EP1983265A2 - Gas turbine reaction chamber wall - Google Patents
Gas turbine reaction chamber wall Download PDFInfo
- Publication number
- EP1983265A2 EP1983265A2 EP08007322A EP08007322A EP1983265A2 EP 1983265 A2 EP1983265 A2 EP 1983265A2 EP 08007322 A EP08007322 A EP 08007322A EP 08007322 A EP08007322 A EP 08007322A EP 1983265 A2 EP1983265 A2 EP 1983265A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- gas turbine
- chamber wall
- wall according
- cooling holes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/007—Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03041—Effusion cooled combustion chamber walls or domes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03042—Film cooled combustion chamber walls or domes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03044—Impingement cooled combustion chamber walls or subassemblies
Definitions
- the invention relates to a gas turbine combustion chamber wall according to the features of the preamble of claim 1.
- the GB 9 106 085 A and the WO 92/16798 A describe the construction of a gas turbine combustion chamber by metallic shingles fastened with studs, which by the combination of impingement and effusion cooling leads to a quite effective cooling effect and thus allows the reduction of the cooling air consumption.
- the pressure loss which exists over the wall, distributed to two throttle points, the shingle support and the shingle itself. To avoid edge leakage usually the greater proportion of the pressure loss is generated via the shingle support, so that the cooling air has less cause, at the Pass the effusion shingles.
- the GB 2 087 065 A describes an impingement cooling configuration with a shingled shingled piping, with each individual impingement cooling jet being protected from cross flow by an upstream pin or rib on the shingle. Furthermore, the pins or ribs increase the area available for heat transfer.
- the GB 2 360 086 A describes an impingement cooling configuration with hexagonal ribs and partly additional prisms centrally located within the hexagonal ribs to increase the heat transfer.
- the GB 9 106 085 A uses only a flat surface as the target of impingement cooling. An attachment of ribs would bring little except the simple increase in the area, since the ribs, such as in the GB 2 360 086 A are shown to require an overflow to take effect. Due to the congruence of impingement cooling air supply and removal of the air through the effusion bores, however, there is no appreciable Speed at the overflow of the ribs. In part, the pressure difference across the shingle is reduced by the torch swirl so that no effective flow through the effusion holes takes place more or even threatens hot gas burglary in the impingement cooling chamber of the shingle.
- Film cooling is the most effective way to reduce the wall temperature, as the component is protected by the insulating cooling film from transferring heat from the hot gas, instead of removing heat that has already been injected by other methods afterwards.
- the GB 2 087 065 A and the GB 2 360 086 A contain no technical teaching to renew the cooling film on the hot gas side within the extension of the shingle.
- the shingle must be made so short in each case in the flow direction that the cooling film produced by the upstream shingle over the entire length of the shingle carries. This forces a multitude of shingles along the combustion chamber wall and does not allow to cover this distance with a single shingle.
- the invention has for its object to provide a gas turbine combustor wall of the type mentioned, which with a simple structure and easier, cost-effective manufacturability which has a high cooling efficiency and good damping.
- impact-cooled shingles having a surface structure, e.g. by hexagonal ribs or other polygonal shapes, wherein the spent air is discharged through effusion holes from the baffle cooling gap so that the extension of baffle cooling holes for air supply, and the effusion hole field for air discharge are not congruent.
- the area which is equipped with a surface structure, can cover the entire shingle, or only an optimized area, in which a considerable overflow of the surface structure takes place and thus increases the noticeable heat transfer.
- the displacement may be provided in the circumferential direction or in the axial direction or any combination thereof.
- the hexagonal ribs may be filled with a prism so that the tip of the prism is at or above the level of the ribs.
- the surface structure may be formed of tri-, tetra- or other polygonal cells.
- the surface structure may also consist of circular or droplet-shaped depressions, whereby here too a shift between impact field field, surface structure area and effusion hole field in the axial or / and circumferential direction is decisive. If impingement cooling holes are present in the area of the surface structure, then the impact cooling jets strike the shingle substantially in the middle of the polygonal cell or at the lowest point of the circular or drop-shaped depression.
- the impingement cooling holes may vary in diameter in the axial and / or circumferential direction, as well as the effusion holes and the dimensions of the surface structure.
- the impingement cooling holes are substantially perpendicular to the impingement cooling surface, but the effusion holes are at a shallow angle to the hot gas side surface in the range of 10-45 degrees, advantageously in the range of 15-30 degrees.
- the effusion holes may be purely axially aligned or form a circumferential angle.
- the effusion hole pattern can be oriented on the surface structure.
