[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1972052A1 - Dispositif d'alimentation de l'inducteur d'une machine electrique tournante - Google Patents

Dispositif d'alimentation de l'inducteur d'une machine electrique tournante

Info

Publication number
EP1972052A1
EP1972052A1 EP07717794A EP07717794A EP1972052A1 EP 1972052 A1 EP1972052 A1 EP 1972052A1 EP 07717794 A EP07717794 A EP 07717794A EP 07717794 A EP07717794 A EP 07717794A EP 1972052 A1 EP1972052 A1 EP 1972052A1
Authority
EP
European Patent Office
Prior art keywords
voltage
inductor
excitation
auxiliary
uait
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07717794A
Other languages
German (de)
English (en)
Inventor
Jean-Marie Pierret
Raymond Rechdan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP1972052A1 publication Critical patent/EP1972052A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators

Definitions

  • the present invention relates to a device for supplying the inductor of a rotating electrical machine.
  • the invention finds an advantageous application in the field of the automotive industry, and more particularly in that of load circuits of motor vehicles, the rotating electrical machine considered being then constituted by the alternator of the vehicle or alternatively by - starter in its alternator mode.
  • the invention relates to a degraded operation of the load circuit of motor vehicles, in order to avoid defusing the machine when the battery is disconnected from the on-board network.
  • This defusing is generally caused by the powering up of a large load resulting in a collapse of the voltage of the onboard network which is no longer maintained by the battery.
  • Figure 1 is shown a general diagram of an onboard network of a vehicle.
  • This circuit consists of an alternator 10 comprising a voltage regulator 11, a battery 50, permanent charges 30 and switchable or pulsed charges 40 on the on-board network via the switch 41.
  • the electrical connections between the alternator the battery and the charges are carried, on the one hand, to the potential of the on-board network UaIt, and, on the other hand, to the ground potential.
  • the switch 51 represents a link fault between the battery 50 and the rest of the onboard network.
  • the battery 50 In normal operation, the battery 50 is connected to the rest of the network, the switch 51 being closed.
  • the battery 50 stabilizes, filters and maintains the network voltage in case of load variation. No defusing of the alternator is possible because there is always an excitation current in the rotor.
  • the switch 51 In case of disconnection of the battery, the switch 51 is open, and the application of an additional charge, represented by the closing of the switch 41 causes the voltage of the on-board network to drop because the alternator can not immediately compensate for the charge call because of a slow response time.
  • the current battery voltage regulators do not have any means specifically designed to avoid the defusing of the alternator in the absence of voltage delivered by the battery, the latter being disconnected or out of service.
  • the alternator quickly defuses what causes the disconnection of the on-board system.
  • the defusing of the alternator is caused by the absence of an excitation current in the rotor. Defusing is also caused when the excitation current is too low compared to the load placed on the network.
  • a first improvement consists in carrying out a so-called priority regulation which causes a "full field" state, that is to say without cutting of the excitation, when the output voltage of the alternator becomes less than one. certain value, 9.75 volts for example for a battery 12 volts.
  • Priority control eliminates all ancillary functions, such as time delay and soft load, that can prevent the fast rise of the excitation current during a large load call.
  • current regulators often include an output stage constituted by a MOS transistor connected to the positive potential, according to a mounting said
  • This charge pump, as well as the control circuits of the controller, such as the clock and logic circuits, are no longer active for low supply voltages resulting from a charge call when the battery is out of service. Under these conditions, the output stage of the regulator is open and the inductor is no longer powered by its nominal supply circuit, which leads to the defusing of the alternator.
  • a second improvement consists in integrating an asynchronous excitation function with respect to the regulation loop when the voltage UaIt reaches a threshold close to 9 volts for example, in order to limit the rapid drop in voltage and thus to avoid defusing .
  • This excitation function has its limits, however, since, starting from a certain current and despite the presence of an excitation, the voltage continues to drop to a very low level where the logic circuits of the nominal circuit d power supply of the inductor are no longer powered, which completely interrupts the excitation and causes the defusing.
  • the drop in the voltage of the onboard network causes the stopping of the engine of the vehicle, the extinction of the lights and the stopping of some circuits which can have a safe aspect, like the braking circuit and the electric power steering.
  • some circuits which can have a safe aspect, like the braking circuit and the electric power steering.
  • Patent application GB 1 560 298 A discloses an alternator rotor supply circuit for supplying a charging current and a self-excitation current to the rotor.
  • the supply circuit comprises a voltage doubler connected to the phase outputs of the alternator, this voltage doubler being continuously supplied during operation of the vehicle.
  • No. 4,695,786 discloses a voltage regulator operating in nominal mode and comprising an activation stage consisting of two Darlington transistors.
  • the regulator also includes an intermediate stage which, when starting the alternator, creates a slight drop in voltage in the activation stage.
  • the rotor thus has a current of sufficient intensity to ensure the starting of the alternator.
  • the technical problem to be solved by the object of the present invention is to propose a device for supplying the inductor of a rotating electrical machine, said device comprising a power supply circuit in nominal mode of said inductor, which would make it possible to avoid a defusing of the power supply of the inductor in the case where a large charge call occurs while the battery, or any other storage device, is no longer able to deliver voltage on the on-board network.
  • said device also comprises an auxiliary mode supply circuit of the inductor and a mode selector able, on the one hand, to compare the output voltage delivered by the machine to a threshold voltage at least equal to the minimum operating voltage of said nominal supply circuit, and, secondly, to selecting said auxiliary supply mode if said output voltage is lower than said voltage threshold.
  • the auxiliary mode supply circuit is biased by the mode selector to ensure the maintenance of an excitation current in the rotor of the alternator not to defuse it.
  • the auxiliary mode supply circuit is selected only when the output voltage delivered by the machine is lower than the threshold voltage.
  • said auxiliary supply circuit comprises a charge pump circuit powered by at least one phase of the armature of the machine and able to maintain the conduction of an excitation element of the inductor.
  • this embodiment takes into account the presence on the phases of the armature of the machine of a residual voltage linked to a remanent magnetic field on the poles of the inductor.
  • said circuit auxiliary power supply in order to maintain conduction in the nominal supply circuit, even at very low voltages UaIt, also comprises a priority conduction circuit of said excitation element.
  • Said excitation element is, in particular, an N-MOS transistor.
  • auxiliary supply circuit comprises an auxiliary excitation element of said inductor arranged in parallel on a nominal excitation element of the inductor.
  • the invention notably provides that, said nominal excitation element being an N-MOS transistor, the auxiliary excitation element is a P-MOS transistor.
  • auxiliary excitation element and said nominal excitation element constitute a single excitation element.
  • Figure 2 is a general diagram of a supply device according to the invention.
  • FIG. 3 is a diagram of a first embodiment of the device of FIG. 2.
  • FIG. 4 is a diagram of a variant of the device of FIG.
  • FIG. 5 is a diagram of a second embodiment of the device of FIG. 2.
  • FIG. 6 is a diagram of a first variant of the device of FIG.
  • FIG. 7 is a diagram of a second variant of the device of FIG. 5.
  • FIG. 2 shows a diagram of a device for supplying the inductor 3 of a rotating electrical machine, such as the alternator or the alternator-starter of a motor vehicle.
  • This device includes a circuit
  • the power supply device of FIG. 2 also indicates the presence of an auxiliary mode supply circuit 22 of the inductor 3, designed to avoid the defusing of said inductor when the battery, or any other element of energy storage. electric, is no longer able to supply the vehicle's on-board network, especially in the event of disconnection.
  • the transition from the nominal supply mode to the auxiliary mode is decided by a mode selector 23 adapted to compare the output voltage UaIt delivered by the machine to the network at a threshold voltage Useuil threshold at least equal to the minimum operating voltage of said circuit 21 of nominal power supply.
  • This operating voltage is generally that of the logic components of the circuit 21, namely 5 V for example.
  • the threshold voltage Useuil can be taken equal to about 6 V, and more generally between 5 and 7 V, so as to overcome the fluctuations of the voltage UaIt, which can be important taking into account the lack of filtering by the battery due to its disconnection.
