrt, so dass eine Umkehr hinter der Trennwand 30 erfolgt und der Fluidmassenstrom nun zwischen der Wand 13 und der Trennwand 30 wiederum U-förmig in Richtung zum freien ersten Fluidteilauslass 19 strömt. Somit entsteht eine Verdreifachung der Kühlstrecke bei Drittelung des zur Verfügung stehenden Querschnitts.In the closed position of the two flaps 31, 32 so when the flap 31 on the partition wall 29 and the wall 13 and concerns the flap 32 on the partition wall 30 and the outer housing 2, the fluid mass flow passes through the second fluid part inlet 18 into the heat exchanger unit 1 and flows between the outer housing 2 and the first partition wall 29 U-shaped until the second shut-off device 32, where it is deflected behind the first partition wall 29 and now again in the opposite direction U-shaped in the direction of the first fluid part inlet 17 between the partitions 29 and 30 flows. When the first fluid part inlet 17 is reached, the path through the shut-off device 31 is blocked again so that a reversal takes place behind the dividing wall 30 and the fluid mass flow now flows between the wall 13 and the dividing wall 30 in a U-shaped direction toward the free first fluid part outlet 19. This results in a tripling of the cooling section at the third of the available cross-section.

Bei geöffneten Absperreinrichtungen 31, 32 also bei Lage der Klappenausdehnung in Verlängerung zur den Trennwänden 29, 30 erfolgt der übliche Fluidmassenstrom U-förmig durch den gesamten Querschnitt vom Fluideinlass 8 zum Fluidauslass 9, wodurch zu hohe Druckverluste bei großen Durchsätzen zuverlässig vermieden werden.With the shut-off devices 31, 32 open, that is to say when the flap extension extends in the direction of the dividing walls 29, 30, the usual fluid mass flow is U-shaped through the entire cross section from the fluid inlet 8 to the fluid outlet 9, reliably avoiding excessive pressure losses at high throughputs.

Es sollte deutlich sein, dass eine derartige Ausführung nicht auf die vorhandenen Ausführungsbeispiele beschränkt ist, sondern die Bauform des Kühlers weitestgehend frei wählbar ist. So wäre es selbstverständlich auch möglich, den Fluideinlass und den Fluidauslass an entgegengesetzten Enden der Wärmeübertragungseinheit anzuordnen. Auch ist selbstverständlich eine Umströmung der Wärmeübertragungseinheit mit Kühlmittel anstatt der inneren Durchströmung denkbar. Wesentlich ist die Möglichkeit zur Absperrung eines Teils der zur Verfügung stehenden Querschnittsfläche, wobei möglichst dennoch die gesamte zur Verfügung stehende Wärmetauscherfläche genutzt werden sollte. Als Absperreinrichtungen können sowohl Klappen als auch andere Elemente genutzt werden. Auch sollte deutlich sein, dass eine Wärmeübertragungseinheit nicht auf eine in Druckguss herzustellende Wärmeübertragungseinheit beschränkt ist, sondern derartige in ihrem Querschnitt schaltbare Wärmeübertragungseinheiten auch in anders aufgebauten Wärmeübertragungseinheiten genutzt werden können.It should be clear that such an embodiment is not limited to the existing embodiments, but the design of the radiator is largely arbitrary. Thus, it would of course also be possible to arrange the fluid inlet and the fluid outlet at opposite ends of the heat transfer unit. Of course, a flow around the heat transfer unit with coolant instead of the internal flow is conceivable. Essential is the possibility to shut off a part of the available cross-sectional area, wherein as possible nevertheless the entire available heat exchanger surface should be used. As shut-off devices both flaps and other elements can be used. It should also be clear that a heat transfer unit is not limited to a heat transfer unit to be produced by die casting, but such heat transfer units which can be switched in their cross section can also be used in heat transfer units of a different design.

Die dargestellten Ausführungen der Wärmeübertragungseinheit ermöglichen einen Einsatz mit sehr guten Kühlleistungen und Kühlerwirkungsgraden über einen großen Durchsatz- und Temperaturbereich. Dabei wird gleichzeitig der Druckverlust über den Kühler möglichst klein gehalten.The illustrated embodiments of the heat transfer unit allow use with very good cooling performance and cooler efficiencies over a wide range of throughput and temperature. At the same time, the pressure loss across the cooler is kept as small as possible.