- a defined overflow of the ribs or depressions results in maximizing the rib effect while at the same time minimizing the impairment of the impingement cooling by the transverse flow.
- the shingles temperature is lowered, thus extending the life of the component.
- the Fig. 1 shows a schematic representation of a cross section of a gas turbine combustor according to the prior art.
- compressor outlet blades 1 and a combustion chamber outer housing 2 and a combustion chamber inner housing 3 are shown schematically.
- the reference numeral 4 denotes a burner with arm and head
- the reference numeral 5 denotes a combustion chamber head, which is followed by a multilayer combustion chamber wall 6, from which the flow is directed to turbine inlet blades 7.
- the Fig. 2 shows an embodiment according to the prior art, as for example from the WO 92/16798 A is already known.
- a combustion chamber wall 9 (shingle support) is shown, in which a plurality of inflow bores 8 (impingement cooling holes) are formed, through which cooling air from the compressor exit air 12 is introduced into a gap 14 between a shingle 10 and the combustion chamber wall 9.
- the shingle 10 is secured by stud bolts 15 and fastening nuts 16.
- the shingle comprises several effusion cooling holes 11.
- the Fig. 3 shows a first embodiment of the combustion chamber wall according to the invention.
- FIG. 3 shows, in a schematic plan view, the displacement of the region 17 of the impingement cooling holes 8 and the region 18 of the effusion cooling holes 11 and 23. It can be seen that between the regions 17 and 18 with a partial overlap the region of the surface structure 20 is arranged, wherein the individual elements of FIG Surface structure are indicated schematically by the reference numeral 22.
- the Fig. 5 shows a further modification in an analogous view Fig. 4 with only partially overlapping areas (area 17 for the impingement cooling holes 8, area 18 for the Effusion cooling holes 11 and area 20 for the surface structure 22).
- Reference numeral 21 schematically shows the projection of an impingement cooling hole 8 in the combustion chamber wall 9 (shingle support) onto the shingle 10.
- the Fig. 6 shows a schematic side view (cross section) of different embodiments of the surface structure 19, 22.
- a rib 24 is provided with a rectangular cross-section and a rib 25 with a trapezoidal cross-section.
- the surface structure 19 may comprise circular depressions 26 as well as drop-shaped depressions 27 (see also FIGS Fig. 7 ).
- Reference numeral 30 schematically represents a prismatic elevation (prism). The prism may be lower than the ribs 24, 25, higher than the ribs 24, 25 or the same height as the ribs 24, 25.
- the Fig. 7 shows a schematic plan view, analog Fig. 6 , a further embodiment variant, from which square cells 28 and hexagonal cells 29 result, which may also be provided with a prism 30.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Gasturbinenbrennkammerwand gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a gas turbine combustion chamber wall according to the features of the preamble of
Die
Die
Die
Die
Die Filmkühlung ist die effektivste Möglichkeit, die Wandtemperatur zu senken, da das Bauteil durch den isolierenden Kühlfilm vor der Übertragung von Wärme aus dem Heißgas geschützt wird, statt bereits eingekoppelte Wärme durch andere Methoden im Nachhinein wieder zu entfernen. Die
Bei der
Eine technische Lehre zur Abführung der verbrauchten Luft wird in der
Der Erfindung liegt die Aufgabe zugrunde, eine Gasturbinenbrennkammerwand der eingangs genannten Art zu schaffen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit die eine hohe Kühleffizienz und eine gute Dämpfung aufweist.The invention has for its object to provide a gas turbine combustor wall of the type mentioned, which with a simple structure and easier, cost-effective manufacturability which has a high cooling efficiency and good damping.
Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.According to the invention the object is achieved by the combination of features of
Erfindungsgemäß werden prall-effusionsgekühlte Schindeln mit einer Oberflächenstruktur, z.B. durch hexagonale Rippen oder andere mehreckige Formen, ausgestattet, wobei die verbrauchte Luft durch Effusionsbohrungen aus dem Prallkühlspalt so abgeführt wird, dass die Erstreckung von Prallkühllöchern zur Luftzufuhr, und das Effusionslochfeld zur Luftabfuhr nicht deckungsgleich sind. Der Bereich, der mit einer Oberflächenstruktur ausgestattet ist, kann die gesamte Schindel abdecken, oder nur einen optimierten Bereich, in welchem eine nennenswerte Überströmung der Oberflächenstruktur stattfindet und somit den merklichen Wärmeübergang erhöht. Die Verschiebung kann in Umfangsrichtung oder in axialer Richtung oder einer beliebigen Kombination dieser vorgesehen werden.According to the invention, impact-cooled shingles having a surface structure, e.g. by hexagonal ribs or other polygonal shapes, wherein the spent air is discharged through effusion holes from the baffle cooling gap so that the extension of baffle cooling holes for air supply, and the effusion hole field for air discharge are not congruent. The area, which is equipped with a surface structure, can cover the entire shingle, or only an optimized area, in which a considerable overflow of the surface structure takes place and thus increases the noticeable heat transfer. The displacement may be provided in the circumferential direction or in the axial direction or any combination thereof.