  • the mode selector 23 then implements the power supply circuit 22 in auxiliary mode.
  • FIG. 3 gives a diagram of a first embodiment of the device of FIG. 2.
  • this embodiment is based on the use of residual signals on the phases ⁇ 1, ⁇ 2 at the output of the armature 1 of the machine in order to supply the inductor 3 via the excitation transistor M1 N -MOS.
  • these signals are always present, even in the absence of inductive current. They are in fact caused by the remanence of the magnetic circuit of the inductor 3.
  • the amplitude of these signals is proportional to the speed of rotation and depends on the state of the magnetic circuit of the alternator. In particular, it is more important if the steel of the inductor 3 has a high carbon content or if it comprises interpolar magnets promoting the remanence of the magnetic circuit. At high speeds of rotation, the electromotive force delivered on the phases ⁇ 1 and ⁇ 2 is sufficient to reboot the alternator, even if the voltage at its terminals is zero.
  • the electromotive force on the phases ⁇ 1 and ⁇ 2 can be applied directly to the inductor 3 without passing through the excitation transistor M1.
  • a rectifier bridge 4 is used which is deactivated when the voltage is sufficient to reboot the alternator.
  • the rectifier bridge 4 is formed by the diodes DR1 and DR2 connected to the ground and to the outputs of the phases ⁇ 1 and ⁇ 2 respectively.
  • the other diodes of the rectifier bridge are not shown because they have no functional characteristic related to the invention.
  • the efficiency of the rectifier bridge 4 can be increased by replacing the diodes of the bridge by transistors in synchronous rectification. However, the control of these transistors is difficult to achieve because of the very low voltage available to control them. As shown in FIG.
  • the device of FIG. 3 provides that when the voltage UaIt of the network falls below a predetermined threshold Useuil, the usual charge pump is replaced by an auxiliary charge pump of a supply circuit 22.
  • auxiliary mode actuated by the signals present on phases ⁇ 1 and ⁇ 2. These signals can be made always available by means of a priority turn-on circuit of the excitation transistor M1, intended to maintain the magnetization of the inductor 3.
  • the transition from the nominal mode to the auxiliary mode is performed by means of the mode selector 23.
  • the armature 1 of the alternator consists of a winding comprising three phases ⁇ 1, ⁇ 2 and ⁇ 3.
  • the rectifier bridge 4 is made by the diodes DR1 and DR2
  • the other diodes of the rectifier bridge are not shown because they have no functional characteristic related to the invention.
  • the power supply device of the inductor 3 comprises the following elements:
  • a nominal mode power supply circuit 21 constituted by the N-MOS excitation transistor M1 mounted in "high side" configuration with respect to the inductor 3.
  • a clipping diode DZ1 which protects the gate of this transistor, a diode DL, called freewheeling, and a control circuit DRIV ensure the operation of the transistor M1 in nominal mode.
  • This control DRIV circuit receives the information from the weak signal circuits of the controller (not shown).
  • the power transistor M1 N-MOS has a gate-source threshold voltage of low value, equal to 1.5 volts, for example.
  • This power stage has many other features that will not be described as part of the state of the art battery voltage regulators,
  • an auxiliary power supply circuit 22 comprising:
  • a charge pump consisting of the diodes D3 and D4, the resistor R3 and the capacitor C1.
  • the diode D3 and the capacitor C1 are respectively connected to the outputs of the phases ⁇ 1 and ⁇ 2.
  • Diode D4 is connected to the gate of transistor M1.
  • This charge pump circuit uses the voltage delivered on the outputs of the phases ⁇ 1, ⁇ 2 to apply a voltage higher than UaIt on the gate of the transistor M1.
  • This charge pump 23, powered by the phase potentials, is different from the oscillator-supplied charge pump used in the nominal regulation mode, * a priority conducting circuit of the transistor M1 N-MOS consisting of a diode D2 and a resistor R4 connecting the gate of the transistor M1 to the voltage UaIt of the on-board network.
  • This circuit allows a setting conduction in linear mode of the transistor M1 when the voltage UaIt has dropped significantly,
  • the mode selector 23 consists of a threshold detector comprising a resistor bridge R5, R6 and a clipping diode DZ2.
  • Clipping diode DZ2 controls the open or closed state of transistors M2, M3 and M4.
  • This mode selection circuit 23 allows the operation of the auxiliary circuit 22 when the nominal mode circuits can no longer operate due to a too low supply voltage.
  • the transistors M2, M3 and M4 are closed when UaIt> Useuil and open when UaIt ⁇ Useuil.
  • the device of FIG. 3 operates in the following manner. In stabilized load condition, the voltage UaIt output of the alternator is regulated in a conventional manner. However, the voltage ripple rate caused by the rectification is greater because the battery is no longer present to filter this ripple, which can cause a less precise regulation.
  • the voltage UaIt drops sharply.
  • the variation of the excitation current is slowed by the value of the inductance of the excitation winding. For a few milliseconds, it can be considered that the variation of the excitation current is negligible.
  • the decrease of the voltage UaIt reduces the current in the new load and increases the current delivered by the alternator. Consequently, there is a balance between the current delivered by the alternator and the current absorbed by the load for a voltage UaIt which remains much higher than the mass potential despite a sharp fall. For example, this voltage UaIt can stabilize at a value of the order of 4 volts for an extreme case.
  • the mode selector 23 detects the fall of the voltage UaIt between 5 and 7 volts, for example. It makes it possible to go from the nominal supply mode to the auxiliary mode because the divider bridge R5, R6, DZ2 no longer keeps the transistors M2, M3 and M4 closed. Under these conditions, the control circuit DRIV of the excitation transistor M1 is deactivated, the charge pump and the priority conduction circuit of the auxiliary circuit 22 are activated and can charge the gate of the transistor M1.
  • the current flowing in the resistor R4 is very low because it comes from the leakage current of the gate of the transistor M1. Therefore, the voltage across the resistor R4 is negligible.
  • Vos 2.2 V
  • the transistor M1 is going into linear mode. If the voltage UaIt drops, for example, to 4 volts, the inductor 3 remains energized at a voltage equal to 1.8 volts.
  • V ( ⁇ 1 - ⁇ 2) UaIt + 2.V d
  • this value of electromotive force between ⁇ 1 and ⁇ 2 is used to ensure the operation of the charge pump for charging the gate of the transistor M1 to a value greater than UaIt in order to completely close the transistor.
  • the capacitor C1 is charged under a voltage equal to:
  • V (C1) V ( ⁇ 1 - ⁇ 2) - V (D3),
  • V G V (C1) + V ( ⁇ 1 - ⁇ 2) - V (DRI) - V (D4)
  • V G 2.V ( ⁇ 1 - ⁇ 2) - V (D3) - V (DRI) - V (D4)
  • VG 2. (Ualt + 2.V d) - V (D3) - V (DRI) - V (D4)
  • V G 2. (UaIt + 2.V D ) - 3.V d
  • This voltage of 8.7 V between gate and ground is largely sufficient to completely close the transistor M1 for a voltage UaIt equal for example to 4 V.
  • this auxiliary charge pump makes it possible to have a gate-source voltage VGS at least equal to the voltage UaIt at the output of the generator provided that the gate of the transistor M1 is sufficiently isolated to be able to keep the charges in the gate of the transistor M1 despite the very low frequency of the signals on the phases, from 150 to 2000 Hz.
  • the resistors insulation (not shown) must be greater than 100 megohms. Such isolation values are compatible with semiconductor technologies used for battery voltage regulators.
  • the minimum necessary value UaIt decreases as the rotation speed of the alternator is high. From 7000 rpm, the amplitude of the signals on the phases is sufficient to reboot the alternator in the absence of this voltage UaIt.
  • the capacitor C1 is charged under a voltage equal to:
  • V G V (C1) + V ( ⁇ 1 - ⁇ 2) - V (DRI) - V (D4)
  • V G UaIt + (UaIt + 2.V d ) - V (DRI) - V (D4)
  • V G 2.UaIt + 2.V d - V (DRI) - V (D4)
  • V G 2.UaIt + 2.V d - 2.V d
  • V GS V G - UaIt
  • V GS 4 V
  • the gate voltage of the excitation transistor M1 is decreased by V d , which reduces the performance at low rotational speeds compared to the solution using two phases, but this single-phase solution remains acceptable for the regulators having only of a single phase input.
  • FIG. 5 illustrates a second embodiment of the invention in which said auxiliary mode supply circuit 22 'comprises an auxiliary excitation element of said inductor 3 arranged in parallel on the nominal excitation element of FIG. the inductor.
  • said auxiliary excitation element is a M6 P-MOS transistor, the nominal excitation element being the M1 N-MOS transistor.
  • the transistor M6 could also be a PNP bipolar transistor.
  • the auxiliary transistor M6 does not need a charge pump.
  • the transistor M6 When the voltage UaIt at the output of the alternator becomes lower than the threshold voltage Useuil threshold between 5 and 7 volts, the transistor M6 is turned on by the selector 23 'of mode constituted by the components R5, DZ2, R6, M3 , and by the transistor M7 and the resistors R8 and R9. circuit 22 'supply auxiliary mode. It will be noted, however, that a P-MOS transistor occupies a larger silicon area than a charge pump.
  • an N-MOS transistor or an NPN bipolar transistor connected in a "low-side" configuration with respect to the inductor 3, is used as excitation transistor M1, with the risk, however, of causing corrosion on the winding of the inductor which remains connected to the potential UaIt when the vehicle is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