Claims (6)

  1. A heat transmission unit comprising a channel (5) conducting a coolant, and a channel (4) conducting a fluid to be cooled, said two channels (4,5) being separated from each other by a wall (11) provided with ribs (12) extending therefrom into at least one of said two channels (4,5), wherein said channel (4) conducting the fluid to be cooled comprises a fluid inlet (8) and a fluid outlet (9) and the heat transmission unit (1) further comprises a wall (13) separating the fluid inlet (8) from the fluid outlet (9) and extending to a position before an end (10) of the heat transmission unit (1) opposite to the fluid inlet (8) and respectively the fluid outlet (9),
    characterized in that
    said channel (4) is separated by a partition wall (14;23,24;29,30) arranged in flow direction, into a first and a second partial channel (15,16) having a first partial inlet (17) for fluid and a second partial inlet (18) for fluid as well as a first partial outlet (19) for fluid and a second partial outlet (20) for fluid, at least said first partial inlet (17) for fluid being adapted to be shut off by a first shut-off means (21;27;31) so that, in the opened condition of said first shut-off means (21;27;31), the heat transmission unit (1) is conducting a U-shaped flow and, in the closed condition of said first shut-off means (21;27;31), the heat transmission unit (1) is at least partially conducting a U-shaped flow.
  2. The heat transmission unit of claim 1, wherein the heat transmission unit (1) is provided with two shut-off means (27,28;31,32) arranged internally thereof and wherein, in the closed condition of the first partial inlet (17) for fluid as effected by the first shut-off means (27;31), the second shut-off means (28;32) is switched in such a manner that the cooling path for the fluid in the heat transmission unit (1) is lengthened.
  3. The heat transmission unit of claim 2, wherein the heat transmission unit (1) comprises two partition walls (23,24;29,30) cooperating with the shut-off means (27,28;31,32) in such a manner that the whole channel (4) is in its flow-conducting state in both switch positions of the shut-off means (27,28;31,32), the cooling path being lengthened and the cross section being narrowed.
  4. The heat transmission unit of claim 3, wherein the cooling path is lengthened substantially to the same extent to which the flow-conducting cross section is reduced.
  5. The heat transmission unit of claim 3 or 4, wherein the first partition wall (23) extends, in the main flow direction and between the first and second partial inlets (17,18) for fluid, from the fluid inlet (8) into the heat transmission unit (1) to a position before the end (10) opposite to the fluid inlet (8), and the second partition wall (24) extends, in the main flow direction and between the first and second partial outlets (19,20) for fluid, from the fluid outlet (9) into the heat transmission unit (1) to a position before the end (10) opposite to the fluid outlet (9), wherein the first and second shut-off means (27,28) are formed as flaps and the flaps (27,28) are arranged on the opposite ends of the heat transmission unit (1) respectively between the first and second partition walls (23,24), the flaps (27,28) being arranged vertically relative to each other in both switch directions.
  6. The heat transmission unit of claim 3 or 4, wherein the first partition wall (29) extends, in the main flow direction and between the first and second partial inlets (17,18) for fluid, along a U-shaped path from the fluid inlet (8) to a position before the second partial outlet (20) for fluid, and the second partition wall (30) extends, in the main flow direction, along a U-shaped path from the fluid outlet (9) between the first and second partial outlets (19,20) for fluid, all the way to a position before the first partial inlet (17) for fluid, wherein the first and second shut-off means (31,32) are formed as flaps, the first flap (31) being adapted to close the first partial inlet (17) for fluid and the second flap (32) being adapted to close the second partial outlet (20) for fluid, and the processes of opening and closing the flaps (31,32) being performed in parallel to each other.
EP07712105A 2006-03-16 2007-01-25 Heat transfer unit Not-in-force EP1994349B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012219.4A DE102006012219B4 (en) 2006-03-16 2006-03-16 Heat transfer unit with a closable fluid part inlet
PCT/EP2007/050720 WO2007104595A1 (en) 2006-03-16 2007-01-25 Heat transfer unit

Publications (2)

Publication Number Publication Date
EP1994349A1 EP1994349A1 (en) 2008-11-26
EP1994349B1 true EP1994349B1 (en) 2011-10-26