Die hexagonalen Rippen können mit einem Prisma gefüllt sein, so dass die Spitze des Prismas auf dem Niveau der Rippen oder darüber bzw. darunter liegt. Die Oberflächenstruktur kann aus drei-, vier- oder anderen mehreckigen Zellen gebildet werden. Die Oberflächenstruktur kann auch aus kreis- bzw. tropfenförmige Vertiefungen bestehen, wobei auch hier eine Verschiebung zwischen Pralllochfeld, Oberflächenstrukturbereich und Effusionslochfeld in Axial- oder/und Umfangsrichtung entscheidend ist. Sofern Prallkühlbohrungen im Bereich der Oberflächenstruktur vorhanden sind, so treffen die Prallkühlstrahlen im Wesentlichen in der Mitte der mehreckigen Zelle bzw. am tiefsten Punkt der kreis- oder tropfenförmigen Vertiefung auf die Schindel.The hexagonal ribs may be filled with a prism so that the tip of the prism is at or above the level of the ribs. The surface structure may be formed of tri-, tetra- or other polygonal cells. The surface structure may also consist of circular or droplet-shaped depressions, whereby here too a shift between impact field field, surface structure area and effusion hole field in the axial or / and circumferential direction is decisive. If impingement cooling holes are present in the area of the surface structure, then the impact cooling jets strike the shingle substantially in the middle of the polygonal cell or at the lowest point of the circular or drop-shaped depression.
Auf der heißgaszugewandten Seite kann die Schindel eine Wärmedämmschicht aus keramischem Material erhalten.On the hot gas side facing the shingle can get a thermal barrier coating of ceramic material.
Die Prallkühllöcher können in Axial- und/oder Umfangsrichtung im Durchmesser variieren, ebenso wie die Effusionslöcher und die Dimensionen der Oberflächenstruktur.The impingement cooling holes may vary in diameter in the axial and / or circumferential direction, as well as the effusion holes and the dimensions of the surface structure.
Die Prallkühllöcher sind im Wesentlichen senkrecht zur Prallkühlfläche ausgerichtet, die Effusionslöcher hingegen in einem flachen Winkel zur heißgasseitigen Oberfläche im Bereich von 10-45 Grad, vorteilhafterweise im Bereich von 15-30 Grad. Die Effusionslöcher können rein axial ausgerichtet sein, oder einen Umfangswinkel bilden. Das Effusionslochmuster kann sich an der Oberflächenstruktur orientieren.The impingement cooling holes are substantially perpendicular to the impingement cooling surface, but the effusion holes are at a shallow angle to the hot gas side surface in the range of 10-45 degrees, advantageously in the range of 15-30 degrees. The effusion holes may be purely axially aligned or form a circumferential angle. The effusion hole pattern can be oriented on the surface structure.
Erfindungsgemäß entsteht eine definierte Überströmung der Rippen bzw. Vertiefungen zur Maximierung der Rippenwirkung bei gleichzeitiger Minimierung der Beeinträchtigung der Prallkühlung durch die Querströmung. Durch eine stromab Verschiebung der Durchtritte der Effusionslöcher auf der Heißgasseite wird ein druckgradientbedingter Heißgasseinbruch in der unmittelbaren Nähe zum Brenner sicher verhindert. Durch die optimierte Überströmung der Rippen/Vertiefungen und eventuell Prismen wird genügend Kühlwirkung in diesem Bereich erzeugt.According to the invention, a defined overflow of the ribs or depressions results in maximizing the rib effect while at the same time minimizing the impairment of the impingement cooling by the transverse flow. By a downstream displacement of the passages of the effusion holes on the hot gas side, a pressure gradient-induced hot gas break in the immediate vicinity of the burner is reliably prevented. Due to the optimized overflow of the ribs / depressions and possibly prisms sufficient cooling effect is generated in this area.