Dispositif d'alimentation de l'inducteur (3) d'une machine électrique tournante, ledit dispositif comprenant un circuit (21) d'alimentation en mode nominal dudit inducteur. Selon l'invention, ledit dispositif comprend également un circuit (22) d'alimentation en mode auxiliaire de l'inducteur (3) et un sélecteur (23) de mode apte, d'une part, à comparer la tension (Ualt) de sortie délivrée par la machine à une tension de seuil au moins égale à la tension minimale de fonctionnement dudit circuit (21) d'alimentation nominal, et, d'autre part, à sélectionner ledit mode d'alimentation auxiliaire si ladite tension (Ualt) de sortie est inférieure à ladite tension) de seuil. Application aux circuits de charge des véhicules automobiles.

Description

DISPOSITIF D'ALIMENTATION DE L'INDUCTEUR D'UNE MACHINE
ELECTRIQUE TOURNANTE
La présente invention concerne un dispositif d'alimentation de l'inducteur d'une machine électrique tournante.
L'invention trouve une application avantageuse dans le domaine de l'industrie automobile, et, plus particulièrement, dans celui des circuits de charge des véhicules automobiles, la machine électrique tournante considérée étant alors constituée par l'alternateur du véhicule ou encore par un alterno- démarreur dans son mode alternateur.
Dans ce contexte, l'invention concerne un fonctionnement en mode dégradé du circuit de charge des véhicules automobiles, dans le but d'éviter le désamorçage de la machine lorsque la batterie est déconnectée du réseau de bord. Ce désamorçage est généralement provoqué par la mise sous tension d'une charge importante entraînant un effondrement de la tension du réseau de bord qui n'est plus alors maintenue par la batterie.
Sur la figure 1 est représenté un schéma général d'un réseau de bord d'un véhicule.
Ce circuit est constitué d'un alternateur 10 comportant un régulateur de tension 11 , d'une batterie 50, de charges permanentes 30 et de charges commutables ou puisées 40 sur le réseau de bord via le commutateur 41. Les liaisons électriques entre l'alternateur, la batterie et les charges sont portées, d'une part, au potentiel du réseau de bord UaIt, et, d'autre part, au potentiel de masse. Le commutateur 51 représente un défaut de liaison entre la batterie 50 et le reste du réseau de bord.
En fonctionnement normal, la batterie 50 est reliée au reste du réseau, le commutateur 51 étant fermé. La batterie 50 stabilise, filtre et maintient la tension du réseau en cas de variation de charge. Aucun désamorçage de l'alternateur n'est possible, car il y a toujours un courant d'excitation dans le rotor.
En cas de déconnexion de la batterie, l'interrupteur 51 est ouvert, et l'application d'une charge supplémentaire, représentée par la fermeture de l'interrupteur 41 , fait chuter la tension du réseau de bord du fait que l'alternateur ne peut pas compenser immédiatement l'appel de charge à cause d'un temps de réponse trop lent.
Les régulateurs de tension batterie actuels n'ont pas de moyens spécialement prévus pour éviter le désamorçage de l'alternateur en l'absence de tension délivrée par la batterie, celle-ci étant déconnectée ou hors service.
De fait, l'alternateur désamorce rapidement ce qui provoque la mise hors tension du réseau de bord.
Le désamorçage de l'alternateur est provoqué par l'absence d'un courant d'excitation dans le rotor. Le désamorçage est également provoqué lorsque que le courant d'excitation a une valeur trop faible par rapport à la charge mise en place sur le réseau.
Une première amélioration consiste à réaliser une régulation dite prioritaire qui entraîne une mise à l'état « plein champ », c'est-à-dire sans découpage de l'excitation, lorsque la tension en sortie de l'alternateur devient inférieure à une certaine valeur, 9,75 volts par exemple pour une batterie 12 volts.
La régulation prioritaire supprime toutes les fonctions annexes, telles que la temporisation et la mise en charge progressive, susceptibles d'empêcher l'augmentation rapide du courant d'excitation lors d'un appel de charge important.
Cependant, l'impédance de l'inducteur limite l'augmentation rapide du courant d'excitation et un appel de charge peut amener la tension du réseau de bord en dessous de la valeur minimale de fonctionnement du régulateur. De plus, les régulateurs actuels comportent souvent un étage de sortie constitué par un transistor MOS relié au potentiel positif, selon un montage dit
"high side", lequel transistor est commandé par une pompe de charge nécessitant une tension d'alimentation suffisante pour pouvoir fonctionner.
Cette pompe de charge, ainsi que les circuits de commande du régulateur, comme l'horloge et les circuits logiques, ne sont plus actifs pour des tensions d'alimentation faibles résultant d'un appel de charge lorsque la batterie est hors service. Dans ces conditions, l'étage de sortie du régulateur est ouvert et l'inducteur n'est plus alimenté par son circuit nominal d'alimentation, ce qui entraîne le désamorçage de l'alternateur.
La régulation prioritaire classique n'est donc pas un moyen suffisant pour éviter le désamorçage de l'alternateur quand la batterie est déconnectée. Une deuxième amélioration consiste à intégrer une fonction d'excitation asynchrone par rapport à la boucle de régulation quand la tension UaIt atteint un seuil proche de 9 volts par exemple, ceci afin de limiter la chute rapide de la tension et donc d'éviter le désamorçage.
Cette fonction d'excitation a toutefois ses limites, car, à partir d'un certain courant et en dépit de la présence d'une excitation, la tension continue de chuter jusqu'à un niveau très bas où les circuits logiques du circuit nominal d'alimentation de l'inducteur ne sont plus alimentés, ce qui interrompt complètement l'excitation et provoque le désamorçage.
Or, la chute de la tension du réseau de bord entraîne l'arrêt du moteur du véhicule, l'extinction des feux et l'arrêt de certains circuits pouvant avoir un aspect sécuritaire, comme le circuit de freinage et la direction assistée électrique. Ces circuits étant de plus en plus nombreux dans les véhicules, il apparaît nécessaire de diminuer les effets néfastes provoqués par un désamorçage de l'alternateur survenant à la suite d'une rupture de la liaison batterie.
On connaît par la demande de brevet GB 1 560 298 A un circuit d'alimentation du rotor d'un alternateur permettant de fournir un courant de charge et un courant d'auto-excitation au rotor. Le circuit d'alimentation comprend un doubleur de tension relié aux sorties de phases de l'alternateur, ce doubleur de tension étant alimenté en permanence lors du fonctionnement du véhicule.