Family

ID=37944189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07712105A Not-in-force EP1994349B1 (en) 2006-03-16 2007-01-25 Heat transfer unit

Country Status (7)

Country Link
US (1) US8403031B2 (en)
EP (1) EP1994349B1 (en)
JP (1) JP5039065B2 (en)
AT (1) ATE530868T1 (en)
DE (1) DE102006012219B4 (en)
ES (1) ES2373064T3 (en)
WO (1) WO2007104595A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863646A (en) * 1994-08-26 1996-03-08 Fuji Electric Co Ltd Display device for automatic vending machine
DE102008024569A1 (en) * 2008-05-21 2009-12-10 Benteler Automobiltechnik Gmbh exhaust gas cooler
DE102008033823B4 (en) 2008-07-19 2013-03-07 Pierburg Gmbh Exhaust gas recirculation device for an internal combustion engine
JP5191877B2 (en) * 2008-12-24 2013-05-08 株式会社テクノフロンティア Total heat exchanger
FR2946132B1 (en) * 2009-06-02 2014-04-04 Valeo Systemes Thermiques THERMAL EXCHANGE UNIT AND CORRESPONDING HEAT EXCHANGER, METHOD OF MAKING A THERMAL EXCHANGE UNIT.
DE102009035723B3 (en) * 2009-07-31 2011-02-03 Pierburg Gmbh Cooling device for an internal combustion engine
JP5559088B2 (en) * 2010-05-18 2014-07-23 株式会社ワイ・ジェー・エス. Heat exchanger
DE102011001462A1 (en) 2011-03-22 2012-09-27 Pierburg Gmbh Heat exchanger used for internal combustion engine of motor vehicle, has U-shaped partition plate that is clamped between ribs of housing portion, so that inlet from which fluid flows into sub-channels of coolant channel is closed
DE102011085194B3 (en) * 2011-09-08 2013-03-07 Cooper-Standard Automotive (Deutschland) Gmbh Exhaust gas cooler for an exhaust gas recirculation system and an exhaust gas recirculation system with such an exhaust gas cooler
JP2016130625A (en) * 2015-01-08 2016-07-21 大日本印刷株式会社 Heat exchanger and metal thin plate for the same
AU2018267568A1 (en) * 2017-11-22 2019-09-12 Transportation Ip Holdings, Llc Thermal management system and method
DE102021116217A1 (en) 2021-06-23 2022-03-24 Audi Aktiengesellschaft Exhaust gas cooler for cooling exhaust gas from an internal combustion engine and a drive device with an internal combustion engine and a method for operating a drive device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261579A (en) * 1938-12-05 1941-11-04 Noblitt Sparks Ind Inc Automobile heater
DE941033C (en) * 1951-12-01 1956-03-29 Austin Motor Co Ltd Internal combustion turbine system
JPS5027653B1 (en) * 1970-08-13 1975-09-09
US3990504A (en) * 1975-09-29 1976-11-09 International Harvester Company Two stage operation for radiator
US4217953A (en) * 1976-03-09 1980-08-19 Nihon Radiator Co. Ltd. (Nihon Rajiecta Kabushiki Kaisha) Parallel flow type evaporator
DE2941721A1 (en) * 1979-10-15 1981-04-23 Rolf 8502 Zirndorf Helms Cross-flow heat exchanger - has chambers with shutters deflecting fresh air to=and=fro several times
US4415024A (en) 1980-11-05 1983-11-15 Joy Manufacturing Company Heat exchanger assembly
DE3103198A1 (en) 1981-01-30 1982-08-26 Oskar Dr.-Ing. 8031 Stockdorf Schatz Heat exchanger for operating with exhaust gases from reciprocating engines, in particular for heating motor vehicles
JPS5835397A (en) * 1981-08-27 1983-03-02 Sakushiyon Gas Kikan Seisakusho:Kk Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger
JPS58137280U (en) * 1982-03-08 1983-09-14 住友金属工業株式会社 heat exchange equipment
JPS6050225A (en) 1983-08-27 1985-03-19 Hino Motors Ltd Turbosupercharged engine with intercooler
JPS61101294U (en) * 1985-02-27 1986-06-27
DE3508240A1 (en) 1985-03-08 1986-09-11 Klöckner-Humboldt-Deutz AG, 5000 Köln Heat exchanger, in particular charge air cooler with optimised flow resistances for all heat-exchanging media
US4971137A (en) * 1989-11-09 1990-11-20 American Energy Exchange, Inc. Air-to-air heat exchanger with frost preventing means
JP2930486B2 (en) * 1992-10-09 1999-08-03 三菱重工業株式会社 Stacked heat exchanger
KR0143540B1 (en) * 1992-08-27 1998-08-01 코오노 미찌아끼 Stacked heat exchanger and method of manufacturing the same
DE9405062U1 (en) * 1994-03-24 1994-05-26 Hoval Interliz Ag, Vaduz-Neugut Heat exchanger tube for boilers
US5732688A (en) 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
DE10247264A1 (en) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plate heat exchanger in stack construction
DE102004019554C5 (en) 2004-04-22 2014-03-27 Pierburg Gmbh Exhaust gas recirculation system for an internal combustion engine
DE102004025187B3 (en) 2004-05-21 2005-11-03 Pierburg Gmbh Cooling system for induction manifold of internal combustion engine has tube with fins inside manifold carrying cooling fluid controlled by bimetallic spring valve
EP1626238B1 (en) * 2004-08-14 2006-12-20 Modine Manufacturing Company Heat exchanger having flat tubes