Durch die Verhinderung des Heißgaseinbruches und die gute Kühlwirkung der Schindel mit verbesserter Prallkühlung wird die Schindeltemperatur gesenkt und somit die Lebensdauer des Bauteils verlängert.By preventing the hot gas collapse and the good cooling effect of the shingle with improved impingement cooling, the shingles temperature is lowered, thus extending the life of the component.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:
- Fig. 1
- eine schematische Darstellung einer Gasturbine mit einer Gasturbinenbrennkammer,
- Fig. 2
- eine Axialschnitt-Teilansicht einer Ausgestaltungsform nach dem Stand der Technik,
- Fig. 3
- eine Schnittansicht, analog
Fig. 3 , eines Ausführungsbeispiels der Erfindung, - Fig. 4
- eine schematische Draufsicht der Anordnung einer erfindungsgemäßen Ausgestaltung,
- Fig. 5
- eine Ansicht, analog
Fig. 4 , eines weiteren Ausführungsbeispiels der Erfindung, - Fig. 6
- eine vereinfachte Schnittansicht einer Ausgestaltungsform der Oberflächenstruktur, und
- Fig. 7
- eine vereinfachte Draufsicht auf ein weiteres Ausführungsbeispiel der Oberflächenstruktur, analog
Fig. 6 .
- Fig. 1
- a schematic representation of a gas turbine with a gas turbine combustor,
- Fig. 2
- 3 is a partial axial sectional view of a prior art embodiment;
- Fig. 3
- a sectional view, analog
Fig. 3 , an embodiment of the invention, - Fig. 4
- a schematic plan view of the arrangement of an embodiment of the invention,
- Fig. 5
- a view, analog
Fig. 4 , another embodiment of the invention, - Fig. 6
- a simplified sectional view of an embodiment of the surface structure, and
- Fig. 7
- a simplified plan view of another embodiment of the surface structure, analog
Fig. 6 ,
Bei den Ausführungsbeispielen werden gleiche Teile mit gleichen Bezugsziffern bezeichnet.In the embodiments, like parts are designated by like reference numerals.
Die
Die
Die
Die
Die
Die
Die
- 11
- Kompressorauslassschaufeln.Kompressorauslassschaufeln.
- 22
- BrennkammeraußengehäuseCombustion chamber outer housing
- 33
- BrennkammerinnengehäuseCombustion chamber inner housing
- 44
- Brenner mit Arm und KopfBurner with arm and head
- 55
- Brennkammerkopfbulkhead
- 66
- Mehrschichtige BrennkammerwandMultilayer combustion chamber wall
- 77
- TurbineneinlassschaufelnTurbine inlet vanes
- 88th
- Zuströmbohrung/PrallkühllochInflow bore / impingement cooling hole
- 99
- Brennkammerwand/SchindelträgerCombustion chamber wall / tile carrier
- 1010
- Schindelshingle
- 1111
- EffusionskühlungslöcherEffusionskühlungslöcher
- 1212
- KompressoraustrittsluftCompressor discharge air
- 1313
- Flamme und RauchgasFlame and flue gas
- 1414
-
Zwischenraum zwischen Schindel 10 und Brennkammerwand 9Interspace between
shingles 10 andcombustion chamber wall 9 - 1515
- Stehbolzenstuds
- 1616
- Befestigungsmutterfixing nut
- 1717
-
Bereich der Prallkühllöcher 8Area of the
impact cooling holes 8 - 1818
- Bereich der Effusionskühlungslöcher 11Area of the effusion cooling holes 11
- 1919
-
Oberflächenstruktur auf Prallfläche der Schindel 10Surface structure on baffle of the
shingle 10 - 2020
-
Bereich der Oberflächenstruktur 19Area of the
surface structure 19 - 2121
- Projektion des Prallkühllochs im Schindelträger auf die SchindelProjection of the impact cooling hole in the shingle support onto the shingle
- 2222
-
Einzelelement der Oberflächenstruktur (Rippe
Fig. 4 oder VertiefungFig. 5 )Single element of the surface structure (ribFig. 4 or depressionFig. 5 ) - 2323
- EffusionskühlungslochEffusionskühlungsloch
- 2424
- Rippe mit rechteckigem QuerschnittRib with rectangular cross section
- 2525
- Rippe mit trapezförmigem QuerschnittRib with trapezoidal cross-section
- 2626
- Kreisförmige VertiefungCircular depression
- 2727
- Tropfenförmige Vertiefung (Überströmung im Wesentlichen von links nach rechts)Drop-shaped depression (overflow essentially from left to right)
- 2828
- Viereckige ZellenSquare cells
- 2929
- Sechseckige ZellenHexagonal cells
- 3030
- Prisma (niedriger, höher als Rippe oder gleich hoch)Prism (lower, higher than rib or equal)