Le brevet US 4 695 786 décrit un régulateur de tension fonctionnant en mode nominal et comprenant un étage d'activation constitué de deux transistors Darlington. Le régulateur comprend également un étage intermédiaire qui, au moment de démarrer l'alternateur, crée une légère baisse de tension dans l'étage d'activation. Le rotor dispose ainsi d'un courant d'intensité suffisante pour assurer le démarrage de l'alternateur. Le problème technique à résoudre par l'objet de la présente invention est de proposer un dispositif d'alimentation de l'inducteur d'une machine électrique tournante, ledit dispositif comprenant un circuit d'alimentation en mode nominal dudit inducteur, qui permettrait d'éviter un désamorçage de l'alimentation de l'inducteur dans le cas où un appel de charge important se produit alors que la batterie, ou tout autre organe de stockage, n'est plus en mesure de délivrer de tension sur le réseau de bord.
La solution au problème technique posé consiste, selon la présente invention, en ce que ledit dispositif comprend également un circuit d'alimentation en mode auxiliaire de l'inducteur et un sélecteur de mode apte, d'une part, à comparer la tension de sortie délivrée par la machine à une tension de seuil au moins égale à la tension de fonctionnement minimale dudit circuit d'alimentation nominal, et, d'autre part, à sélectionner ledit mode d'alimentation auxiliaire si ladite tension de sortie est inférieure à ladite tension de seuil.
Ainsi, lorsqu'à la suite d'une mise hors fonctionnement de la batterie, la tension UaIt délivrée par la machine devient inférieure par exemple à une tension de seuil de l'ordre de 6 V, le circuit d'alimentation en mode auxiliaire est sollicité par le sélecteur de mode afin d'assurer le maintien d'un courant d'excitation dans le rotor de l'alternateur pour ne pas le désamorcer.
Avantageusement, le circuit d'alimentation en mode auxiliaire est sélectionné seulement lorsque la tension de sortie délivrée par la machine est inférieure à la tension de seuil.
Selon un premier mode de réalisation, ledit circuit d'alimentation auxiliaire comprend un circuit de pompe de charge alimenté par au moins une phase de l'induit de la machine et apte à maintenir la conduction d'un élément d'excitation de l'inducteur.
Comme on le verra en détail plus loin, ce mode de réalisation tient compte de la présence sur les phases de l'induit de la machine d'une tension résiduelle liée à un champ magnétique rémanent sur les pôles de l'inducteur.
Avantageusement, afin de maintenir une conduction dans le circuit d'alimentation nominal, même à des tensions UaIt très faibles, ledit circuit d'alimentation auxiliaire comprend également un circuit de mise en conduction prioritaire dudit élément d'excitation.
Ledit élément d'excitation est, en particulier, un transistor N-MOS.
Selon un second mode de réalisation, on utilise pas de pompe de charge auxiliaire mais ledit circuit d'alimentation auxiliaire comprend un élément d'excitation auxiliaire dudit inducteur disposé en parallèle sur un élément d'excitation nominal de l'inducteur.
Dans ce cas, l'invention prévoit notamment que, ledit élément d'excitation nominal étant un transistor N-MOS, l'élément d'excitation auxiliaire est un transistor P-MOS.
Il est même possible d'envisager, dans ce second mode de réalisation, que ledit élément d'excitation auxiliaire et ledit élément d'excitation nominal constituent un seul élément d'excitation.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
La figure 2 est un schéma général d'un dispositif d'alimentation conforme à l'invention.
La figure 3 est un schéma d'un premier mode de réalisation du dispositif de la figure 2.
La figure 4 est un schéma d'une variante du dispositif de la figure 3.
La figure 5 est un schéma d'un second mode de réalisation du dispositif de la figure 2.
La figure 6 est un schéma d'une première variante du dispositif de la figure 5.
La figure 7 est un schéma d'une seconde variante du dispositif de la figure 5.
Sur la figure 2, est représenté un schéma d'un dispositif d'alimentation de l'inducteur 3 d'une machine électrique tournante, telles que l'alternateur ou l'altemo-démarreur d'un véhicule automobile. Ce dispositif comprend un circuit
21 d'alimentation en mode nominal de l'inducteur 3 comportant notamment un élément d'excitation dudit inducteur, constitué par exemple par un transistor N- MOS de puissance. Une description plus détaillée de ce circuit 21 d'alimentation en mode nominal sera fournie plus loin en regard de la figure 3.
Le dispositif d'alimentation de la figure 2 indique également la présence d'un circuit 22 d'alimentation en mode auxiliaire de l'inducteur 3, destiné à éviter le désamorçage dudit inducteur lorsque la batterie, ou tout autre élément de stockage d'énergie électrique, n'est plus en mesure d'alimenter le réseau de bord du véhicule, en particulier en cas de déconnexion.
Le passage du mode nominal d'alimentation au mode auxiliaire est décidé par un sélecteur 23 de mode apte à comparer la tension UaIt de sortie délivrée par la machine sur le réseau à une tension Useuil de seuil au moins égale à la tension minimale de fonctionnement dudit circuit 21 d'alimentation nominal. Cette tension de fonctionnement est en général celle des composants logiques du circuit 21 , à savoir 5 V par exemple. Dans ce cas, la tension Useuil de seuil peut être prise égale à 6 V environ, et plus généralement comprise entre 5 et 7 V, de manière à s'affranchir des fluctuations de la tension UaIt, lesquelles peuvent être importantes compte tenu de l'absence de filtrage réalisée par la batterie du fait de sa déconnexion.
Si la tension UaIt de sortie de la machine est inférieure à la tension Useuil de seuil, le sélecteur 23 de mode met alors en œuvre le circuit 22 d'alimentation en mode auxiliaire.
La figure 3 donne un schéma d'un premier mode de réalisation du dispositif de la figure 2.
D'une manière générale, ce mode de réalisation repose sur l'utilisation de signaux résiduels sur les phases φ1 , φ2 en sortie de l'induit 1 de la machine afin d'alimenter l'inducteur 3 via le transistor M1 d'excitation N-MOS.
En effet, quand l'alternateur, ou altemo-démarreur, est en rotation, ces signaux sont toujours présents, même en l'absence de courant inducteur. Ils sont en fait provoqués par la rémanence du circuit magnétique de l'inducteur 3. L'amplitude de ces signaux est proportionnelle à la vitesse de rotation et dépend de l'état du circuit magnétique de l'alternateur. En particulier, elle est plus importante si l'acier de l'inducteur 3 comporte un taux de carbone élevé ou s'il comporte des aimants interpolaires favorisant la rémanence du circuit magnétique. Aux fortes vitesses de rotation, la force électromotrice délivrée sur les phases φ1 et φ2 est suffisante pour réamorcer l'alternateur, même si la tension à ses bornes est nulle.
Par contre, aux faibles vitesses de rotation, cette force électromotrice est insuffisante pour réamorcer l'alternateur. En dépit de l'application d'une charge importante, une tension résiduelle doit pouvoir être conservée sur le réseau pour pouvoir réamorcer l'inducteur 3, de l'ordre de 2 volts à 4000 tours par minute.