Also Published As

Publication number Publication date
ES2373064T3 (en) 2012-01-31
JP2009529650A (en) 2009-08-20
ATE530868T1 (en) 2011-11-15
DE102006012219A1 (en) 2007-09-27
US8403031B2 (en) 2013-03-26
EP1994349A1 (en) 2008-11-26
JP5039065B2 (en) 2012-10-03
US20090183861A1 (en) 2009-07-23
DE102006012219B4 (en) 2018-04-05
WO2007104595A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP1994349B1 (en) Heat transfer unit
EP1999423B1 (en) Exhaust gas cooler for a motor vehicle
DE102008036222B3 (en) Heat transfer unit for an internal combustion engine
EP1996888B1 (en) Heat exchanger for a motor vehicle
EP3169964B1 (en) Heat exchanger
DE102012006346B4 (en) heat exchangers
EP2025911B1 (en) Exhaust gas cooling device for a combustion engine
EP1132609A2 (en) Heat exchanger in an EGR arrangement
WO2003046457A1 (en) Heat exchanger
EP1857761A2 (en) Heat exchange device for combustion engines
EP2863157B1 (en) Heat exchanger
DE69416037T2 (en) Heat exchanger
WO2008028658A1 (en) Heat exchanger
DE102008033823B4 (en) Exhaust gas recirculation device for an internal combustion engine
DE102005006055A1 (en) Heat exchanger for exhaust gas of water-cooled combustion engine has part of inner heat jacket formed so that second volume is composed of at least two pockets
DE2306426A1 (en) HEAT EXCHANGER
DE10144827A1 (en) Exhaust gas heat exchanger
EP3066407B1 (en) Heat exchanger
DE102007041338B3 (en) Heat transfer unit for an internal combustion engine
DE102011001432B4 (en) Control valve for secondary air
EP3161402B1 (en) Heat exchanger
DE102008040293B4 (en) Exhaust system for an internal combustion engine
DE102012111928A1 (en) Heat exchanger for an internal combustion engine
DE102017130094B4 (en) Exhaust gas heat exchanger and method for operating the exhaust gas heat exchanger
DE102005036045B4 (en) Cooling device for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THOENNESSEN, DIETER

Inventor name: HEUER, PETER

Inventor name: JELINEK, DIETER

Inventor name: KUEHNEL, HANS-ULRICH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008520

Country of ref document: DE

Effective date: 20120119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2373064

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120131

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111026

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120126

Year of fee payment: 6

BERE Be: lapsed

Owner name: PIERBURG G.M.B.H.

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008520

Country of ref document: DE

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 530868

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130122

Year of fee payment: 7

Ref country code: GB

Payment date: 20130122

Year of fee payment: 7

Ref country code: FR

Payment date: 20130207

Year of fee payment: 7

Ref country code: SE

Payment date: 20130122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140125

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140126

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160119

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801