Claims (19)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007018061A DE102007018061A1 (en) | 2007-04-17 | 2007-04-17 | Gas turbine combustion chamber wall |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1983265A2 true EP1983265A2 (en) | 2008-10-22 |
EP1983265A3 EP1983265A3 (en) | 2011-04-27 |
Family
ID=39522222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08007322A Withdrawn EP1983265A3 (en) | 2007-04-17 | 2008-04-14 | Gas turbine reaction chamber wall |
Country Status (3)
Country | Link |
---|---|
US (1) | US8099961B2 (en) |
EP (1) | EP1983265A3 (en) |
DE (1) | DE102007018061A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101858256A (en) * | 2009-04-13 | 2010-10-13 | 通用电气公司 | The single type tubular burner of combined convection current/cascading water cooling |
EP2489836A1 (en) * | 2011-02-21 | 2012-08-22 | Karlsruher Institut für Technologie | Coolable component |
EP2685170A1 (en) | 2012-07-10 | 2014-01-15 | Alstom Technology Ltd | Cooled wall structure for the hot gas parts of a gas turbine and method for manufacturing such a structure |
WO2014055887A2 (en) | 2012-10-04 | 2014-04-10 | United Technologies Corporation | Gas turbine engine combustor liner |
WO2014105269A2 (en) | 2012-12-19 | 2014-07-03 | United Technologies Corporation | Feed diffuser |
DE102013003444A1 (en) * | 2013-02-26 | 2014-09-11 | Rolls-Royce Deutschland Ltd & Co Kg | Impact-cooled shingle of a gas turbine combustor with extended effusion holes |
WO2014201249A1 (en) | 2013-06-14 | 2014-12-18 | United Technologies Corporation | Gas turbine engine wave geometry combustor liner panel |
WO2015065579A1 (en) | 2013-11-04 | 2015-05-07 | United Technologies Corporation | Gas turbine engine wall assembly with offset rail |
EP3009744A1 (en) * | 2014-10-13 | 2016-04-20 | Rolls-Royce plc | A liner element for a combustor, and a related method |
EP2384392B1 (en) | 2009-01-30 | 2017-05-31 | Ansaldo Energia IP UK Limited | Cooled component for a gas turbine |
US10408452B2 (en) | 2015-10-16 | 2019-09-10 | Rolls-Royce Plc | Array of effusion holes in a dual wall combustor |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008026463A1 (en) * | 2008-06-03 | 2009-12-10 | E.On Ruhrgas Ag | Combustion device for gas turbine system in natural gas pipeline network, has cooling arrays arranged over circumference of central body, distributed at preset position on body, and provided adjacent to primary fuel injectors |
US20100037620A1 (en) * | 2008-08-15 | 2010-02-18 | General Electric Company, Schenectady | Impingement and effusion cooled combustor component |
US8438856B2 (en) | 2009-03-02 | 2013-05-14 | General Electric Company | Effusion cooled one-piece can combustor |
CH703657A1 (en) * | 2010-08-27 | 2012-02-29 | Alstom Technology Ltd | Method for operating a burner arrangement and burner arrangement for implementing the process. |
FR2972027B1 (en) * | 2011-02-25 | 2013-03-29 | Snecma | ANNULAR TURBOMACHINE COMBUSTION CHAMBER COMPRISING IMPROVED DILUTION ORIFICES |
JP5696566B2 (en) * | 2011-03-31 | 2015-04-08 | 株式会社Ihi | Combustor for gas turbine engine and gas turbine engine |
DE102011007562A1 (en) * | 2011-04-18 | 2012-10-18 | Man Diesel & Turbo Se | Combustor housing and thus equipped gas turbine |
EP2559854A1 (en) | 2011-08-18 | 2013-02-20 | Siemens Aktiengesellschaft | Internally cooled component for a gas turbine with at least one cooling channel |
GB201116608D0 (en) * | 2011-09-27 | 2011-11-09 | Rolls Royce Plc | A method of operating a combustion chamber |
DE102011114928A1 (en) * | 2011-10-06 | 2013-04-11 | Lufthansa Technik Ag | Combustion chamber for a gas turbine |
JP5821550B2 (en) * | 2011-11-10 | 2015-11-24 | 株式会社Ihi | Combustor liner |
US9151173B2 (en) * | 2011-12-15 | 2015-10-06 | General Electric Company | Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components |
US20130180252A1 (en) * | 2012-01-18 | 2013-07-18 | General Electric Company | Combustor assembly with impingement sleeve holes and turbulators |