La force électromotrice sur les phases φ1 et φ2 peut être appliquée directement à l'inducteur 3 sans passer par le transistor M1 d'excitation. A cet effet, on utilise un pont redresseur 4 qui est désactivé quand la tension est suffisante pour réamorcer l'alternateur. Le pont redresseur 4 est réalisé par les diodes DR1 et DR2 reliées à la masse et aux sorties des phases φ1 et φ2 respectivement. Les autres diodes du pont redresseur ne sont pas représentées car n'ayant pas de caractéristique fonctionnelle liée à l'invention. L'efficacité du pont redresseur 4 peut être augmentée en remplaçant les diodes du pont par des transistors en redressement synchrone. Cependant, la commande de ces transistors est difficile à réaliser à cause de la très faible tension disponible pour les commander. Comme le montre la figure 3, on préfère appliquer indirectement la force électromotrice sur les phases φ1 et φ2 à l'inducteur 3 en passant par le pont redresseur 4 et le transistor M1 d'excitation. Cependant, lorsqu'on utilise un transistor N-MOS en montage "high side", la très faible tension disponible sur le régulateur de l'alternateur ne permet pas le fonctionnement de la pompe de charge qui équipe classiquement les circuits 21 d'alimentation habituels et qui permet de maintenir le transistor M1 d'excitation complètement fermé.
C'est pourquoi le dispositif de la figure 3 prévoit que lorsque la tension UaIt du réseau tombe en dessous d'un seuil prédéterminé Useuil, la pompe de charge habituelle est remplacée par une pompe de charge auxiliaire d'un circuit 22 d'alimentation en mode auxiliaire, actionnée par les signaux présents sur les phases φ1 et φ2. Ces signaux peuvent être rendus toujours disponibles au moyen d'un circuit de mise en conduction prioritaire du transistor M1 d'excitation, destiné à conserver la magnétisation de l'inducteur 3. Le passage du mode nominal au mode auxiliaire est réalisé au moyen du sélecteur 23 de mode.
Le dispositif de la figure 3 va maintenant être décrit en détail.
L'induit 1 de l'alternateur est constitué d'un bobinage comportant trois phases φ1 , φ2 et φ3. Le pont redresseur 4 est réalisé par les diodes DR1 et
DR2 reliées à la masse et aux sorties des phases φ1 et φ2 respectivement.
Les autres diodes du pont redresseur ne sont pas représentées car n'ayant pas de caractéristique fonctionnelle liée à l'invention.
Le dispositif d'alimentation de l'inducteur 3 comporte les éléments suivants :
- un circuit 21 d'alimentation en mode nominal constitué par le transistor M1 d'excitation N-MOS monté en configuration "high side" par rapport à l'inducteur 3. Une diode écrêteuse DZ1 qui protège la grille de ce transistor, une diode DL, dite de roue libre, et un circuit DRIV de commande assurent le fonctionnement du transistor M1 en mode nominal. Ce circuit DRIV de commande reçoit les informations des circuits faibles signaux du régulateur (non représentés). Le transistor M1 N-MOS de puissance possède une tension de seuil grille-source de faible valeur, égale à 1 ,5 volt par exemple. Cet étage de puissance comporte bien d'autres particularités qui ne seront pas décrites car faisant partie de l'état de l'art des régulateurs de tension batterie,
- un circuit 22 d'alimentation en mode auxiliaire comprenant :
* une pompe de charge constituée par les diodes D3 et D4, la résistance R3 et le condensateur C1. La diode D3 et le condensateur C1 sont reliés respectivement aux sorties des phases φ1 et φ2. La diode D4 est reliée à la grille du transistor M1. Ce circuit de pompe de charge utilise la tension délivrée sur les sorties des phases φ1 , φ2 pour appliquer un tension supérieure à UaIt sur la grille du transistor M1. Cette pompe de charge 23, alimentée par les potentiels de phases, est différente de la pompe de charge alimentée par oscillateur utilisée en mode de régulation nominal, * un circuit de mise en conduction prioritaire du transistor M1 N-MOS, constitué par une diode D2 et une résistance R4 reliant la grille du transistor M1 à la tension UaIt du réseau de bord. Ce circuit permet une mise en conduction en mode linéaire du transistor M1 quand la tension UaIt a fortement chuté,
- le sélecteur 23 de mode est constitué par un détecteur à seuil comprenant un pont de résistances R5, R6 et une diode écrêteuse DZ2. La diode écrêteuse DZ2 commande l'état ouvert ou fermé des transistors M2, M3 et M4. Ce circuit 23 de sélection de mode permet le fonctionnement du circuit de auxiliaire 22 quand les circuits du mode nominal ne peuvent plus fonctionner à cause d'une tension d'alimentation UaIt trop faible. Par exemple, le basculement du détecteur à seuil peut être prévu pour une tension d'alimentation UaIt = Useuil comprise entre 5 et 7 V, par exemple 6V. Dans le mode de réalisation proposé, les transistors M2, M3 et M4 sont fermés quand UaIt > Useuil et ouverts quand UaIt < Useuil. Ce détecteur à seuil peut être réalisé de multiples façons sans sortir de l'invention à condition que son fonctionnement soit assuré jusqu'aux tensions nulles (UaIt = 0), telles que pont diviseur dont le point milieu est relié aux grilles de transistors M2, M3 et M4, comparateur dont les deux entrées reçoivent les potentiels UaIt et Useuil respectivement, transistors M2, M3 et M4 en technologie MOS ou bipolaire, etc.. Le dispositif de la figure 3 fonctionne de la façon suivante. En condition de charge stabilisée, la tension UaIt en sortie de l'alternateur est régulée de façon classique. Cependant, le taux d'ondulation en tension provoqué par le redressement est plus important car la batterie n'est plus présente pour filtrer cette ondulation, ce qui peut provoquer une régulation moins précise.
Lors d'un appel de charge important à l'occasion d'un passage brutal d'une faible charge à une charge importante, la tension UaIt chute fortement. Cependant, la variation du courant d'excitation est ralentie par la valeur de l'inductance de l'enroulement d'excitation. Pendant quelques millisecondes, on peut considérer que la variation du courant d'excitation est négligeable. D'autre part, la diminution de la tension UaIt réduit le courant dans la nouvelle charge et augmente le courant délivré par l'alternateur. En conséquence, il se produit un équilibre entre le courant délivré par l'alternateur et le courant absorbé par la charge pour une tension UaIt qui reste bien supérieure au potentiel de masse malgré une forte chute. Par exemple, cette tension UaIt peut se stabiliser à une valeur de l'ordre de 4 volts pour un cas extrême.
Dans ces conditions, les composants du circuit 21 du mode de régulation nominal ne peuvent plus être alimentés et ouvrent le transistor M1 d'excitation.
Cependant, la suppression de tout courant d'excitation est évitée du fait que le sélecteur 23 de mode détecte la chute de la tension UaIt entre 5 et 7 volts par exemple. Il permet de passer du mode d'alimentation nominal au mode auxiliaire du fait que le pont diviseur R5, R6, DZ2 ne maintient plus fermés les transistors M2, M3 et M4. Dans ces conditions, le circuit DRIV de commande du transistor M1 d'excitation est désactivé, la pompe de charge et le circuit de mise en conduction prioritaire du circuit auxiliaire 22 sont activés et peuvent charger la grille du transistor M1.
Dans un premier temps, on ne considère que l'activation du circuit de mise en conduction prioritaire de la figure 3.
Le courant circulant dans la résistance R4 est très faible car il provient du courant de fuite de la grille du transistor M1. Par conséquent, la tension aux bornes de la résistance R4 est négligeable.
Ainsi, la tension VDs aux bornes du transistor M1 est égale à la tension VD2 aux bornes de la diode D2 augmentée de la tension de grille VGS du transistor M 1 : Si VGS = 1 ,5 V et V02 = 0,7 V, on a :
Vos = 2,2 V Le transistor M1 est passant en mode linéaire. Si la tension UaIt chute par exemple jusqu'à 4 volts, l'inducteur 3 reste alimenté sous une tension égale à 1 ,8 volt.
Cette tension d'excitation est suffisante pour conserver une force électromotrice entre les phases φ1et φ2. Si la chute de tension directe des diodes de redressement est égale à Vd = 0,7 V, la force électromotrice entre φ1 et φ2 est égale à :
V(φ1 - φ2) = UaIt + 2.Vd
V(φ1 - φ2) = 4 + (2 x 0.7) = 5,4 V Dans un deuxième temps, cette valeur de force électromotrice entre φ1 et φ2 est utilisée pour assurer le fonctionnement de la pompe de charge permettant de charger la grille du transistor M1 à une valeur supérieure à UaIt afin de fermer complètement le transistor. En effet :
- lors d'une alternance des signaux sur les phases φ1et φ2, le condensateur C1 est chargé sous une tension égale à :
V(C1 ) = V(φ1 - φ2) - V(D3),
- lors de l'alternance suivante, cette charge est appliquée à la grille du transistor M1 via la diode D4. Le potentiel VG de la grille du transistor M1 par rapport à la masse est égal à :
VG = V(C1 ) + V(φ1 - φ2) - V(DRI ) - V(D4) Soit :
VG = 2.V(φ1 - φ2) - V(D3) - V(DRI ) - V(D4) VG = 2.(UaIt + 2.Vd) - V(D3) - V(DRI ) - V(D4)
Si la chute de tension dans les diodes DR1 , DR2, D3 et D4 est égale à Vd, le potentiel de la grille du transistor M1 par rapport à la masse est égal à :
VG = 2.(UaIt + 2.VD) - 3.Vd
VG = 2.UaIt + Vd VG = 8,7 V.
Cette tension de 8,7 V entre grille et masse est largement suffisante pour fermer complètement le transistor M1 pour une tension UaIt égale par exemple à 4 V.
La tension drain-source est pratiquement nulle et la tension VGS entre la grille et la source du transistor M1 est égale à : VGS = VG - UaIt VGS = 4,7 volts
Ainsi, les signaux sur les phases φ1 et φ2 appliqués à la pompe de charge auxiliaire permettent de fermer complètement le transistor M1 d'excitation, même pour de très faibles tensions UaIt d'alimentation. En première approximation, cette pompe de charge auxiliaire permet de disposer d'une tension grille-source VGS au moins égale à la tension UaIt en sortie de l'alternateur à condition que la grille du transistor M1 soit suffisamment isolée pour être capable de conserver les charges dans la grille du transistor M1 malgré la très faible fréquence des signaux sur les phases, de 150 à 2000 Hz. Dans ce but, les résistances d'isolation (non représentée) doivent être supérieures à 100 mégohms. De telles valeurs d'isolation sont compatibles avec les technologies des semiconducteurs utilisées pour les régulateurs de tension batterie.
Pour ne pas désamorcer, la valeur de UaIt minimum nécessaire diminue au fur et à mesure que la vitesse de rotation de l'alternateur est élevée. A partir de 7000 tours/mn, l'amplitude des signaux sur les phases est suffisante pour réamorcer l'alternateur en l'absence de cette tension UaIt.
L'ensemble des moyens décrits ci-dessus assurent que l'inducteur 3 reste alimenté par toute la tension UaIt, ainsi que les charges en sortie de l'alternateur, même quand UaIt décroît fortement suite à un appel de charge. Cette condition évite le désamorçage de l'alternateur.
Selon la variante de réalisation de la figure 4, seule la liaison avec la phase φ2 est conservée. La diode D3 est alors reliée directement à la tension UaIt. Par rapport au mode de réalisation précédent à deux phases, la charge de la capacité C1 est plus faible d'une jonction Vd = 0,7 V, ce qui diminue l'efficacité de la pompe de charge permettant de charger la grille du transistor M1 d'excitation.
- Lors d'une alternance des signaux sur les phases φ1 et φ2, le condensateur C1 est chargé sous une tension égale à :
V(C1 ) = UaIt - V(D3) + V(DR2) = UaIt - Lors de l'alternance suivante, cette charge est appliquée à la grille du transistor M1 via la diode D4. Le potentiel VG de la grille du transistor M1 par rapport à la masse est égal à :
VG = V(C1 ) + V (φ1 - φ2) - V(DRI ) - V(D4) Soit : VG = UaIt + (UaIt + 2.Vd) - V(DRI ) - V(D4)
VG = 2.UaIt + 2.Vd - V(DRI ) - V(D4)
VG = 2.UaIt + 2.Vd - 2.Vd
VG = 2.UaIt VG = 8 V
Cette tension de 8 V entre grille et masse est largement suffisante pour fermer complètement le transistor M1 pour une tension UaIt égale à 4 volts. La tension drain-source est pratiquement nulle et la tension VGs entre la grille et la source du transistor M1 est égale à :
VGS = VG - UaIt
VGS = 4 V
La tension de grille du transistor M1 d'excitation est diminuée de Vd, ce qui réduit les performances aux faibles vitesses de rotation par rapport à la solution utilisant deux phases, mais cette solution à une seule phase reste acceptable pour les régulateurs ne disposant que d'une seule entrée phase.
Le schéma de la figure 5 illustre un second mode de réalisation de l'invention dans lequel ledit circuit 22' d'alimentation en mode auxiliaire comprend un élément d'excitation auxiliaire dudit inducteur 3 disposé en parallèle sur l'élément d'excitation nominal de l'inducteur. Dans l'exemple de la figure 5, ledit élément d'excitation auxiliaire est un transistor M6 P-MOS, l'élément d'excitation nominal étant le transistor M1 N-MOS. Bien entendu, le transistor M6 pourrait être également un transistor bipolaire PNP.
Le transistor auxiliaire M6 n'a pas besoin de pompe de charge. Lorsque la tension UaIt en sortie de l'alternateur devient inférieure à la tension Useuil de seuil comprise entre 5 et 7 volts, le transistor M6 est mis en conduction par le sélecteur 23' de mode constitué par les composants R5, DZ2, R6, M3, et par le transistor M7 et les résistances R8 et R9. du circuit 22' d'alimentation en mode auxiliaire. On remarquera cependant qu'un transistor P-MOS occupe une surface de silicium plus importante qu'une pompe de charge.
Dans la variante de la figure 6, on utilise comme transistor M1 d'excitation un transistor N-MOS ou un transistor bipolaire NPN, connecté en configuration "low-side" par rapport à l'inducteur 3, avec le risque toutefois de provoquer de la corrosion sur le bobinage de l'inducteur qui reste relié au potentiel UaIt quand le véhicule est à l'arrêt.
Il est également possible de n'utiliser qu'un seul transistor M'1 pour les modes d'excitation nominal et auxiliaire. C'est ce que montre la figure 7 où un transistor M'1 P-MOS est connecté en configuration "high-side" par rapport au bobinage de l'inducteur 3. On retrouve là aussi les difficultés liées à la surface de silicium importante occupée par un transistor P-MOS. Sur cette figure 7 le circuit d'alimentation en mode auxiliaire 22' est réduit au transistor M5 et à la résistance R19.