US9052111B2 (en) | 2012-06-22 | 2015-06-09 | United Technologies Corporation | Turbine engine combustor wall with non-uniform distribution of effusion apertures |
DE102012016493A1 (en) | 2012-08-21 | 2014-02-27 | Rolls-Royce Deutschland Ltd & Co Kg | Gas turbine combustor with impingement-cooled bolts of the combustion chamber shingles |
US9869279B2 (en) * | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
DE102012025375A1 (en) * | 2012-12-27 | 2014-07-17 | Rolls-Royce Deutschland Ltd & Co Kg | Method for arranging impingement cooling holes and effusion holes in a combustion chamber wall of a gas turbine |
EP2956647B1 (en) * | 2013-02-14 | 2019-05-08 | United Technologies Corporation | Combustor liners with u-shaped cooling channels and method of cooling |
CA2904200A1 (en) | 2013-03-05 | 2014-09-12 | Rolls-Royce Corporation | Dual-wall impingement, convection, effusion combustor tile |
WO2015047472A2 (en) * | 2013-06-14 | 2015-04-02 | United Technologies Corporation | Conductive panel surface cooling augmentation for gas turbine engine combustor |
EP3039347B1 (en) * | 2013-08-30 | 2019-10-23 | United Technologies Corporation | Gas turbine engine wall assembly with support shell contour regions |
WO2015038256A1 (en) * | 2013-09-10 | 2015-03-19 | United Technologies Corporation | Edge cooling for combustor panels |
US9644843B2 (en) * | 2013-10-08 | 2017-05-09 | Pratt & Whitney Canada Corp. | Combustor heat-shield cooling via integrated channel |
EP3066389B1 (en) * | 2013-11-04 | 2019-01-02 | United Technologies Corporation | Turbine engine combustor heat shield with one or more cooling elements |
DE102013223258A1 (en) * | 2013-11-14 | 2015-06-03 | Rolls-Royce Deutschland Ltd & Co Kg | Combustion heat shield element of a gas turbine |
WO2015077755A1 (en) * | 2013-11-25 | 2015-05-28 | United Technologies Corporation | Film cooled multi-walled structure with one or more indentations |
WO2015116360A1 (en) * | 2014-01-30 | 2015-08-06 | United Technologies Corporation | Cooling flow for leading panel in a gas turbine engine combustor |
US10533745B2 (en) * | 2014-02-03 | 2020-01-14 | United Technologies Corporation | Film cooling a combustor wall of a turbine engine |
US9410702B2 (en) | 2014-02-10 | 2016-08-09 | Honeywell International Inc. | Gas turbine engine combustors with effusion and impingement cooling and methods for manufacturing the same using additive manufacturing techniques |
GB201413194D0 (en) * | 2014-07-25 | 2014-09-10 | Rolls Royce Plc | A liner element for a combustor, and a related method |
US10746403B2 (en) | 2014-12-12 | 2020-08-18 | Raytheon Technologies Corporation | Cooled wall assembly for a combustor and method of design |
CA2933884A1 (en) * | 2015-06-30 | 2016-12-30 | Rolls-Royce Corporation | Combustor tile |
US10670267B2 (en) * | 2015-08-14 | 2020-06-02 | Raytheon Technologies Corporation | Combustor hole arrangement for gas turbine engine |
US10648669B2 (en) * | 2015-08-21 | 2020-05-12 | Rolls-Royce Corporation | Case and liner arrangement for a combustor |
US20170191417A1 (en) * | 2016-01-06 | 2017-07-06 | General Electric Company | Engine component assembly |
US20170234225A1 (en) * | 2016-02-13 | 2017-08-17 | General Electric Company | Component cooling for a gas turbine engine |
US10876730B2 (en) * | 2016-02-25 | 2020-12-29 | Pratt & Whitney Canada Corp. | Combustor primary zone cooling flow scheme |
DE102016224632A1 (en) * | 2016-12-09 | 2018-06-14 | Rolls-Royce Deutschland Ltd & Co Kg | Plate-shaped component of a gas turbine and method for its production |
US10731562B2 (en) | 2017-07-17 | 2020-08-04 | Raytheon Technologies Corporation | Combustor panel standoffs with cooling holes |
KR101983469B1 (en) * | 2017-10-20 | 2019-09-10 | 두산중공업 주식회사 | Ring segment of turbine blade and turbine and gas turbine comprising the same |
US10823414B2 (en) * | 2018-03-19 | 2020-11-03 | Raytheon Technologies Corporation | Hooded entrance to effusion holes |
US11306918B2 (en) * | 2018-11-02 | 2022-04-19 | Chromalloy Gas Turbine Llc | Turbulator geometry for a combustion liner |