Claims

REVENDICATIONS
1. Dispositif d'alimentation de l'inducteur (3) d'une machine électrique tournante, ledit dispositif comprenant un circuit (21 ) d'alimentation en mode nominal dudit inducteur, caractérisé en ce que ledit dispositif comprend également un circuit (22) d'alimentation en mode auxiliaire de l'inducteur (3) et un sélecteur (23) de mode apte, d'une part, à comparer la tension (UaIt) de sortie délivrée par la machine à une tension (Useuil) de seuil au moins égale à la tension minimale de fonctionnement dudit circuit (21 ) d'alimentation nominal, et, d'autre part, à sélectionner ledit mode d'alimentation auxiliaire si ladite tension (UaIt) de sortie est inférieure à ladite tension (Useuil) de seuil.
2. Dispositif selon la revendication 1 , caractérisé en ce que ledit circuit (22) d'alimentation auxiliaire comprend un circuit de pompe de charge alimenté par au moins une phase (φ1 , φ2) de l'induit (1) de la machine et apte à maintenir la conduction d'un élément (M1 ) d'excitation de l'inducteur (3).
3. Dispositif selon la revendication 2, caractérisé en ce que ledit circuit (22) d'alimentation auxiliaire comprend également un circuit de mise en conduction prioritaire dudit élément (M1 ) d'excitation.
4. Dispositif selon l'une des revendications 2 ou 3, caractérisé en ce que ledit élément (M1 ) d'excitation est un transistor N-MOS.
5. Dispositif selon la revendication 1 , caractérisé en ce que ledit circuit (22') d'alimentation auxiliaire comprend un élément (M6) d'excitation auxiliaire dudit inducteur (3) disposé en parallèle sur un élément (M1 ) d'excitation nominal de l'inducteur.
6. Dispositif selon la revendication 5, caractérisé en ce que, ledit élément d'excitation nominal étant un transistor N-MOS (M1 ), l'élément d'excitation auxiliaire est un transistor P-MOS (M6).
7. Dispositif selon la revendication 5, caractérisé en ce que ledit élément d'excitation auxiliaire et ledit élément d'excitation nominal constituent un seul élément (M'1 ) d'excitation.
EP07717794A 2006-01-12 2007-01-09 Dispositif d'alimentation de l'inducteur d'une machine electrique tournante Withdrawn EP1972052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0600275A FR2896107B1 (fr) 2006-01-12 2006-01-12 Dispositif d'alimentation de l'inducteur d'une machine electrique tournante
PCT/FR2007/050629 WO2007080349A1 (fr) 2006-01-12 2007-01-09 Dispositif d'alimentation de l'inducteur d'une machine electrique tournante