US11415320B2 (en) | 2019-01-04 | 2022-08-16 | Raytheon Technologies Corporation | Combustor cooling panel with flow guide |
JP7234006B2 (en) * | 2019-03-29 | 2023-03-07 | 三菱重工業株式会社 | High temperature parts and method for manufacturing high temperature parts |
US11112114B2 (en) * | 2019-07-23 | 2021-09-07 | Raytheon Technologies Corporation | Combustor panels for gas turbine engines |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2087065A (en) | 1980-11-08 | 1982-05-19 | Rolls Royce | Wall structure for a combustion chamber |
US5598697A (en) | 1994-07-27 | 1997-02-04 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. | Double wall construction for a gas turbine combustion chamber |
GB2360086A (en) | 2000-01-18 | 2001-09-12 | Rolls Royce Plc | Air impingement cooling system |
US6408628B1 (en) | 1999-11-06 | 2002-06-25 | Rolls-Royce Plc | Wall elements for gas turbine engine combustors |
EP1318353A2 (en) | 2001-12-05 | 2003-06-11 | United Technologies Corporation | Gas turbine combustor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2118710B (en) | 1981-12-31 | 1985-05-22 | Secr Defence | Improvements in or relating to combustion chamber wall cooling |
WO1995025932A1 (en) * | 1989-08-31 | 1995-09-28 | Alliedsignal Inc. | Turbine combustor cooling system |
GB9106085D0 (en) | 1991-03-22 | 1991-05-08 | Rolls Royce Plc | Gas turbine engine combustor |
US6688110B2 (en) * | 2000-01-18 | 2004-02-10 | Rolls-Royce Plc | Air impingement cooling system |
US6298667B1 (en) * | 2000-06-22 | 2001-10-09 | General Electric Company | Modular combustor dome |
DE10150259A1 (en) | 2001-10-11 | 2003-04-17 | Alstom Switzerland Ltd | Heat insulating component used in the hot gas path of gas turbines consists of a component made from a metallic support having a front surface subjected to high temperatures and a cooled rear surface |
DE10159056A1 (en) | 2001-11-28 | 2003-06-26 | Alstom Switzerland Ltd | Thermally loaded component used in gas turbines and in burners has a wall coated with a cooling layer on the side facing the cooling medium |
EP1486730A1 (en) | 2003-06-11 | 2004-12-15 | Siemens Aktiengesellschaft | Heatshield Element |
US7146815B2 (en) * | 2003-07-31 | 2006-12-12 | United Technologies Corporation | Combustor |
US7386980B2 (en) * | 2005-02-02 | 2008-06-17 | Power Systems Mfg., Llc | Combustion liner with enhanced heat transfer |
-
2007
- 2007-04-17 DE DE102007018061A patent/DE102007018061A1/en not_active Withdrawn
-
2008
- 2008-04-14 EP EP08007322A patent/EP1983265A3/en not_active Withdrawn
- 2008-04-17 US US12/081,573 patent/US8099961B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2087065A (en) | 1980-11-08 | 1982-05-19 | Rolls Royce | Wall structure for a combustion chamber |
US5598697A (en) | 1994-07-27 | 1997-02-04 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation S.N.E.C.M.A. | Double wall construction for a gas turbine combustion chamber |
US6408628B1 (en) | 1999-11-06 | 2002-06-25 | Rolls-Royce Plc | Wall elements for gas turbine engine combustors |
GB2360086A (en) | 2000-01-18 | 2001-09-12 | Rolls Royce Plc | Air impingement cooling system |
EP1318353A2 (en) | 2001-12-05 | 2003-06-11 | United Technologies Corporation | Gas turbine combustor |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2384392B1 (en) | 2009-01-30 | 2017-05-31 | Ansaldo Energia IP UK Limited | Cooled component for a gas turbine |
CN101858256A (en) * | 2009-04-13 | 2010-10-13 | 通用电气公司 | The single type tubular burner of combined convection current/cascading water cooling |
EP2489836A1 (en) * | 2011-02-21 | 2012-08-22 | Karlsruher Institut für Technologie | Coolable component |
EP2685170A1 (en) | 2012-07-10 | 2014-01-15 | Alstom Technology Ltd | Cooled wall structure for the hot gas parts of a gas turbine and method for manufacturing such a structure |
EP2904236A4 (en) * | 2012-10-04 | 2015-12-09 | United Technologies Corp | Gas turbine engine combustor liner |
WO2014055887A2 (en) | 2012-10-04 | 2014-04-10 | United Technologies Corporation | Gas turbine engine combustor liner |
WO2014105269A2 (en) | 2012-12-19 | 2014-07-03 | United Technologies Corporation | Feed diffuser |
US9476429B2 (en) | 2012-12-19 | 2016-10-25 | United Technologies Corporation | Flow feed diffuser |
EP2935868A4 (en) * | 2012-12-19 | 2016-04-20 | United Technologies Corp | Feed diffuser |
EP2770260A3 (en) * | 2013-02-26 | 2015-09-30 | Rolls-Royce Deutschland Ltd & Co KG | Impact effusion cooled shingle of a gas turbine combustion chamber with elongated effusion bore holes |
US9518738B2 (en) | 2013-02-26 | 2016-12-13 | Rolls-Royce Deutschland Ltd & Co Kg | Impingement-effusion cooled tile of a gas-turbine combustion chamber with elongated effusion holes |
DE102013003444A1 (en) * | 2013-02-26 | 2014-09-11 | Rolls-Royce Deutschland Ltd & Co Kg | Impact-cooled shingle of a gas turbine combustor with extended effusion holes |
EP3008392A4 (en) * | 2013-06-14 | 2016-07-20 | United Technologies Corp | Gas turbine engine wave geometry combustor liner panel |
WO2014201249A1 (en) | 2013-06-14 | 2014-12-18 | United Technologies Corporation | Gas turbine engine wave geometry combustor liner panel |
WO2015065579A1 (en) | 2013-11-04 | 2015-05-07 | United Technologies Corporation | Gas turbine engine wall assembly with offset rail |
EP3066390A4 (en) * | 2013-11-04 | 2016-11-23 | United Technologies Corp | Gas turbine engine wall assembly with offset rail |
EP3009744A1 (en) * | 2014-10-13 | 2016-04-20 | Rolls-Royce plc | A liner element for a combustor, and a related method |
US10451277B2 (en) | 2014-10-13 | 2019-10-22 | Rolls-Royce Plc | Liner element for a combustor, and a related method |
US10408452B2 (en) | 2015-10-16 | 2019-09-10 | Rolls-Royce Plc | Array of effusion holes in a dual wall combustor |
Also Published As
Publication number | Publication date |
---|---|
US20080264065A1 (en) | 2008-10-30 |
DE102007018061A1 (en) | 2008-10-23 |
US8099961B2 (en) | 2012-01-24 |
EP1983265A3 (en) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1983265A2 (en) | Gas turbine reaction chamber wall | |
EP2423599B1 (en) | Method for operating a burner arrangement and burner arrangement for implementing the method | |
EP2770260B1 (en) | Gas turbine combustion chamber with impingement effusion cooled shingle | |
DE3908166B4 (en) | Impact cooled structure | |
DE10059997B4 (en) | Coolable blade for a gas turbine component | |
DE102007004394B4 (en) | Burner for burning a premix for a gas turbine | |
EP0224817B1 (en) | Heat shield arrangement, especially for the structural components of a gas turbine plant | |
EP2049841B1 (en) | Combustion chamber of a combustion plant | |
EP1701095B1 (en) | Heat shield | |
EP2829804B1 (en) | Combustion chamber shingle of a gas turbine and method for their preparation | |
DE102009033592A1 (en) | Gas turbine combustion chamber with starter film for cooling the combustion chamber wall | |
DE69209634T2 (en) | Dual fuel nozzle for gas turbine | |
DE102004003354B4 (en) | Turbine blade and gas turbine | |
CH702605B1 (en) | Turbine blade having blade tip cooling. | |
DE102009007164A1 (en) | A method of forming a cooling air opening in a wall of a gas turbine combustor and combustor wall made by the method | |
WO2010066516A2 (en) | Fuel lance for a burner | |
DE102018212394B4 (en) | Combustion chamber assembly with a wall element having a flow guide device | |
DE4446611A1 (en) | Combustion chamber | |
WO2012016748A2 (en) | Gas turbine combustion chamber | |
EP3306196B1 (en) | Combustion chamber assembly of a gas turbine and aviation gas turbine | |
EP1351021A2 (en) | Turbine combustor with starting film cooling | |
DE68905671T2 (en) | COOLING FOR THE INTERNAL LINING OF AN AFTERBURNER. | |
EP3034782A1 (en) | Film cooled turbine blade | |
DE102006048842B4 (en) | Combustion chamber for a gas turbine | |
EP3473808A1 (en) | Blade for an internally cooled turbine blade and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20110831 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20160208 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160621 |