Publications (1)

Publication Number Publication Date
EP1972052A1 true EP1972052A1 (fr) 2008-09-24

Family

ID=36997623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07717794A Withdrawn EP1972052A1 (fr) 2006-01-12 2007-01-09 Dispositif d'alimentation de l'inducteur d'une machine electrique tournante

Country Status (5)

Country Link
US (1) US20090021225A1 (fr)
EP (1) EP1972052A1 (fr)
JP (1) JP2009523401A (fr)
FR (1) FR2896107B1 (fr)
WO (1) WO2007080349A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505702C2 (ru) * 2011-02-22 2014-01-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Устройство управления углом зажигания для двигателя внутреннего сгорания
UA99548C2 (ru) * 2011-04-07 2012-08-27 Валерий Павлович Гвоздев Устройство гашения магнитного поля при отключении обмотки возбуждения синхроннной машиты от источника питания

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891072A (en) * 1930-05-30 1932-12-13 Gen Electric Generator excitation system
US1980775A (en) * 1933-10-11 1934-11-13 Gen Electric Excitation system for dynamoelectric machines
US3599070A (en) * 1969-09-17 1971-08-10 Siltron Battery charger and emergency power supply for illumination device
DE2656597A1 (de) * 1975-12-22 1977-06-30 Sheller Globe Corp Schaltungsanordnung zum steuern der erregung eines wechselstromgenerators
IT1215276B (it) * 1985-05-20 1990-01-31 Ates Componenti Elettron Regolatore di tensione per generatore di energia elettrica ad alternatore, con stadio attuatore in circuito integratoe con stadio ausiliario per l'avviamento a basso numero di giri dell'alternatore, particolarmente per uso automobilistico.
JPH0528906Y2 (fr) * 1985-05-31 1993-07-26
US4629968A (en) * 1985-08-23 1986-12-16 General Motors Corporation Alternator load control system
FR2757326B1 (fr) * 1996-12-16 1999-03-05 Valeo Equip Electr Moteur Dispositif de regulation de la tension de charge d'une batterie de vehicule automobile par un alternateur
JP2003244966A (ja) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp 駆動回路
JP4464181B2 (ja) * 2004-04-06 2010-05-19 株式会社小糸製作所 車両用灯具
JP2006238510A (ja) * 2005-02-22 2006-09-07 Tdk Corp 電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007080349A1 *

Also Published As

Publication number Publication date
FR2896107A1 (fr) 2007-07-13
US20090021225A1 (en) 2009-01-22
WO2007080349A1 (fr) 2007-07-19
JP2009523401A (ja) 2009-06-18
FR2896107B1 (fr) 2008-02-22

Similar Documents

Publication Publication Date Title
EP1790071B1 (fr) Module de commande et de puissance pour une machine electrique tournante
EP1951553A2 (fr) Dispositif de gestion d&#39;alimentation d&#39;un reseau de consommateurs pour vehicule automobile
WO2015121564A1 (fr) Systeme d&#39;alimentation a tension continue configure pour precharger un condensateur de filtrage avant l&#39;alimentation d&#39;une charge
WO2016170262A1 (fr) Regulateur de tension d&#39;un alternateur de vehicule automobile, porte-balais regulateur et alternateurs correspondants
WO2013093343A2 (fr) Dispositif de maintien de tension au demarrage pour vehicule automobile
FR2899036A1 (fr) Dispositif de suralimentation temporaire en puissance d&#39;organes electriques automobiles
EP2764602B1 (fr) Réseau électrique pour véhicule ayant au moins un composant activable
WO2009000989A2 (fr) Procede de commande d&#39;une machine electrique tournante en cas de delestage de charge, et module de commande et de puissance correspondant
EP1331716A1 (fr) Système d&#39;alimentation en énergie électrique d&#39;un véhicule automobile
EP2053720A1 (fr) Dispositif d&#39;interface de compensation de tension à base de stockage de l&#39;energie sous forme capacitive et réseau electrique comprenant ce dispositif
WO2007080349A1 (fr) Dispositif d&#39;alimentation de l&#39;inducteur d&#39;une machine electrique tournante
EP1946972A1 (fr) Dispositif d&#39;élévation temporaire de tension électrique pour organe automobile
EP2102670A1 (fr) Procede et dispositif de detection de la defaillance du circuit d&#39;excitation d&#39;un alternateur polyphase
FR2983011A1 (fr) Procede de gestion d&#39;une unite d&#39;alimentation en energie d&#39;un reseau embarque d&#39;un vehicule automobile et unite d&#39;alimentation en energie mettant en oeuvre ce procede
EP1385260B1 (fr) Unité de commande à consommation contrôlée pour transistor de puissance dans un pont redresseur pour un alternateur ou un alterno-démarreur
WO2018162819A1 (fr) Circuit électrique de décharge d&#39;une capacité, systeme electrique et vehicule automobile comportant un tel circuit electrique de decharge
FR3128068A1 (fr) Régulateur comprenant un module de sécurité pour une machine électrique tournante
FR3019396A1 (fr) Systeme de stabilisation de tension
FR3013170A1 (fr) Procede d&#39;evacuation de l&#39;energie stockee dans un stator d&#39;un moteur electrique
EP3127212B1 (fr) Systeme de stabilisation d&#39;une tension d&#39;alimentation d&#39;un reseau electrique de bord d&#39;un vehicule automobile
FR2888058A1 (fr) Installation electrique de bord pour vehicule automobile
FR2921770A1 (fr) Dispositif de suralimentation en puissance, monte en serie sur un reseau de bord electrique, pour un organe de forte puissance d&#39;un vehicule
FR2895953A1 (fr) Dispositif de protection de reseau de bord automobile contre les consommations impulsionnelles d&#39;organes electriques
FR2869469A1 (fr) Dispositif de protection de reseau de bord
FR2958463A1 (fr) Circuit electrique pour vehicule automobile muni d&#39;un redresseur autonome

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090627